Self-pulsations of a dichloromethane drop on a surfactant solution

par Florian Wodlei

Thèse de doctorat en Chimie macromoléculaire et supramoléculaire

Sous la direction de Véronique Pimienta.

Soutenue le 29-09-2017

à Toulouse 3 , dans le cadre de École Doctorale Sciences de la Matière (Toulouse) , en partenariat avec Interactions moléculaires et réactivité chimique et photochimique / IMRCP (laboratoire) .

  • Titre traduit

    Pulsations d'une goutte de dichloromethane sur une solution de tensioactifs


  • Résumé

    Le couplage entre processus physico-chimiques et le transfert de matière ou de chaleur peuvent donner lieu à des structures spatio-temporelles induites par des flux convectifs. Ces flux peuvent résulter de gradients de densité ou de tension superficielle et sont l'expression de la conversion d'énergie chimique en énergie mécanique. Quand la tension superficielle est à l'origine de ces mouvements, les effets correspondants sont connus sous le nom d'effet Marangoni. Ils jouent un rôle dans de nombreuses applications comme les procédés industriels d'extraction en amplifiant notablement la vitesse des processus de transfert. Les systèmes réels, trop complexes, doit être simplifiés par le développement de systèmes modèles afin d'établir au niveau fondamental la théorie sous-jacente à de telles dynamiques. Une succession de régimes dynamiques est observée lors de la dissolution d'une goutte de dichlorométhane (DCM) déposée sur une solution aqueuse de tensioactif (bromure de céthytriméthylammonium, CTAB). La succession remarquable de formes et de mouvements induits est déterminée par la concentration du tensioactif qui joue le rôle de paramètre de contrôle. A faible concentration en CTAB, un mouvement de translation ou des pulsations. Aux concentrations plus élevées, la goutte entre en rotation ou forme des structures polygonales. Bien que chimiquement simple, le système est complexe et implique plusieurs processus physico-chimiques : évaporation, solubilisation, transfert de tensioactifs, adsorption aux interfaces et agrégation. Les effets thermiques et de transport qui en résultent sont à l'origine des variations locales de tension interfaciale donnant lieu aux effets Marangoni. Nous nous sommes concentrés sur le comportement de la goutte quand la concentration en tensioactif conduit au régime de pulsation. Nous avons tout d'abord analysé le comportement de la goutte pendant la période d'induction qui précède le régime instable. L'analyse de la forme de la goutte corrélée à des mesures d'Imagerie par Vélocimétrie de Particules (PIV), ont montré que les flux créés par la dissolution du DCM limitent dans un premier temps l'adsorption du CTAB à l'interface eau/huile. L'instabilité ne démarre que lorsque la dissolution est réduite et que l'adsorption devient effective. La phase d'induction apparait comme une transition lente entre un coefficient d'étalement négatif (goutte ayant la forme d'une lentille) vers un coefficient d'étalement positif qui entraine l'expansion du film et les pulsations suivantes. Ces pulsations sont accompagnées par l'éjection de gouttelettes qui se forment à partir d'un bourrelet apparaissant au bord du film pendant la phase d'expansion. La rupture de ce bourrelet ressemble au phénomène connu sous le nom d'instabilité de Rayleigh-Plateau (RP). Cependant, la longueur d'onde caractéristique de formation des gouttelettes est deux fois plus faible que celle attendue dans le cas d'une instabilité de RP classique. L'origine de cet écart réside dans la modulation du bourrelet avant sa rupture. Cette modulation est en fait déterminée par des ondulations apparaissant à la surface du film et formant des rides en direction radiale. Ces rides pourraient être attribuées à un effet Marangoni thermique connu sous le nom d'instabilité de Bénard-Marangoni. Elles jouent également un rôle important dans la formation de la structure de démouillage hautement organisée décrite dans le dernier chapitre. L'ajout de CTAB dans la phase organique (goutte) donne lieu à des oscillations plus rapides qui, après une phase d'expansion de grande amplitude et l'éjection d'une couronne parfaite de gouttelettes, résultent lors de la phase de démouillage en une structure dont la forme rappelle une fleur. Une interprétation qualitative permettant d'identifier les principaux processus à l'œuvre et basée sur des mesures indépendantes de tension interfaciale apporte une explication des pulsations observées et de l'auto-organisation induite.


  • Résumé

    Far-from-equilibrium systems exhibit a wide variety of spatial and temporal patterns known as dissipative structures. The interplay between physico-chemical processes and mass or heat transfer can give rise to spatio-temporal structures induced by convective flows. These flows may result from density or surface tension gradients. They are the expression of the conversion from chemical into mechanical energy. When surface tension is the driving force, the corresponding effects are known as Marangoni effects. They are at play in numerous applications as extraction processes, oil recovery, and chemical reactors at all scales and noticeably modify transfer rates. The complexity of real systems deserves the development of model systems, essentials to settle, on a fundamental level, the theory governing the related dynamics. A succession of dynamical regimes is observed during the dissolution of a dichloromethane drop deposited on aqueous solutions of a cationic surfactant (cetyltrimethylammonium bromide, CTAB). The remarkable range of shapes and motion patterns that emerges is related to the surfactant concentration, which is used as a control parameter. For low surfactant concentrations, we observe translational motion and pulsations of the drop. At intermediate concentrations the drop transforms and starts to rotate. At higher concentrations polygonal shapes are observed. Although chemically simple and of easy implementation, the system is relatively complex and involves several processes: evaporation, solubilization, surfactant mass transfer, interfacial adsorption and self-aggregation. Thermal and transport effects induced are at the origin of local variations of interfacial tension leading to the Marangoni flows. In this thesis, we focused on the behavior of the dichloromethane drop when the aqueous surfactant concentration (0.5 mM) leads to the pulsating regime. At this concentration, we have first analyzed the behavior of the drop during the induction period that precedes the instable regime. Drop shape analysis, correlated to Particle Image Velocimetry (PIV) measurements, showed that dissolution flows initially hinder adsorption of CTAB at the water/oil interface. The instability is only triggered when dissolution is reduced and water/oil adsorption becomes effective. The induction period appears as a slow transition from an initial negative spreading coefficient (a lens shape drop) towards a positive spreading coefficient that triggers film expansion and following pulsations. These pulsations are accompanied by the ejection of smaller droplets which are formed from a toroidal rim that is created during the expanding phase of the drop. The break-up of this toroidal rim, resembles to what is known as the Rayleigh-Plateau (RP) instability. Nevertheless, the observed characteristic wavelength is a factor of 2 too small in respect to the classical RP instability. We have found the origin of this discrepancy in the fact that modulations that appear on the rim before it transforms into droplets are settled by deformations arising at the surface of the expanding film. They appear as wrinkles that form in the film and may be related to thermal Marangoni effects known as Benard-Marangoni instability. These wrinkles play an important part in the highly organized dewetting structure described in the last chapter of the thesis. The addition of CTAB also in the organic (drop) phase leads to faster pulsations which, after a very high amplitude expanding stage and the ejection of a perfect crown of droplets, result during the film receding stage in the formation of a pattern which symmetry is reminiscent of a flower. A qualitative interpretation aimed at identifying the main processes at play and based on independent surface tension data gives a consistent explanation of the observed pulsations and related self-organized patterns.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication en 2017 par Université Paul Sabatier [diffusion/distribution] à Toulouse

Self-pulsations of a dichloromethane drop on a surfactant solution


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

Cette thèse a donné lieu à une publication en 2017 par Université Paul Sabatier [diffusion/distribution] à Toulouse

Informations

  • Sous le titre : Self-pulsations of a dichloromethane drop on a surfactant solution
  • Détails : 1 vol. (120-xxxiv)
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.