Multi-criteria and multi-objective dynamic planning by self-adaptive multi-agent system, application to earth observation satellite constellations

par Jonathan Bonnet

Thèse de doctorat en Informatique

  • Titre traduit

    Planification Dynamique, Multi-Objectif et Multi-Critère, par Système Multi-Agent Auto-Adaptatif, Application aux Constellations de Satellites d'Observation de la Terre


  • Résumé

    Etablir le meilleur plan pour l'usinage d'un produit, le meilleur ordonnancement des activités de construction d'un bâtiment ou la meilleure tournée de véhicules pour la livraison des commandes, en prenant en compte diverses contraintes économiques, temporelles, humaines, ou même météorologiques : dans cette diversité d'applications, optimiser la planification est une tâche complexe par le grand nombre d'entités hétérogènes en interaction, la forte dynamique, les objectifs contradictoires à atteindre, etc. La planification de missions pour des constellations de satellites en est un exemple majeur : beaucoup de paramètres et de contraintes, souvent antagonistes, doivent être pris en compte, entraînant une importante combinatoire. Actuellement, en Europe, les plans de missions sont élaborés au sol, juste avant que le satellite ne soit visible par la station d'émission. Les requêtes arrivant durant la planification ne peuvent être traitées, et sont mises en attente. De plus, la complexité de ce problème croit drastiquement : le nombre de constellations et les satellites les composant augmentent, ainsi que le nombre de requêtes journalières. Les approches actuelles montrent leurs limites. Pour pallier à ces inconvénients, de nouveaux systèmes basés sur la décentralisation et la distribution inhérentes à ce genre de problèmes, sont nécessaires. La théorie des systèmes multi-agents adaptatifs (AMAS) et notamment le modèle AMAS4Opt (AMAS for Optimisation) ont montré leur adéquation pour la résolution de problèmes d'optimisation complexes sous contraintes. Le comportement local et coopératif des agents AMAS permet au système de s'auto-adapter à la forte dynamique et de fournir des solutions adéquates rapidement. Dans cette thèse, nous adressons la résolution de la planification des missions de satellites par AMAS. Pour cela, nous avons complété et enrichi les modèles d'agents proposés par AMAS4Opt. Nous avons ainsi développé le système de planification dynamique de missions ATLAS. Pour valider ATLAS sur divers critères, nous avons utilisé un grand nombre de données hétérogènes. Enfin, ce travail a été comparé à un système " opérationnel' " standard sur des scénarios réels, mettant en valeur les apports de notre système.


  • Résumé

    Building the best plan in product treatment, the best schedule to a building construction or the best route for a salesman in order to visit a maximum of cities in the time allowed while taking into account different constraints (economic, temporal, humans or meteorological ): in all of those variety of applications, optimizing the planning is a complex task including a huge number of heterogeneous entities in interaction, the strong dynamics, multiple contradictory objectives, etc. Mission planning for constellations of satellites is a major example: a lot of parameters and constraints, often antagonists must be integrated, leading to an important combinatorial search space. Currently, in Europe, plans are built on ground, just before the satellite is visible by the ground stations. Any request coming during the planning process must wait for the next period. Moreover, the complexity of this problem grows drastically: the number of constellations and satellites increases, as the number of daily requests. Current approaches have shown their limits. To overcome those drawbacks, new systems based on decentralization and distribution inherent to this problem, are needed. The adaptive multi-agent systems (AMAS) theory and especially the AMAS4Opt (AMAS For Optimization) model have shown their adequacy in complex optimization problems solving. The local and cooperative behavior of agents allows the system to self-adapt to highly dynamic environments and to quickly deliver adequate solutions. In this thesis, we focus on solving mission planning for satellite constellations using AMAS. Thus, we propose several enhancement for the agent models proposed by AMAS4Opt. Then, we design the ATLAS dynamic mission planning system. To validate ATLAS on several criteria, we rely on huge sets of heterogeneous data. Finally, this work is compared to an operational and standard system on real scenarios, highlighting the value of our system.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication en 2017 par Université Paul Sabatier, Toulouse 3 [diffusion/distribution] à Toulouse

Multi-criteria and multi-objective dynamic planning by self-adaptive multi-agent system, application to earth observation satellite constellations


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.
Cette thèse a donné lieu à 1 publication .

Consulter en bibliothèque

Cette thèse a donné lieu à une publication en 2017 par Université Paul Sabatier, Toulouse 3 [diffusion/distribution] à Toulouse

Informations

  • Sous le titre : Multi-criteria and multi-objective dynamic planning by self-adaptive multi-agent system, application to earth observation satellite constellations
  • Détails : 1 vol. (153 p.)
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.