Optimizing the imbalances in a graph

par Antoine Glorieux

Thèse de doctorat en Mathématiques

Sous la direction de Walid Ben Ameur.

Soutenue le 19-06-2017

à Evry, Institut national des télécommunications , dans le cadre de École doctorale Informatique, télécommunications et électronique (Paris) , en partenariat avec Université Pierre et Marie Curie (Paris) (1971-2017) (Université) , Département Réseaux et Services Multimédia Mobiles (laboratoire) et de Services répartis- Architectures- MOdélisation- Validation- Administration des Réseaux (laboratoire) .

Le président du jury était Marie-Christine Costa.

Le jury était composé de Walid Ben Ameur, Marie-Christine Costa, Antoine Deza, Mourad Baïou, Evripidis Bampis, Abdel-Ilah Lisser, José Neto.

Les rapporteurs étaient Antoine Deza, Mourad Baïou.

  • Titre traduit

    Optimiser les déséquilibres dans un graphe


  • Résumé

    Le déséquilibre d'un sommet dans un graphe orienté est la valeur absolue de la différence entre son degré sortant et son degré entrant. Nous étudions le problème de trouver une orientation des arêtes du graphe telle que l'image du vecteur dont les composantes sont les déséquilibres des sommets par une fonction objectif f est maximisée. Le premier cas considéré est le problème de maximiser le minimum des déséquilibres sur toutes les orientations possibles. Nous caractérisons les graphes dont la valeur objective optimale est nulle. Ensuite nous donnons plusieurs résultats concernant la complexité du problème. Enfin, nous introduisons différentes formulations du problème et présentons quelques résultats numériques. Par la suite, nous montrons que le cas f=1/2 | |·| |₁ mène au célèbre problème de la coupe de cardinalité maximale. Nous introduisons de nouvelles formulations ainsi qu'un nouveau majorant qui domine celui de Goemans et Williamson. Des résultats théoriques et numériques concernant la performance des approches sont présentés. Pour finir, dans le but de renforcer certaines des formulations des problèmes étudiés, nous étudions une famille de polyèdres spécifique consistant en l'enveloppe convexe des matrices d'affectation 0/1 (où chaque colonne contient exactement une composante égale à 1) annexée avec l'indice de leur ligne non-identiquement nulle la plus basse. Nous donnons une description complète de ce polytope ainsi que certaines de ses variantes qui apparaissent naturellement dans le contexte de divers problèmes d'optimisation combinatoire. Nous montrons également que résoudre un programme linéaire sur un tel polytope peut s'effectuer en temps polynomial


  • Résumé

    The imbalance of a vertex in a directed graph is the absolute value of the difference between its outdegree and indegree. In this thesis we study the problem of orienting the edges of a graph in such a way that the image of the vector which components are the imbalances of the vertices of the graph under an objective function f is maximized. The first case considered is the problem of maximizing the minimum imbalance of all the vertices over all the possible orientations of the input graph. We first characterize graphs for which the optimal objective value is zero. Next we give several results concerning the computational complexity of the problem. Finally, we deal with several mixed integer programming formulations for this problem and present some numerical experiments. Next, we show that the case for f=1/2 | |·| |₁ leads to the famous unweighted maximum cut problem. We introduce some new formulations along with a new bound shown to be tighter than Michel Goemans & David Williamson's. Theoretical and computational results regarding bounds quality and performance are also reported. Finally, in order to strengthen some formulations of the studied problems, we study a specific class of polytopes. Consider the polytope consisting in the convex hull of the 0/1 assignment matrices where each column contains exactly one coefficient equal to 1 appended with their index of the lowest row that is not identically equal to the zero row. We give a full description of this polytope and some of its variants which naturally appear in the context of several combinatorial optimization problems. We also show that linear optimization over those polytopes can be done in polynomial time


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Télécom SudParis et Institut Mines-Télécom Business School. Médiathèque.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.