
UNIVERSITÉ DE STRASBOURG 
 

ÉCOLE DOCTORALE des Sciences de la Vie et de la Santé (ED 414) 

IPHC, Département Ecologie, Physiologie & Ethologie (UMR 7178) 

 

THÈSE  présentée par: 

Valéria ROMANO DE PAULA 
 

soutenue le: 22 septembre 2017 

 

 

pour obtenir le grade de: Docteur de l’université de Strasbourg 

Discipline/ Spécialité: Sciences du Vivant/Ecologie & Ethology 

 

Social networks as a trade-off between optimal 
information transmission  

and reduced disease transmission  
 

Les réseaux sociaux comme compromis entre 
une transmission d’information efficace et une 

réduction de la transmission de maladie 
 

THÈSE dirigée par:  

Dr. SUEUR Cédric Maître de conférences, Université de Strasbourg 

Dr. MACINTOSH Andrew J.J. Associate Professor, Kyoto University 
  

RAPPORTEURS:  

Dr. CHARPENTIER Marie Directeur de recherche, ISEM-CNRS 

Dr. GUILLAUME Jean-Loup 

 

Professeur des Universités, L3i-ULR 

 

AUTRES MEMBRES DU JURY: 

 

Dr. SCHRADIN Carsten Directeur de recherche, IPHC-DEPE 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



B 
 

                                                                          

Social networks as a trade-off between optimal 
information transmission  

and reduced disease transmission  
 
 

Thèse présentée pour obtenir 

le grade de docteur de l’Université de Strasbourg 

Discipline: Science du Vivant 

Spécialité: Ecologie et Ethologie 

 

 
 

Valéria Romano de Paula 
Soutenue publiquement le 22 septembre 2017 

 

Devant le jury composé de: 

Dr. Marie Charpentier Directeur de recherche. ISEM-CNRS, Montpellier Rapporteur externe 

Dr. Jean-Loup Guillaume Professeur des Universités, L3i-ULR, La Rochelle Rapporteur externe 

Dr. Carsten Schradin Directeur de recherche. IPHC-DEPE, Strasbourg Rapporteur interne 

Dr. Cédric Sueur Maître de conférences. UNISTRA, Strasbourg Directeur de thèse 

Dr. Andrew J.J. MacIntosh Associate Professor. Kyoto University, Kyoto Codirecteur de thèse 

A. King & C. Sueur 

 



C 
 

 



D 
 

 

 

 

 

 

 

 

 

 

To my parents, 

Marta Romano & Gilmar de Paula  

 

 



E 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



F 
 

ACKNOWLEDGMENTS/REMERCIEMENTS:  
 

Arriving at the end of the PhD brings a mixture of gratitude, happiness 
and tiredness ;) But it is good to look at it back and realize how much I have 
learned and developed as a scientist I wanted to be. Leaving from Brazil (the 
first time I would live abroad) and conduct my doctoral studies in France 
and Japan was, undoubtedly, one of my biggest personal and professional 
challenges. The fear of well-communicating in a foreign language and to feel 
integrated in a different culture and society were replaced by my passion 
for science and excitement for the forthcoming. I would not have achieved it 
alone though. Many have directly and indirectly contributed to the 
development of this thesis and here I express my sincere acknowledgments 
for them. 

First, I would like to express my deep gratitude to my supervisors Cédric 
Sueur and Andrew J.J. MacIntosh. Cédric, working with you was fantastic. I 
have learned from your enthusiasm and efficiency, which is outstanding. 
You were frequently present, not mattering the time or day, and I am happy 
for haven chosen you as my supervisor. Thank you for receiving me in your 
research team and giving me the opportunity to participate in such a 
dynamic and productive network. Personally, I bring with me two 
important lessons: finding the work-life balance and the benefits of 
meditation (considering “la diffusion de la pleine conscience”). Merci 
beaucoup pour tout! Andrew, I learned a big deal from you! Thank you for 
welcoming me in Japan, for giving me the opportunity to work with the 
beautiful Japanese macaques in Koshima and for every meeting and 
scientific discussion. Your consistence as a researcher helped me to increase 
the rigor to which I evaluate my work and I believe it shaped the researcher 
I am today. Thank you very much! 

During this thesis I also had the pleasure to discuss specific parts of my 
work with three post-doctoral researchers of our team. Many thanks to 
Cristian Pasquaretta for the knowledgment shared on stats, Julie Duboscq 
for our experimental work together on Japanese macaques and Ivan Puga-
Gonsalez for the great discussion on individual-based models. I am happy for 
the work we have done together. Grazie, Merci, Gracias =) 

To my other collaborators working, in the time (or not), with Japanese 
Macaques in the “Happy Island” (Koshima): Cécile Sarabian, Elodie Thomas, 
Julie Duboscq, Lucie Rigaill, Takafuma Suzumura and Akiko Takahashi. 
Thank you for the data collection and good moments shared in the field and 
research station. It was a good adventure! 

To the extensive network of collaborators which shared their behavioral 
data, or time, to contribute with my doctoral research. Thank you to: 
Andrew King, Barbara Tiddi, Bernard Thierry, Christèle Borgeaud, Corinne 



G 
 

Ackermann, Erica van de Waal, Eugenia di Sorrentino, Linda Fedigan, 
Mackenzie Bergstrom, Marie Pelé, Margareth Crofoot, Marine Levé, Masaki 
Shimada, Patricia Izar and Odile Petit.  

I also would like to thank Jérôme Pansanel for the support during the 
development of chapters 2 and 3. In this way, I extend my acknowledgments 
to Mengyu Shen who worked with me in the third chapter. 

To Jean-Loup Guillaume, Marie Charpentier and Carsten Schradin, jury 
members of this thesis: thank you for the insightful discussion during the 
thesis defense.  

The Department of Ecology, 
Physiology and Ethology (DEPE) at 
the CNRS in Strasbourg provided a 
stimulating place to work and I am 
grateful for each one of my 
colleagues. Working here was 
sensational. I loved the atmosphere 
and good discussions. Merci 
beaucoup à tous!  

My acknowledgements to François Criscuolo, Caroline Habold and Odile 
Petit, directors of the DEPE during the time of my stay. Thank you for your 
welcoming and support. 

To the Evolutionary Ecophysiology Team for the weekly meetings and 
discussions. 

This research also received a great support from the administrative team 
of the DEPE. A special thanks to Brigitte Gaillard, Claudine Gallone and 
Martine Schneider for their smiles and efficient work.  

I also acknowledge Carsten Schradin and Ikki Matsuda, members of my 
advisory committee. Annual meetings were surrounded by the certainty 
that my work was being well-evaluated. Carsten, thank you for sharing your 
passion for science with me and for being engaged to increase the activities 
in English in our lab. I have always enjoyed the weekly seminars of our team 
and I appreciate the discussions we had. Thank you.  

And then… the PhD students from the 
DEPE… Wow! What to say about you 
guys?! In simple words you have 
contributed to make memorable these 
past 4 years. Fun, talks, pubs, stats, 
writing, jokes, do not matter, in any 
situation you have helped to create a 
good atmosphere and I will miss to meet 
each one of you. Un grand merci à tous: 



H 
 

Agnès, Anthony, Amandine, Céline, Emilio, Fanny, Floriane, Léa, Mathilde, 
Mathieu, Quentin, Palmyre, Philippine, Manon, Nancy and Xavier. 

I address a special thank you to Ivan Puga-Gonzalez, Mathilde Tissier, 
Raquel Costa and Xavier Meyer who helped me with either the printing 
process or formatting of this thesis. 

To Anna Nesterova, your friendly company helped me in diverse ways. 
Thank you for your kind support.  

To Floriane Rudwill who was there in a challenging period and has been 
supportive and present since then.  

To Nicolas Chatelain for the good atmosphere created during the lunch 
time =) 

The last year of my PhD was 
conducted in Japan, and although this 
last step towards the PhD defense would 
be “normally” stressful, I would like to 
thank those that make it lighter, in 
special: Naoko Mizuno, Yuki-san, 
Liesbeth Frias, Raquel Costa, Cécile 
Sarabian, Nelson Broche, Kelly Finn, 
Margaret Lee, Katja Igel, Himani Nautiyal, Renata Mendonça and many 
other colleagues that shared part of their time with me. Obrigada! 

I would like to acknowledge the Primate Research Institute, specially the 
CICASP and the section of Ecology and Social Behavior, for receiving me 
well in Japan. A special thanks to Mike Huffman and Fred Brecovitch for 
the insightful discussions. 

Thank you to Jingyi Zhang for your good company while sharing our 
apartment in Tonoji. Hope to meet you someday in the future. 

To Naoko Mizuno, my sincere gratitude for your friendship. Moving to 
Japan knowing that you would be nearby make the process happier. Thank 
you for everything.  

I also would like to thank Saki-san for your constant good mood at work 
and lovely company. You girls (Nao and Saki) rocked at the administrative 
matters that concerned my stay in Japan. Arigatou! 

Nesse periodo na Franca e Japão muitos se tornaram 
parte de minha familia e contribuiram para que eu me 
sentisse acolhida. Meus sinceros agradecimentos aos meus 
amigos-irmãos Rodrigo Santos e Genildo Junior, que topavam 
qualquer aventura e estiveram sempre presentes. Parte das 
minhas melhores memórias são de nossos passeios juntos. 



I 
 

Espero nos ver em breve e comemorarmos nossa vitória como doutores =) 
Agradeço também à querida Débora Salmazo pelo apoio e inúmeras 
aventuras. A Margarida Cordeiro, Dominique Dunon, Vanessa e Carol 
Cordeiro, Carol Rufatto, Cris Mercier, Jéssica Miranda, Gislene Lambert, 
Aurinha Magna, e Vanessa Falcão, obrigada pela companhia e carinho. A 
Nessinha, um querido Shallom por umas das melhores viagens e mais rica 
experiência vivida. Para as gatinhas Aurinha, Gi (minha maquiadora 
oficial da defesa :P) e Nessinha, obrigada por todo o carinho, risadas e 
companhia na parte final desta tese.  

No ano de 2014, primeira viagem ao Japão, encontrei a Julia Tamura que 
me ajudou a conhecer a cultura japonesa. Um agradecimento especial à você 
Julia que contribuiu para minha habituação ao meu novo lar. 

To Kiroko-Koyama that gave me the opportunity to participate in the 
LABO activities, a volunteering institute that aim to teach English to 
Japanese kids. Here, I would like to extend my thanks to the Japanese 
community I met in Kushima which shared with me many good moments. 
Dozo arigatou goisamazu. 

Minhas queridas amigas, irmãs de coração, Cynara Fragoso e Magda 
Lugon. O apoio de vocês fez que eu me sentisse fortalecida para seguir em 
frente. Obrigada pelos 6 anos de companhia quase diaria (tempos uenfianos) 
e amizade consolidada por toda uma vida. Tenho orgulho de quem somos, do 
nosso caminho traçado. Cada dia a saudade aumenta, mas sei que o carinho 
uma pelas outras vence barreiras. 

Para os minhas queridas amigas 
cordeirenses, Thaise Rodrigues, Renata 
Estefani, Erica Lopes e Juliana Fagundes. 
Ver nossos sonhos de adolescência se 
tornando reais é especial e sou grata por 
essa amizade de tantos anos. Lembranças 
do CEAP onde tudo começou, onde o 
esforço diario e a possibilidade de um dia 
me tornar biologa e depois seguir com a 
carreira acadêmica me dava esperança de um futuro melhor. Obrigada a 
cada professor, cada colega de classe que fez parte dessa etapa e que 
contribuiu para que o sonho de hoje se tornasse realidade. 

Aos queridos Carlos Ruiz-Miranda, Adriana Grativol e Josefina Miranda : 
obrigada pelo apoio e carinho. Minha formação acadêmica começou com os 
ensinamentos de Carlos e sou grata por todo o aprendizado e parceria. 
Iniciei meus estudos na UENF pela possibilidade em trabalhar com o projeto 
de pesquisa dos micos-leões e ainda me lembro de nossa conversa quando 
cogitei seguir rumo à UFF e à Biologia Marinha : « Ok, vamos ao campo 
primeiro ». De fato, minha paixão pela Ecologia e Comportamento Animal 



J 
 

foi aguçada e dalí pra cá so espero que muitos outros projetos sejam 
realizados em conjunto =)  

A Associação Mico-Leão-Dourado, casa de meu primeiro estagio de campo 
que marcam em mim uma paixão e alegria em trabalhar com primatas não-
humanos - em especial pelas aventuras com o MLD. Isso me recorda um 
conjunto de profissionais, estagiarios e amigos pelos quais sou grata por 
fazerem parte de uma grande primeira etapa de minha vida profissional. 

Minha familia, pais e irmãos. Os ensinamentos diarios e experiências 
compartilhadas moldou a pessoa que sou e me deu a base para ser uma 
mulher mais forte e independente. Cada um de vocês contribuiram de 
maneira imensuravel para a realização deste trabalho (e sonho) e eu sou 
grata pelo apoio e amor. Pai, eu sei que a distância foi dolorosa (espero que 
nos vejamos mais frequentemente e não em intervalos de 4 anos :) e eu te 
agradeço por apoiar cada etapa que me trouxe até aqui. Obrigada por seu 
exemplo de força e perseverança. Mãe, minha melhor amiga. Nenhuma 
palavra consegueria descrever o tamanho da minha gratidão à você. Esse 
caminho só foi possivel com seu suporte e eu tenho a felicidade em dizer que 
essa é uma conquista nossa. Muito obrigada!  

Lara, minha querida sobrinha, você é ainda pequena para entender o 
quanto de alegria trouxe e traz à nossa familia. Não vejo a hora de 
passarmos mais tempo juntas. 

As a surprise of this journey I met the one that has been my sunshine in 
the mornings. Merci Xav for your support, friendship and immeasurable 
love. Having you nearby make my life lighter, funnier and better. Can’t 
wait to see the adventures that are next to come. Mon ange. 

Un très grand merci à toute la famille Meyer: Bernard, Noëlle, Xavier, 
Aurélien, Charlotte, Marine et Enzo. Merci pour votre amitié et attention. 
Un merci aussi à Mme. Jacqueline Meyer and Mme. Michèle Lechermeier 
pour votre générosité.  

This thesis received financial support from the Brazilian Ministry of 
Education (CAPES; 2013-2016) and the Japan Society for the Promotion of 
Science (JSPS; 2016-2017).  

Finally, I conclude this section wishing you a good time while reading this 
thesis :) À toute!  

 

 

 

 



K 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



L 
 

PUBLICATIONS 

 

Published or accepted: 

 Romano V, Duboscq J, Sarabian C, Thomas E, Sueur C, MacIntosh AJJ 

(2016) Modelling infection transmission in primate networks to predict centrality-

based risk. American Journal of Primatology. 78: 767-779. (doi:10.1002/ajp.22542). 

* Featured article by the American Society of Primatology (https://www.asp.org/). 

 Duboscq J, Romano V, MacIntosh AJJ, Sueur C (2016) Social information 

transmission in animals: lessons from studies of diffusion. Frontiers in Psychology. 7: 

1147. (doi:10.3389/fpsyg.2016.01147). 

 Dusboscq J, Romano V, Sueur C, MacIntosh AJJ (2016) Scratch that itch: 

revisiting links between self-directed behavior and parasitological, social and 

environmental factors in a free-ranging primate. Royal Society Open Science. 3: 

160571. (doi:0.1098/rsos.160571).  

 Duboscq J, Romano V, Sueur C, MacIntosh AJJ (2016) Network centrality 

and seasonality interact to predict lice load in a social primate. Scientific Reports. 6: 

22095. (doi:10.1038/srep22095). * Media highlight: The New York Times, National 

Geographic. 

 Duboscq J, Romano V, Sueur C, MacIntosh AJJ (2017) One step at a time in 

investigation relationships between self-directed behaviors and parasitological, social 

and environmental variables. Royal Society Open Science. 4: 170461. 

(doi:10.1098/rsos.170461). 

 Caselli C, Romano V, Ruiz-Miranda CR, Grasseto R. Voces de los primatas 

neotropicales : ¿suena bien? In: La primatología en Latinoamérica 2 – A primatologia 

na América Latina 2. (English translation: “The voices of Neotropical primates: 

sounds good?” In: Primatology in Latin America 2”). Accepted. 

 

 



M 
 

Submitted: 

 Romano V, Martins A, Ruiz-Miranda CR. Dispersal patterns and proximate 

mechanisms driving natal emigration in golden lion tamarins. Animal Behavior.  

 Romano V, Shen M, Pansanel J, MacIntosh AJJ, Sueur C. Network efficiency 
peaks with intermediate levels of group substructure. Royal Society Open 
Science. 

 

In preparation: 

 Romano V, Duboscq J, Pasquaretta C, Tiddi B, Borgeaud C, van de Waal E, 
di Sorrentino E, Fedigan L, Bergstrom ML, Pelé M, Crofoot M, Levé M, Izar P, 
MacIntosh AJJ, Sueur C. Pathogen spread and variation of social connectivity 
effect: an evaluation through epidemic time. Submission: winter 2017. 

 Romano V, Puga-Gonzalez I, MacIntosh AJJ, Sueur C. Investigating the 
trade-off between information access and infection avoidance in animal societies: 
an individual-based model. Submission: winter 2017. 

 MacIntosh AJJ, Sarabian C, Duboscq J, Romano V, Thomas E, Kaneko A, 
Okamoto M, Suzumura T. Experimental removal of gastrointestinal nematodes 
reveals hidden constraints of infection on body mass and breeding success in 
Japanese macaques. 

 Romano V, Luna A, Ruiz-Miranda CR. “I’m here, hon” – the use of Trill b 
vocalizations by golden lion tamarins. Submission: spring 2018. 

 

Published abstract in scientific journals: 

 Duboscq J, Romano V, Sueur C, MacIntosh AJJ (2015) Investigating 

infection risk and sociality: centrality interacts with seasonality to predict lice-load 

in free ranging female Japanese macaques, Macaca fuscata. American Journal of 

Primatology. 143-144. 

 Duboscq J, Romano V, Sueur C, MacIntosh AJJ (2015) A social network 

perspective on macaque social styles. American Journal of Primatology. 42. 



N 
 

 MacIntosh AJJ, Sarabian C, Duboscq J, Thomas E, Romano V, Kaneko A, 

Okamoto M, Suzumura T (2015) Hidden constraits of chronic parasitism on health 

and fitness in Japanese macaques. Primate Research Supplement. The 31th 

Congress Primate Society of Japan. 103.  

 

COMMUNICATIONS OF PHD RESULTS 

 

 Duboscq J*, Romano V*, Sueur C, MacIntosh AJJ (2013) Social networks as 
a trade-off between optimal decision-making, information transmission and 
reduced disease transmission. IX. Göttinger Freilandtage: the sociality-health-
fitness link. Göttingen, Germany. Poster Presentation. *Co-presenters. 

 Romano V, Duboscq J, Sueur C, MacIntosh AJJ (2014) Modelling disease in 
transmission in primate networks to predict epidemics. 25th Congress of the 
International Primatological Society. Hanoi, Vietnam. Poster presentation. 

 Romano V, Duboscq J, Sueur C, MacIntosh AJJ (2014) Social networks as a 
trade-off between optimal information transmission and reduced disease 
transmission. Seminar on Ecology and Social Behavior. Primate Research Institute 
of Kyoto University. Inuyama, Japan. Oral presentation. 

 Romano V, Duboscq J, Sarabian C, Thomas E, Sueur C, MacIntosh AJJ 
(2015) Modelling infection transmission in primate networks to predict centrality-
based risk. XXXV Sunbelt Conference of the International Network for Social 
Network Analysis (INSNA). Brighton, United Kingdom. Oral presentation. 

 Romano V, MacIntosh AJJ, Sueur C. (2015) Social networks as a trade-off 
between optimal information transmission and reduced disease transmission. 
IPHC Student Symposium. CNRS. Strasbourg, France. Oral presentation. 

 Romano V, Duboscq J, Sarabian C, Thomas E, Sueur C, MacIntosh AJJ. 
(2015) Modelling infection transmission in primate networks to predict centrality-
based risk. Doctoral School Days. Université de Strasbourg. Strasbourg, France. 
Oral presentation. 

 Romano V, MacIntosh AJJ, Sueur C (2016) Social networks as a trade-off 
between optimal information and reduced disease transmission. Behavior, 
Evolution, Ecology and Physiology Seminar Strasbourg (BEEPSS). Strasbourg, 
France. Oral presentation. 

 Romano V, Duboscq J, Sueur C, MacIntosh AJJ (2016) Social networks as a 
trade-off between optimal information transmission and reduced disease 



O 
 

transmission. Complex Networks: from theory to interdisciplinary applications. 
Marseilles, France. Poster presentation. 

 Romano V, Duboscq J, MacIntosh AJJ, Sueur C. (2016) Social networks as a 
trade-off between optimal information transmission and reduced disease 
transmission. Mini-conference and Workshop on Social Network Analysis. 
Edward Grey Institute - University of Oxford. Oxford, United Kingdom. Oral 
presentation. 

 Romano V, Duboscq J, Sueur C*, MacIntosh AJJ (2016) Social networks as a 
trade-off between information and disease transmission: simulating epidemics 
through primate social groups. 26th Congress of the International Primatological 
Society and the 39th meeting of the American Society of Primatologists. Chicago, 
United States. *Presenter. Poster presentation.  

 Romano V, Sueur C, MacIntosh AJJ (2016) Social networks as a trade-off 
between information and disease transmission: simulating epidemics through 
primate social groups. The 6th International Symposium on Primatology and 
Wildlife Science and the 5th CCT-BIO International Workshop on Tropical 
Biodiversity and Conservation. Kyoto, Japan. Oral presentation. 

 Romano V, Sueur C, MacIntosh AJJ (2016) From individuals to groups: the 
network science behind information and pathogen transmission. Interdisciplinary 
Seminar on Primatology. Primate Research Institute, Inuyama, Japan. Oral 
presentation. 

 Romano V, Sueur C, MacIntosh AJJ (2017) Social behavior and infectious 
disease investigating contagious risk in primate networks. Seminar on Ecology 
and Social Behavior. Primate Research Institute, Inuyama, Japan. Oral 
presentation. 

 Romano V, Sueur C, MacIntosh AJJ (2017) Using contact networks to predict 
infectious disease risk in primates. The 7th International Symposium on 
Primatology and Wildlife Science. Kyoto, Japan. Poster Presentation. 

 

SCIENTIFIC EDUCATION 

 

 Romano V & Ruiz-Miranda C. (2014) Should I stay or should I go now? - 
report of dispersal in reintroduced and wild-born golden lion tamarins. Tamarin 
Tales. 12:9-10. 



P 
 

TABLE DES MATIÈRES 

 

I. INTRODUCTION ....................................................................................................... 25 

I.1. Animal societies and social structure ..................................................................... 26 

I.2. The analytical side of social structure .................................................................... 29 

I.3. Social transmission ............................................................................................... 32 

I.3.1. Information transmission................................................................................ 32 

I.3.2. Infectious agent transmission ......................................................................... 37 

I.4. Increasing contagion risk and information flow via social networks ...................... 42 

I.4.1. Network position ........................................................................................... 42 

I.4.2. Network structure .......................................................................................... 44 

I.5. Framework and objective of study ......................................................................... 48 

I.6. Organizational layout ............................................................................................ 51 

 

II. MATERIAL AND METHODS .................................................................................. 57 

II.1. Observational study: from field work to an extensive dataset ................................ 57 

II.1.1. Fieldwork with Japanese macaques ......................................................... 57 

II.1.2. Extending the study to another 20 primate species .................................. 61 

II.2. Social network analysis ......................................................................................... 62 

II.2.1. Building social networks ......................................................................... 62 

II.2.2. Interpreting network metrics ................................................................... 64 

II.3. Theoretical modelling ........................................................................................... 66 

II.3.1. Individual-based model ........................................................................... 66 

II.3.2. Network epidemiology ............................................................................ 69 

 

III. CHAPTER 1: ............................................................................................................ 73 

III.1. Abstract ................................................................................................................ 73 

III.2. Introduction .......................................................................................................... 76 

III.3. Material and Methods ........................................................................................... 79 

III.3.1. Study site and subjects ............................................................................ 80 

III.3.2. Behavioral data collection and networks ................................................. 81 

III.3.3. Individual and social traits associated with network centrality ................. 84 

III.3.4. Random networks ................................................................................... 85 



Q 
 

III.3.5. Disease transmission graph-based model ................................................. 85 

III.3.6. Data analysis ........................................................................................... 88 

III.4. Results .................................................................................................................. 89 

III.4.1. Network structure and centrality position ................................................ 89 

III.4.2. Observed versus random networks .......................................................... 92 

III.4.3. Transmitting an infectious agent ............................................................. 92 

III.4.1. Acquiring an infectious agent .................................................................. 93 

III.5. Discussion ............................................................................................................ 95 

 

IV. CHAPTER 2: ......................................................................................................... 105 

IV.1. Abstract .............................................................................................................. 105 

IV.2. Introduction ........................................................................................................ 107 

IV.3. Material and Methods ......................................................................................... 111 

IV.3.1. Empirical social networks ..................................................................... 111 

IV.3.2. Social network measures ....................................................................... 112 

IV.3.3. Computer simulations ........................................................................... 114 

IV.3.4. Statistical analysis ................................................................................. 116 

IV.4. Results ................................................................................................................ 119 

IV.4.1. Phylogenetic analysis ............................................................................ 119 

IV.4.2. Network properties, group size and pathogen spread ............................. 119 

IV.5. Discussion .......................................................................................................... 124 

 

V. CHAPTER 3: ........................................................................................................... 131 

V.1. Abstract .............................................................................................................. 131 

V.2. Introduction ........................................................................................................ 133 

V.3. Material and Methods ......................................................................................... 136 

V.3.1. Creating truncated networks .................................................................. 136 

V.3.2. Estimating association indices ............................................................... 137 

V.3.3. Estimating network efficiency ............................................................... 138 

V.3.4. Empirical data ....................................................................................... 139 

V.3.5. Statistical analysis ................................................................................. 140 

V.4. Results ................................................................................................................ 141 

V.5. Discussion .......................................................................................................... 145 

 



R 
 

VI. CHAPTER 4: ......................................................................................................... 151 

VI.1. Abstract .............................................................................................................. 151 

VI.2. Introduction ........................................................................................................ 153 

VI.3. Material and Methods ......................................................................................... 159 

VI.3.1. The Optimal Relationships Model ......................................................... 159 

VI.3.2. Data collection ...................................................................................... 167 

VI.3.3. Global index ......................................................................................... 168 

VI.3.4. Social Network Analysis ....................................................................... 169 

VI.3.5. Statistical analyses ................................................................................ 170 

VI.4. Results ................................................................................................................ 171 

VI.5. Discussion .......................................................................................................... 176 

 

VII. DISCUSSION ....................................................................................................... 181 

VII.1. On the interface between social structure and social transmission ........................ 182 

VII.2. Do social network properties reflect a trade-off between information and pathogen   

transmission?…………………………………………………………………..………...187 

VII.3. Individual flexibility in social behavior, social transmission and the evolution of                    

sociality….……………………………………………………………………………….189 

VII.4. Insights from non-human primate networks ........................................................ 193 

VII.5. SNA and IBM: combining a methodological approach in behavioral ecology                  

……………………………………………………...……………………………………194 

VII.6. Limitations of study ............................................................................................ 195 

VII.7. Research contributions ........................................................................... ………..197 

VII.8. Future perspectives: where do we go from here? ................................................. 199 

VII.8.1. Understanding the mechanisms driving sociality ................................... 199 

     VII.8.2. Targeted vaccination in disease outbreaks: a wildlife conservation          

approach…………………………………………………………….………………199 

VII.8.3. Are certain populations more vulnerable to disease outbreaks? ............. 201 

 

VIII. CONCLUDING REMARKS ............................................................................... 202 

 

IX. BIBLIOGRAPHY .................................................................................................. 207 

 

X. APPENDICES ......................................................................................................... 229 



S 
 

FIGURES 

Figure I.1. Schematic representation of Hinde’s (1976) conceptual framework for the study 
of animal societies. ……………………………….………………………………………….30 

Figure BI.1. Social networks as evidence of social community in blacktip reef shark (a; 
Mourier et al. 2012) and the spreading of the moss-sponging behavior in the Sonso 
chimpanzee community (b; Hobaiter et al. 2014) ………. ……….……………………...….32 

Figure I.2. Scheme representing the two types of information: personal information (a), 
directly acquired from the individual’s interaction with the environment, or socially-acquired 
information (b), acquired from signals, social cues provided by conspecifics or public 
information…………………………….……………………………………………………..35 

Figure BI.2. Transmission of foraging techniques in wild great tits............……...……..…..37 

Figure BI.3. Geographic origins of EID’s from 1940 to 2004……………….......………….42 

Figure I.3. Relationship between the clustering coefficient (Q) and (a) mean infection risk 
per individual during a simulated epidemic, and (b) duration of an epidemic….……………46 

Figure I4. Results of paired simulations showing the number of infected individuals 
(infection prevalence) in the presence (upper left triangle) and absence (lower right triangle) 
of subgroups in simulated networks………………………………………………………….47 

Figure I.5. Schematic representation of the structural framework developed in this 
thesis...……………………………………………………………………………………….53 

Figure II.1. Location of the field site in Japan…………………………………..………......59 

Figure II.2. The main beach of Koshima island with Japanese macaques foraging after 
aprovisioning event……………………………………………………………………..........61 

Figure II.3. A dyad of female Japanese macaques during grooming interactions…….…….61 

Figure II.4. Scheme representing the distribution of studied species……………….………62 

Figure II.5. Representation of a binary matrix of interactions (a) and the graphical 
representation of a theoretical social network (b)………………………………...…….........64 

Figure II.6. Diagram representing the components of an individual-based model: agent, 
environment and links (i.e. interactions among agents)……………………………..……….68 

Figure II.7. Example of a model design……………………………………………..……....70 

Figure II.8. Schematic representation of the SI epidemiological model………………..…...72 



T 
 

Figure II.9. Proportion of infected individuals (i(t)) in an SI model distributed according to 
values of degree from individuals of a hypothetical network……………..…………………72 

Figure III.1. Social networks of adult female Japanese macaques in Koshima group (a) and 
Yakushima group (b)………………………………………..........…………………………..91 

Figure III.2………………………………………………………………………...…….......95 

Figure III.3…………………………………………………………………………...……...96 

Figure IV.1. Social network properties interact with group size to predict prevalence through 
the advance of an outbreak………………………………………………………….…........125 

Figure V.1. Relationship between global efficiency and modularity from all groups of the 
theoretical networks……………………………………………………………...................143 

Figure V.2. Breakpoints in the regression lines observed in intermediate levels of modularity 
from small, medium and large theoretical networks………………………………………..145 

Figure V.3. Relationship between global efficiency and modularity for empirical networks 
(upper figure) and breakpoints in the regression lines observed in small and medium-sized 
groups (lower figures)……………………………………………………………….….......146 

Figure VI.1. Schematic representation of each theoretical condition…………….……......159 

Figure VI.2. Flow diagram of each time step in the Optimal Relationships Model……….162 

Figure VI.3. Updating the weight of relationships according to the mechanisms of social-
relation transfer (i.e. social-increase or social-decrease)…………………………………...166 

Figure VI.4. Association networks for time-periods of one simulation from conditions 4, 10, 
13 and 16…………………………………………………………………………................174 

Figure VI.5. Global network metrics (density, Newman’s modularity and eigenvector 
centralization) and their relationship with group size, Information- and Pathogen-
index………………………………………………………………………...........................176 

Figure VI.6. Relationship between individual centrality and the values of My-information 
and My-pathogen………………………………………………………….….……………..177 

Figure VII.1. Schematic representation of the feedback loop between social interaction (or 
social relationship), social structure and social transmission…………………………...…..185 

Figure VII.2. Schematic representation of the mechanisms influencing individual behavior 
and their influence on social system (social organization, mating system and social 
structure)……………………………………………………………………………...……..192 



U 
 

Figure VII.3. Simplified proposed plan of research…………………...……………...........201 

Figure VII4. Schematic distribution of the studied species (a) and proposed study design to 
investigate the landscape’s influence on primate networks (b)………………………….….203 

(appendices) 

Figure FS1. Mean outbreak size across different values of pathogen infectiousness 
(R0)…………………………..………………………………………………………….…..289 

Figure FS2. Dispersion graphs showing individual/social factors and centrality coefficients 
in Koshima group. …………………………………….....…………………………………290 

Figure FS3. Dispersion and boxplot graphs showing individual/social factors and centrality 
coefficients in Yakushima group…………………………………………...........………….291 

Figure FS4. Density probability plots of real and random distributions of infectious agent 
transmission in Yakushima group…………………………………………………………..292 

Figure FS5. Density probability plots of real and random distributions of infectious agent 
transmission in Koshima group…………………………………..........………….…….…..293 

Figure GS1. Observed (black line) and density (red line) distribution functions of latency to 
total pathogen transmission in 40 primate networks. ……………….……………………...299 

Figure GS2. Phylogenetic tree used for comparative tests………………………….….…..299 

Figure GS3. Correlation matrix between group size, density, eigenvector centralization, 
clustering coefficient (Ccoefficient), diameter and modularity. …………..…….….….…..300 

Figure HS1. Observed (black line) and gamma (red line) distribution functions of global 
efficiency…………………………………………………………………………………....316 

Figure HS2. Correlation matrix among network properties and group size……………….317 

Figure HS3. Theoretical (shaded grey) and empirical (shaded blue) distribution functions of 
modularity (a) and global efficiency (c) for small-sized groups……………………………318 

Figure HS4. Theoretical (shaded gray) and empirical (shaded green) distribution functions of 
modularity (a) and global efficiency (c) for medium-sized groups…………………………319 

 

 

 



V 
 

BOXES 

Box I.1. Example of animal social networks ……………….……………………………….32 

Box I.2. Social learning and cultural transmission………….......…………………….….36-37 

Box I.3. Transmission of disease, wildlife and human health: a holistic view…………...41-42 

Box VII.1. How information transmission affects social structure: a brief summary…...…188 

 

TABLES 

Table II.1. Definition of network properties and their meaning in the context of animal 
societies……………………………………………………………………………….......66-67 

Table III.1. Global measures of Koshima and Yakushima networks……………...………..90 

Table III.2. Parameter estimates from generalized linear models explaining variation on 
network centrality among female Japanese macaques in Koshima and Yakushima 

groups………………………………………………………………………………………...92 

Table IV.1. Predicted influence of network properties on the transmission of infectious 

agents......................................................................................................................................112 

Table IV.2. Moderately and highly contagious pathogen transmission in wild primate 
networks (N= 40)............................................................................................................123-124 

Table V.1. Parameter estimates from generalized linear models explaining variation in global 

efficiency…………………………………………………………………………………....143 

Table VI.1. Glossary of parameters used in this study………………………………...…...161 

Table VI.2. Update of relationships…………………………………………..……………167 

Table VI.3. Parameter estimates from linear models explaining the global network 

structure..................................................................................................................................175 

Table GS1. Details from the dataset used in chapter 2, including information on sources of 
data and group size……………………………….………………………….................232/233 

Table HS1. Published empirical data on global efficiency and modularity originally 
measured for 68 primate social groups of 21 species extracted from the Supplementary 
Material of Pasquareta et al. 2014*……………………………………………………245-247 



W 
 

LIST OF APPENDICES 

Appendix A. Paper entitled “Modeling infection transmission in primate networks to predict 
centrality-based risk”.……………….…………………………………………………...….230 

Appendix B. Paper entitled “Social information transmission in animals: lessons from 
studies of diffusion”.……………….……………………………………………….…...….244 

Appendix C. Paper entitled “Network centrality and seasonality interact to predict lice load 
in a social primate”.……………….…………………………………………………...…....259 

Appendix D. Paper entitled “Scratch that itch: revisiting links between self-directed behavior 
and parasitological, social and environmental factors in a free-ranging 
primate”.……………….…………………………………………………...……………….272 

Appendix E. Paper entitled “One step at a time in investigating relationships between self-
directed behaviors and parasitological, social and environmental 
variables”.……………….………………………………………………….....................….285 

Appendix F. Supplementary Material for Chapter 1.………….……………………...…....289 

Appendix G. Supplementary Material for Chapter 2.………….……………………...…...299 

Appendix H. Supplementary Material for Chapter 3…………….…………………...…....313 

Appendix I. Supplementary Material for Chapter 4.………….……………………...….....320 

Appendix J. Résumé de la thèse de doctorat…………….…….……………………...…....332 

 

 

 

 

 

 

 

 



24 
 

 

 

 

 

 

 

General Introduction 

Sociality, information and infectious disease 

 

 

 

 

 

 



25 
 

I. INTRODUCTION  

 

 “It is certain that either wise bearing or ignorant carriage is caught,  

as men take diseases, one of another:  

therefore, let men take heed of their company”. 

 Shakespeare, Henry IV, part 2 (1600) 

 

As observed by William Shakespeare in one of his memorable works, the rate of contact 

among individuals can lead to the transmission of knowledge among conspecifics, for better 

or worse, just as it can for infectious agents. It should therefore be upon each individual to 

decide with whom to interact. Social animals make daily decisions regarding their social 

lives, for example to reinforce or break relationships, to determine where to sit among 

conspecifics or which sexual partner to choose. This set of decisions affects the number and 

quality of an individual’s social relationships, which in turn reflects the social structure into 

which those individuals are embedded (Hinde 1976). Sociality has evolved repeatedly 

throughout the animal kingdom (Maynard & Szathmary 1995), and undoubtedly brings many 

benefits for individuals, such as defense against predators, increased foraging efficiency, and 

increased offspring survival (Wilson 1975; Krause & Ruxton 2002), as well as certain costs 

such as within group competition where resources are limited in space and time (Wrangham 

1980) and infectious disease transmission due to the frequent contact among conspecifics 

(White et al. 2017). In consequence, individuals face trade-offs while maximizing the 
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benefits and minimizing the costs of group-living. Social complexity emerges from these 

individual efforts or strategies to create solutions to deal with such inherent trade-offs in their 

social lives. 

 

I.1. Animal societies and social structure 

While there may be no unified definition of sociality in behavioral and evolutionary ecology 

(Kappeler et al. 2015), in general terms sociality refers to the degree to which individuals in 

animal populations tend to associate in groups. In vertebrates, individuals can be solitary but 

form temporary or facultative groups, e.g. for reproduction or nest sharing, or individuals 

may be involved in repeated social interactions with conspecifics, the core feature of stable 

groups1.  

 Animals living in permanent (i.e. stable) groups often interact nonrandomly with their 

conspecifics, leading to complex patterns of social interaction manifest as intra-individual 

variation in the number of partners and the time allocated for relationships with each over 

time (Kurvers et al. 2014). Independent factors such as morphometric measures (Croft et al. 

2005), individual personality (Pike et al. 2008), nutrient requirements (Sueur & Maire 2013), 

and hierarchical structure all influence the individual decisions that in turn affect interaction 

preferences observed. The emergent pattern of social interactions is called the social structure 
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(Hinde 1976) and it highlights individual differences in social behavior2 (Whitehead 2008a). 

For example, the social structure of guppies (Poecilia reticulata) is influenced by body 

length and shoaling tendency, with individuals preferentially interacting with conspecifics 

of similar traits (Croft et al. 2005). Affiliative interactions in yellow-bellied marmots 

(Marmota flaviventris) is influenced by age and kinship, with younger animals being more 

active in grooming interactions, greeting, sitting in close proximity and play behavior (Wey 

& Blumstein 2010). Social patterns of shy sticklebacks (Gasterosteus aculeatus) are highly 

skewed in consequence of interactions concentrated to few individuals (Pike et al. 2008). 

How and why individuals interact is a long-standing question in biology, as it affects gene 

flow and spatial patterns (Wilson et al. 1975). 

 The conceptual framework presented in studies of animal societies and social 

structure is usually based on Hinde’s (1976) classic paper, which introduced three levels of 

association: i) interactions, ii) relationships and iii) social structure (Figure I.1). At the 

fundamental basis of this framework is the interaction, denoting the nature of the mutual 

activities of each pair of individuals (content), as well as how they perform them (quality; 

Hinde 1976). An interaction, or an individual behavior, can comprise one or more types of 

activities, such as grooming, food transfer, fights or spatial proximity. The nature of 

interactions, whether they are affiliative or agonistic, defines the quality of interactions that 

subsequently affect the social relationships between a pair of individuals, i.e. a dyad. In the 
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second level of the framework, a relationship refers to the patterning of social interactions, 

the content and quality of interactions within each dyad (Figure I.1). For example, 

relationships might summarize how frequently individuals groom each other. At the last 

level, there is social structure, denoting the overall quality and patterning of social 

relationships in a group (Hinde 1976; Figure 1). Hinde’s framework is multidirectional, 

indicating that social structure may feed back into social relationships as well, which in turn 

affects social interactions (Figure I.1). Revisiting the previous example of guppies, the social 

structure created as a consequence of social preferences for individual traits, i.e. shoaling 

tendency and body length, creates a feedback loop from which individuals sharing similar 

traits are in turn more likely to interact among themselves than with others of different traits; 

the social structure thereby directs social relationships and interactions (Croft et al. 2005).  

 

 

__________________________________________________________________________ 

1 GROUP: the definition of group might vary among observers and to the animals themselves. For 

most primatologists, “a group is usually a largely set of animals whose interactions are with each 

other” (Whitehead 2008a), whereas for researches studying cetaceans or chimpanzees, the same 

definition is considered a community (e.g. Cantor et al. 2015). In this thesis, I follow the definition 

used by primatologists, in which groups comprise individuals that actively maintain spatiotemporal 

proximity and keep the majority of their social interactions within the same set of individuals.  

2 SOCIAL BEHAVIOR: denotes behavior directed toward one or more individuals, usually of the 

same species, and in most cases mediated by communication or relationships (Kappeler et al. 2013). 

Examples are grooming, courtship, parental care, coalitions, fights, etc.  
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Figure I.1. Schematic representation of Hinde’s (1976) conceptual framework for the 

study of animal societies. Interactions, relationships and social structure are represented as 

rectangles at three levels with multidirectional effect. Social structure feeds back to influence 

social relationships and interactions, and relationships similarly affect social interactions. 

Figure from Brent et al. 2011. 

 

I.2. The analytical side of social structure 

The study of social structure has a long history in Biology, with classical studies on social 

analyses conducted up to the 1960’s being reviewed in Crook (1970), and then placed into a 

modern analytical framework as reviewed by Whitehead (2008a). This field has been 

frequently updated since then (e.g. Farine & Whitehead 2015; Scott 2017). For about 15 

years there is a remarkable interest in investigating the social structure using a set of 
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sophisticated techniques called social network analysis (SNA; e.g. Lusseau 2003; Croft et al. 

2008; Wey et al. 2008). SNA methodology originated from mathematical graph theory (see 

Scott 2017 for a review) and provides a refined estimation of the complex social structure 

into which individuals are embedded (Whitehead 2008a; see the section Material and 

Methods for a description of SNA). A social network comprises nodes, which represent 

individuals, connected by ties (also called links or edges), that represent the interactions 

between a pair of individuals. A synonym of social structure, social networks are pervasive in 

nature (Box I.1).  

 The conceptual framework of SNA is now consolidated in Ethology, Behavioral and 

Evolutionary Ecology, and it is broadly accepted as a means of investigating patterns of 

social interactions in animal groups (Croft et al. 2008; Whitehead 2008a; Krause et al. 2014; 

Sueur 2015), with applications in a variety of major taxa (e.g. fruit flies: Pasquaretta et al. 

2016; sharks: Mourier et al. 2012; dolphins: Lusseau 2003; giraffes: Carter et al. 2013; birds: 

Oh & Badyaev 2010; meerkats: Blumstein et al. 2009; primates: Bret et al. 2013). The first 

generation of studies primarily introduced the concept of social networks analysis (Krause et 

al. 2007; Wey et al. 2008; Sih et al. 2009; Brent et al. 2011; Sueur et al. 2011a), but, more 

recently, finer analyses of social structure have allowed us to identify its effects on many 

ecological and evolutionary mechanisms (see Kurvers et al. 2014 for a review), such as 

animal dispersal (Blumstein et al. 2009), sexual selection (McDonald et al. 2013), 
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cooperation (Rand et al. 2011) and social transmission (Duboscq et al. 2016a, Appendix B; 

White et al. 2017).  

 

Box I.1. Example of animal social networks. 

 

Figure BI.1. Social networks as evidence of social community in blacktip reef shark (a; 

Mourier et al. 2012) and the spreading of the moss-sponging behavior in the Sonso 

chimpanzee community (b; Hobaiter et al. 2014). 
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I.3. Social transmission 

Social structure affects social transmission, and social transmission occurs through social 

interactions, which are mediated by relationships. We can envisage social transmission as 

involving any entity (e.g. knowledge, behavior, disease causing organisms) that can be 

transferred from one individual to another by direct contact or spatial proximity. Social 

transmission is an important component of animal society, with clear impacts on individual 

fitness. For example, the alarm calls of European robins (Erithacus rubecula) prevent infant 

predation (East 1981), and strong social bonds favor the spread of Tuberculosis among wild 

badgers (Meles meles) in Great Britain (Weber et al. 2013). The social interactions or 

relationships between individuals (e.g. body contact, proximity, grooming or fight, Croft et 

al. 2008) represent the possibilities for individuals to transmit such information and/or 

socially-transmitted pathogens.  

 

I.3.1. Information transmission 

In terms of animal societies, information is broadly understood as knowledge possessed by a 

potential resource-holder, which may benefit other individuals if transmitted (Stephens 1989, 

but see Dall et al. 2015 for uncertainty on information reliability). There is a range of possible 

information sources, including the environment – leading to “personal information” - or 

conspecifics – leading to “socially acquired information” if transmitted (Dall et al. 2015; 
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Figure I.2a). Personal information may include, for example, the observation of common 

landmarks, stars and the geomagnetic field to guide migrations (Grocott 2003). Socially-

acquired information consists of the behavior, innovations or knowledge transferred from one 

individual to another (Dall et al. 2015; Figure I.2b). It can be produced advertently (a signal) 

or inadvertently (a social cue or public information). A signal is produced by an individual 

for the purpose of communication (Dall et al. 2015), with a classic example being predator 

alarm calls (Blumstein et al. 1997). As products of the individual emitting and mediating the 

signal, natural selection favors individuals whose signals provide fitness advantages, to both 

the signaler and the receiver in the case of honest communication (Krebs & Dawkins 1984). 

Inadvertent social cues, on the other hand, might also provide information about the presence 

or absence of a feature, such as the spatial location of a food patch (Galef & Giraldeau 2001). 

In this situation, however, the emitter has no control over the kind of information being 

transmitted, but natural selection might favor the abilities of other individuals to perceive 

such cues (Krebs & Dawkins 1984). Public information denotes graded information about a 

feature that can facilitate estimation of the quality of a feature in question, such as the 

aggressiveness of an opponent (Figure I.2b). Using social information is known to provide 

faster or better adaptations to environmental changes than using solely personal information. 

Information is thus an important currency of exchange among individuals in a society (Dall et 

al. 2015; Duboscq et al. 2016a). 
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Figure I.2. Scheme representing the two types of information: personal information (a), 

directly acquired from the individual’s interaction with the environment, or socially-

acquired information (b), acquired from signals, social cues provided by conspecifics or 

public information. Figure from Dall et al. 2015. 

 

 In this thesis, I use the general definition of socially-acquired information, which can 

relate to any potential resource, such as the indication of a foraging patch, innovations, 

predator threats and/or partner selection, which provide evolutionary advantages (e.g. 

Danchin et al. 2004; Dall et al. 2015; Kendal et al. 2005; Aplin et al. 2012; Duboscq et al. 

2016a). In behavioral and evolutionary ecology, information transmission is usually linked to 

social learning and cultural transmission (Box I.2). Cantor & Whitehead (2013), for instance, 

proposed an extension of Hinde’s (1976) conceptual framework by including information 

transmission at the final level of the diagrammatic representation. In their review, they 

demonstrated that culture is shaped by social structure, and culture itself influences social 

structure, since individuals develop preferential patterns of interactions. For example, 

sympatric community of cetaceans sharing a vocal repertoire emerge from cultural 
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transmission, as individuals form bonds based on their behavioral similarity, which, as a 

consequence, creates a biased social learning of codas (i.e. units of communication; Cantor & 

Whitehead 2013; Cantor et al. 2015). If we express Hinde’s (1976) scheme under the light of 

social networks, individuals (nodes), through their characteristics and behaviors, influence 

the pattern of social interactions and relationships (links) that affect the social structure 

(network topology). The network structure subsequently affects information transmission, 

through social learning and culture (Cantor & Whitehead 2013). This scheme also does not 

include causal directionality, meaning that the influence may circle back around to affect 

social relationships and individual behavior.  

 

Box I.2. Social learning and cultural transmission.  

Everyday, individuals acquire information provided by others to guide their own behavior 

(Morand-Ferron et al. 2010). There is an entire field dedicated to the mechanisms and 

patterns driving social learning in animals (Galef & Laland 2005; Hoppitt & Laland 2013). 

More specifically, if information is defined such that shared behavior is consistently different 

between groups in a population, it may be called culture (Whiten & van Schaik 2007). One 

example of information transmission comes from a wintering sub-population of great tits 

(Parus major) inhabiting the Wytham woods, England. Researchers aiming to investigate the 



36 
 

establishment of foraging techniques in the wild birds introduced a puzzle box with two 

opening options: slide right or left (Figure BI.2a). By examining the number of individuals 

within the flock that acquired the behavior, the team showed that from only two trained birds 

in each sub-population, the information spread quickly through the social network, reaching 

75% of individuals in approximately 20 days (Figure BI.2b). Interestingly, the sub-

populations were biased toward the foraging technique originally introduced (Figure BI.2c), 

demonstrating that informational conformity, in which individuals choose the most common 

variant when first learning a new behavior, is present in these wild birds (Aplin et al. 2015). 

This study contributed to the field of social transmission by showing that conformism is not 

restricted to humans. 

 

Figure BI.2. Transmission of foraging techniques in wild great tits. From an opening-box 

task (a), two demonstrators spread the behavior to the majority of their sub-population in 

about 20 days (b). Individuals kept the behavior learned using a specific technique, either by 

opening the box by sliding it to the right or to the left (c). Figure from Aplin et al. 2015. 
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I.3.2. Infectious agent transmission 

Parasites3 are pervasive in the lives of social animals, and although in some cases infection 

can appear benign, without visible symptoms or detectable impacts on individual fitness 

(Price 1980), infectious diseases can contribute significantly to the mortality and morbidity of 

numerous individuals (e.g. Rachowicz et al. 2006; Frick et al. 2010). For example, many 

microparasites, such as bacteria and viruses, are highly virulent and can cause significant 

population declines (e.g. Ebola in West Africa: Walsh et al. 2009; Anthrax in Central and 

West Africa: Hoffman et al. 2017). On the other hand, macroparasites such as helminths and 

arthropods are more likely to exhibit chronic effects on host survival and reproduction by 

decreasing the potential number and quality of offspring (e.g. May & Anderson 1978).  

 

___________________________________________________________________________ 

3  DEFINITION: The word parasite has different meanings and depends on the discipline in which it 

is used. I use the ecological definition of parasite, which refers to “any organism that lives on and 

draws nutrients or material resources, such as metabolism and behavior, from another living organism 

- the host” (Nunn & Altizer 2006). Parasites thus include the disease-causing organisms such as 

bacterial and viral pathogens, but also the many other species that live off other animals at some cost 

but are not associated with clinical disease or at least not present in the numbers required to cause 

overt disease in their hosts. Pathogens refers simply to any disease-causing organism, but this term is 

usually associated with microbial parasites in the medical and parasitological literature (viruses and 

bacteria; Nunn & Altizer 2006). In this thesis, I use the term parasite to denote any agent that can 

impact the health and/or fitness of its host, overtly or otherwise. However, because most of the work 

appearing in this thesis is theoretical, I also use the terms pathogen, infectious-agent, disease-causing 

organism and infectious disease interchangeably throughout the text.  
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 The dynamics of infectious diseases spread via direct person-to-person transmission 

(such as influenza, smallpox, HIV/AIDS, etc.) are expected to be highly dependent on social 

structure (Pastor-Satorras & Vespignani 2001; Meyers et al. 2005; Salathé & Jones 2010; 

Griffin & Nunn 2012). The relationship between group-living and infectious disease thus 

seems to be generally straightforward: animals living in closer proximity and with higher 

contact rates should experience higher rates of pathogen transmission (e.g. primates, Nunn & 

Altizer 2006). However, individuals have also developed defenses to prevent or respond to 

pathogen invasions. These anti-parasite strategies include immunological defenses to combat 

infection (Wilson et al. 2003) as well as behavioral counterstrategies, such as hygiene, self-

medication and social avoidance. In Japanese macaques (Macaca fuscata), for example, 

hygienic behavior in response to potential sources of contamination was linked to low 

geohelminth infection (Sarabian & MacIntosh 2015). Furthermore, infected horses and 

primates consume plants with medicinal properties to control parasite infection (Huffman 

1997; Williams 2008). Finally, mandrills (Mandrillus sphinx) were shown to recognize 

parasitized individuals and avoid grooming their anogenital areas when shedding infective 

stages (Poirotte et al. 2017).  

 Changes in the rate of contact with conspecifics may therefore be one of the important 

mechanisms preventing pathogen transmission. Whether infected individuals actively avoid 

social interactions or become lethargic and therefore engage in fewer social interactions in 
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general as part of the sickness response (Hart 1988), or whether uninfected individuals 

actively avoid infected conspecifics (especially if they show signs of sickness), reduced 

social interactions might impact social structure in ways that can down-regulate social 

transmission and thereby constrain the infection to a few individuals (e.g. Lopes et al. 2016). 

For example, wild house mice (Mus musculus domesticus) challenged with 

lipopolysaccharide (LPS), which mimics bacterial infection, reduced their own rates of social 

contact by avoiding encounters with other group members (Lopes et al. 2016). In contrast, 

healthy bullfrogs (Rana catesbeiana) avoided individuals with a yeast infection (Kiesecker et 

al. 1999). The end result in both cases, despite the different mechanisms at play, is that 

uninfected or healthy individuals were less likely to interact with infected conspecifics, which 

should slow down the spread of infection through the population. 

 Finally, understanding the dynamics of infectious disease is important from various 

perspectives, from evolutionary to ecological and to health considerations, as well as to 

modern issues such as anthropozoonotic transmission and infectious disease in conservation 

(Box I.3). There is growing concern that accelerated environmental change may in turn 

accelerate the emergence of infectious diseases and potentially of disease outbreaks that can 

lead species toward local extinction (Deem et al. 2001; Leendertz et al. 2006), sometimes 

even putting our own human society at greater risk (Chivian & Bernstein 2008). Studies 

provide evidence on how network topology can not only be used to predict the chain of 
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transmission (who transmits pathogens to whom) but also to implement intervention 

strategies based on the identification and removal (e.g. quarantine or vaccination) of 

individuals more likely to spread disease-causing organisms (i.e. superspreaders; Silk et al. 

2017; White et al. 2017). Network epidemiology, a framework combining components of 

epidemiology and network science, offers a sophisticated analytical platform to investigate 

the dynamic of infectious agent transmission between animal and/or human populations 

(Barabási 2016). 

 

Box I.3. Transmission of disease, wildlife and human health: a holistic view 

Epidemics, such as Ebola in 2014 (West Africa) and measles in 2015 (Canada), called the 

attention of agencies and governments to invest in intervention measurements (Fitzpatrick et 

al. 2017; Thomas et al. 2017). Outbreaks may occur stochastically, but future events are 

certain to happen (Ash 2017). Pathogen transmission thus poses substantial challenges for the 

conservation of wildlife, public health and ecosystem welfare.  

 Among current global concerns related to health are emerging infectious diseases 

(EID), the phenomenon being referred to as pathogen emergence, which are diseases that are 

increasing in incidence or expanding in geographic range into human populations for the first 

time (Figure BI.3; Jones et al. 2008). EID are mainly thought to be driven by socio-
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economic, environmental and ecological factors (Jones et al. 2008) linked with anthropogenic 

modification of habitats and erosion of biodiversity (Keesing et al. 2010). Studies show that 

conservation of wildlife might be an efficient strategy for improving human health and well-

being, since it maintains ecosystem health (Kilpatrick et al. 2017; Young et al. 2017). The 

modeling of infectious diseases in wildlife is then a valuable tool to study the mechanisms by 

which diseases spread, to predict the future course of an outbreak and to evaluate strategies to 

control an epidemic, providing the basis for understanding epidemiological processes with 

implications for species conservation, the overall well-being of animal societies, and the 

interrelationships between species and their ecosystems (e.g. One Health concept).  

 

Figure BI.3. Geographic origins of EID’s from 1940 to 2004. The large concentration of 

EID events per million square kilometers of land is concentrated in the northeastern United 

States, western Europe, Japan and southeastern Australia. Figure from Jones et al. 2008.  
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I.4. Increasing contagion risk and information flow via social 

networks 

The spread of information and pathogens are both well-studied topics in network science 

(Barabási 2016). Multiple theoretical and experimental studies have indicated that the 

differentiation of social roles that individuals play, as well as the network structure – as 

estimated by global metrics such as density, which describes the proportion of relationships 

in relation to the potential total network connectivity, or modularity, which estimates the 

level of subgrouping present in the network – each influence both transmission process. 

These studies were mainly conducted using information and parasite flow networks 

independently, perhaps because of the challenges in investigating both within the same 

empirical framework or in accordance to the research questions of the scientist, but they 

provide evidence that the same properties of the network that favor transmission of 

information also favor the spread of pathogens. Further, a computer simulation study has 

shown that the spread of information and viruses happens as a function of similar network 

components, such as the position of individuals within the network (Weng et al. 2013). 

 

I.4.1. Network position 

An individual’s network position is usually determined by the relative number and strength of 

its social relationships, hereafter called connections. Central individuals are those with larger 
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numbers of direct (e.g. number of social partners) or indirect (e.g. number of distinct 

subgroups an individual is related to) connections, while less central individuals are those 

with smaller numbers of connections. Thus, the position of an individual in its network alters 

the probability of acquiring or transmitting information and infectious diseases. Central 

individuals are expected to be key dispersers of information, controlling its quality and access 

(Vital & Martins 2009), but are also expected to spread infectious agents to a broader number 

of individuals and to be more vulnerable to pathogen exposure (Newman 2004). For example, 

central wild tits, estimated by their association patterns in artificial feeders, are more likely to 

be among the first-informed about new foraging patches (Aplin et al. 2012). At the same 

time, female Japanese macaques more central to their grooming networks exhibit higher 

parasite species richness and intensity of infection with nematode parasites (MacIntosh et al. 

2012). Moreover, hunter-gatherer women in the Philippines that are more central in their 

proximity networks produced more living offspring but also suffered from greater disease 

burdens (i.e. gastro-intestinal disease, influenza and fever, respiratory tract infections and 

intestinal parasites; Page et al. 2017). Central individuals in terms of direct connections, at 

least considering the total number and strength of interactions, might indeed have more 

opportunities to observe and interact with others than less central individuals. However, the 

assumption that greater centrality is linked to greater social influence is not always 

straightforward, as this can also be affected by network subdivision, meaning the number of 
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subgroups or modules in the network, and synergies between direct and indirect connections 

for both information (e.g. Pasquaretta et al. 2016) and parasite transmission (e.g. VanderWaal 

et al. 2016). 

  

I.4.2. Network structure 

Emergent properties of the network at a global-level (Table II.1) are considered to distinctly 

affect transmission processes. For example, increases in network density (i.e. the total 

number of connections in proportion to the maximum possible number of connections in the 

network) implies faster social transmission: the more connected the network, the lower the 

number of connections necessary for information be transmitted from the spreader to the 

most peripheral individual in the group (e.g. Pasquaretta et al. 2014). The logic is simple, 

since social transmission is density-dependent, a higher number of individual connections 

will trigger faster transmission. However, the relationship between a network property and 

social transmission might not always be straightforward, since other properties may induce 

different effects in the processes. For example, group size is considered to have mixed effects 

on social transmission. While many studies provide evidence that infectious disease risk 

increases in larger groups (Ezenwa 2004; Whiteman & Parker 2004; Caillaud et al. 2013), 

others show the opposite relationship, with smaller groups having higher levels of parasite 

infection (Rubenstein & Hohmann 1989; Arnold & Lichtenstein 1993; Semple et al. 2002; 
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Bordes et al. 2007). Scientists claiming that sociality somehow should reduce the risk of 

acquiring directly-transmitted parasites led to the discovery that some network properties 

work as a buffer to reduce disease spread. For instance, high levels of clustering - the extent 

to which neighbors are connected to each other - decreases per capita infection risk in 

Lepidoptera (Figure I.3; Wilson et al. 2003). 

    

 

Figure I.3. Relationship between the clustering coefficient (Q) and (a) mean infection 

risk per individual during a simulated epidemic, and (b) duration of an epidemic. In (a), 

bars represent the standard error associated with the mean of infection risk per capita. Lines 

represent the best-fit exponential function. The higher the clustering coefficient, the lower the 

individual contagion risk (a) and the lower the duration of the epidemic (b). Figure from 

Wilson et al. 2013. 

 

 Other studies following this research line tested the “social bottleneck hypothesis”, 

which predicts that the social network structure should modulate the association between 

group size and infectious disease risk: larger groups are expected to be more subdivided into 
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subgroups, and those subgroups should act as a social bottleneck by decreasing the potential 

for pathogen transmission (Nunn et al. 2015). Researchers examined the association between 

group size and social network metrics in 43 vertebrate and invertebrate species and showed 

that modularity, a measure of network subgrouping, acted as a buffer, reducing disease spread 

between subgroups (Figure I.4; Nunn et al. 2015). Prior to that, the same research group 

found evidences of a negative effect of modularity on non-human primate groups (Griffin & 

Nunn 2012). Modularity is now considered the main predictor of reduced disease spread 

according to the social bottleneck hypothesis (Nunn et al. 2015). 

 

Figure I.4. Results of paired simulations showing the number of infected individuals 

(infection prevalence) in the presence (upper left triangle) and absence (lower right 

triangle) of subgroups in simulated networks. Maximum prevalence was substantially 

higher in the simulations without subgrouping. Figure from Nunn et al. 2015. 
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 Network properties thus reflect a set of individual decisions and behaviors that can be 

dynamic, with links between individuals potentially changing in response to the behavior or 

status (informed, parasitized) of their social partners. For individuals showing flexibility in 

social behavior, it is expected that they manage their relationships according to the costs and 

benefits of each interaction. For example, humans were shown to cooperate, form new 

connections to cooperators, and break links with cheaters/defectors, leading to significant 

changes in network topology. This led to changes in social structure (Rand et al. 2011). 

Along similar lines, vervet monkeys were demonstrated to reinforce social bonds by 

increasing grooming bouts with individuals that provided more food to other conspecifics in 

an experimental foraging task, causing social preferences reflected in the network topology 

(Fruteau et al. 2009). Such evidence suggests that network properties at both the individual 

and global scale might fluctuate over time according to individual decisions. If the social 

structure is quantified, it may be the combination of properties rather than any specific 

property, such as being central in the group, that leads to optimization of social trade-offs, 

such as those that relate to information and pathogen transmission.  
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I.5. Framework and objective of study 

I provide evidence that social structure can theoretically and empirically regulate information 

and disease transmission by mediating social contacts or spatial proximity (e.g. Aplin et al. 

2012; Claidière et al. 2013; Kappeler et al. 2015). The social network properties optimizing 

the spreading of information may also increase the disease transmission rate, creating a trade-

off between information transmission and infection risk. My research interests fit with the 

exploration of this trade-off by examining social network properties and investigating how 

they might interact to maximize information flow and minimize pathogen transmission. I 

work within the formal conceptual framework of studying the dynamic interactions between 

social structure and social transmission, with the aim of answering the following questions:  

 

How do social networks shape information and  

infectious agent transmission in animal societies? 

 

 In this thesis, I do not consider information solely in the light of social learning or 

cultural transmission (Box I.2), but with respect to any quality of a potential resource-holder 

that can be perceived by conspecifics as an indication of their likelihood to obtain beneficial 

information from them, including alarm calls against predator proximity, locations of new 

foraging patches, potential sexual partners, etc. The parasites referred to here include only 
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those that are or have the potential to be transmitted socially, either by direct contact or 

through proximity. I combined behavior sampling, social network analysis (SNA) and 

individual-based modelling (IBM), allowing for a resolute estimation of social structure 

(through SNA) and the ability to answer complex questions (through IBM) that would not be 

possible to address experimentally given the generation lengths of many social species and 

the number of behavioral scientists needed to score data at such volumes. In parallel, my 

research team and I also demonstrated that, while information transmission has been studied 

intensively in vertebrate networks (Appendix B, Duboscq et al. 2016a), studies of parasite 

transmission in networks has received less attention, especially in comparative perspective 

(for exceptions see Griffin & Nunn 2012; Gómez et al. 2013; Pasquaretta et al. 2014; Sah et 

al. 2017). During my PhD, I was also involved in experimental studies investigating parasite 

transmission in Japanese macaques (Appendix C, D and E, Duboscq et al. 2016b,c,2017), 

but I do not present them directly in this thesis. Instead, I focus on the observational and 

theoretical modelling approach I have used to understand the link between social structure 

and social transmission, with the ultimate aim of addressing the information/pathogen trade-

off.    

 In this thesis, I chose primates as my main model of study since they are highly social 

animals, present complex social structure (Nunn & Altizer 2006), and there are vast amounts 

of social and behavioral information already available for this taxonomic group. It is also 
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worth noting that many of the studies of both information and parasite transmission on social 

networks have been conducted with primates (Voelkl & Nöe 2008, 2010; Walsh et al. 2009; 

MacIntosh et al. 2012; Claidière et al. 2013; Rushmore et al. 2013, 2014; Hobaiter et al. 

2014; Pasquaretta et al. 2014; Coelho et al. 2015), making this a valuable group of organisms 

with which to work. Understanding the dynamic process involved in parasite transmission 

through primate networks might not only offer new perspectives to help us understand the 

variation observed in social structure across species, and its influence on disease outbreaks, 

but also may provide an important basis for discussion about conservation of species in light 

of infectious diseases and the implementation of intervention techniques (Silk et al. 2017). 

Furthermore, many of the hypotheses created to explain the evolution of group-living, the 

organizational structure of animal societies, and the links between social structure and social 

transmission were built through investigation of primate societies (e.g. Hinde 1976; Pusey & 

Packer 1987). The studies that form the components of this thesis have been conducted using 

association matrices from 40 wild groups of 21 primate species and published metrics of 68 

networks of 21 primate species. See the section Material and Methods for a detailed list of 

species investigated. 
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I.6. Organizational layout 

My thesis is organized into four chapters, increasing in complexity and moving from an 

evaluation of parasite transmission in empirical non-human primate groups to an 

investigation of social transmission in theoretical networks (Figure I.5). I first focus on 

understanding how individual attributes affect individual network position and how this 

affects transmission of theoretical pathogens in Japanese macaques – a well-studied species 

with data on ecology, social behavior and parasites (MacIntosh 2014) but not on 

epidemiology. Once the link between individual centrality and parasite transmission was 

established, my second chapter uses a comparative evaluation of primate societies (40 wild 

groups from 21 primate species) and disease outbreaks. In network epidemiology, studies 

have focused on the effects of network properties on the maximum reach of outbreaks. 

However, whether the influence of social structure on pathogen spread remains stable 

throughout the progression of the epidemic has not yet been considered. This dynamic 

approach is important since intervention strategies are being recommended in accordance 

with social structure (e.g. humans, Salathé & Jones 2010; chimpanzees, Rushmore et al. 

2014). In the third chapter of my thesis, I extended my findings based on empirical networks 

by looking at the link between network properties and network efficiency (a proxy of social 

transmission) in theoretical networks with a larger variance in group size. In this chapter, I 

compared my predictions with published data on the network properties of 68 primate groups. 
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Finally, I finished the thesis predicting a scenario of optimal social relationships, to 

investigate which network properties emerge from conditions where individuals maximize 

the chances of getting information but minimize the risks of getting infected. I created an 

individual-based model with 20 different conditions and evaluated the emergent network 

properties. This study contributes substantially towards understanding how the trade-off 

between information and pathogen transmission may affect social networks.   

  

 
Figure I.5. Schematic representation of the structural framework developed in this 

thesis. Chapter 1 covers questions at the individual-level, chapter 2 at the network-level, 

chapter 3 presents the link between efficiency and modularity, and chapter 4 introduces the 

individual-based model created to investigate the trade-off between information and pathogen 

transmission.  
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Chapter 1 – Modelling infection transmission in primate networks to predict centrality-

based risk 

In the first study of my PhD, I addressed the question of how individual characteristics 

(dominance rank, family unit and age) predict individual centrality and how direct and 

indirect measures of individual centrality affect the chain of transmission in primate 

grooming and proximity networks. In network epidemiology, the importance of non-random 

connections in the spread of pathogen from one individual to other has been discussed at 

length, but fewer research has examined the vulnerability of central individuals to become 

infected in the chain of transmission. I combined social network analysis and an 

epidemiological approach to predict transmission of theoretical infectious agents in two wild 

groups of Japanese macaques (Macaca fuscata).  

 

Chapter 2 – Pathogen spread and the dynamic social connectivity effect: an evaluation 

through epidemic time 

In my second study, I moved from the individual metrics examined in the first chapter to an 

evaluation of global network properties with the aim of understanding the general rules 

driving outbreak size in primate networks. As infectious disease is considered one of the 

major threats to species survival, several studies have focused on the role of social structure 
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on the final size of the outbreak, but whether the influence of social structure on pathogen 

spread remains stable throughout the progression of the epidemic was not yet investigated. 

Here, I applied a comparative approach, using data from 40 wild groups of 21 non-human 

primate species, to investigate to what extent centralization, clustering coefficient, density, 

diameter and modularity interact with group size to enhance or constrain the spread of 

theoretical infectious agents at different stages of an epidemic.  

 

Chapter 3 – Network efficiency peaks with intermediate levels of group substructure 

In the third chapter of my thesis I focused on the relationship between transmission efficiency 

and modularity. Of the network properties under consideration, it has been argued that 

increased modularity is a major contributor to constraining transmission processes. However, 

research suggests that only beyond a threshold at high values of modularity do social 

networks result in decreased pathogen transmission. Within this framework, I created 

networks varying in network properties and compared my predictions with published data on 

the network metrics of 68 primate groups to investigate to what degree network efficiency is 

modularity-dependent, and whether a modularity threshold exists in the efficiency of social 

transmission processes. 
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Chapter 4 – Investigating the trade-off between information access and infection 

avoidance in animal societies: an individual-based model 

In the last part of my PhD, I created an individual-based model, called the Optimal 

Relationships Model, to explore how individuals might deal with the inherent trade-off 

between information acquisition and pathogen avoidance in social networks. The model is 

programmed so that individuals favor interactions with others that exhibit higher information-

sharing potential and avoid interactions with conspecifics that exhibit higher pathogen-

spreading potential. I investigated the emergent network structure under conditions in which 

the distribution of values of information sharing potential and pathogen spreading potential 

varied widely across group members. 
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II. MATERIAL AND METHODS 

 

II.1.  Observational study: from field work to an extensive dataset 

 

II.1.1. Fieldwork with Japanese macaques  

Japanese macaques (Macaca fuscata), the northernmost extant nonhuman primate species, 

are endemic to Japan. It is a social primate species living in multi-female multi-male groups, 

where individuals form linear dominance hierarchies and differentiated affiliative social 

relationships. I studied Japanese macaques from Koshima island, located in Miyazaki 

prefecture, Japan (Figure II.1). Koshima is approximately 0.3km2 in area and is mainly 

covered by secondary broadleaf evergreen forest (Iwamoto 1974). Koshima was at the time 

inhabited by approximately 100 individuals divided into two social groups, called Maki (ca. 

15 individuals) and Main (ca. 60 individuals), along with an unknown number of solitary 

males. The main group of Koshima macaques has been periodically provisioned with wheat 

(currently ca. twice per week) and intensively studied, with group composition recorded for 

ca. 60 years (Iwamoto 1974). The Main group was habituated to the presence of humans and 

adults could be individually recognized by facial tattoos in combination with natural physical 

characteristics, such as scars or body shape. See Figures II.2 and II.3 for the Main group of 

Koshima.  
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Figure II.1. Location of the field site in Japan. Koshima island is marked with an orange 

star. Picture extracted from Google Earth.  

 

 I collected behavioral data from 19-20 adult females (> 7 years old) of the Main group 

between January and August 2014. The reason I focused on female social networks in this 

study was that Japanese macaque societies are organized into female bonded groups in which 

females form the stable core (Yamagiwa & Hill 1998). Males usually emigrate from their 

natal groups at the sub-adult and adult age (Hamada et al. 1986). As a result, it is expected 
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that females dominate dynamics on social networks. Furthermore, it was difficult to 

adequately sample other members of the groups. For example, males are peripheral and their 

affiliation with the group is much less stable than that of females, while juveniles are often 

difficult to observe and identify reliably. Behavioral observations were balanced across 

females, and also by time of day (morning/afternoon).  

 Focal females were followed for 15 min with their main activities recorded at every 

minute. Amongst recorded activities, I distinguished between grooming given, grooming 

received, and simple body contact. Social, aggressive and other affiliative interactions as well 

as the identity of each social partner were collected continuously. During social and self-

grooming bouts, I also counted the number of times per minute-scan the groomer 

conspicuously picked out something in the groomee’s hair or her own and subsequently ate it. 

This conspicuous louse egg-picking behavior was later used to investigate the relationship 

between parasite burden and sociality in female Japanese macaques (Appendix C, Duboscq 

et al. 2016b), along with studies testing proximate hypotheses to explain variation in self-

directed behavior, such as self-grooming and scratching (Appendix D, Duboscq et al. 2016c; 

Appendix E, Duboscq et al. 2017). Finally, fecal samples from adult females were 

opportunistically collected as part of another project I was involved with (MacIntosh et al. in 

preparation).  
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Figure II.2. The main beach of Koshima island with Japanese macaques foraging after a 

provisioning event. Photo credits: Valéria Romano.  

 

 
Figure II.3. A dyad of female Japanese macaques during grooming interactions. Photo 

credits: Andrew J.J. MacIntosh. 
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II.1.2. Extending the study to another 20 primate species 

Besides collecting data from Japanese macaques at Koshima, I used datasets (i.e. matrices of 

grooming and body contact) either shared by collaborators or from published sources (see 

Table GS1, Appendix G for the source of data). This extended my empirical dataset to a 

total of 40 wild groups from 21 primate species representing 4 families (Atelidae, Cebidae, 

Cercopithecidae, Hominidae; Figure II.4). Furthermore, I incorporate in my third chapter 

published metrics from previous social network analysis (Pasquaretta et al. 2014). This 

extended my analysis to 68 groups of 21 species (see detailed list at Table HS1, Appendix 

H). 

 
Figure II.4. Scheme representing the distribution of studied species. Data were kindly 

shared by collaborators or gathered from the literature (see Table GS1, Appendix G for the 

source of data). In parenthesis, the number of studied groups for each species. *The group of 

stump-tailed macaques was introduced to Catemaco (VeraCruz, Mexico) three years before 

the behavioral observation was conducted (Estrada et al. 1977).  
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II.2. Social network analysis  

Social network analysis (SNA) is a toolbox 

providing a refined evaluation of social and 

ecological interactions in animal societies 

(Farine & Whitehead 2015). Network 

analysis envisages a social system as a 

network, with individuals, groups, 

communities or even different species being 

represented by nodes and their relationships 

represented by links (Whitehead 2008b). It 

provides both a visual and a mathematical analysis of social relationships. In this thesis, I will 

use the term “network” interchangeably with “group”, “node” with “individual” and “link” 

with “relationship” or “edge”. 

 

II.2.1. Building social networks 

An adjacency matrix is the classical representation of social association or interaction data 

(Figure II.5a). A matrix contains rows and columns denoting specific nodes (e.g. 

individuals, groups or communities, or different species). The data contained in the cells of 

the matrices reflect a representation of the relationships between the nodes. A network can be 

either directed or undirected, with the actor and target nodes being recorded or not, 

Basic Terms 

 Network: a set of nodes connected by 

links that reflect relationships. 

 Node: a component of the network with 

known relationship to others. In this thesis, it 

refers to individuals.  

 Links: the relationship (i.e. interaction or 

association) between a pair of individuals. 

They are also called edges or ties*.  

 Network topology: the arrangement of the 

nodes and the pattern of relationships between 

them. It is synonymous with network 

structure. 

 Centrality: a measure of a node’s 

importance in a group based on its network 

position.  
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respectively (Figure II.5b). Whether a network is directed or undirected depends on the type 

of links represented (interactions or associations). Undirected networks are usually typical of 

association data (e.g. proximity, body contact), in which the observer will score the time or 

occasions individual i and j spent together (with a spatio-temporal criterion; Sueur et al. 

2011a). An interaction denotes direction, most usually, and it can refer to affiliative (e.g. 

individual A grooms individual B) or aggressive behaviors (e.g. individual B chases 

individual A), if individuals are placed as nodes in the networks. Networks can also be 

weighted and unweighted. When the duration and/or frequency of a given social relationship 

can be recorded, such as the time of grooming or the frequency individuals are in body 

contact, the resulting network is weighted. When building weighted networks, researchers 

usually normalize the links allowing for comparisons between nodes (Sueur et al. 2011a). 

 

 

Figure II.5. Representation of a binary matrix of interactions (a) and the graphical 
representation of a theoretical social network (b). Nodes represent males (black nodes) 
and females (white nodes) of a group. Links (lines) represent the interaction or association 
between two individuals. Figures from Sueur et al. 2011a.  
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II.2.2. Interpreting network metrics 

Network metrics are statistical measures used to characterize properties of the network at 

individual (nodes) or global levels (the whole network). Another group of measures are edge 

metrics (e.g. edge betweenness), but they are rarely applied to animal social networks (Farine 

& Whitehead 2015) and thus are not covered in this thesis. In Table II.1, I provide 

definitions and the meaning of the more used network properties in the context of animal 

societies (Whitehead 2008a; Wey et al. 2008; Sueur et al. 2011a; Farine & Whitehead 2015). 

There is an extensive literature providing detailed explanations of many more network 

metrics (Newman 2010, Scott 2017). In the methods section of each chapter of my thesis, I 

re-visit the definition of individual and global properties, placing them according to each 

hypothesis under study. Network metrics can be calculated in network analysis programs, 

such as SocProg (Whitehead 2009) and Ucinet (Borgatti et al. 2002), or by using libraries in 

R (R Core Team 2016) such as igraph (Csárdi & Nepusz 2006), SNA (Butts 2008), tnet 

(Opsahl 2009) and ASNIPE (Farine 2013), which provide almost all network algorithms 

available. Because it is important to visualize the structure of networks to interpret the 

different roles of each metric, software packages such as Gephi (Cherven 2013) and Ucinet 

(Borgatti et al. 2002), or libraries in R such as igraph (Csárdi & Nepusz 2006) are also 

recommended. 
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Table II.1. Definition of network properties and their meaning in the context of animal 
societies.  

Network property Definition * Biological meaning * 

Individual-level   

Degree 

 

The number of edges 
connected to the individual. 

Represents the gregariousness 
of individuals, in terms of the 
total number of interaction 
partners or associates.  

Strength 

 

The sum of the edge weights 
connected to each individual. 

Represents the expected total 
interaction or association 
quantity per individual. 

Betweenness 

 

The number of shortest paths 
that pass through the 
considered individual. 

Indicates how important an 
animal is as a point of social 
connection and transfer. 
Animals with high betweenness 
are expected to bring stability 
to the network. Their removal 
may cause fragmentation of the 
network into smaller subgroups. 

Eigenvector 

 

The weighted connectivity of 
an individual within its 
network, also considering the 
weighted connectivity of its 
neighbors. 

Captures the potential of 
neighbors in determining 
centrality in the network. It is 
important for weighted 
networks and association data.    

Global-level   

Eigenvector centralization 

 

Derived from individual 
eigenvector centrality, it 
estimates variation in 
connectedness across nodes 
in the network. 

Denotes to what extent one or a 
few individuals monopolize(s) 
the social relationships in a 
network. It might range from 0 
to 100, with values close to 100 
denoting a network centralized 
around one individual (e.g. star 
network). 

Modularity The extent to which a 
network is subdivided into 
subgroups. 

Denotes the set of individuals 
which interact or associate 
more frequently between each 
other than with individuals 
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from other subgroups. 

Overall 

clustering coefficient 

 

The mean of all nodes' 
clustering coefficients, which 
measures how densely one 
individual is connected 
within its neighborhood. 

Describes how densely (or 
sparsely) the network is 
clustered around individuals. 

Diameter 

 

The longest path edge of the 
network.  

A basic measure of how well-
connected is the network. 
Usually, individuals in a group 
with a smaller diameter are 
connected to each other through 
fewer intermediates. 

Density 

 

The ratio between the 
number of observed edges 
and the number of possible 
edges in the network. 

Represents the cohesion of all 
nodes in a network. A high 
dense network contains all 
possible relationships among 
individuals.  

* Definition and biological meaning were based on Newman 2004, Hanneman & Riddle 
2005, Newman 2006; Sueur et al. 2011a, Borgatti et al. 2013, Wey et al. 2013, Farine & 
Whitehead 2015.  

 

II.3. Theoretical modelling 

 

II.3.1. Individual-based model 

In many disciplines, scientists face the challenges of understanding the inherent complexity 

of many ecological and sociological systems. Individual-based models (IBM), also called 

Agent-based models, is a class of computational models that provide a purposeful 

representation of real systems (Railsback & Grimm 2012). An IBM simulates the actions and 
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interactions of autonomous agents (which also includes collective entities such as groups and 

organizations), with the ultimate goal of assessing their effects on the system as a whole 

(Grimm et al. 2005; Railsback & Grimm 2012). An agent can be a social animal, a tree, a 

company, etc. Each agent is endowed with state variables, attributes or behaviors that 

modulate the pattern of interactions in a given environment. Behaviors can include 

reproduction, habitat selection, dispersal, etc. Modelling allow to change values of 

parameters and test per thousands of times the set of target values and conditions, which 

cannot be done in real situations. Advantages of individual-based models over traditional 

models include: i) IBM are bottom-up models providing an evaluation of how individual 

interactions affect the emergence of group or population structure; ii) they can incorporate 

multiple numbers of individual-level mechanisms, allowing a significant increase in the 

complexity of the artificial system (DeAngelis & Grimm 2014); and, iii) agent attributes and 

interactions are recorded through time, which allows for a refined evaluation of the simulated 

system. For roughly 40 years, individual-based models have been applied in ecology, with the 

first generation and some of the subsequent models being designed for the field of forest 

management (e.g. Figure II.6; DeAngelis & Grimm 2014). 

 

Figure II.6. Diagram representing the components of an individual-based model: agent, 
environment and links (i.e. interactions among agents). An agent represents a discrete 
entity with its own goals and behavior interacting and living in an environment.  
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 Let me take as example the BEFORE model, designed to reconstruct the 

spatiotemporal dynamics of the natural beech (Fagus silvatica) forests of central Europe 

(Rademacher et al. 2004; Grimm et al. 2005, Figure II.7). Multiple patterns are expected to 

characterize the mosaic of successional stages in these forests, including patterns of vertical 

structure: the climax stage has closed canopy while decaying stages are characterized by 

canopy gaps. Yet, since in many places there are no longer beech forests, the structure and 

dynamics of these forests cannot be experimentally analyzed and compared with managed 

forests (Rademacher et al. 2004). In simple terms, the individual-based model then included a 

representation of agents (trees), with their state variables (e.g. size) in an environment 

representing the location of each tree (Rademacher et al. 2004). To increase the complexity of 

the model and to fit with the observed patterns, the model structure also included multiple 

characteristic patterns, such as the mosaic pattern determined by horizontal spatial scale and 

resolution, the vertical patterns determined by the need for height classes, and canopy gaps 

determined that large beeches must be described individually (Grimm et al. 2005). The 

BEFORE model predicted that natural beech forests show considerable fluctuations in forest 

structure, which indicates quasi-stationary dynamics (Rademacher et al. 2004).  
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Figure II.7. Example of a model design. The BEFORE model is designed to simulate the 
spatiotemporal dynamics of beech forests of central Europe. From the real complex system 
(a), observations indicate multiple patterns of influence (a horizontal mosaic of 
developmental stages (b); the vertical patterns of tree size representing the developmental 
stages (c) and distributions of fallen large trees (d)) that drives the model structure (a grid-
based horizontal structure (e), a grid-based vertical structure (f), and individual representation 
of large trees (g). Figure from Grimm et al. 2005.  

 

 

 

II.3.2. Network epidemiology 

Epidemiology consists of the study of the distribution and determinants of disease in a 

population (MacMahon & Pugh 1970). Classical epidemiological models have traditionally 

considered an equal probability of contact for each pair of individuals in a given population, 

which assumed that each individual was equally likely to acquire infectious agents from any 

other infected individual (Rothman et al. 2008). However, heterogeneity in spatial and social 

structure creates distinct routes of transmission (Bonnell et al. 2016; Silk et al. 2017; White et 

al. 2017). The network epidemiology field then emerged as a powerful tool to provide more 

realistic scenarios of disease spread (Pastor-Satorras & Vespignani 2001). In network 

epidemiology, an infectious agent spreads from individual to individual following the links 
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(i.e. social relationships) connecting them, such as those that represent the time spent in body 

contact, grooming, etc. If the transmission probability among individuals is high enough, an 

epidemic will occur (Craft & Caillaud 2011). The original studied in network epidemiology 

therefore takes advantage of the analytical set of tools created by classical epidemiological 

models and includes a new component related to the number of connections (i.e. degree) of 

each individual as an implicit variable (Pastor-Satorras & Vespignani 2001; Barabási 2016).   

  

II.3.2.a. Susceptible-Infected (SI) Model 

In a SI model, an individual can be in one of two states: susceptible (S) or infected (I; Figure 

II.8a). Susceptible denotes the number of individuals who are healthy at time (t) and Infected 

the number of individuals who already have been infected at time (t) (Barabási 2016). This 

model assumes that if a susceptible individual comes into a contact with an infected 

individual, it will become infected at rate β, the transmission rate, depending on the fraction 

of degree-k nodes that remains uninfected. After an individual is infected, it remains in this 

state, meaning that it does not recover or die, as would occur in an SIR model, R representing 

either removed or recovered individuals (Barabási 2016). At time (t) = 0, all individuals are 

susceptible and none are infected, but after few acquire a socially-transmissible pathogen, the 

proportion of infected individuals increases exponentially. As most of the infected individuals 

eventually meet fewer and fewer susceptible individuals, the fraction of infected individuals 

slows for large (t) (Figure II.8b). The rate is dependent on the values of social connectivity 

(k). The higher the degree of an individual, the more likely it will be infected (Figure II.9; 

Barabási 2016). A deeper explanation of the network epidemiological model used in this 

thesis is placed in the method sections of chapters 1 and 2.  
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Figure II.8. Schematic representation of the SI epidemiological model. The model is 
organized into two compartments: susceptible (S) and infected (I) individuals. The arrow is 
undirected, indicating that once an individual becomes infected, it stays infected and thus 
does not recover or die. Figure from Barabási 2016.  

 

Figure II.9. Proportion of infected individuals (i(t)) in an SI model distributed according 
to values of degree from individuals of a hypothetical network. Degrees are equivalent to 
1, 10 and 20 from a scale-free network with average degree (k) = 2. The higher the degree of 
the nodes, the faster the spread of pathogens among group members. At t = 3, less than 3% of 
the k = 1 nodes are infected. Contrary to k = 10, from which about 20% has already become 
infected. Figure from Barabási 2016.   
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Individual centrality and pathogen transmission 
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III.1. Abstract 

(English) Social structure can theoretically regulate disease risk by mediating exposure to 

pathogens via social proximity and contact. Investigating the role of central individuals 

within a network may help predict infectious agent transmission as well as implement disease 

control strategies, but little is known about such dynamics in real primate networks. We 

combined social network analysis and a modeling approach to better understand transmission 

of a theoretical infectious agent in wild Japanese macaques, highly social animals which form 

extended but highly differentiated social networks. We collected focal data from adult 

females living on the islands of Koshima and Yakushima, Japan. Individual identities as well 

as grooming networks were included in a Markov graph-based simulation. In this model, the 
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probability that an individual will transmit an infectious agent depends on the strength of its 

relationships with other group members. Similarly, its probability of being infected depends 

on its relationships with already infected group members. We correlated: (i) the percentage of 

subjects infected during a latency constrained epidemic; (ii) the mean latency to complete 

transmission; (iii) the probability that an individual is infected first among all group 

members; and (iv) each individual’s mean rank in the chain of transmission with different 

individual network centralities (eigenvector, strength, betweenness). Our results support the 

hypothesis that more central individuals transmit infections in a shorter amount of time and to 

more subjects but also become infected more quickly than less central individuals. However, 

we also observed that the spread of infectious agents on the Yakushima network did not 

always differ from expectations of spread on random networks. Generalizations about the 

importance of observed social networks in pathogen flow should thus be made with caution, 

since individual characteristics in some real-world networks appear less relevant than they are 

in others in predicting disease spread. 

Keywords: social relationship; wildlife epidemiology; agent-based model; social network 

analysis 

(Français) La structure sociale peut en théorie le risque d’infection en modérant l’exposition 

au pathogène via la proximité sociale et le contact entre individus. L’étude du rôle des 

individus centraux au sein d’un réseau pourrait aider à prédire la transmission d’agents 

infectieux mais également la mise en œuvre de stratégies de contrôle des maladies. 

Cependant, nous avons actuellement très peu d’informations sur le rôle des individus 

centraux dans la dynamique de transmission des maladies au sein de groupes de primates. 

Nous avons donc ici combiné l’analyse de réseaux sociaux et de la modélisation afin de 

mieux comprendre la transmission d’agents infectieux théoriques au sein d’un groupe de 

macaque japonais en milieu naturel. Cette espèce est connue pour être très social, formant des 
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réseaux sociaux étendus mais très différents. Nous avons donc collecté des observations 

comportementales de macaques japonais femelles et adultes vivant sur les îles de Koshima et 

Yakushima, au Japon. L’identité des individus et les réseaux de toilettages ont été inclus dans 

une simulation de Markov. Dans ce modèle, la probabilité qu’un individu a de transmettre un 

agent infectieux dépend de la force des relations avec les autres membres du groupe. De 

façon similaire, la probabilité d’un individu à être infectée va dépendre de ces relations avec 

des individus du groupe déjà infectés. Nous avons donc corrélé : (i) le pourcentage 

d’individus infectés durant une épidémie dont la latence a été contrainte ; (ii) la latence 

moyenne de la transmission complète de l’agent infectieux ; (iii) la probabilité qu’un individu 

d’être infecté le premier au sein du groupe ; et (iv) le rang moyen de chaque individu dans la 

chaîne de transmission ayant différents propriétés de centralité de réseaux (eigenvector, 

strenght, betweenness). Nos résultats supportent ainsi l’hypothèse que les individus les plus 

centraux transmettent les infections plus rapidement et à plus d’individus, mais également 

que ces individus plus centraux se retrouvent infectés plus rapidement que les individus 

moins centraux. Cependant, nous avons également observé que la dissémination des agents 

infectieux au sein du réseau de Yakushima ne diffère pas toujours des prédictions au sujet de 

la dissémination au sein de réseaux aléatoires. La généralisation au sujet de l’importance des 

réseaux sociaux observés sur la dissémination des pathogènes doit ainsi être faite avec 

précaution, pour la bonne raison que les caractéristiques individuelles au sein de réseaux 

réelles apparaissent être moins pertinentes que dans des réseaux simulés. 

Mots-clés: relation social; épidemiologie en milieu naturel; modèle multi-agents; analyse de 

réseaux sociaux 

 

 



76 
 

III.2. Introduction 

In a social group, each individual is part of a network that varies in size, distribution and 

dynamics of relationships. Observed interactions between social animals are the outcome of 

trade-offs between the costs and benefits of sociality (Krause & Ruxton 2002) and one clear 

cost of being social is that many pathogens are transmitted via social interactions (Corner et 

al. 2003; Otterstatter & Thomson 2007; Drewe et al. 2011). Heterogeneity in host 

associations, for example, may influence the flow of disease-causing organisms through 

populations and mediate the risk of contagion across individuals (Newman 2002; Nunn & 

Altizer 2006). In consequence, there has been increased effort to investigate how association 

patterns and social positions of each individual in a network can affect disease transmission, 

via experimentation and/or modeling, in a vast range of species (humans: Bansal et al. 2007; 

Salathé & Jones 2010; non-human primates: Griffin & Nunn 2012, Carne et al. 2014; 

ungulates: VanderWaal et al. 2014a,b; cetaceans: Böhm et al. 2009; reptiles: Godfrey et al., 

2009, Aiello et al. 2014). While the networking approach is appealing for its capacity to 

depict complex systems (Kurvers et al. 2014), modeling offers further utility for 

understanding and predicting the behavior of these systems (Newman 2003). Agent-based 

modeling, for example, represents individuals as unique entities in the environment; by 

simulating local interactions among agents and their environment, it offers a less simplified 

and thus more realistic representation of real systems (Amouroux et al. 2010, Railsback & 

Grimm 2012). For these reasons, combining network techniques with modeling has emerged 

as a powerful tool for examining dynamics of infectious diseases (Craft et al. 2010).  

 In this context, recent models exploring association patterns have shown that global 

network properties, such as modularity (Griffin & Nunn 2012; Nunn et al. 2015), as well as 

individual-level properties, such as node centrality (Salathé & Jones 2010; Rushmore et al. 
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2014; VanderWaal et al. 2014a), may regulate pathogen transmission. For instance, the way 

in which individuals are more or less central in a group’s social network directly influences 

the way in which an infectious agent or information will be spread through a group and as a 

consequence, the relationship between centrality and probability of transmission (Griffin & 

Nunn 2012; Sueur et al. 2012). Central individuals may act as super-spreaders of disease-

causing agents, and targeting them (e.g. during vaccination or culling efforts) can therefore be 

an efficient way to implement preventive measures against disease (Christley et al. 2005; 

Rushmore et al. 2014). However, similar studies on information transmission have shown 

contrasting results, with a demonstrated influence of social centralities and network structure 

in some groups but an absence thereof in others (Boogert et al. 2008; Kendal et al. 2010; 

Schnoell & Fichtel 2012). In this way, it seems crucial to understand how social network 

structure at both the global and individual levels might interact to predict transmission within 

a group. 

 Non-human primates are useful study subjects to investigate the influence of sociality 

on disease transmission. First, many species are obligate social animals. Second, their close 

phylogenetic relationship with humans means that many non-human primate diseases are also 

a concern for humans (Wolfe et al. 1998, Hahn et al. 2000). Likewise, human diseases are a 

concern for nonhuman primates, for example causing marked morbidity in apes through 

infection linked to tourism or research activities (Woodford et al. 2002, Köndgen et al. 2008). 

Furthermore, understanding transmission dynamics in primates is critical for development of 

conservation and management strategies, given that ca. 50% of primate taxa are now under 

threat of extinction (Mittermeier et al. 2009) and infectious disease is known to be a 

significant driver of population decline (Leendertz et al. 2006). Therefore, increasing 

fundamental understanding of how sociodemographic factors might interact with disease 

transmission among primates is now critical, particularly to predict how continued human 
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encroachment and habitat modification might impact primate health, fitness and population 

viabilities in the future (Chapman et al. 2005). Studies have thus begun to investigate the 

variable influence of specific individuals and the contexts in which they interact in the 

dynamics of disease spread using real world primate networks (Griffin & Nunn 2012, Carne 

et al. 2013, Rushmore et al. 2013, Carne et al. 2014, Rushmore et al. 2014). 

 In this study, we combine social network analysis of empirical data and agent-based 

modeling to investigate the theoretical relationship between network properties and the 

propagation of infectious agents. We focus on infectious agents transmissible through social 

contact networks in Japanese macaques, which provide a well-studied and thus tractable 

model system (MacIntosh 2014). Macaques are generally considered the most widely 

distributed and best studied group of non-human primates (Thierry et al. 2004, Thierry 2007), 

and in many parts of their range exist in extreme proximity to human settlements. There is 

also some empirical evidence that infection by nematode parasites in Japanese macaques 

specifically is related to network centrality and position within the dominance hierarchy 

(MacIntosh et al. 2012, MacIntosh 2014). However, many of the epidemiological processes 

involved, particularly those concerning other groups of socially-transmissible agents in these 

and other macaque species, remain poorly understood. 

 To test our hypothesis that the structure of social contact networks mediates the 

transmission of infectious agents, we first constructed networks of grooming, a very 

conspicuous behavior that provides a good approximation of social contact (Altizer et al. 

2003) and which represents about 90% of body contact between female Japanese macaques 

(Duboscq et al. 2016). We then tested whether the spread of a theoretical infectious agent on 

these observed networks differed from its spread on random networks with the same number 

of individuals and degree distribution. Second, to further understand the role of individuals in 

transmission dynamics, we tested whether individual traits such as age, rank and family size 
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affected an individual’s network position. Recent studies have suggested that such traits can 

be used as proxies of centrality and thus used to predict importance in disease dynamics 

(Rushmore et al. 2013, 2014). We then constructed an agent-based model to simulate the 

transmission of an infectious agent through the observed empirical contact networks. Based 

on the hypothesis that social network centrality and transmission dynamics are linked, we 

predicted first that central individuals in the contact network would transmit disease faster 

and to more individuals than less central individuals. To test this prediction, we modelled (i) 

the percentage of individuals infected before a latency threshold of transmission was reached, 

which should be higher when starting with more central individuals, and (ii) the latency 

between initial infection and the point at which the whole group became infected, which 

should be lower when starting with more central individuals. Second, we predicted that 

central individuals would also be at greater risk of being infected, which we estimated via 

(iii) the probability that an individual would be infected first among all group members, 

which should be higher for central individuals, and (iv) each individual's mean rank in the 

chain of transmission, which should be lower among more central individuals. This dual 

approach of social network analysis and simulation modeling allowed us to ascertain the 

importance of central individuals in disease transmission, not only as key agents of disease 

spread but also as those that are most vulnerable to being infected.  

 

III.3. Methods 

The research presented here complied with the Guidelines for the Care and Use of Nonhuman 

Primates established by the Primate Research Institute of Kyoto University, to the legal 

requirements of Japan and to the American Society of Primatologists (ASP) Principles for the 

Ethical Treatment of Non-Human Primates. 



80 
 

III.3.1. Study site and subjects 

We studied two well-habituated groups of Japanese macaques, one provisioned but free-

ranging on Koshima island (31°27'N, 131°22'E; Macaca fuscata fuscata) and the other wild 

(i.e. not provisioned) on Yakushima island (30°20'N, 130°30'E; Macaca fuscata yakui). 

Koshima is approximately 0.3km² in area and is mainly covered by secondary broad-leaved 

evergreen forest (Iwamoto 1974). The main group of Koshima macaques has been 

periodically provisioned with wheat (currently ca. twice per week) and intensively studied, 

with group composition recorded for ca. 60 years (Iwamoto 1974). During the study period 

(see below), the group included approximately 51 individuals, including 21-24 adult females 

(≥5 yo), 11-16 adult males (≥5 yo), 11-18 juveniles (1–4 yo), 1 infant (<1 yo) born in 2012. 

 The southernmost population of Japanese macaques living on Yakushima represents a 

distinct subspecies from those in the rest of Japan. Yakushima is a mountainous island of 

approximately 500km², much of which is protected as a UNESCO World Natural Heritage 

site and by the Kagoshima prefectural government. The study group (“Umi”) inhabited the 

protected western coastal forest, which like Koshima is dominated by broad-leaved evergreen 

secondary forest, with an estimated home range size of roughly 0.8km² (Sueur et al. 2013). 

Umi group varied between 59 and 70 individuals during the study period, including 18 adult 

females, 11-15 adult males, and 20-31 juveniles, with 11 infants born in 2008 and 6 infants 

born in 2009 (MacIntosh et al. 2012). Ages of individuals were estimated based on body size 

and state of development of sexual organs and perianal regions.  
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III.3.2. Behavioral data collection and networks 

We collected data on grooming interactions (both directions, received and given) of adult 

females over 8 months (between October 2012 – May 2013) in Koshima (N = 21) and 16 

months (between October 2007 – August 2009) in Yakushima (N = 18). We focused on 

female social networks in this study. Japanese macaque societies are organized into female-

bonded groups in which females form the stable core (Yamagiwa & Hill 1998). As a result, 

we expect females to dominate dynamics on social networks. It was also difficult to 

adequately sample other members of the groups, e.g. because male group affiliation is much 

less stable than that of females while juveniles are often difficult to observe and identify 

reliably. Both groups were habituated to the presence of human observers and adults could be 

identified using tattoos (Koshima only) and/or other individual traits. We used grooming 

networks because they are considered to be an excellent proxy of social contacts, and in 

addition can avoid issues arising from the gambit of the group (Franks et al. 2010). This 

concept underlies that all individuals seen grouping together, during an observation census, 

are associating with every other individual in that group. For example, if individual A is 

strongly associated with B and B is strongly associated with C, the gambit of the group 

assumes that A and C are strongly associated too. This can result in overestimation of real 

associations resulting in errors in estimating the disease transmission process. This 

overestimation is not observed when using body contact, especially grooming, between 

individuals. Previous studies have also shown no differences in transmission processes using 

either body contact or grooming interactions as the basis for network construction 

(Pasquaretta et al. 2014), but we focus on grooming to investigate infectious agents only 

transmissible trough social contact. 
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 To collect data, we conducted 15-min instantaneous focal sampling at 1-minute 

intervals on Koshima, while all grooming activity performed during 60-min focal samples 

were recorded on Yakushima (Altmann 1974). To confirm compatibility in the data sets, 

which were collected using different sampling methods, we transformed the continuous-time 

grooming matrix constructed from Yakushima data into an instantaneous scan matrix after 

sampling the focal data at 1-min intervals. We observed that the matrices were 99.6% 

correlated (Mantel Z test: p = 9.99e-13), showing that less than 0.5% of the data were lost 

when moving from one method to the other. We are thus confident that the Koshima and 

Yakushima networks are comparable. At both sites, we avoided re-sampling the same 

individual within a day wherever possible. When this was violated, individuals were not 

observed within 1h of a previous focal sample from the same individual. From the Koshima 

data set, we extracted minute-data points of grooming while for Yakushima we considered 

the total grooming time between two individuals. There was no difference in hourly 

observation time between individuals on either Koshima group (mean±SD: 12.96±0.50, X² = 

8.05, p = 0.99) or Yakushima group (mean±SD: 45.61±0.81, X² = 4.39, p = 0.99), and the 

grooming frequencies were almost identical at both sites (Koshima: grooming given = 

13.4%±6.3%; grooming received = 7.3%±3.6%; Yakushima: grooming given = 12.6%±3.6%; 

grooming received = 6.7%±1.5%; Yakushima data from MacIntosh et al. (2012)). Although 

there were differences in the total observation time between the Yakushima and Koshima 

groups, we believe the data set to be large enough in each group to decrease expected errors 

in social network measures (Whitehead 2008b). However, because of the differences in data 

collection and despite the high correspondence between methods using the Yakushima data, 

we remain cautious and make no direct comparisons between the two groups. Instead, we 

focus on the observed transmission events within each separate network based on grooming 
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behavior, a well-conserved and highly conspicuous behavior unlikely to differ substantially 

between groups and thus bias our results. 

 From the undirected and weighted grooming networks, we estimated the global 

measures of social networks, defined as follows: 

- density: the ratio between the number of observed edges and the number of possible edges 

in the network (Sueur et al. 2011a); 

- diameter: the longest path edge of the network; 

- overall clustering coefficient: the mean of all nodes’ clustering coefficients, which measures 

how densely one individual is connected to its neighbourhood (Hanneman & Riddle 2005); 

- average degree: the average of sum of the number of edges of a vertex; 

- network modularity: the extent of sub-grouping in a network (Newman 2004); 

- transitivity: the circumstance where node i is connected to node j, node j is tied to node k 

and node i is also tied to node k (Hanneman & Riddle 2005). 

 We also calculated various weighted individual-level measures which are typically 

referred to as centrality coefficients to compare the roles of individuals in the transmission of 

infectious agents. These coefficients included: 

- strength: the sum of each node's edge values. The individual with the most and strongest 

connections has the highest strength value (Sueur et al. 2011a). In our study, we have 

considered two different inputs. For Yakushima, strength indicates grooming time between 

individuals, while for Koshima strength indicates the number of times 2 individuals were 

observed to groom each other during sampling points. 
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- eigenvector: the weighted connectivity of an individual within its network, also considering 

the weighted connectivity of its neighbors. Individuals tied to central individuals (i.e., those 

with a high connectivity themselves) should have higher centrality than those connected to 

less central individuals (Borgatti et al. 2013); 

- betweenness: the number of shortest paths that pass through the considered individual. The 

more connections that are made through one individual, the greater its value of betweenness 

becomes (Newman 2004, Hanneman & Riddle 2005). 

 Most of the global measures of social networks (density, diameter, overall clustering 

coefficient and transitivity) as well as the betweenness centrality coefficients were estimated 

using Ucinet 6.4 (Borgatti et al. 2002). Other network measures such as modularity, 

eigenvector and strength centrality were estimated via SocProg 2.4 (Whitehead 2009). Since 

we built our networks based on the weighted matrices, we estimated the weighted measure of 

each coefficient. The grooming networks were visualized using Gephi 0.8.2 beta (Cherven 

2013).  

 

III.3.3. Individual and social traits associated with network 

centrality 

We categorized Japanese macaques by age, hierarchical rank and family size (the latter for 

Koshima only). Because Koshima group has been monitored for decades (Iwamoto 1974), 

exact ages are known for each individual. Such data were not available for Yakushima, so we 

instead distributed the sexually-mature females into three age classes (young adult ≥ 5 <10 

yo, adult 10 – 14 yo, old adult >14) following MacIntosh et al. (2012). We also incorporated 

dominance ranks into our analysis, which were distributed within significantly linear 
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dominance hierarchies in both groups (Landau’s linearity index corrected for unknown 

relationships: Koshima: h’ = 0.68, p < 0.001; Yakushima: h’ = 0.40, p = 0.005). Finally, 

family size was based on the definition of Rushmore et al. (2013), with a family unit 

including a mother and the total number of her living weaned offspring. An individual with 

no offspring, for instance, was counted as having a family size of 1 (Rushmore et al. 2013). 

 

III.3.4. Random networks 

To identify if the dynamics of disease transmission (i. percentage of infected individuals; ii. 

latency to complete transmission; iii. probability of acquiring an infectious agent; iv. latency 

of acquiring an infectious agent) in the Koshima and Yakushima networks differed from 

those in random networks, we compared the distributions of infectious agent transmission 

from the simulation on both random and observed networks. We created 100 random 

networks for each focal group, maintaining the original numbers of both individuals and 

observed bonds between them, via Ucinet 6.4 (Borgatti et al. 2002). Computer simulations 

were run 1000 times for each random network. 

 

III.3.5. Disease transmission graph-based model 

Individual identities as well as grooming interactions were included in an individual-based 

model using a Markov chain process developed by Sueur et al. (2009). This model is 

basically equivalent to the classical SI epidemiological model, in which individuals can only 

move from susceptible (S) to infected (I) classes with no possible recovery or death of an 

infected individual. Traditionally, such models considered the probability of contact for each 

pair of individuals to be equal, but we allowed for heterogeneity of relationships, which has 
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long been declared to improve the ability to understand and predict disease dynamics 

(Keeling & Eames 2005). To fit with the current model, grooming relationships were 

transformed following the description of Sueur & Deneubourg (2011). Observed frequencies 

were first transformed to relative frequencies (i.e. divided by the sum of observed 

frequencies) and then multiplied by N - 1, N being the number of group members, to obtain 

corrected frequencies implemented in the model. In the model, the probability that an 

individual will transmit an infectious agent to another depends on the strength of the 

relationships it has with each non-infected individual. In the same way, the probability that an 

individual will become infected depends on its relationships with already infected group 

members. Thus, the more a non-infected individual interacts with infected individuals, the 

greater is its probability of being infected. Likewise, the more an infected individual interacts 

with non-infected group members, the greater is its probability of infecting others. 

 In the model, each individual has the same probability of being the first infected, 

meaning that we focus only on the exposure to pathogens and assume a constant 

susceptibility to infection across individuals. This probability is named intrinsic probability λ. 

It is important to highlight that this lambda could be noted λi but as all individuals have the 

same intrinsic probability, we indicate λ. An individual i has to be infected to see its 

probability λ equal to 0, but if an individual k is infected and i is not yet infected, the 

probability λ is no longer 0. Thus, as soon as one individual is infected, the probability ψi for 

another individual i to be infected is: 

With C / λ = R0 = 10, 

where N denotes the group size, r(k,i) represents the social relationship that individual i has 

with individual k, and C is a mimetic coefficient, which means that the probability of being 
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infected is increased by a coefficient C following contact with conspecifics. R0 is the basic 

reproduction number used to quantify the transmission potential of a disease; using R0 = 10 

allowed us to estimate properties of an outbreak with a highly contagious pathogen, such as 

was estimated for measles in humans and subsequently extrapolated for heuristic purposes to 

chimpanzees (Rushmore et al. 2014). While R0 is known to differ dramatically across 

disease-causing organisms, using a high R0 allows us more power to identify the influence of 

network structure in empirical data with small sample sizes. However, we also simulated the 

transmission of infectious agents with varying R0 and found that their dynamics are 

consistent in both study groups, even though the total size of the outbreak varies (Figure 

FS1, Appendix F). 

 We implemented the model in Netlogo 3.1.5 (Railsback & Grimm 2012). At each run 

of the model, a number between zero and one was randomly attributed to each non-infected 

individual; when this number was lower than the theoretical infection probability ψi of each 

individual i, the individual i became infected; if this number was higher than the theoretical 

infection probability, the individual was not infected. The identity, infection rank (order of 

infection of individuals) and latency (number of runs) of infection for each individual were 

scored for each simulation. We induced two conditions, first considering the complete 

transmission latency and second restricting the latency of infection to three simulation runs. 

The first condition allowed us to investigate the period required to complete infection and the 

order of infection. One simulation corresponds to the infection of all group members. The 

total infection latency of a simulation is the number of runs required until all group members 

are infected. The second condition allowed us to investigate the number and identity of 

individuals infected during a set latency. We ran 10,000 simulations for each condition. The 

source code is available in Appendix F. 
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III.3.6. Data analysis 

Generalized linear models were constructed to examine the impact of individual and social 

factors on centrality position. We tested for significant relationships between centrality 

coefficients (eigenvector, betweenness and strength) and the following predictor variables: 

age, dominance rank and family size (range: 1 – 5; Koshima only). Because eigenvector 

centrality is not truly independent of strength and betweenness coefficients, we estimated the 

effect of the predictor variables on each centrality measure separately. The distribution of all 

response variables (centrality measures) deviated from the Gaussian case, so all were square-

root-transformed, which performed better than log-transformation and could accommodate 

the few zeroes in the data set, to meet the assumptions of the statistical models. For all 

models, we checked that the assumptions of normally distributed and homogeneous residuals 

were fulfilled by visually inspecting a qqplot and the residuals plotted against fitted values. 

We further ran a series of diagnostics to judge the validity of the models, including testing for 

variance inflation, correlation of fitted and residual values and Cooks’ distance, all of which 

suggest the suitability of our models as no obvious violations of assumptions were detected 

(Field et al. 2012).  

 We compared the distribution of random and observed networks by Kolmogorov-

Smirnov tests with Bonferroni correction (Abdi 2007). Regarding the dynamics of disease 

transmission, first we calculated the mean latency of complete transmission (to the whole 

group with no time constraint) and the percentage of infected individuals in a time-

constrained simulation (3 runs). Second, we looked at the probability of each individual being 

infected given the number of times each individual was the first to be infected by the initial 

infected individual (i.e. the second to be infected among all group members). We also 

calculated the mean rank of infection in the transmission order (from 1 to N – 1 ranks, since 
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the initial infected individual is removed from the analysis). We then correlated centrality 

coefficients (eigenvector, betweenness and strength) and dynamics of transmission (complete 

transmission latency, percentage of infected individuals, probability of being infected and 

latency to being infected) using Spearman tests with Bonferroni corrections. A p value equal 

to or less than 0.05 was considered to be statistically significant, and all tests were two-tailed. 

Analyses were conducted in R statistical software v. 2.15.1 (R Core Team 2016). 

 

III.4. Results 

 

III.4.1. Network structure and centrality position 

The two social grooming networks are illustrated in Figure III.1 and the global measures are 

given in Table III.1. While the Koshima and Yakushima networks did not differ at a global 

level, differing results were found considering the interaction between individual/social traits 

and centrality position. Dominance rank, but not age, was a good predictor of eigenvector and 

strength centrality in Koshima, while we found weak evidence to suggest that age and 

dominance rank may influence eigenvector centrality in Yakushima (Table III.2; Figures 

FS2 and FS3, Appendix F). Family size had no effect on network position in Koshima. 

 

Table III.1. Global measures of Koshima and Yakushima networks. Definitions of social 
network measures are presented in the methods section. 

Group Density Diameter Average 
degree 

Overall 
clustering 
coefficient 

Transitivity Modularity 

Koshima 0.41 3 8.19 1.38 0.52 0.38 

Yakushima 0.44 3 7.50 1.37 0.50 0.63 
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Figure III.1. Social networks of adult female Japanese macaques in Koshima group (a) 
and Yakushima group (b). Networks were built using Gephi 0.8.2 beta (Cherven 2013). A 
node (circle) represents a rank identifier, with its size and color directly related to the 
individual eigenvector centrality coefficient (the higher the centrality, the stronger is the color 
and the larger is the size of the node). Spacing of nodes was done using the option Force 
Atlas in Gephi. In this way, nodes are spaced according to their centralities but also according 
to whom they are connected. 
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Table III.2. Parameter estimates from generalized linear models explaining variation on 
network centrality among female Japanese macaques in Koshima and Yakushima groups. 

Centrality 
Coefficients  

Predictors Estimate Std. Error t value Pr(>|t|) 

Koshima      

Eigenvector (Intercept) 0.757 0.147 5.134 8.28e-05*** 

 Rank -0.015 0.006 -2.405 0.028* 

 Age -0.033 0.018 -1.818 0.087 . 

 Family Size 0.070 0.053 1.307 0.209 

Strength (Intercept) 1.587 0.294 5.389 4.9e-05***  

 Rank -0.032 0.012 -2.564 0.020* 

 Age -0.036 0.036 -1.003 0.330 

 Family Size 0.059 0.107 0.555 0.586 

Betweenness (Intercept) 2.915 1.073 2.718 0.015* 

 Rank -0.041 0.045 -0.898 0.383 

 Age -0.053 0.132 -0.405 0.691 

 Family Size 0.066 0.390 0.170 0.867 

Yakushima      

Eigenvector (Intercept) 0.278 0.035 7.821 4.73e-06*** 

 Rank -0.005  0.003 -2.014 0.067 . 

 Age (adult) 0.038 0.034 1.095 0.295 

 Age (old adult) 0.082 0.039 2.079 0.059 . 

Strength (Intercept) 0.937 0.101 9.303 2.27e-07*** 

 Rank -0.007 0.008  -0.963 0.352 

 Age (adult) 0.156  0.096 1.626 0.126 

 Age (old adult) 0.176 0.106 1.656  0.120 

Betweenness (Intercept) 2.785 0.687 4.054 0.001** 

 Rank -0.053 0.052 -1.020 0.325 

 Age (adult) 0.870 0.654 1.330 0.205 

 Age (old adult) 1.105 0.723 1.528 0.149 
a All comparisons made against the intercept of the first level of each factor in Yakushima 
(age = young adult). 
b Significant codes are marked as follow: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
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III.4.2. Observed versus random networks 

We observed that two of the four distributions from the simulation on the Yakushima 

network did not differ significantly from those expected of a random network (Kolmogorov-

Smirnov tests: probability of being infected: D = 0.39, p = 0.2; latency of being infected: D = 

0.5, p = 0.08; Figure FS4, Appendix F). In contrast, the percentage of infected individuals 

(D = 1, p < 0.001) and latency to complete transmission (D = 1, p < 0.001) differed 

significantly between observed and random networks. Whereas in the Koshima networks, the 

probability of being infected (D = 0.52, p ≤ 0.05), the percentage of infected individuals (D = 

0.81, p < 0.001), latency to complete transmission (D = 1, p < 0.001) and latency of being 

infected (D = 0.62, p ≤ 0.05) all significantly differed between observed and random 

networks (Figure FS5, Appendix F). Thus, in the majority of cases, infectious agents spread 

more readily in observed than in random networks, and the transmission properties of the 

Koshima network differed more strongly from those of a random network than did the 

transmission properties of the Yakushima network. 

 

III.4.3. Transmitting an infectious agent 

Individuals with higher centrality coefficients transmitted infectious agents to the entire 

group with a shorter latency in the Koshima group (N = 21) regardless of the centrality 

coefficient used (Spearman tests: eigenvector: r = -0.70, p < 0.001; betweenness; r = -0.55, p 

≤ 0.05; strength: r = -0.75, p < 0.001). This was also generally true in the Yakushima group 

(N = 18), though results depended more on the centrality index measured. The Yakushima 

group showed a strong relationship between transmission latency and eigenvector centrality 

(r = -0.76; p < 0.01) as well as betweenness centrality (r = -0.56; p ≤ 0.05), but strength 
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coefficients were only marginally associated with transmission latency (r = -0.51; p = 0.09). 

Central individuals also transmitted infectious agents to a greater number of subjects when 

compared to less central individuals, but in both groups, betweenness centrality was not 

associated with the probability of infecting others (Koshima: eigenvector: r = 0.95, p < 0.001; 

betweenness; r = 0.50, p = 0.07; strength: r = 0.99, p < 0.001; Figure III.2; Yakushima: 

eigenvector: r = 0.77, p < 0.001; betweenness; r = 0.45, p = 0.19; strength: r = 0.74, p < 0.01; 

Figure III.3). 

 

III.4.1. Acquiring an infectious agent 

Central individuals were more likely to be infected than non-central individuals in the 

Koshima group (Spearman tests: eigenvector: r = 0.68, p < 0.01; betweenness; r = 0.64, p < 

0.01; strength: r = 0.82, p < 0.001; Figure III.2), but only strength centrality was 

significantly correlated with probability of being infected in the Yakushima group 

(eigenvector: r = 0.27, p = 0.94; betweenness; r = 0.08, p = 1.00; strength: r = 0.71, p < 0.01; 

Figure III.3). Considering the mean rank of each individual in the chain of transmission, 

central individuals were more likely to be infected during the first transmission event than 

less central group mates, with the exception of those with high betweenness scores (Koshima: 

eigenvector: r = -0.93, p < 0.001; betweenness; r = -0.51, p = 0.07; strength: r = -0.98, p < 

0.001; Yakushima: eigenvector: r = -0.66, p ≤ 0.05; betweenness; r = -0.35, p = 0.46; 

strength: r = -0.61, p ≤ 0.05). 

 Regarding analysis of data from Koshima, we identified one subject (f16) having a 

betweenness value 1.5 times higher than the third quartile, as well as two individuals (f12 and 

f13) in Yakushima with similarly high eigenvector coefficients. These individuals were 

therefore removed prior to the analysis. However, if included, correlations between centrality 
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and infection were similar to those presented above (Koshima: complete transmission 

latency: r = -0.61, p < 0.01; percentage of infected individuals: r = 0.49, p = 0.07; probability 

of being infected: r = 0.68, p < 0.01; latency to being infected: r = -0.49; p = 0.07; 

Yakushima: complete transmission latency: r = -0.81, p < 0.001; percentage of infected 

individuals: r = 0.81, p < 0.001; probability of being infected: r = 0.27, p = 0.85; latency to 

being infected: r = -0.66; p ≤ 0.05). 

 

 

Figure III.2. Relationship between centrality coefficients and dynamics of disease 
transmission in Koshima group. Blue diamonds represent individual macaques and blue 
lines represent the mean of individuals infected and the probability of being infected. Outliers 
have been removed (see text for further information). 
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Figure III.3. Relationship between centrality coefficients and dynamics of disease 
transmission in Yakushima group. Blue diamonds represent individual macaques and blue 
lines represent the mean of individuals infected and the probability of being infected. Outliers 
have been removed (see text for further information). 
 

III.5. Discussion 

This study aimed to test the hypothesis that social network structure modulates disease 

transmission, and to better understand the influence of an individual’s centrality on the 

transmission of infectious agents in real-world primate networks. In line with our predictions, 

individuals central to the grooming contact networks not only transmitted infectious agents 

with a shorter latency to other group members and to a higher percentage of individuals, but 
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were also more prone to infection themselves, being among the first to acquire infections and 

with a shorter latency than more peripheral individuals. Other simulation studies with 

transmissible agents whose parameters closely match those of the agents used here also show 

that direct contact interactions may facilitate the spread of infectious agents (Griffin & Nunn 

2012, Rushmore et al. 2013). However, our study is among the first to model risks associated 

with pathogen transmission for central individuals, revealing their increased exposure (here 

investigated by the probability and latency of infection/transmission) to highly infectious 

agents. Nonetheless, even though we use the same fundamental data (observed grooming 

networks) in our simulations of transmitting or acquiring a theoretical infectious agent, 

results nonetheless show some differences in the importance of observed centrality 

distributions in disease spread; transmission was faster and affected more individuals in 

Koshima than in Yakushima, the latter group producing a network that behaved like a 

random network in two of our four simulation analyses. These divergences from our 

predictions suggest that caution should be exercised when making generalizations about 

transmission processes arising from the network structure. Ultimately, however, networks of 

proximity or contact interactions are generally accepted to underlie infectious disease 

dynamics in real groups of animals, including humans (Taylor et al. 2001; Altizer et al. 

2003), to which our results further attest.  

 Our results also showed that both global (network-level, e.g. modularity) and 

individual (node-level, e.g. centrality) metrics must be considered when predicting disease 

transmission dynamics. Although the Koshima and Yakushima global measures did not differ 

from each other, we observed distinct distributions of centralities in each group - the variance 

in the Koshima network being higher than that in Yakushima - and a stronger influence of 

central individuals and a broader and faster transmission in the Koshima network. The clear 

relationship between centrality and infection found in the Koshima group may be explained 
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by the interaction between dominance rank and centrality index. In Koshima, dominance rank 

strongly correlated with eigenvector and strength centralities while age was marginally 

associated with eigenvector. In Yakushima, however, the relationship between 

individual/social traits and centrality measures were less consistent, with age and dominance 

rank only marginally associated with eigenvector centrality. Given that centrality measures 

showed slightly different relationships to both individual/social attributes and to transmission 

metrics, it is important to discuss the role of each metric in predicting pathogen transmission. 

Strength centrality refers to direct connections between individuals, while eigenvector 

centrality and betweenness coefficient refer to a combination of direct and indirect 

connections. The fact that in the Koshima group, transmission latency was strongly related to 

both eigenvector and betweenness centrality, but only marginally to strength suggests that 

indirect connections factor more strongly in the transmission chain/dynamics than do direct 

connections. By contrast, in the Yakushima group, the probability of being infected appears 

to be driven by direct rather than indirect connections. It thus seems that, while indirect 

connections are most predictive of latency to complete transmission (a group-level metric), 

direct connections are most predictive of an individual’s probability of being infected 

(individual-level metric). Too few studies discuss the relative impacts of different levels of 

network connectedness (Christley et al. 2005); yet these details are essential to both 

advancing our understanding of the relationship between network structure and disease 

transmission dynamics, as well as to developing appropriate disease-intervention strategies. 

 In a handful of cases, targeting central individuals for disease control can reduce 

outbreak sizes (Salathé & Jones 2010) and should be more efficient than applying control 

efforts randomly (Böhm et al. 2009; Rushmore et al. 2014). Theoretical removal of 

individuals based on association networks of orangutans and chimpanzees, for instance, 

highlighted that the low level of association between orangutans may limit the spread of 
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disease through the population, in contrast to chimpanzees whose network structure may 

allow for faster spread of disease (Carne et al. 2014). In addition, an observational study with 

a wild giraffe population showed that transmission is more likely to occur between 

individuals that are more strongly connected within the network, indicating that an individual 

network position is a good predictor of transmission network position (VanderWaal et al. 

2014a). We found that transmission in Japanese macaques is enhanced after central 

individuals become infected, which suggests the existence of super-spreaders in the 

population. However, the current results demonstrate this assumption through contrast; 

centrality-based vaccination, for instance, may be well suited to the Koshima group, but its 

efficacy would be more questionable in the Yakushima network given the somewhat reduced 

importance of centrality measures in our simulations. Ultimately, disease transmission is a 

stochastic as demonstrated by our multi-agent model, so observed results might diverge 

substantially and perhaps even unpredictably from models using deterministic methods, such 

as theoretically removing central individuals. Modeling can highlight differences observed at 

the level of the group, and these differences may have direct implications for disease spread 

and should therefore be taken into account in future endeavours designing disease 

management plans. 

 In this context, identifying relationships between individual traits and network 

centrality may be useful in assessing disease transmission dynamics, particularly because 

social roles of individuals can vary across groups. Rushmore et al. (2013, 2014) suggested 

that we might use individual traits that correlate with centrality in disease intervention 

strategies, based on their results from chimpanzee networks showing that high-ranking males 

and individuals with large family units were the most central individuals and thus best to 

target in vaccination efforts. A related outstanding question is whether or not high dominance 

rank might allow an individual to better tolerate certain infections (MacIntosh 2014), which 
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would make them even more capable of spreading infectious agents (Ezenwa & Jolles 2015). 

In our study, however, a middle-ranking old adult female and a low-ranking adult female 

exhibited the highest eigenvector centrality coefficients in the Yakushima group, while a 

middle-ranking adult female exhibited the highest betweenness coefficient in Koshima group, 

all by a very wide margin. The presence of such ‘outliers’ illustrates the need for caution 

here; even if rank and age are correlated with network position, we have to be careful about 

using dominance or age as a proxy for centrality in disease transmission. Analysis of the 

networks in this study highlights that using a trait-based vaccination strategy in cases with 

even one or two such outlying individuals might have less optimal results than one might 

hope in preventing further disease spread. Although almost all animal networks are structured 

according to sociodemographic variables (e.g. age, dominance, sex, etc.), some can also 

resemble random networks in their transmission dynamics, rendering them less relevant than 

others in modeling disease spread; i.e. our Yakushima networks which behaved as would 

random networks in some circumstances. In such cases, using dominance or centrality is no 

more useful in predicting who becomes infected or who transmits disease than making 

random predictions.  

 However, we are aware that our model represents a simplification of the real process. 

The models do not attempt to account for variation in individual susceptibility, which itself 

can relate to social (e.g. through kinship based shared immunological factors or even 

dominance hierarchy mediated variation in physiological stress, access to food and nutritional 

state, etc.) and other intrinsic characteristics (innate resistance factors, chronic stress, etc.). 

Other pertinent information relates to the variation we found between study groups, and how 

they might be related to different environmental effects (e.g. specific habitat characteristics, 

home range size), and of course to contrasting population management strategies 

(provisioned vs. non-provisioned), all of which can strongly affect the expression of social 
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behavior (Hill 1999). Provisioning food to non-human primates is expected to increase 

proximities between individuals and should increase aggression levels due to closer 

proximities. We tried to reduce the direct influence of provisioning on individual interactions 

by using only those data collected at least one hour after provisioning. Regardless, given a 

sample size of two networks, we hesitate to make any strong claims about what might have 

led to the networks observed, and instead focus only on the relative importance of central 

individuals and network structure in the social transmission of infectious agents in these 

divergent networks. Studying the influence of network properties in both groups allowed us 

to understand how different social network measures may affect the transmission dynamics 

irrespective of the factors that caused the networks to vary.  

 Another limitation of our study, which should be addressed in future work, is that we 

included only adult females in our social networks. This was mainly a practicality issue, as 

for example juveniles are extremely difficult to identify reliably and males, at least in the 

Koshima group, rarely if ever engage with the group outside of the mating season. Not 

including such individuals, however, leads to the construction of incomplete networks that 

may misrepresent true infection dynamics. For example, juveniles are often in contact with 

their mothers and each other, and may be the most susceptible individuals in the group to 

disease causing organisms (e.g. MacIntosh et al. 2010). Males are also known to harbour 

larger parasite infections than females virtually across vertebrates (Poulin 1996), and may 

therefore be key to the spread of infection on networks, even when not occupying central 

positions. Despite this limitation, however, female Japanese macaques do form the core of the 

group’s social network, presenting the most stable social relationships organized into a rather 

rigid hierarchical arrangement. Female Japanese macaques are thus likely to be key players in 

the dynamics of disease transmission in this species. 
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 In conclusion, our study suggests the importance of social network properties in 

disease transmission at both the global and individual levels, showing the role of central 

individuals (here in grooming networks) in spreading disease but also their vulnerability to 

becoming infected. Possible interactions between individual and global network measures 

might affect the outcome of disease dynamics. Furthermore, we show that the combined 

approach of network analysis and modeling provides a promising tool to predict epidemics in 

primates and other animals (Böhm et al. 2009; Salathé & Jones 2010; Craft & Caillaud 2011; 

Carne et al. 2014), but that caution should be exercised when generalizing since some 

networks or network properties may be less relevant than others in predicting disease 

dynamics. Indeed, it is well-known that detailed analyses of social structure are important in 

the broader scale of evolutionary and ecological process, further encouraging the use of 

network analysis across a vast range of topics (Kurvers et al. 2014). Here, understanding the 

role of networks in disease transmission has important implications for predicting disease 

spread from the perspectives of conservation and management, but also for understanding the 

evolution of social relationships in primates and other animals, and the trade-offs that may 

arise through group living. 
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IV. CHAPTER 2:  

Pathogen spread and the dynamics of social connectivity effect: an 

evaluation through epidemic time 

 

Valéria Romano, Julie Duboscq, Cristian Pasquaretta, Barbara Tiddi, Christèle Borgeaud, 

Erica van de Waal, Eugenia P di Sorrentino, Linda Fedigan, Mackenzie L Bergstrom, Marie 

Pelé, Margaret Crofoot, Marine Levé, Patrícia Izar, Andrew JJ MacIntosh*, Cédric Sueur* 

*Authors provided equal contribution. 

 

IV.1. Abstract 

(English) Because the intensity and strength of social interactions alter the risks of acquiring 

and transmitting infectious agents, there is an increasing interest in understanding how 

individuals are connected during outbreaks and how this might impact individual health and 

fitness. In a network of contacts, some properties of the social structure are suggested to favor 

pathogen spread while others, or even those same properties under different conditions, may 

constrain it, working as functional barriers of transmission. In consequence, studies have 

focused on the effects of network properties on the maximum reach of outbreaks. However, 

to our knowledge, whether the social structure influences pathogen spread dynamically 

throughout the progression of an epidemic has not yet been considered. We therefore 

investigated to what extent centralization, clustering coefficient, density, diameter and 

modularity facilitate or constrain the spread of theoretical infectious agents across five stages 

of a series of simulated epidemics in variable group sizes. We incorporated empirical social 
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contact data from 40 wild groups of 21 non-human primate species in a dynamic stochastic 

model, considering the strength of interactions between group members. We then examined 

the dynamics of pathogen flow by considering the mean percentage of individuals that were 

infected at each epidemic stage. Results show that the prevalence of infection was higher 

when groups were larger, but that centralization and modularity, and to a lesser extent 

clustering coefficient and diameter influenced epidemic size, though their influence depended 

on the stage of the outbreak and the virulence of the pathogen. Our results support the social 

bottleneck hypothesis, that social substructure reduces the costs of relationships. We also 

discuss how the temporal influence of network properties might direct the development of 

intervention strategies. These results help us understand which network properties might be 

targeted according to the epidemic stage in order to optimize intervention strategies during 

outbreaks. 

Keywords: network epidemiology, agent-based modeling, comparative analysis, animal 

societies 

(Français) L’origine de l’intérêt croissant porté à la compréhension des liens entre individus 

lors d’épidémies et comment cela peut impacter la santé et la fitness des individus se retrouve 

dans la découverte  que l’intensité et la force des interactions sociales diminuent les risques 

d’infection et de transmission d’agents infectieux. Ainsi, il a été suggéré que certaines 

propriétés de la structure sociale d’un réseau favorisent la diffusion d’un pathogène quand 

d’autres (ou des propriétés similaires sous différentes conditions) peuvent la contraindre, 

œuvrant alors en tant que barrière de transmission. En conséquence, la majorité des études se 

sont concentrées sur les effets des propriétés du réseau au moment du stade maximal de 

l’épidémie. Cependant, à notre connaissance, aucune étude n’a pour le moment regardé 

comment la structure sociale influence la diffusion du pathogène de façon dynamique au 

cours de la progression de l’épidémie. Nous avons ainsi étudié ici comment la centralisation, 
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le coefficient de clustering, la densité, le diamètre et la modularité facilitent ou contraignent 

la diffusion d’agents infectieux théoriques dans des groupes de d’individus de taille variable 

au cours des cinq étapes d’une série d’épidémies simulées. Nous avons intégrés dans un 

modèle dynamique stochastique des données de contacts sociaux empiriques de 40 groupes 

de 21 espèces de primates non-humains en considérant la force des interactions entre les 

membres du groupe. Ensuite, nous avons examiné la dynamique de diffusion du pathogène en 

utilisant le pourcentage d’individus moyen infectés à chaque étape de l’épidémie. Nos 

résultats montrent que la prévalence de l’infection est plus importante quand les groupes sont 

plus grands, mais aussi que la centralisation et la modularité et en moindre proportion le 

coefficient de clustering et le diamètre influencent la taille de l’épidémie, bien que leurs 

influences dépendent de l’étape de l’épidémie et de la virulence du pathogène. Nos résultats 

supportent ainsi l’hypothèse du goulot social et que les sous-structures sociales réduisent les 

coûts des relations. Nous discutons également de comment l’influence temporelle des 

propriétés de réseau peut aider au développement de stratégies d’intervention. Ces résultats 

nous aident donc à comprendre quelles propriétés de réseau cibler en fonction de l’étape de 

l’épidémie et cela dans l’optique d’optimiser les stratégies d’intervention lors des épidémies. 

Mots-clés: épidémiologie de réseau, modélisation multi-agent, analyse comparative, sociétés 

animales 

 

IV.2. Introduction 

How social animals, including humans, interact and develop relationships may deeply affect 

the dynamics and chain of infectious agent transmission (Kappeler et al. 2015). As the basis 

of most transmission processes, both global- (e.g. density and clustering) and individual-level 

(e.g. node centrality) network properties reflect social interactions that are influenced by 
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distinct factors such as the distribution of phenotypes across space (Farine et al. 2015b), loss 

of conspecifics (Firth et al. 2017), social status (Kanngiesser et al. 2011) and social systems 

(Sueur et al. 2011b). Recent studies focusing on the link between sociality, health and fitness 

have provided insight into the role of individual connections in pathogen transmission in 

animal societies (Nunn et al. 2015; Yang et al. 2016), highlighting that being social incurs 

higher exposure to pathogens, which may have implications for individual fitness (Weng et 

al. 2013). How individuals interact with each other and how the structure of a network affects 

transmission processes are crucial questions to better understand the costs of sociality, and 

thus how social structure might evolve. 

 In the last decade, theoretical models and field observations have broadly 

demonstrated that the strength of connections and the size of groups can alter the spread and 

persistence of infectious disease (Bansal et al. 2007; Godfrey et al. 2009; Salathé & Jones 

2010; Aiello et al. 2014; Rushmore et al. 2014). Dense and well-connected networks might 

favor pathogen transmission (Keeling 1999), while highly subdivided networks might reduce 

the final outbreak size (Griffin & Nunn 2012). A study investigating parasite spread in two 

species of primates, for example, hypothesized that Ebola should spread faster in gorillas 

(Gorilla gorilla) and slower in chimpanzees (Pan troglodytes) given their smaller and more 

cohesive groups (Walsh et al. 2009). The relationship between group size and pathogen 

transmission, however, is not always clear-cut. While many studies, including large meta-

analyses (Cote & Poulin 1995; Vitone et al. 2004), provide evidence that infectious disease 

risk increases in larger groups (Freeland 1979; Ezenwa 2004; Whiteman & Parker 2004; 

Caillaud et al. 2013), others show the opposite relationship, with smaller groups having 

higher levels of parasitism (Rubenstein & Hohmann 1989; Arnold & Lichtenstein 1993; 

Semple et al. 2002; Bordes et al. 2007; Snaith et al. 2008), or no relationship at all (Chapman 

et al. 2012). Further studies suggest that whether and how group size affects parasitism 
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depends on the type of parasite being considered (Cote and Poulin 1995; Vitone et al. 2004). 

This ambiguous relationship between group size, pathogen transmission and social 

organization has led to a further possibility, that network properties might interact with group 

size to predict the spread of infectious organisms in animal societies (Nunn et al. 2015).  

 The social bottleneck hypothesis predicts that social network structure modulates the 

association between group size and pathogen transmission: larger groups may be more 

subdivided structurally, and consequently such group substructure (i.e. modularity) may act 

as transmission bottleneck (Griffin & Nunn 2012; Nunn et al. 2015). Indeed, studies have 

provided support for the hypothesis that increased modularity can reduce the potential for 

pathogen transmission in large groups of mammals (Wilson et al. 2003; Salathé & Jones 

2010; Griffin & Nunn 2012). Conversely, there is some contrasting evidence in which 

modularity was associated with increased transmission (Lentz et al. 2012; Nematzadeh et al. 

2014), though the mechanism here is unclear. A recent study therefore suggested that 

modularity may only slow down transmission when the networks are extremely modular, via 

mechanisms such as network fragmentation and subgroup cohesion, which cause a structural 

delay in the spread of disease (Sah et al. 2017). These studies based their findings on the final 

size of the outbreak (i.e. total number of infected individuals in the group) and, consequently, 

generalize the effect of network properties on infection prevalence across a given period of 

time. Understanding whether the interaction between network properties and group size 

remains stable throughout the progression of an epidemic has, to our knowledge, not yet been 

investigated, despite its potential to highlight dynamic properties in the relationship between 

network structure and pathogen spread. Determining whether this relationship is stable or 

dynamic as an epidemic progress might have implications for the optimization and 

implementation of effective intervention strategies, in both human and wildlife populations.  



110 
 

 In this study, we used estimations of network structure and group size from a broad 

dataset of Neotropical and Old-World primates in a stochastic model that simulates the 

spread of both moderately- and highly-contagious pathogens (e.g. Ebola and measles, 

respectively). Our goal was to examine the infection prevalence (number of individuals 

becoming infected) throughout the progression of the outbreak; here divided into five time-

steps. We conducted this study with primates because many or most species are highly social 

and they represent the closest phylogenetic relatives of humans, which may help us to predict 

social transmission processes in our own societies. Furthermore, understanding variability in 

the spread of infectious agents has direct implications for disease control (Blanchard 2002; 

Barthélemy et al. 2004; Ryan & Walsh 2011), for the conservation of species (Leendertz et 

al. 2006), and for the optimization of public health services (Pisani et al. 2003).  

 We predicted that increased values of modularity, clustering coefficient and diameter, 

all of which are expected to increase in larger groups, should constrain transmission by 

down-regulating each individual’s probability of encountering infected individuals, and 

therefore being exposed to infectious agents (Table IV.1). We predicted that network 

density, on the other hand, would exhibit the opposite effect by increasing the chance of 

disease spread: the denser the network, the higher the probability of transmission. Predictions 

about centralization, however, are not yet clear and may depend on per-contact transmission 

probabilities: highly-centralized networks might enhance transmission at high contact rates 

but decrease transmission at low contact rates (Griffin & Nunn 2012); a pattern that might be 

explained by the heterogeneous transmissibility of individuals in the population, i.e. whether 

or not ‘super-spreaders’ exist (Lloyd-Smith et al. 2005). It is important to highlight that in 

this study we only consider aspects of the emergent networks observed in real primate 

groups, irrespective of the mechanistic factors that modulate them or those that cause 

variation in susceptibility to infection.  
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Table IV.1. Predicted influence of network properties on the transmission of infectious 
agents. The third column (i.e.: Prediction) denotes whether a positive or negative 
relationship is expected between the network index and outbreak size. 

Network index Definition * Prediction 
Reference 
** 

Centralization  

The extent to which a single or few 
individuals monopolize relationships in the 
network. A highly-centralized network 
resembles a star, with an individual at the 
center of it. 

- /+ 1 

Overall 
clustering 
coefficient 

The likelihood that neighbors in a network 
are connected mainly to each other. It is a 
local measure of group substructure. 

- 2 

Density 
The ratio of the number of observed edges 
and the number of possible edges in the 
network 

+ 3, 4 

Diameter The longest path (edge) in the network - 5, 6 

Modularity 
The extent of sub-grouping in a network. The 
most supported prediction of the social-
bottleneck hypothesis. 

- 1, 7, 8 

* Definitions are based on Croft et al. 2008. 
** 1. Griffin & Nunn 2012; 2. Naug 2008; 3. Moller et al. 1993; 4. Otterstatter & Thomson 
2007; 5. Centola 2010; 6. Eubank et al. 2004; 7. Nunn et al. 2015; 8. Pasquaretta et al. 2014. 
 

 

IV.3. Material and Methods 

 

IV.3.1. Empirical social networks 

We compiled 40 social interaction matrices from 21 non-human primate species, including 

both Catarrhine (Old World) and Platyrrhine (New World) primates, living under natural 

conditions. Data were either contributed by coauthors or come from published sources. 

Because we were interested in infectious agents transmitted by social contact, we only used 
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data concerning body contact and grooming interactions to construct undirected, weighted 

networks. We did not differentiate social relationships based on the direction of the 

interactions, assuming instead that contact facilitates transmission regardless of the direction 

of the interaction. For eight species, observations of more than one group were included, so 

intraspecific variation could be assessed. Details on the sources of data and the group sizes 

are all available in the Table GS1, Appendix G.  

 

IV.3.2. Social network measures 

We estimated five metrics relevant to social network structure: centralization, clustering 

coefficient, modularity, density and diameter (definitions at Table IV.1). These measures are 

stated to be mathematically independent of, but empirically associated with, group size (Nunn 

et al. 2015), which we also consider in our analyses. The centralization index (CI), which 

increases as the network is centralized around fewer and fewer individuals, is an extension of 

eigenvector centrality (EGC): an individual-level measure considering the connectivity of an 

individual within its network as well as the connectivity of its neighbors. The CI was 

calculated as follows:  

 

 







N

i

N

i

EGCCmaxMax

EGCCmax
=CI

100
 

where Cmax  is the highest eigenvector centrality in the real network and 

Max ∑
i

N

(Cmax − EGC )  considers what Cmax  would be under the largest possible 

centralization of the network (e.g. a star network in which CI≈100).  
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 Clustering coefficient (CC) and modularity (Q) are both measures of connectivity 

among individuals, but clustering provides a more local level of estimation than does 

modularity. The CC takes into account the redundancy of connections among three 

individuals (i.e. whether an individual is connected to two other individuals, and whether 

those individuals are in turn connected to each other, forming a triplet; Croft et al. 2008; 

Nunn et al. 2015). CC ranges from 0 to 1, with values close to 1 indicating low levels of 

clustering in the network. In contrast, modularity evaluates how densely connected a group of 

individuals is and how sparse the connections between the subgroups are (Newman 2006). 

Among the several estimations of modularity that exist, we chose Newman’s maximum 

modularity because it is expected to provide a more realistic estimation of network 

substructure (Newman 2006) and fits with previous studies testing the social bottleneck 

hypothesis (Nunn et al. 2015). Modularity ranges from 0 to 1, with values close to 1 

indicating high levels of sub-grouping.  

 Network density (De), which is expected to increase in smaller groups (Lehmann & 

Dunbar 2009; Sueur et al. 2011a; Pasquaretta et al. 2014) takes the same range of values as 

modularity, with dense groups being characterized by values close to 1. Finally, network 

diameter (Di) is used here as a simple representation of the overall distance between 

individuals. Sparser networks usually have greater diameters. The centralization index and 

diameter were calculated using Ucinet 6 (Borgatti et al. 2002), while Newman’s modularity 

was estimated using the function “cluster_leading_eigen” in the R package “igraph” (Csardi 

& Nepusz 2006). Network density and clustering coefficient were also estimated via the 

package “igraph”, using the functions “graph.density” and “transitivity”, respectively.  
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IV.3.3. Computer simulations 

Our theoretical model on disease spread uses a Markov chain process, and is an 

implementation of an agent-based model previously used to study the transmission of 

pathogens in Japanese macaques (chapter 1, Appendix A) and collective movement in 

Tonkean macaques (Sueur et al. 2009). Developed in NetLogo version 3.1.5 (Wilensky 1999; 

Bryson et al. 2007), the model is basically equivalent to the classical Susceptible-Infected 

(SI) epidemiological model, in which individuals switch from a susceptible (S) to an infected 

(I) stage, but do not recover or die from the infection. Since we were interested in 

unidirectional transmission chains, we felt the SI model was appropriate, and its parsimony 

allowed us to focus on the role of networks in epidemic spread across stages of an outbreak. 

The SI model may also be appropriate when individuals are not likely to recover from 

infections caused by highly virulent pathogens (Rothman et al. 2008), as long as the outbreak 

continues to completion before individuals are removed from the population through death. 

We accept that this may only be true in a minority of cases, and that this is therefore a 

limitation of our study design. In the model, the spread of pathogens is network-dependent, 

meaning that the probability of an individual transmitting a pathogen to another depends on 

the strength of its relationships with each non-infected individual: the stronger the 

relationship, the greater the probability of transmission.  

 We included in the model data on group size, individual identities and their affiliative 

relationships. Grooming and body contact interactions were transformed to corrected 

frequencies according to previous studies so that the sum of relationship per individual equals 

N – 1 (Sueur & Deneubourg 2011, table 1; chapter 1, Appendix A). At the beginning of each 

simulation run, all individuals were given the same probability of becoming infected, 

meaning that we consider a constant susceptibility to infection across exposed individuals. 
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This probability was named intrinsic probability λ. As soon as an individual was infected, the 

probability Ψ for a conspecific i to be infected depended on: 

 
N

=k

ik,rC+λ=Ψi
1

 

where N represents the total number of individuals in the group, r (k , i )  denotes the social 

relationship individual k has with individual i, and C is the coefficient of network 

connectivity, the probability of being infected by other group members. Individuals with 

more links in the network are more likely to be in contact with an infected individual, thus 

they are more likely to be infected (Sueur et al. 2009). The basic reproductive number (R0), 

defined as the mean number of secondary infections that arise from a randomly infected 

index case, depends on the network connectivity and intrinsic probability, with
λ

C
=R0 . We 

calculated this ratio such that the resulting R0 values matched those previously used for 

heuristic purposes in a study of chimpanzees (Rushmore et al., 2014), but also follow from 

epidemiological investigations of infectious agents circulating in human populations. 

Specifically, we used two values of R0, one (R0 = 3) representing a moderately-contagious 

pathogen such as Ebola (Legrand et al. 2007; Ndanguza et al. 2013), and the other (R0 = 12) 

corresponding to a highly-contagious pathogen such as measles (Anderson & May 1991). It is 

important to note that, as highlighted in a previous study (Rushmore et al. 2014), estimations 

of R0 are still not available for most wildlife pathogens, and more specifically, for those 

affecting non-human primates. The model is stochastic: at each time step, a number between 

0 and 1 was randomly attributed to each individual; when this number was lower than the 

theoretical probability for an agent i to be infected, the agent gets infected; if this number was 

higher than the theoretical probability, the agent did not get infected. 
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 From these models, we investigated two properties concerning the dynamics of 

disease transmission in primate networks: (1) the latency to complete, i.e. to the whole group, 

transmission; and, (2) the percentage of infected individuals. The first property allowed us to 

identify a range of epidemic stages varying in the number of groups completely infected. We 

plotted the distribution of the latency required to infect all studied groups and checked for the 

theoretical distribution that better fit with our data. From its observed exponential distribution 

(Figure GS1, Appendix G), we arbitrarily selected 5 stages, also following an exponential 

distribution, that covered the initial (few groups completely infected) to advanced (most 

groups completely infected) levels: stage 1 = 50, stage 2 = 100, stage 3 = 300, stage 4 = 1200 

and stage 5 = 6000. These values (i.e. 50, 100, …) represent the number of time steps 

performed before the model is automatically stopped. It is important to note that these stages 

represent the progression of an epidemic divided by stage, or time period. The percentage of 

infected individuals calculated at each stage is a continuation of the previous stage, so if 20% 

of individuals are infected in stage 1 and 40% are infected at stage 2, 20% of the group was 

infected at each stage. In small groups, we expect an expedited progression in the epidemic, 

and consequently small groups are those that experience complete transmission earlier than 

the other, larger groups. We ran 10000 simulations for each property and took the average for 

each group of study. 

 

IV.3.4.  Statistical analysis 

 

IV.3.4.a. Phylogenetic variance  

We first conducted a comparative phylogenetic analysis to test for homogeneity of variance 

in network properties and group size across lineages (i.e. phylogenetic signal) using the 
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“phylosignal” function in the R package “picante” (Blomberg et al. 2003; Kembel et al. 

2010). The K statistic is a measure of the phylogenetic signal. K values close to zero 

correspond to a random or convergent pattern of evolution and K values greater than 1 

indicate a strong phylogenetic signal and conservatism in traits (Kembel et al. 2010). For 

species with more than one network, we avoided taking the average of network metrics and 

randomly chose one representative network following Nunn et al. (2015). We used an 

estimation of the branch scaling coefficient λ, which is a measure of phylogenetic signal 

(Freckleton et al. 2002) following the primate tree revised from Purvis 1995 and Rogers & 

Gibbs 2014. The estimated tree used for the comparative analysis is provided in the Figure 

GS2, Appendix G. The alpha level for all analyses was set at 0.05. 

 

IV.3.4.b. Network properties, group size and 

pathogen spread 

To examine how network properties and group size might affect disease dynamics, we 

applied Generalized Linear Mixed Effect Models (GLMMs) using the package 

“glmmADMB”. We nested Genus within Family in the random effect structure to account for 

the hierarchical nature of our study (see Table S1 for more details on intraspecific variation). 

We applied the function “fitdist” from the package “fitdistrplus” from which we observed 

that the distribution of our response variable (percentage of infected individuals at the 

different epidemic stages) deviated from the gaussian case and better fit a gamma 

distribution. We ran a set of diagnostics to judge the validity of the models, including testing 

for correlation between fitted and residual values and using Cooks’ distance to assess 

influential cases, all of which indicated that no major issues existed (Field et al. 2012). We 

also checked for multicollinearity between variables using the function “vif” in the R package 
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“car”. Density and clustering coefficient were highly correlated (Figure GS3, Appendix G), 

with the latter presenting higher vif values (vif = 18.89) than the former (vif = 16.84). As 

density was not the major focus of our study – opposed to clustering coefficient and 

modularity which we used as measures of group substructure – density was removed from 

further analysis. Therefore, our GLMMs included centralization index, clustering coefficient, 

diameter, modularity and group size as fixed effects. As we expected to have interacting 

effects concerning group size and each of the network properties examined (Pasquaretta et al. 

2014; Nunn et al. 2015), we included all possible two-way interactions involving group size 

in the model. Predictor variables were scaled and centered to facilitate comparison of effect 

sizes. 

 We built a series of five statistical models for each reproductive number (R0 = 3, 12), 

focusing on the percentage of infected individuals at each epidemic time stage, increasing 

from stage one to stage five. We then used the “dredge” function of the R package “MuMIn” 

(Barton 2016) to streamline the process of candidate model selection according to Akaike’s 

Information Criterion (Akaike 1985). We ranked all models by AIC corrected for small 

sample sizes (AICc) and normalized Akaike weights (AICw), and constructed a conservative 

candidate model set by removing all models that did not fall within 10 AICc units of the 

model with the lowest AICc (Burnham & Anderson 2002). Model parameter estimates were 

then averaged across the candidate set using the function “model.avg”, and confidence 

intervals were computed with the function “confint”, both of which are available in the 

“MuMIn” package (Gelman et al. 2013). We chose to use conditional averaging, i.e. to 

average parameter estimates only across models in which the variable of interest occurs. We 

present the model-averaged parameter estimates (β), adjusted standard errors (SE), 

confidence intervals (CI) and the relative importance of all predictor variables repeatedly 

occurring within the candidate set. Finally, to allow for the parsimonious interpretation of our 
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main predictor variables, we used the function “subset” available in the “MuMIn” package to 

select from the full candidate set those models with no interactions between the predictor 

variable of interest and group size. Models respecting this condition and with ∆AICc <10 

were then averaged and confidence intervals were computed for each predictor. This allowed 

us to avoid the potential misinterpretation of main parameter effects caused by the presence 

of interactions involving that parameter in the models. All statistical analyses were performed 

in R version 3.0.1 (R Core Team 2016). 

 

IV.4. Results 

 

IV.4.1.  Phylogenetic analysis 

We first asked whether variation in our network measures could be explained by 

phylogenetic relationships. We did not observe a phylogenetic signal relevant to any of these 

network measures: clustering coefficient: K = 0.29, p = 0.12; centralization: K = 0.24, p = 

0.23; diameter: K = 0.13, p = 0.82; modularity: K = 0.11, p = 0.95; group size: K = 0.20, p = 

0.50.  

 

IV.4.2.  Network properties, group size and pathogen spread 

We then tested whether network properties and group size influenced pathogen spread, and 

most importantly whether such influence remained constant throughout the progression of a 

simulated outbreak. Results show that the prevalence of infection was higher when groups 

were larger, but that centralization and modularity, and to a lesser extent clustering 
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coefficient and diameter influenced epidemic size. Their influence depended on the stage of 

the outbreak and the virulence of the pathogen (Table IV.2). The full set of candidate 

models, with their respective values of AICc, ∆AICc and AICw can be found in the Lists 

GS1 and GS2, Appendix G.   

  Group size was a good predictor of disease spread at all epidemic stages, being 

present in 90% of the candidate models and exhibiting the largest effect size (parameter 

estimate), with one exception at epidemic stage 4 (Table IV.2). The effects of interactions 

between network properties and group size were more variable, depending on the epidemic 

stage and the reproductive number of the pathogen (Table IV.2, Figure IV.1). During 

transmission of the moderately contagious pathogen, centralization negatively influenced 

transmission at earlier stages of the outbreak (stage 1: av.β±SE = -0.04±0.02, 95%CI = -0.07 

to -0.01; stage 2: av.β±SE = -0.05±0.02, 95%CI = -0.09 to -0.02), whereas modularity 

constrained progression of the epidemic at more advanced stages (stage 2: av.β±SE = -

0.04±0.02, 95%CI = -0.07 to -0.002; stage 3: av.β±SE = -0.09±0.03, 95%CI = -0.14 to -0.03; 

stage 4: av.β±SE = -0.06±0.03, 95%CI = -0.11 to -0.001). When simulating the spread of the 

highly transmissible pathogen, modularity constrained prevalence at the beginning of the 

outbreak (stage 1: av.β±SE = -0.08±0.02, 95%CI = -0.12 to -0.03; stage 2: av.β±SE = -

0.10±0.03, 95%CI = -0.16 to -0.03; stage 3: av.β±SE = -0.06±0.03, 95%CI = -0.11 to -0.01) 

while at later stages, centralization positively impacted the outbreak size (stage 3: av.β±SE = 

0.07±0.03, 95%CI = 0.001 to 0.13; stage 4: av.β±SE = 0.03±0.02, 95%CI = 0.0003 to 0.06). 

When looking at the effect of centralization and modularity without the interaction with 

group size, we observed their influence in the epidemic size at stage 2 for a moderately 

contagious pathogen (centralization: av.β±SE = -0.03±0.02, 95%CI = -0.06 to -0.002; 

modularity: av.β±SE = -0.06±0.02, 95%CI = -0.09 to -0.03) and the influence of modularity 
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at stage 1 for a highly contagious pathogen (av.β±SE = -0.06±0.02, 95%CI = -0.10 to -0.02; 

Table IV.2, Figure IV.1).  

 The interaction between network diameter and group size also predicted reduced 

prevalence: at stage 3 for the moderately-contagious pathogen (av.β±SE = -0.09±0.03, 

95%CI = -0.15 to -0.02) and at stages 1 (av.β±SE = -0.06±0.03, 95%CI = -0.12 to -0.002) and 

2 (av.β±SE = -0.10±0.04, 95%CI = -0.18 to -0.03) for the highly-contagious pathogen (Table 

IV.2, Figure IV.1). However, the relative importance of these factors was 0.33, 0.27 and 

0.47, indicating that in most of the models, the interaction between diameter and group size 

did not appear to be an important predictor of outbreak size. Finally, clustering coefficient 

was also observed to negatively affect the outbreak size. Its influence was independent of 

group size, happening at stages 1 (av.β±SE = -0.05±0.02, 95%CI = -0.09 to -0.01) and 2 

(av.β±SE = -0.04±0.02, 95%CI = -0.07 to -0.01) for highly and moderately contagious 

pathogen, respectively (Table IV.2).  



122 
 

Table IV.2. Moderately and highly contagious pathogen transmission in wild primate networks (N= 40). Conditional model-averaged 
parameter estimate (β) ± adjusted standard errors (SE) (95% unconditional confidence intervals - CI) and relative importance of variables in 
generalized linear mixed models of the percentage of infected individuals in 5 epidemic steps. Main effects are calculated based on models 
without interactions (see text). In bold are results for which CI do not include zero. Ccoef = clustering coefficient. 
 Moderately contagious pathogen Highly contagious pathogen 
Model parameter β ± SE (95% CI) Relative importance β ± SE (95% CI) Relative importance 

Stage 1     
intercept 0.51±0.01 (0.48 to 0.54) contained in all models 2.69±0.03 (2.63 to 2.75) contained in all 

models 
group size 0.28±0.02 (0.24 to 0.32) 1.00 0.77±0.03 (0.71 to 0.82) 1.00 
centralization 0.01±0.01 (-0.02 to 0.04) 0.19 -0.03±0.02 (-0.07 to 0.01) 0.41 
ccoef -0.02±0.01 (-0.04 to 0.01) 0.31 -0.05±0.02 (-0.09 to -0.01) 0.78 
diameter -0.01±0.01 (-0.04 to 0.02) 0.19 -0.01±0.02 (-0.05 to 0.03) 0.19 
modularity -0.02±0.01 (-0.05 to 0.01) 0.39 -0.06±0.02 (-0.10 to -0.02) 0.88 
centralization:group size -0.04±0.02 (-0.07 to -0.01) 0.61  0.01±0.02 (-0.03 to 0.05) 0.07 
ccoef:group size -0.01±0.02 (-0.06 to 0.03) 0.10 0.01±0.04 (-0.06 to 0.08) 0.13 
diameter:group size 0.01±0.02 (-0.02 to 0.05) 0.05 -0.06±0.03 (-0.12 to -0.002) 0.27 
modularity:group size -0.02±0.01 (-0.05 to 0.003) 0.29 -0.08±0.02 (-0.12 to -0.03) 0.92 

Stage 2     
intercept 1.59±0.02 (1.56 to 1.62) contained in all models 3.57±0.05 (3.47 to 3.68) contained in all 

models 
group size 0.64±0.02 (0.60 to 0.67) 1.00 0.56±0.06 (0.43 to 0.68) 1.00 
centralization -0.03±0.02 (-0.06 to -0.002) 0.61 -0.02±0.03 (-0.09 to 0.05) 0.20 
ccoef -0.04±0.02 (-0.07 to -0.01) 0.82 -0.03±0.04 (-0.11 to 0.06) 0.21 
diameter -0.06±0.02 (-0.02 to 0.02) 0.26 0.002±0.04 (-0.07 to 0.07) 0.16 
modularity -0.06±0.02 (-0.09 to -0.03) 1.00 -0.005±0.04 (-0.08 to 0.07) 0.16 
centralization:group size -0.05±0.02 (-0.09 to -0.02) 0.88 0.08±0.04 (-0.01 to 0.16) 0.12 
ccoef:group size 0.04±0.03 (-0.02 to 0.09) 0.30 -0.03±0.09 (-0.21 to 0.15) 0.06 
diameter:group size -0.01±0.02 (-0.05 to 0.03) 0.05 -0.10±0.04 (-0.18 to -0.03) 0.47 
modularity:group size -0.04±0.02 (-0.07 to -0.002) 0.72 -0.10±0.03 (-0.16 to -0.03) 0.42 

Stage 3     
intercept 3.25±0.05 (3.16 to 3.35) contained in all models 4.28±0.03 (4.22 to 4.34) contained in all 

models 
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group size 0.65±0.06 (0.53 to 0.78) 1.00 0.19±0.03 (0.13 to 0.25) 1.00 
centralization -0.02±0.03 (-0.08 to 0.03) 0.21 -0.05±0.03 (-0.11 to 0.004) 0.42 
ccoef -0.04±0.04 (-0.12 to 0.03) 0.29 0.02±0.03 (-0.04 to 0.08) 0.20 
diameter -0.01±0.03 (-0.06 to 0.05) 0.16 -0.004±0.03 (-0.07 to 0.06) 0.15 
modularity -0.03±0.03 (-0.09 to 0.02) 0.27 0.05±0.03 (-0.007 to 0.12) 0.59 
centralization:group size 0.04±0.04 (-0.04 to 0.12) 0.06 0.07±0.03 (0.001 to 0.13) 0.59 
ccoef:group size -0.04±0.06 (-0.16 to 0.09) 0.07 -0.04±0.06 (-0.15 to 0.07) 0.06 
diameter:group size -0.09±0.03 (-0.15 to -0.02) 0.33 -0.06±0.03 (-0.12 to 0.01) 0.10 
modularity:group size -0.09±0.03 (-0.14 to -0.03) 0.66 -0.06±0.03 (-0.11 to -0.01) 0.59 

Stage 4     
intercept 4.25±0.05 (4.16 to 4.34) contained in all models 4.48±0.03 (4.42 to 4.54) contained in all 

models 
group size 0.19±0.04 (0.12 to 0.26) 0.96 0.04±0.02 (-0.001 to 0.07) 0.64 
centralization -0.06±0.03 (-0.12 to 0.01) 0.57 -0.02±0.01 (-0.05 to 0.005) 0.48 
ccoef 0.03±0.04 (-0.04 to 0.11) 0.25 -0.01±0.02 (-0.05 to 0.02) 0.27 
diameter 0.03±0.04 (-0.05 to 0.10) 0.21 -0.02±0.02 (-0.05 to 0.01) 0.31 
modularity 0.04±0.04 (-0.04 to 0.11) 0.33 0.02±0.02 (-0.01 to 0.05) 0.33 
centralization:group size 0.05±0.04 (-0.02 to 0.13) 0.30 0.03±0.02 (0.0003 to 0.06) 0.35 
ccoef:group size -0.01±0.05 (-0.12 to 0.09) 0.05 0.02±0.02 (-0.02 to 0.05) 0.07 
diameter:group size -0.05±0.04 (-0.12 to 0.02) 0.04 0.005±0.01 (-0.02 to 0.03) 0.05 
modularity:group size -0.06±0.03 (-0.11 to -0.001) 0.31 -0.01±0.02 (-0.04 to 0.02) 0.06 

Stage 5                        
intercept 4.47±0.02 (4.43 to 4.51) contained in all models 4.52±0.01 (4.50 to 4.53) contained in all 

models 
group size 0.05±0.02 (0.01 to 0.08) 0.80 0.04±0.01 (0.02 to 0.06) 1.00 
centralization -0.01±0.02 (-0.05 to 0.03) 0.21 0.01±0.01 (-0.008 to 0.03) 0.29 
ccoef -0.01±0.02 (-0.05 to 0.04) 0.21 0.01±0.01 (-0.01 to 0.03) 0.34 
diameter -0.04±0.02 (-0.08 to -0.001) 0.64 0.01±0.01 (-0.01 to 0.03) 0.24 
modularity 0.04±0.02 (-0.001 to 0.08) 0.61 0.005±0.01 (-0.01 to 0.02) 0.20 
centralization:group size 0.02±0.02 (-0.02 to 0.06) 0.04 -0.001±0.01 (-0.02 to 0.02) 0.06 
ccoef:group size -0.01±0.02 (-0.06 to 0.03) 0.03 -0.01±0.01 (-0.03 to 0.01) 0.09 
diameter:group size -0.02±0.02 (-0.05 to 0.02) 0.14 -0.01±0.01 (-0.03 to 0.004) 0.14 
modularity:group size 0.003±0.02 (-0.03 to 0.04) 0.09 -0.01±0.01 (-0.03 to 0.01) 0.09 
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Figure IV.1. Social network properties interact with group size to predict prevalence 
through the advance of an outbreak. Depending on the stage of the outbreak (a), 
centralization and modularity interacted with group size to predict the percentage of infected 
individuals. Group size positively influences the spread of pathogens at all stages of an 
epidemic. However, during the transmission of a moderately-contagious pathogen, 
centralization at stages 1 and 2 negatively influence the spread of disease and in stages 2, 3 
and 4, modularity does the same (b). If a highly-contagious pathogen is included in the 
system, modularity (stages 1, 2 and 3) decreases the epidemic size and then centralization 
(stages 3 and 4) positively influences the average number of infected individuals in each 
group (c). Diameter also reduces prevalence. Effects are present only at stages 1, 2 and 3 of 
the outbreak (b and c). In the networks (a), blue denotes non-infected individuals while red 
reflects infected individuals. The influence of network properties across outbreak stages are 
represented by the bars in parts b and c, with the sign reflecting the direction of the effect.  

 

IV.5. Discussion 

One of the intrinsic costs of sociality is the risk of acquiring socially-transmitted pathogens 

from conspecifics (Loehle 1995; Altizer et al. 2003; Kappeler et al. 2015). Although the rate 
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of pathogen transmission is expected to increase with group size (Freeland 1979; Ezenwa 

2004; Whiteman & Parker 2004; Caillaud et al. 2013), some properties of the social network 

in which individuals are embedded can offset this transmission process. The so called social 

bottleneck hypothesis predicts that increased group substructure (i.e. modularity), formed in 

larger groups, could offset the spread of infection and thereby modulate the relationship 

between group size and infectious disease transmission (Nunn et al. 2015). Our agent-based 

SI model confirmed that increased modularity reduce pathogen spread (Wilson et al. 2003; 

Huang & Li 2007; Salathé & Jones 2010), and showed that network centralization (i.e. the 

tendency for a few individuals to dominate social interactions) also predicts pathogen 

transmission, though in contrasting ways depending on the reproductive number, i.e. 

transmissibility, of the pathogen. To a lesser extent, diameter interacted with group size and 

also decreased prevalence. Finally, the influence of these network properties was related to 

the stage of the outbreak and to the reproductive number of the pathogen in question, as 

described in the following paragraphs. 

 The interaction between Newman’s modularity and group size, for example, 

influenced transmission of the highly-contagious pathogen at earlier stages (1, 2 and 3) than 

did the moderately-contagious pathogen (2, 3, 4). The contagiousness of a pathogen might 

increase the influence of the individual network properties compared to the global networks 

ones. This might cause variation in effects, not only of Newman’s modularity but also of 

eigenvector centralization, diameter and clustering coefficient. It is known that increased 

transmissibility of a pathogen increases the per-contact transmission rate (β) - the probability 

that one individual will transmit an infectious agent to another (Rothman et al. 2008). When a 

moderately contagious pathogen is introduced into the system, the effects of individual 

properties may be less apparent. In consequence, properties of the network at the individual 

level might affect global network properties in distinct ways. For example, Griffin & Nunn 
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(2012) found that the effect of eigenvector centralization is dependent on β, the per-contact 

transmission rate, with centralization showing a negative effect on transmission when β is 

low and a positive effect when β is high. This might be a consequence of network 

heterogeneity, with peripheral individuals in highly centralized networks evading infection 

(Lloyd-Smith et al. 2005). Eigenvector centralization then acts as a facilitator of social 

transmission when highly-contagious pathogens are introduced into the system. The formula 

of Newman’s modularity also is based on individual eigenvector centrality, but contrary to 

eigenvector centralization, we observed a continuous negative effect of modularity on 

epidemic size, as found by Griffin & Nunn (2012) and Nunn et al. (2015). This is again a 

consequence of the local structure, even if the pathogen is transmitted faster from one 

individual to another, once the pathogen falls into the subgroup, there will be a decrease in 

the rate of transmission outside of the subgroup. Recent studies suggest this is driven by two 

mechanisms of modular organization: network fragmentation and subgroup cohesion (Sah et 

al. 2017). 

 For the other properties, similar effects are expected to happen. For example, highly-

contagious pathogens might transmit faster, but properties such as increased network 

diameter, i.e. the distance from the spreader to the most peripheral individual in the group, 

can reduce the number of individuals becoming infected. In relation to a network’s clustering 

coefficient, i.e. how densely individuals are connected to their neighborhood, its relationship 

with pathogen spread will depend on the strength of the other individual connections. If 

central individuals are connected to another central individuals, pathogens may spreader 

faster, but if infected individuals have low clustering coefficients, this will reduce pathogen 

transmission.  

 Among the network properties we tested in this study, modularity has been 

considered the main predictor of pathogen transmission under the social bottleneck 
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hypothesis, and has furthermore been investigated through the lens of social evolution 

(Griffin & Nunn 2012; Nunn et al. 2015). As suggested by Nunn et al. (2015), increased 

group substructure could be a byproduct of natural selection to reduce the costs of connection 

between individuals, as it acts as counterstrategy to infectious disease risk in larger groups. 

As in any social system, what influences the social structure and consequently drives the 

emergence of network properties is the collection of individual decisions and behavior (Hinde 

1976, Whitehead 2008a). Social relationships are dynamic and individuals can adjust their 

relationships according to their partners’ behaviors (e.g. guppies: Croft et al. 2005; bullfrogs: 

Kiesecker et al. 1999; vervet monkeys: Fruteau et al. 2009; humans: Rand et al. 2011; mice: 

Lopes et al. 2016; mandrills: Poirotte et al. 2017). Modular structure then can emerge as a 

consequence of social preferences, social style (Sueur et al. 2012a) or avoidance of social 

interactions (Lopes et al. 2016). Indeed, theoretical studies investigating the evolutionary 

origins of modularity in other biological networks demonstrated that selection to reduce 

connection costs causes the emergence of modular networks (e.g. proteins and neural 

networks: Wagner et al. 2007; Clune et al. 2013). Our study offers evidence that modular 

networks may reduce the costs associated with infectious disease in mammalian societies as 

well, independent of the reproductive rate of the pathogens that were simulated here. However, it is 

important to bear in mind that not only one network property but the integration of many can 

affect pathogen transmission processes. Further studies manipulating the costs and benefits of 

social relationships are thus necessary to understand the mechanisms of social network 

evolution in terms of how individual behavior is selected and reflected in the social structure 

of a given group or species.  

 We reiterate that an integrative approach, combining epidemiological models, social 

network analysis and experimental studies to quantify variation in social structure in wildlife, 

is necessary to better understand the drivers of pathogen transmission and social evolution. 
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Here, we offer the first theoretical evidence, derived from real-world primate networks, 

showing temporal variation in the effect of network structure and group size on infectious 

disease transmission during simulated outbreak conditions. Whilst providing opportunities to 

better understand how social networks evolve through natural selection acting on individual 

behavior, these current results should also help us to better target which network properties 

are more important than others at each time step during an epidemic and contribute to 

targeted strategies to avoid or mitigate outbreaks in real-world situations. 
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V. CHAPTER 3:  

Network efficiency peaks with intermediate levels of group 

substructure 

 

Valéria Romano, Mengyu Shen, Jérôme Pansanel, Andrew J.J. MacIntosh, Cédric Sueur 

 

V.1. Abstract 

(English) In myriad complex systems, including human societies, multiple lines of evidence 

indicate that group substructure, i.e. modularity, may delay transmission processes (e.g. 

socially-transmitted pathogens). There is increased interest in understanding variation in the 

effects of group substructure on transmission processes, as it may provide important insights 

into a given network’s performance in addition to the ultimate consequences it may have for 

individual fitness in evolutionary terms. In this study, we investigated to what degree network 

efficiency, as a proxy for social transmission, is modularity-dependent. We created 2798 

networks varying in group size and density, and tested whether network structure (density, 

modularity, centralization) and group size shape network efficiency. We also used published 

data from 68 primate social networks to test whether the predictions generated in our 

simulations were supported by empirical observations. Our results show a non-linear 

relationship between modularity and global efficiency, with the latter peaking at intermediate 

values of group substructure in both theoretical and empirical networks. This phenomenon 

may have relevance to observed variation in social structure and its link with network 

performance. Our results may thus provide a basis on which to discuss the evolution of 

complex systems, including animal societies.  
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Keywords: network efficiency, modularity, theoretical and biological networks, social 

transmission 

(Français) Au sein d’une myriade de systèmes complexes, incluant les sociétés humaines, de 

multiples faisceaux de preuves indiquent que la sous-structure de groupe, comme la 

modularité, peut permettre de retarder le processus de transmission (dans le cas de pathogène 

transmis socialement). L’étude et la compréhension des variations des effets de la sous-

structure de groupe sur les processus de transmissions pourrait apporter des éclairages 

importants sur la performance d’un réseau donné mais aussi sur les conséquences que cela 

pourraient avoir sur la fitness individuelle dans le sens évolutif du terme. Cela explique ainsi 

l’intérêt croissant des chercheurs pour cette thématique. Dans cette étude, nous avons étudié à 

quel degré l’efficacité de réseau, représentant la transmission sociale, est dépendant de la 

modularité. Nous avons créé 2798 réseaux de taille et densité différentes et testé comment la 

structure du réseau (densité, modularité, centralisation) et la taille du groupe affectent 

l’efficacité de réseau. Nous avons également utilisé des données publiées de 68 réseaux 

sociaux afin de tester si nos prédictions obtenues par simulation sont supportées par des 

observations empiriques. Nos résultats montrent une relation non-linéaire entre la modularité 

et l’efficacité globale, avec un pic tardif pour des valeurs de sous-structures de groupe 

intermédiaires dans les réseaux théoriques et empiriques. Ce phénomène pourrait être 

important  dans l’étude des variations observées dans la structure sociale d’un groupe et son 

lien avec la performance du réseau. Nos résultats peuvent également servir de base à des 

futures discussions sur l’évolution des systèmes complexes, incluant les sociétés animales. 

Mots-clés: Efficacité de réseau, modularité, réseaux théoriques et biologiques, transmission 

sociale 



133 
 

V.2. Introduction 

Networks are ubiquitous in complex systems, ranging from human created communication 

networks to individuals’ connections in companies, schools and local communities (Barabási 

2016). Through network analysis, the frequency and strength of interactions are 

mathematically quantified to assess the level of connectivity, the importance of nodes in the 

network, and the impact of node removal in the chain of transmission. Besides the vast 

applicability in social science and computer engineering, social network analysis has in the 

few last decades been more frequently used in the biological sciences. In the field of animal 

behavior, for example, it is now known that the social structure is linked with individual 

fitness and that the network position can be used to infer the success of reproduction 

(Formica et al. 2012), the risk of contagion (Rushmore et al. 2013), and probability of 

survival (Silk et al. 2003). While previous studies have contributed significantly to the 

development of this field, much remains unknown (Kurvers et al. 2014), such as the 

mechanisms that shape social structure and the role of such structure in shaping transmission 

processes (Farine 2017).  

 In the animal kingdom, social transmission can occur in diverse ways (e.g. through 

body contact or inter-individual proximity favoring pathogen contagion or information 

spread, VanderWaal et al. 2014b, Aplin et al. 2015) and may directly affect individual 

survival. The use of social information, for example, is expected to have evolutionary 

advantages and may regard food location, increased predator protection and partner selection 

(Danchin et al. 2004; Dall et al. 2015; Kendal et al. 2005; Duboscq et al. 2016a). On the other 

hand, the spread of socially-transmitted pathogens may have profound impacts on animal 

populations (Plowright 1982; Heide-Jorgensen et al. 1988; Walsh et al. 2009) and is 

considered to be one of the main stochastic threats to wildlife (Deem et al. 2001). As such, 
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the heterogeneous distribution of social connections within a group or population create 

varying opportunities for social learning (Coussi-Corbel & Fragaszy 1995), decision-making 

(Strandburg-Peshkin et al. 2013) and contagion risk (MacIntosh et al. 2012; VanderWaal et 

al. 2014a,b; Duboscq et al. 2016b). The structure of a group, population or community thus 

has important consequences for the social transmission and fitness of individuals. 

 In terms of social network analysis, network efficiency quantifies how fast an element 

(e.g. computer viruses) can be spread through the network with the minimum number of 

connections. A more efficient network is known to have a higher number of 

informed/infected individuals, be more cohesive, and present hierarchical structure (Flack et 

al. 2015), which might be related to each individuals’ role, as well as the social structure 

(Conradt et al. 2009; Sueur et al. 2012b; Pasquaretta et al. 2014; Flack et al. 2015). In a study 

comparing 80 groups of primates, for example, research demonstrated that more despotic 

groups had less efficient networks (Pasquaretta et al. 2014). Furthermore, leaders occupying 

central positions improved the efficiency of the decision-making process (Sueur et al. 

2012b). Increased network efficiency is suggested to allow individuals to quickly adapt to 

changes in the environment, but it also should increase their connection costs (Sueur 2011). 

As a consequence of this fitness trade-off, there has been considerable discussion on whether 

and how network properties also down-regulate transmission processes by decreasing 

network efficiency.   

 Among the various emergent properties of networks, it has been argued that increased 

modularity - a global network index used to estimate the level of group substructure - is a 

major contributor to the capacity of biological networks to evolve, as seen in animal brains, 

protein networks, and bacterial metabolic networks (Wagner et al. 2007). Computational 

evolution experiments have also demonstrated that modular networks maximize network 

performance and minimize connection costs, and are therefore more likely to evolve and are 
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themselves more evolvable than less modular networks (Clune et al. 2013). Furthermore, 

theoretical and empirical studies of mammal social structure have highlighted that increased 

modular structure, formed naturally in larger groups, can act as a barrier to socially-

transmitted pathogens (Griffin & Nunn 2012); the so-called ‘social bottleneck hypothesis’ 

(Nunn et al. 2015). Collectively, such evidence suggests that modularity can influence social 

transmission by decreasing the costs of relationships. More recently, however, Sah et al. 

(2017) suggest that disease risk is largely unaffected by modularity, and that only beyond a 

threshold at high values of modularity do social networks result in decreased pathogen 

transmission.  

 Within this framework, we combined a theoretical and empirical approach to 

investigate to what degree network efficiency is modularity-dependent, and whether a 

modularity threshold exists in the efficiency of social transmission processes. Our 

assumptions are that density (Keeling & Rohani 2008) and group size (Patterson & 

Rusckstuhl 2013) shape network heterogeneity, here measured in terms of global network 

properties. Besides investigating how the degree of modularity might influence efficiency, 

and in order to take a broader view of network structure, we also investigated the effect of 

network centralization on network efficiency. Highly centralized networks are those in which 

one or few individuals are highly connected to other individuals in the group and dominate 

network interactions. In terms of social transmission, centralization is related to network 

efficiency (e.g. centralization index negatively affects efficiency, Pasquaretta et al. 2014) and 

decision-making processes (e.g. individuals lost their leadership by moving from 

decentralized to centralized networks; Sueur et al. 2012a).  

 In accordance with the social bottleneck hypothesis, we predicted that larger social 

groups would exhibit increased modularity and thus decreased network efficiency (i.e. social 

transmission, Nunn et al. 2015). Alternatively, incorporating recent evidence from Sah et al. 
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(2017), we might predict little significant change in network efficiency with increasing 

modularity until some threshold is reached, beyond which efficiency is expected to decline. 

As this is a current topic of debate, our focus on simulated truncated networks facilitates 

investigation into the direct influence of subgroups on network efficiency. While accounting 

for a threshold effect of modularity on transmission processes is certainly important in the 

field of epidemiology (Sah et al. 2017), we further suggest that if such a threshold exists, it 

should be broadly observable in theoretical and empirical social networks. We then tested our 

predictions with real association data collected from 68 primate groups to test the outputs of 

our theoretical models and explain the link between modularity and network efficiency. 

Finally, we also expect that if centralization is a good predictor of network efficiency, highly 

centralized networks will decrease transmission speed, as has been observed in an empirical 

study (Sueur et al. 2012a).  

 

V.3. Material and Methods 

V.3.1. Creating truncated networks   

We constructed 2798 undirected binary networks in R v.3.3.1 (R Core Team 2016) with the 

function “sample_pa” from the “igraph” package v.1.0.1 (Csárdi & Nepusz 2006). This 

function allowed us to create truncated power-law-distributed networks according to the 

Barabási-Albert model (Barabási & Albert 1999) with degree exponent γ=2, an arbitrary 

number considering that most real systems present a degree exponent higher than 2 (Barabási 

2016). Many systems are well-approximated by power-law-distributed network models (e.g. 

World-Wide Web, Albert et al., 1999; airport network of India, Bagler 2004; protein-protein 

interactions, Jeong et al. 2001; networks of market investments, Garlaschelli et al. 2004), 
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including in the animal kingdom (e.g. human sexual networks, Liljeros et al. 2001; bottlenose 

dolphins, Lusseau 2003; tonkean and rhesus macaques, Sueur et al. 2012b). We were 

interested in truncated power-law-distributed networks because they are structurally 

characterized by the numerous small-degree nodes coexisting with hubs, a few nodes that are 

highly-connected to other nodes in the network (Barabási 2016). In terms of social 

transmission, their presence may increase the speed of transfer, the so called super-spreader 

effect (Fujie & Odagaki 2005; Llyod-Smith et al. 2005), and were described during the 

outbreak of many infectious diseases (Stein 2011). We designed networks with sizes similar 

to those found in animal groups, and following a set of Fibonacci numbers (a pattern 

commonly observed in nature; 8, 13, 21, 34, 55, 89, 144) with different densities to explore 

the links between density, centralization, modularity and size. Network density was shifted 

between values of 0 and 1, meaning the denser the network the lower the truncated structure. 

We aimed to explore a broad combination of network properties, and 2798 networks were the 

possible number of networks we could create based on method used. R code is available in 

the Appendix H.  

 

V.3.2.  Estimating association indices 

We estimated eigenvector centralization and Newman’s modularity; two network properties 

that are expected to be mathematically, but not necessary empirically, independent of group 

size, and which provide a global view of network structure (Nunn et al. 2015). Both network 

metrics were estimated in R.  

 Eigenvector centralization captures variation in connectedness by comparing all 

centralities with that of the most central individual. It was calculated as: 
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where C is the centralization index, Ci is the centrality for individual i, Cmax is the maximum 

value of Ci across all individuals and   refers to what the sum would be 

under the largest possible centralization of the network (Pasquaretta et al. 2014). Highly 

centralized networks resemble a star, where all individuals are connected to one individual in 

the center of the group. In this condition, the centralization index would be approximately 1.  

 Modularity reflects the presence of large subgroups of nodes that are typically highly 

connected internally but only loosely connected to other subgroups in the networks (Girvan 

& Newman 2002). We estimated the degree of modularity in our theoretical networks using 

the function “cluster_leading_eigen” provided in the “igraph” package. We decided to use 

Newman modularity (Q) as it considers the eigenvalues of a matrix while avoiding estimation 

of modules using fixed values of group size. It is also expected to provide a more realistic 

estimation of network substructure (Newman 2006). When Newman’s modularity is equal to 

0, the density of interactions within subgroups is equivalent to the density of interactions 

between subgroups. Higher values of Newman’s modularity indicate stronger substructuring 

of social networks, with values close to 1 denoting greater modular structure.  

 

V.3.3. Estimating network efficiency 

To represent social transmission, we used a measure of network efficiency called global 

efficiency, which considers the ratio between the number of group members N and the 

number of connections I multiplied by the network diameter D: 
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 In other words, global efficiency denotes how quickly information is transmitted from 

the spreader to the most peripheral individual in the group. Global efficiency can range from 

0 to 1, with more efficient networks having values closer to 1. This is a consequence of the 

nature of our networks, with most having diameters higher than 2; higher diameters decrease 

global efficiency. Highly dense networks are also expected to have reduced network 

efficiency, since in these cases I is considerably higher than N.  

 

V.3.4. Empirical data 

We obtained published data on global efficiency and modularity originally measured for 68 

primate social groups of 21 species, including 4 groups of humans. Non-human data included 

groups from captivity and the wild (Pasquaretta et al. 2014; Table HS1, Appendix H). The 

authors did not found evidence that phylogeny affected the network measures observed 

(Pasquaretta et al. 2014). Networks were created based on socio-positive relationships (such 

as body contact, social grooming and/or proximities), and were in all cases weighted and 

symmetrized (Pasquaretta et al. 2014). We have used the same coefficients as those used in 

the reference study (Pasquaretta et al. 2014) to estimate modularity (i.e. Newman’s 

Modularity) and global efficiency, but while they calculated Newman’s modularity in 

SocProg 2.4 (Whitehead 2009), we used the package “igraph” in R.  
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V.3.5. Statistical analysis  

To test whether network efficiency is influenced by network structure and group size, we 

constructed a generalized linear model (GLM) with a gamma error distribution and inverse 

link function (e.g. observed and gamma distribution functions of global efficiency: Figure 

HS1, Appendix H) using the “car” package v.2.1-3 in R. We ran a series of diagnostic tests 

to judge the validity of the models, including testing for variance inflation and Cooks’ 

distance. Density was highly correlated with centralization and modularity (Figure HS2, 

Appendix H) and, as it was not a major focus of our study, was removed from the analysis. 

All diagnostic tests suggested the validity of our models (Field et al. 2012). Full models 

included centralization, modularity and group size as explanatory variables.  

 To assess whether there were multiple relationships between modularity and network 

efficiency, we used a piecewise regression performed with the package “segmented” v.0.5-

1.4 (Muggeo 2008) in R. ‘Breakpoints’ are defined as the boundaries between the line 

segments that fit the regression, and are expected when the independent variable exhibits 

different relationships with the predictor in these regions. We performed the piecewise 

regression as a single analysis with all group sizes combined, and as separate analyses for the 

size categories small (8, 13), medium (21, 34, 55), and large (89, 144) to allow for better 

understanding of variation in the observed breakpoints. Exploratory analysis included the 

combination of 8, 13 and 21 individuals in small groups, but this did not change our general 

results. We then performed the same piecewise approach with the empirical data, which 

included only small- (N= 49; ranging from 5 to 14; mean= 9.4) and medium-sized (N= 19; 

ranging from 17 to 38; mean= 23.7) groups. Finally, to understand if the outputs from 

theoretical networks differed from the empirical networks, we compared (i) the distribution 

of modularity and global efficiency using Kolmogorov–Smirnov tests, (ii) the slopes and the 
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intercept values of the regression lines by applying an ANCOVA test and a linear regression, 

respectively, and finally (iii) we compared the median of global efficiency and modularity 

found in each set of networks using a Wilcoxon test. The alpha level was set at 0.05. Graphs 

were created using the package “ggplot2” v.2.2.1 (Wickham 2009) and the function “plot” 

from the base package in R. 

 

V.4.  Results 

In our theoretical networks, global efficiency values ranged from 0 to 0.5, modularity ranged 

from 0 to 0.83 and centralization varied from 0 to 0.81. Modularity and group size were good 

predictors of global efficiency in theoretical networks, with larger group sizes having lower 

global efficiency scores (Table V.1). Results concerning modularity were less clear. When 

all theoretical networks were observed together, we found a positive association between 

modularity and global efficiency (Table V.1). However, modularity seemed to play two 

distinct roles in mediating transmission processes: increasing values of modularity at the 

lower end of its range tended to increase network efficiency, while increasing values at the 

higher end of its range decreased transmission rates (Figure V.1). A breakpoint at Q = 0.58 

was observed in the regression line when considering all theoretical networks together. This 

result indicates the occurrence of two segments, one before the breakpoint with a slope of 

0.02 and a secondary slope after the breakpoint at -0.44.  
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Table V.1. Parameter estimates from generalized linear models explaining variation in 
global efficiency. Data extracted from the theoretical networks. Bold values indicate p < 
0.001. 

Predictors  Estimate Std. error t value Pr (>|t|)  

Intercept 2.90e-02   1.82e-04 159.08   <2e-16 

Centralization 5.67e-05  1.29e-04 0.44  0.66    

Modularity 2.02e-02   4.25e-04  47.54   <2e-16 

Group size -8.82e-03   1.24e-04  -71.15    <2e-16 

 

 

 

Figure V.1. Relationship between global efficiency and modularity from all groups of the 
theoretical networks. Data is presented in function of group size. 

 

  More specifically, we observed three distinct breakpoints at Q = 0.35, 0.53 and 0.69 

when groups were classified as small, medium and large, respectively (Figure V.2). First 

slopes were equal to 0 at all group sizes, and the secondary slopes were -0.67, -0.52 and -0.51 

for small, medium, and large groups, respectively. It is important to note that small groups 

were underrepresented by high values of modularity, but we could still identify a negative 

slope in the secondary segment. We then looked at the data from empirical networks and 
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observed that breakpoints also existed at 0.17 for small groups and 0.30 for medium groups. 

Slopes from the regression lines of empirical groups were as follows: 0.64 and -0.36 for small 

groups, and 0.55 and -0.02 for medium groups (Figure V.3). We observed that the 

distribution of modularity and global efficiency from small and medium theoretical networks 

were different from those of small (Modularity: D = 0.63, p = 1.09e-12; Global efficiency: D = 

0.24, p = 0.04; Figure HS3, Appendix H) and medium empirical groups (Modularity: D = 

0.52, p = 0.0002; Global efficiency: D = 0.35, p = 0.03; Figure HS4, Appendix H). Overall, 

the median of global efficiency and modularity found in empirical networks were higher than 

those of theoretical networks, independent of group size category (small - global efficiency: 

W = 5442, p = 0.005; modularity: W = 5742.5, p = 0.0007; medium - global efficiency: W = 

3829, p = 0.01; modularity: W = 5250, p = 6.5e-13). However, the slope and intercept of 

regression lines were only distinct for small groups (p = 1.47e-08), those being higher in 

empirical than in theoretical networks (Figures HS3 and HS4, Appendix H). In general, our 

results indicate that peaks at intermediate levels of social subgrouping may optimize social 

transmission, a predicted pattern in theoretical networks that was corroborated in empirical 

data, though at different absolute values.  
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Figure V.2. Breakpoints in the regression lines observed in intermediate levels of 
modularity from small, medium and large theoretical networks. Red lines represent the 
first slope, dashed green lines represent the secondary slope and blue circles are the 
breakpoints in the regression lines (values in the main text). Red horizontal lines above the 
blue circles indicate variance around the breakpoint. 
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Figure V.3. Relationship between global efficiency and modularity for empirical 
networks (upper figure) and breakpoints in the regression lines observed in small and 
medium-sized groups (lower figures). Red lines represent the first slope, dashed green lines 
represent the second slope and blue circles are the breakpoints in the regression lines (values 
in the main text). Red horizontal line above the blue circle indicate the variance of data 
around the breakpoint. 

 

V.5. Discussion 

It is well-established that social connectivity modulates transmission processes in real 

networks (Kappeler et al. 2015; Duboscq et al. 2016a), but to what degree transmission 

efficiency is modularity-dependent has received less attention in the literature. We found 

evidence that modular structure in social groups can have nonlinear effects on transmission 

processes, with low values of modularity tending to positively influence social transmission 
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and high values tending to negatively influence transmission. This pattern was consistent 

across small, medium and large truncated networks and was corroborated by our empirical 

primate networks, including small- and medium-sized groups. With respect to the existing 

literature (Nunn et al. 2015; Griffin & Nunn 2012), our findings support the prediction that 

increased modularity constrains social transmission, but further suggest that intermediate 

levels of network substructure produce the highest efficiency.  

 Over the last decade, considerable evidence has arisen to suggest that modular 

organization might negatively influence social transmission processes in biological networks 

(Wagner et al. 2007; Clune et al. 2013; Sah et al. 2017). While some studies provide support 

for the “social bottleneck hypothesis”, i.e. the larger the group size the higher the modularity 

and the lower the speed of transfer (Griffin & Nunn 2012; Nunn et al. 2015), few studies 

have found modular structure to increase diffusion due to higher connectivity within 

subgroups (Lentz et al. 2012; Nematzadeh et al. 2014). Recently, Sah et al. (2017) suggest 

that reduced outbreak size in highly modular social networks might be caused by two 

mechanisms related to modular organization: network fragmentation (i.e. the number of 

subgroups) and subgroup cohesion (i.e. preferential association within subgroups). In this 

study, however, reduced outbreak size was only apparent in social networks with Q = 0.6 for 

moderately spreading pathogens. The authors proposed that the negative effect might be 

related only to high values of modularity, and that an epidemic threshold might exist, below 

which there is a minimal risk of a large outbreak, and depend on pathogen transmissibility 

(Sah et al. 2017). While their focus was specific to epidemiology, we propose here that the 

peak in network efficiency, and thus transmission potential, at intermediate values of 

modularity might occur at a broader scale, meaning that it is not only related to outbreak size 

but also to other social transmission processes. While Sah et al. (2017) identified an epidemic 

threshold, our study suggests the existence of a peak, in which modularity at first tends to 
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favour transmission but at higher values tends to constrain social transmission. What 

mechanisms drive this phenomenon, however, remains an open question. For our theoretical 

networks, the pattern observed is a consequence of a correlation between network properties: 

high density implies low modularity, and vice versa. As the degree of modularity increases, 

network transmissibility decreases. However, for empirical networks, as modularity and 

efficiency are higher than for theoretical data, behavioral mechanisms might be at play.  

 In animal social networks, it is broadly accepted that sociality incurs both costs and 

benefits. Among them, the same properties of the social structure that favour the spread of 

benefits, such as behaviors that transmit information, might also favour the spread of costs, 

such as socially-transmitted pathogens that may cause disease, creating a trade-off between 

information and parasite transmission. If the topology of the network can be optimized in a 

way that balances the costs and benefits of interaction, the peak observed in global efficiency 

at moderate sub-structuring might be the first piece of evidence suggesting that variability in 

individual social behavior can lead to the emergence of global properties that might reflect 

this trade-off, the accommodation of both transmission processes. In nature, real networks are 

a consequence of individual decisions, and it has been empirically demonstrated that 

individuals can modulate their social connections to decrease the costs of sociality (e.g. 

immune-challenged mice reduced their own social connectivity: Lopes et al. 2016; wild 

mandrills avoided grooming at the peri-anal area of infected individuals: Poirotte et al. 2017) 

and increase their own benefits (e.g. wild vervet monkeys increased their grooming rates with 

individuals holding information, Fruteau et al. 2009). Social networks are thus expected to be 

dynamic, varying flexibly with the needs of the individuals involved according to the costs 

and benefits of their relationships and as a consequence of their interactions. Rather than 

proposing a single optimization point, we suggest a range of modularity across which we 
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might expect to find real-world networks if interactions were occurring to balance costs and 

benefits of relationships that depend on network structure. 

 The results of our compiled set of empirical networks demonstrate that real systems 

also exhibit a non-linear relationship between modularity and efficiency, although to a lesser 

degree than our theoretical networks. We observed that the slope and intercept of the 

regression line from small empirical groups were both higher than those from theoretical 

networks. Interestingly, the slope of the first regression line was positive for the empirical 

networks, unlike our theoretical networks, raising the possibility that observed networks 

reflect the dual role of modularity in favoring social transmission at small values and 

suppressing it at large values. The latter process has been already identified by theoretical 

researches (Nunn et al. 2015; Sah et al. 2017). While interesting, more data and further tests 

are required to resolve this possibility. An important avenue for future research will be to link 

variation in individual behavior, which affects modularity and efficiency of networks, to both 

positive and negative elements of social transmission. In animal social systems, behaviors 

stemming from nepotism (higher tolerance of kin) or despotism (manifest as aggressive 

behavior linked to dominance hierarchy) are known to increase modularity (e.g. macaques 

social style, Sueur et al. 2011b; Puga-Gonzales & Sueur 2017), while discriminating between 

conspecifics with different levels of infection or information (Fruteau et al. 2009; Poirotte et 

al. 2017) may further influence emergent network properties like modularity.  

 In conclusion, our approach revealed that network efficiency is modularity-dependent, 

with the highest values of social transmission occurring at intermediate levels of modularity. 

The description of such phenomena suggests that future work manipulating the costs and 

benefits of social relationships, and ultimately network efficiency itself, might shed light on 

how networks develop and adapt through the behaviors of individuals given the prevailing 

environmental constraints. Looking at the mechanisms that generate flexibility in social 
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structure might contribute to network science and even enhance our understanding of social 

evolution.  
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VI. CHAPTER 4:  

Investigating the trade-off between information access and infection 

avoidance in animal societies: an individual-based model 

 

Valéria Romano, Ivan Puga-Gonzalez, Andrew JJ MacIntosh, Cédric Sueur 

 

VI.1. Abstract 

(English) Sociality incurs costs and benefits for animals. While relationships between 

individuals may favor the spread of valuable information, they also increase the risk of 

acquiring socially-transmitted pathogens, which ultimately may cause disease, leading to a 

fitness trade-off of sociality. One of the open questions in behavioral ecology targets how 

local pressures related to the costs (e.g. contagion risk) and benefits (e.g. information) of 

specific interactions influence variation in social structure. In a first step toward answering 

this question, we used a theoretical modeling approach to investigate the evolution of 

network structure while varying each individual’s value in terms of information sharing and 

pathogen spreading. We tested 20 conditions across group sizes of 10, 30 and 70 individuals. 

In our model, individuals are initially unaware of the potential for each other individual to 

share information or spread pathogens, but perceive which individuals are informed and 

which are infected as they interact. Individuals were programmed to favor informed 

individuals and avoid infected individuals, and adjust their probabilities of interacting with 

each group member accordingly. Our results demonstrate that variation in the network 

properties, in terms of density, centralization and modularity, is a consequence of individual 
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decisions given the trade-offs between collecting information and avoiding infection. Highly 

centralized networks, for example, emerge when information was monopolized by few 

individuals since group members favor informed over uninformed individuals. Unlike 

previous theoretical studies, which have focused on information and pathogen transmission 

networks independently, our model accounts for the potential trade-off between information 

access and infection avoidance in animal societies, and therefore the conditions under which 

social structure is expected to adapt and evolve. 

Keywords: group-living, social behavior, trade-off, network structure, individual-based 

modeling, network analysis 

(Français) Vivre en groupe induit des coûts et des bénéfices pour les animaux. Bien que les 

relations entre les individus puissent favoriser la diffusion d’informations, ils augmentent 

également le risque d’acquisition et d’infection par des pathogènes transmis socialement, 

conduisant ainsi à l’équilibre entre coûts et bénéfices de la vie en groupe. Une des questions 

toujours en suspens en écologie comportementale s’intéresse à comment des pressions locales 

liées à des coûts (risque de contagion) et bénéfices (information) d’une interaction spécifique 

va influencer les variations de la structure sociale. Pour aider à répondre à cette question, 

nous avons utilisé une approche de modélisation théorique pour étudier l’évolution de la 

structure du réseau pendant en même temps que les valeurs individuelles en termes de partage 

de l’information et diffusion du pathogène varient. Nous avons testé 20 conditions différentes 

au sein de groupe de 10, 30 ou 70 individus. Dans notre modèle, les individus sont 

initialement non conscient du potentiel de chaque individu de partager des informations et de 

diffuser des pathogènes, mais perçoivent quels individus sont informés and lesquels sont 

infectés quand ils interagissent. Les individus ont été programmés afin de favoriser les 

individus informés et éviter les individus infectés, mais également d’ajuster en fonction les 

probabilités d’interactions avec chaque individu du groupe. Nos résultats montrent que la 
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variation des propriétés de réseau en termes de densité, centralité et modularité est la 

conséquence de décisions individuelles au regard de l’équilibre entre collecte d’information 

et évitement d’infection. Par exemple, des réseaux très centralisés vont émerger lorsque 

l’information est monopolisée par quelques individus et que les autres membres du groupe 

vont favoriser les individus informés par rapport aux non-informés. A rebours d’autres études 

théoriques qui se sont concentrées sur la transmission d’information et la transmission de 

pathogène au sein de réseaux de façon indépendantes, notre modèle prend en compte les 

potentiels compromis entre accès à l’information et évitement de l’infection dans les sociétés 

animales, et par conséquent les conditions sous laquelle une structure sociale est supposée de 

s’adapter et évoluer. 

Mots-clés: vie en groupe, comportement social, compromise, structure de réseau, individual-

based modeling, analyse de réseau 

 

VI.2. Introduction 

Understanding the link between individual behavior and the organization and functioning of a 

group or population has long been central to ecology and evolutionary biology (Hinde 1976; 

Wilson 1975; Krause et al. 2007). Animals living in groups often interact nonrandomly with 

conspecifics, leading to variable patterns of social structure (i.e. who interacts with whom), 

which ultimately feeds back into variation in individual fitness (Sih et al. 2009). Sociality 

offers many benefits to individuals (e.g. defense against predators, increased foraging 

efficiency, increased offspring survival: Wilson 1975; Krause & Ruxton 2002), but also 

comes with costs (e.g. within-group competition for limited resources: Wrangham 1980; 

increased exposure to infectious agents: White et al. 2017). Social complexity, which can be 

expressed as patterns of social interaction, then emerges from individual decisions and 
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strategies to deal with the inherent trade-offs of social-living. Among them, how individuals 

manage the potential fitness trade-off between information acquisition and infectious disease 

avoidance has received little direct attention in the biological literature. 

 Studies of transmission on social networks have suggested that social structure can 

regulate information transmission and mediate exposure to pathogens via social contact or 

social proximity (Duboscq et al. 2016a; Rushmore et al. 2017; White et al. 2017). In the 

majority of studies, the most interconnected individuals in the group (i.e. central individuals), 

are characterized by fast acquisition of information (Claidière et al. 2013) but also increased 

exposure to socially-transmitted pathogens (MacIntosh et al. 2012). For example, Aplin et al. 

(2012) demonstrated that the most central individuals in a wild population of three sympatric 

tit species (family Paridae) were the first to be informed about new foraging patches. On the 

other hand, VanderWaal et al. (2014b) demonstrated that the probability of sharing microbial 

(Escherichia coli) subtypes was related to the frequency of association among ungulates 

(such as Grant’s gazelles and zebras). Finally, Page et al. (2017) showed that more central 

hunter-gatherer women in the Philippines that are more central in their proximity networks 

produced more living offspring but also suffered from greater disease burdens (i.e. gastro-

intestinal disease, influenza and fever, respiratory tract infections and intestinal parasites). 

This growing body of evidence demonstrating that network structure shapes both information 

and pathogen transmission raises questions, such as to what extent might network properties 

interact to modulate transmission processes (Farine 2017; chapter 3). Since the same 

properties that increase information flow on networks are also expected to increase pathogen 

spread, it is important to investigate how individuals might balance these and other costs and 

benefits of social transmission.  

 Studies in animal biology have typically investigated the flow of information or 

infectious agents on networks independently, perhaps because of the challenges associated 
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with exploring both within the same empirical framework, or because of variation in study 

aims and researcher expertise. However, a computer simulation study has shown that the 

same properties of the network that influence information flow also influence pathogen 

transmission (Weng et al. 2013). Of the several network properties under investigation, 

modularity – a global index that estimates the degree to which a network is divided into 

subgroups – might emerge if individuals are naturally selected to avoid association costs. For 

example, avoidance of connection costs has been suggested to drive modularity in other 

biological networks such as protein and neural networks (Wagner et al. 2007; Clune et al. 

2013). In animal societies, it has been suggested that increased modular structure, which is 

typically associated with larger animal groups, might decrease costly social transmission, 

such as that involving pathogens (Griffin & Nunn 2012). Although this is currently in debate 

(Sah et al. 2017), evidence does suggest that the higher is the modularity, the lower is the 

degree of social transmission observed. Furthermore, studies have shown that other network 

properties that may be more salient to the individual, such as the number of connections an 

individual has (individual degree) or the weighted value of their interactions (individual 

strength), can be used to estimate their degree of exposure to infectious agents in chains of 

social transmission (e.g. badgers: Weber et al. 2013; Japanese macaques: chapter 1, Romano 

et al. 2016; chimpanzees: Rushmore et al. 2013; giraffes: VanderWaal et al. 2016). Since 

these individual-level metrics of sociality influence global properties of networks such as 

modularity, and can further mediate the costs and benefits individuals receive through social 

interactions, network structure should reflect the accumulation of individual decisions in the 

context of social interactions. 

 Indeed, studies have shown that individual decisions about with whom to interact 

appear sensitive to the various costs and benefits of sociality. For example, vervet monkeys 

(Chlorocebus aethiops) reinforced social bonds with individuals that provided more food 
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during an experimental foraging task (Fruteau et al. 2009). Humans were shown to cooperate, 

form new links (i.e. social bonds) to cooperators, and break links with cheaters/defectors, 

leading to significant changes in network topology (i.e. social structure; Rand et al. 2011). 

More recently, studies have begun to provide empirical evidence that individuals can 

modulate their behavior to decrease connection costs as well. Mandrills (Mandrillus sphinx), 

for instance, may be able to recognize individuals infected with protozoan parasites and avoid 

grooming their anogenital areas when shedding infective stages (Poirotte et al. 2017). 

Similarly, healthy bullfrogs (Rana catesbeiana) avoided individuals with a yeast infection 

(Kiesecker et al. 1999). Such findings suggest that individuals may modulate their behavior 

to increase benefits and avoid costs of social interactions, which should lead to detectable 

changes in the global network structure.  

 In the present study, we aimed to explore how individuals might deal with the trade-

off between information acquisition and pathogen avoidance in social networks. We 

developed an individual-based model in which individuals were programmed to favor 

interactions with others that exhibited higher values of information-sharing potential 

(hereafter, ‘information’) and avoid interactions with others that exhibited higher values of 

pathogen-spreading potential (hereafter, ‘pathogen’). Our ultimate goal was to explore the 

structure of the social networks that emerged under a set of conditions (N = 20; Figure VI.1) 

in which the distribution of information and pathogen values varied systematically across 

individuals. At the start of each simulation, individuals were unaware of the values of 

information and pathogen of others, but they learned which individuals were likely to share 

information and which were likely to spread pathogens over time as they interacted. In the 

model, we omitted social (e.g. dominance rank: Puga-Gonzalez & Sueur 2017) and 

environmental (e.g. resource availability: Foster et al. 2012) factors that may also drive 

individual social preferences and thus network structure. We did so purposefully to create a 
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parsimonious system that would allow us to better understand the development of social 

networks when the only variables were individual attributes related to information sharing 

and pathogen spreading – a first step toward investigating this potential trade-off.  

 We made a number of predictions regarding the structure of the networks that we 

would expect to emerge under the set of conditions tested. First, under conditions in which 

the values of information were high and those of pathogens were low (conditions 5, 8, 9, 12, 

13; Figure VI.1), we predicted the emergence of: (i) centralized and low-density networks 

when information was monopolized by a few individuals (one or two), because group 

members should favor informed over uninformed individuals; (ii) centralized, modular and 

low-density networks when values of information were distributed more evenly among group 

members, because information could be obtained from numerous sources and therefore 

individuals might form relationships stochastically with some informed individuals but not 

with others. Conversely, under conditions in which the values of pathogen were high and 

those of information were low (conditions 2, 3, 4, 14, 15; Figure VI.1), we predicted the 

emergence of: (iii) non-modular, non-centralized, and high-density networks when few 

individuals had pathogens and none has information or very low values of information, 

because individuals would avoid infected individuals but would not develop preferences for 

other group members in so doing. Yet, in conditions in which there are some highly informed 

individual (e.g. condition 14), we predict the emergence of centralized networks; (iv) fully 

connected networks when pathogen values were distributed evenly among group members, 

because individuals should avoid all group members equally as they frequently change 

interaction partners seeking information. Under intermediate conditions, in which the values 

of information were both higher and lower than those of pathogens (conditions 7, 10, 17, 18, 

19, 20; Figure VI.1), we expected (v) centralized, modular and low-density networks, 

because individuals would develop social preferences only with those informed individuals. 
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Finally, under conditions in which the levels of information and pathogen were similar 

(conditions 1, 6, 11 and 16), we had (vi) no specific expectations. In terms of individual 

centrality, the most inter-connected individuals were predicted to be those endowed with the 

highest values of information, particularly when combined with the lowest values of 

pathogen.  

 

Figure VI. 1. Schematic representation of each theoretical condition. Values of 
information (blue line) and pathogen (orange line) vary from 0 to 1 (y axis) across individuals 
(x axis: group size of 10 represented here, each number representing the ID of an individual). 
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VI.3. Methods 

 

VI.3.1. The Optimal Relationships Model 

This section describes the model (“Process overview and scheduling”) and the testing 

conditions (“Testing conditions”). A detailed description of the model according to the ODD 

Protocol (Grimm et al. 2006, 2010) and the source codes for the model are given in the 

Appendix I. 

 

VI.3.1.a. Process overview and scheduling 

The purpose of the model is to identify the type of social network structure that arises from 

relationships that maximize interactions with informed individuals and minimize interactions 

with infected individuals. Individuals are endowed with values of My-information and My-

pathogen, which remain stable throughout the simulation, and will interact with other 

individuals according to their own values and the values of conspecifics. At the beginning of 

each simulation, individuals are not aware of the values of information and pathogen 

exhibited by the others. However, by interacting with other individuals, they perceive which 

individuals are informed and which are infected. Because individuals are actively seeking 

information for their own benefit, and trying to limit their interaction with infected 

individuals to avoid the associated costs, they adjust their interactions probabilistically to 

optimize their social relationships.  

 All individuals are activated at each time step, and at each time step each individual 

chooses to interact with a single partner. One or more individuals can interact with the same 

target individual at any given time step. All individuals are forced to interact at each time 
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step. The probability of interacting with a specific individual is given by the weight of the 

relationship: the stronger the weight, the higher the probability. At the initial time step, all 

individuals have the same probability of interaction (see section 1, equation 1). An individual 

will increase or decrease the weight of its relationship with its interaction partner according to 

whether it perceives a pathogen and/or information from its partner. The amount of increase 

or decrease in the weight of the relationship is controlled by the parameters social-increase 

and social-decrease. After each social interaction, the weights of relationships, and thus the 

future probability of interaction, are updated (see section 2). Note that the weight between 

individual i and all other group members is constrained to sum to 1.  

 Definitions of indices and coefficients can be found in Table VI.1. A schematic 

diagram illustrating the individual-based model can be found in Figure VI.2. The model was 

written in Netlogo v. 6.0 (Wilensky 1999). 

 

Table VI.1. Glossary of parameters used in this study. 

Parameter Definition 

N Number of individuals in the group. Group size is set as 10, 30 or 70.  

My-information The probability of being perceived as informed. Values are chosen 
between 0 and 1.  

My-pathogen The probability of being perceived as infected. Values are chosen 
between 0 and 1.  

Social-increase The percentage increase in the weight between individuals i and j. The 
default value is 20%. See section 2.  

Social-decrease The percentage decrease in the weight between individuals i and j. The 
default value is 20%. See section 2. 
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Figure VI.2. Flow diagram of each time step in the Optimal Relationships Model. 
Schematic interaction rules happening at each time step. 

 

Section 1. Activation of individuals and interactions 

At each time step, all individuals are activated. The probability of an individual i selecting an 

interaction partner j is given by the weight of their relationship: the higher the weight of their 

relationship, the higher the probability of interaction. The probability of interaction 01  at the 

beginning of a simulation is thus given by the initial weight, which corresponds to:  

Equation (1)                                   
1

1
01

N
=  , 

where N is the number of individuals in the group. The probability of successive interactions 

is equivalent to the updated weight (see section 2). 
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 After an individual selects an interaction partner, there are 4 possible outcomes of the 

interaction: (1) it perceives its partner as informed; (2) it perceives its partner as infected; (3) 

it perceives its partner as informed and infected, but either more informed than infected or 

more infected than informed; or, (4) it perceives neither. Each output depends on the 

following probabilities: 

1. Probability of perceiving an individual as informed (Pinf):  

Pinf = My-information of InteractionPartner * (1 – My-Pathogen of InteractionPartner) 

 

2. Probability of perceiving an individual as infected (Ppat):  

Ppat = My-pathogen of InteractionPartner * (1 – My-Information of InteractionPartner) 

 

3. Probability of perceiving an individual as informed and infected (Pinfpat): 

Pinfpat = My-information of InteractionPartner * My-Pathogen of InteractionPartner 

If the difference between My-information and My-pathogen is higher than 0, the agent 

perceives more about the informed status than about the infected condition of the interaction 

partner. If the difference is equal to or less than 0, the agent perceives more about the infected 

condition than about the informed status of the interaction partner. 

 

4. Probability of not perceiving the status of the interaction partner (Pnone): 

Pnone= (1 - My-Information of InteractionPartner) * (1 - My_Pathogen of InteractionPartner) 
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The model is stochastic: to determine the output of the interaction, first a random number 

between 0 and 1 is drawn. This random number is compared with Pinf, if the number is less 

than or equal to that probability, the individual perceives the interaction partner as informed 

only. Otherwise, it compares the random number with Pinf + Ppat. If the number is less than 

or equal to the sum of these probabilities, the individual only perceives the interaction partner 

as infected. If the number is greater than the sum of these probabilities, it compares the 

random number to Pinf + Ppath + PInfPath. If the random number is less than or equal to the 

sum of these probabilities, the individual perceives the interaction partner as infected and 

informed. If the random number is higher than the sum of these probabilities, the individual 

perceives nothing. At the end of this step, the relationship between i and j is updated, as 

described in the next section.  

 

Section 2: Updating relationships 

After every interaction, individual i will update the weight of its relationship with individual j 

according to whether or not it perceived the potential to acquire pathogens and/or 

information. To present the social network dynamics, the model includes a social-relation 

transfer, the percentage of transfer within social relationships. We follow Sueur & Maire 

(2014), who proposed that a rate of 20% is adequate to predict differences in social 

interactions preceding the fission or social instability of a group. We include stochasticity in 

this process and at each time step a random value is chosen from a normal distribution with 

mean equal to 20% of the social relationship and a standard deviation of 5%, hereafter 

represented by “20%±5%". 

 In our model, if pathogens are perceived, the weight of interaction between individual 

i and j will decrease by “20%±5%" (controlled by the social-decrease slider in the model 
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interface; Figure VI.3). The “20%±5%" subtracted from this relationship is distributed 

proportionally among the weights of the relationships the agent i has with all other group 

members, meaning that the stronger relationships will be reinforced to a greater degree than 

the weaker ones. Conversely, if information is perceived, the weight of interaction between 

individual i and j will increase by “20%±5%" (controlled by the social-increase slider in the 

model interface). The “20%±5%" added to this relationship is proportionally obtained from 

the weights of the relationships the agent i has with other group members (Figure VI.3). In 

this way, the weight of relationships is constrained to vary between 0 and 1, and the sum of 

the weights between individual i and all other group members must equal 1. The updating of 

relationships is given by the equations in Table VI.2.  
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Figure VI.3. Updating the weight of relationships according to the mechanisms of 
social-relation transfer (i.e. social-increase or social-decrease). If the output of the 
interaction is positive (individual i perceives information from its interaction partner j), a total 
of “20%±5%" will be reduced from the weights of the relationships between individual i and 
all other group members; excluding the interaction partner j (a). If the output of the 
interaction is negative (individual i perceives pathogens from its interaction partner j), a total 
of “20%±5%" of the weight of the relationship between individual i and j will be removed 
and distributed proportionally among the weights of the relationships that i and j have with 
the remaining group members (b). 
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Table VI.2. Update of relationships. 

 Weight of relationship (W) 

Outcome of the 
interaction 

Agent and interaction 
partner (Wij) 

Agent and other group members 
(Wiz (z≠j)) 

Individuals perceive the 
interaction partner as 
informed 

(resulting from Pinf) 

Equation (2) 

Wij(t+1) = Wij(t) +   

Equation (2.1) 

Wiz(t+1) =  

Wiz(t) – (Wiz(t) * social-increase) 

where: = 


N

jz

 Wiz(t) * social-increase 

Individuals perceive the 
interaction partner as 
infected 

(resulting from Ppat) 

Equation (3) 

Wij(t+1) = Wij(t) -   

Equation (3.1) 

Wiz(t+1) = Wiz(t) + )
 W

 W
 *  (

iz(t)

iz(t)




 N

jz

 

where: = Wij(t) * social-decrease 

Individuals perceive the 
interaction partner as 
more informed than 
infected  

(resulting from Pinfpat) 

Equation (4) 

Wij(t+1) = Wij(t) +   

Equation (4.1)     

Wiz(t+1) =  

Wiz(t) – (Wiz(t) * social-increase * 
dif) 

where: = 


N

jz

 Wiz(t) * (social-increase * dif) 

dif = abs (Pinf – Ppat) 

Individuals perceive the 
interaction partner as 
more infected than 
informed  

(resulting from Pinfpat) 

Equation (5) 

Wij(t+1) = Wij(t) -   

 

Equation (5.1) 

Wiz(t+1) = Wiz(t) + )
 W

 W
 *  (

iz(t)

iz(t)




 N

jz

 

where: = Wij(t) * social-decrease * dif 

dif = abs (Pinf – Ppat) 

Individuals do not 
perceive the status of 
the interaction partner 

(resulting from Pnone) 

No update 
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VI.3.1.b. Testing conditions 

 We tested 20 different conditions representing different combinations of My-

information and My-pathogen among group members (Figure VI.1). Values endowed to each 

individual were exclusive, meaning that the values of My-information and My-pathogen of 

one individual do not overlap. These attributes were either linearly- or power-law-distributed 

across individuals (Figure 1) and were chosen arbitrarily. Linear distributions were classified 

as being a constant function of individual identity (My-information and/or My-pathogen = 0 

or 0.5), a positive function of individual identity (rs = 1), or a negative function of individual 

identity (rs = -1), assuming a constant ordering of individual identification numbers from 1 to 

N. Power-law distributions were set with a degree exponent of γ = 10, which allowed us to 

have approximately 25% of the individuals with values between 1 and 0.1. We tested each of 

the conditions for theoretical group sizes of 10, 30 and 70 (representative of animal group 

sizes, Vital & Martins 2009) to investigate whether the emergent network properties differed 

as a function of the number of individuals involved. We ran 20 simulations, with a total of 

10000-time steps (= number of interactions) for each of the 20 conditions tested. The number 

of simulations run is conventional and is usually used to show that some conditions are 

indeed different from others. It provides a way of understanding whether the variation within 

conditions is lower than between conditions. We expected to have high variance within 

conditions when we had no predictions about the emergent networks, in contrast to some of 

the more extreme cases in which the predictions are clear and uncontroversial.  

 

VI.3.2. Data collection 

We recorded each individual’s identity, previous weights, updated weights and type of 

interaction at each time step. A matrix of interactions was then created including the total 
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number of interactions in a simulation, between each pair of individuals in the group. 

Matrices were undirected, meaning that we assumed no differences between ij and ji 

interactions. We extracted the dataset in two ways: i) the matrix of interactions separated into 

10-time periods, containing 1000 time-steps in each period and ii) the matrix of interactions 

at the end of the 10000 simulations (i.e. complete dataset). While the former allowed us to 

check the development of networks through time, the latter gave us the resulting network 

properties found in the system.  

 

VI.3.3. Global index 

To evaluate the overall influence of information (i.e. My-information) and pathogen (i.e. My-

pathogen) on the resulting global properties of the networks, we created an Information- and 

a Pathogen-Index (IndexPat). The Information-index (IndexInf) is a function of:  

 

Equation (6)                                 IndexInf = Imax – ( x̅ (Imax(z)) ) , 

where Imax is the maximum value of My-information in the group and Imax(z) regards the 

values of My-information from the remaining individuals in the group.  

 The same formula, but considering My-pathogen values, was calculated to estimate 

the IndexPat. High values of IndexInf refer to few individuals monopolizing high values of 

information compared to others. High values of IndexPat denote few individuals monopolizing 

high values of pathogen compared to others.  
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VI.3.4. Social Network Analysis 

Visualization: We constructed association networks in R v.3.3.2 (R Core Development 2016) 

with the “igraph” package v.1.0.1 (Csárdi & Nepusz 2006).  

Network indexes: We chose to estimate network metrics that have previously been 

demonstrated to influence social transmission processes in animal networks (Nunn et al. 

2015), and that capture different aspects of network structure, at both global and individual 

levels. All properties were estimated using the “igraph” package in R. 

Global metrics: 

Density: an index that estimates the ratio between the number of observed edges and the 

number of possible edges in the network (Sueur et al. 2011a). Values range from 0 to 1, with 

1 reflecting a completely-connected network with maximal density. We estimated density 

using the function “graph.density”.  

Eigenvector centralization: an index that estimates variation in connectedness across nodes in 

the network. Higher eigenvector centralization values denote a centralized network, where 

one or a few individuals monopolizes most of the interactions in the network (Kasper & 

Voelkl 2009). We estimated eigenvector centralization as: 

 

where C is the centralization index, Ci is the centrality for individual i, Cmax is the maximum 

value of Ci across all individuals and   refers to what the sum would be 

under the largest possible centralization of the network. 
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Newman modularity: an index that estimates the extent of sub-grouping in a network. We 

used a commonly eigenvector-based measure that is claimed to be independent of group size 

(Newman 2006). High levels of modularity denote greater subdivision of the social group 

into subgroups. Although modularity is commonly considered to be an important factor 

regulating disease flow (Griffin & Nunn 2012; Nunn et al. 2015), there is mixed evidence 

regarding its influence on social transmission (e.g. mammals: Nunn et al. 2015; Sah et al. 

2017). We estimated Newman modularity using the function “cluster_leading_eigen”. 

Individual metrics: 

Betweenness: the number of shortest paths that pass through the considered individual. The 

more connections that are made through one individual, the greater its value of betweenness 

becomes (Hanneman & Riddle 2005). 

Eigenvector: the weighted connectivity of an individual within its network, also considering 

the weighted connectivity of its neighbors. Individuals tied to central individuals (i.e. those 

with a high connectivity themselves) should have higher centrality than those connected to 

less central individuals (Borgatti et al. 2013). 

Strength: the sum of each node’s edge values. The individual with the most and strongest 

connections has the highest strength value (Sueur et al. 2011a).  

 

VI.3.5. Statistical analyses 

In a first set of analyses, we created general linear models (glm) using the package “car” 

v.2.2.4 in R to test for an influence of Information-index, Pathogen-index, and group size on 

the global metrics of the emergent network properties (centralization, density and 

modularity). The distribution of all response variables deviated from the Gaussian case, so we 
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applied Box-Cox transformation using the “MASS” library v.7.3-45 in R (Venables & Ripley 

2002) to fit the assumptions of the statistical models. Since our data for modularity and 

centralization included many zeros, we followed the method applied by Hyndman & 

Grunwald (2000) to deal with skewed data and calculated the log of our response variable 

summed with lambda 2 (log(y+λ2)), here equal to 2. This allowed us to correct the data using 

an approximation of values according to our own dataset. We assumed lambda values ranging 

from -2 to 2 with 0.1 intervals (Box & Cox 1964; Venables & Ripley 2002). We further ran a 

series of diagnostics to judge the validity of the models, including testing for variance 

inflation, correlation of fitted and residual values and Cooks’ distance, all of which suggested 

the suitability of our models, as no obvious violations of assumptions were detected (Field et 

al. 2012). 

 We then tested whether the values of My-information and My-pathogen, which 

characterize an individual’s status, predicted individual centrality (betweenness, eigenvector 

and strength) by applying Spearman tests with Bonferroni correction (Abdi 2007). All 

analyses were performed in R statistical software v.3.3.2, with the alpha level set at 0.05.  

 

VI.4. Results 

The association networks constructed from the data collected in five-time periods are 

illustrated in Figure VI.4, showing the network reach stability after the second-time period. It 

allows us to check for the emergence of network properties in the complete dataset. 

 We first sought to understand the influence of group size, Information- and Pathogen-

index on the emergence of global network properties (density, eigenvector centralization and 

Newman’s modularity). Our results indicate that Information-index, which quantifies the 
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overall values of My-information for a given condition, is a good predictor of density and 

eigenvector centralization (Table VI.3), meaning that the high values of information 

endowed to few individuals created a tightly connected “core” made of a few individuals who 

monopolized a significant part of the social relationships (Figure VI.5). As such, 

Information-index reduced the potential of full connectivity in the network (i.e. density). 

Group size also predicted a reduction in network density but an increase in Newman’s 

modularity: as the group size increased, the number of subgroups also increased. Pathogen-

index, however, had no influence on any of the network properties estimated in this study 

(Table VI.3; Figure VI.5). 

 Our next analyses focused on the measures of individual centrality (betweenness, 

eigenvector and strength). They demonstrated that individuals with the highest values of My-

information, and thus the largest potential benefits for others, generally were those most 

inter-connected in the group (strength: r = 0.27, p = 1.32e-15; betweenness: r = 0.64, p = 1.32e-

15; Figure VI.6). Confusingly, the opposite relationship was observed for eigenvector 

centrality (r = -0.15, p = 2.8e-11). Finally, individuals endowed with increased values of My-

pathogen were those that were avoided during social interactions, expressed by the strong 

negative correlation with strength (r = -0.19, p = 1.32e-15) and betweenness (r = -0.10, p = 

2.08e-05) centralities. We found no relationship between My-pathogen and eigenvector 

centrality (r = 0.0007, p = 1).  
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Figure VI.4. Association networks for time-periods of one simulation from conditions 4, 10, 13 and 16. Nodes (circles) represent individuals in the model 
(N = 10), with its size related to the degree centrality (i.e. number of edges connected to the individual; the higher the centrality, the larger is the size of the 
node). Edges are undirected and weighted, such that pairs with higher association indices had thicker edges. Each condition represents a prediction of the study. 
Networks were built using the package “igraph” (Csárdi & Nepusz 2006) available in R (R Core Team 2016).
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Table VI.3. Parameter estimates from linear models explaining the global network 
structure. 

Global metrics Predictors Estimate Std. error t value Pr(>|t|) a 

Density      

 (Intercept) b -0.90 0.46 -1.97 0.05* 

 Information-Index -1.29 0.52 -2.46 0.02* 

 Pathogen-Index 0.23 0.52 0.44 0.66 

 Group size (N=30) -1.14 0.49 -2.33 0.02* 

 Group size (N=70) -1.96 0.49 -3.99 1e-4*** 

Modularity      

 (Intercept) b 0.43 0.01 52.76 <2e-16 *** 

 Information-Index 0.005 0.01 0.50 0.62 

 Pathogen-Index 0.003 0.01 0.39 0.70 

 Group size (N=30) 0.02 0.01 2.47 0.02* 

 Group size (N=70) 0.03 0.01 3.65 0.001*** 

Centralization      

 (Intercept) b 334.98 56.26 5.95 1.9e-07*** 

 Information-Index 201.89 64.32 3.13 0.003 ** 

 Pathogen-Index 44.85 64.27 0.70 0.49 

 Group size (N=30) -38.10 60.21 -0.63 0.53 

 Group size (N=70) -19.75 60.18 -0.33 0.74 

a Significant codes are marked as follows: “***”p<0.001, “**”p<0.01, “*”p<0.05, “†”p<0.1. 
b All comparisons made against the intercept of the first level of each factor of the Group size 
(N = 10).  
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Figure VI.5. Global network metrics (density, Newman’s modularity and eigenvector 
centralization) and their relationship with group size, Information- and Pathogen-index. 
The color of each cell represents the group size (N = 10, 30 or 70) and the size of 
circumference denotes Pathogen-index. For a definition of Information- and Pathogen-index, 
see main text. 
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Figure VI.6. Relationship between individual centrality and the values of My-
information and My-pathogen.  

 

VI.5. Discussion 

Our study test predictions about which network properties will emerge from a scenario in 

which individuals maximize the chances of getting information but minimize the risk of 

getting infected through social interactions. We demonstrated that few individuals 

monopolizing values of information (estimated by the Information-index) favor the formation 

of centralized networks and as such, a reduction in network density. Group size also 

influenced the network structure, showing a negative relationship with network density and a 
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positive influence on Newman’s modularity: the larger is the group, the higher is the 

subdivision of the network into subgroups. The latter result is in accordance with several 

studies showing a positive relationship between group size and modularity (e.g. Griffin & 

Nunn 2012; Nunn et al. 2015; chapter 2). Based on the costs and benefits used in our model, 

optimal social relationships thus seem to be dependent primarily on the information each 

individual can obtain through social interaction.  

 From an evolutionary perspective, these results shed light on how an individual’s 

decisions affect the development of social networks. Surely, in complex social systems, 

network structure is molded by numerous intrinsic and extrinsic factors (such as age, sex and 

morphometric characteristics: Croft et al. 2005), but our parsimonious model demonstrated 

how individuals might behave if constrained to deal solely with the potential trade-off 

between information and pathogen transmission. This is important since the acquisition of 

information is linked with chances to quickly adapt to a changing environment, which is 

expected to increase an individual’s fitness (e.g. Dall et al. 2015). On the other hand, socially-

transmitted pathogens are among the major causes of mortality (e.g. Walsh et al. 2009), and 

the removal of infected individuals or changes in their own behavior, or the behaviors of 

others in response to them, causes changes in the network structure (e.g. Carne et al. 2013; 

Lopes et al. 2016). Our results thus shed light on the mechanisms that cause variation in 

social structure and demonstrate how individual and global network metrics may reflect 

optimal social relationships, which is dependent upon the level of information with which 

each individual is endowed. 

 Individuals in real systems have developed many behavioral strategies to avoid 

infection (e.g. hygienic behavior: Sarabian & MacIntosh 2015). In this chapter, we focused 

specifically on social-avoidance, as it provides a direct response to the behavior or status of 

an infected conspecific (Loehle 1995). In group-living animals, social avoidance plays a role 
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in social cohesion among group members, which in turn affects pathogen transmission. 

Evidence that individuals can identify infections in conspecifics and modulate their own 

degree of interactions has grown in the past years (e.g. Kiesecker et al. 1999; Poirotte et al. 

2017). Nonetheless, this remains an under-investigated area with respect to most mammalian 

species, including primates (e.g. Nunn & Altizer 2006). 

 We acknowledge that there are limitations in our study, including our ability to 

compare our results with real data. We suggest that future studies aiming to test our model 

consider social insects as models of study. Investigations have shown that wasps and ants 

have an efficient system to avoid socially-transmitted pathogens (e.g. corpse removal, Cremer 

et al. 2007; Stroeymeyt et al. 2014), and at the same time exhibit an extensive network of 

contacts through which they efficiently transmit information. Manipulating the contact 

network and the amount of information and pathogen each social insect is endowed with may 

provide a good opportunity to evaluate the predictions obtained from our Optimal 

Relationships Model. 

 Finally, it is well known that animals must deal with several trade-offs inherent to 

sociality, such as the increased foraging efficiency but higher intra-group competition, and 

the trade-off examined here involving information and pathogen sharing. Understanding how 

individuals respond to a particular trade-off should illuminate the mechanisms that favor 

social relationships and, more specifically, highlight the structural composition of a network 

if individuals are aiming to maximize the benefits (i.e. information) and minimize the costs 

(i.e. pathogen) of being social. Our study provides the first-step towards understanding 

variation emerging in network properties due to a potential optimization of the trade-off 

between information and pathogen transmission.  
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VII. DISCUSSION 

“The most beautiful thing we can experience is the mysterious. It is the source of all 

true art and science. He to whom the emotion is a stranger, who can no longer pause 

to wonder and stand wrapped in awe, is as good as dead —his eyes are closed”.  

Albert Einstein, 1930 

 

In my thesis, I investigated the interface between network topology and social transmission, 

incorporating data from group-living animals and integrating them with data from simulated 

networks. Specifically, I investigated the social structure of wild primate groups to 

understand the influence of central individuals in the chain of pathogen transmission (chapter 

1), the effect of global network properties at different stages of an outbreak (chapter 2), the 

link between network efficiency and modular structure (chapter 3) and finally, I propose an 

optimal scenario for relationships where individuals minimize risk of contagion while 

maximizing potential information acquisition (chapter 4). Addressing these questions through 

a combination of classical methods, like sampling of social behavior (Altmann 1974), 

network analysis and theoretical modeling approaches (i.e. individual-based modeling; 

Whitehead 2008a; Railsback & Grimm 2012), allowed me to investigate more deeply the role 

of complex social structure on social transmission processes, and vice versa. My results on 

primate networks strengthen the evidence supporting social structure as a key feature 

mediating social transmission, while the individual-based model I developed provides insight 

into how individual characteristics related to their likelihood of transmitting information or 

pathogens might influence the social structure. 
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VII.1. On the interface between social structure and social 

transmission  

Hinde’s (1976) seminal paper introduced a conceptual framework for associations at the 

individual level and their influence on the emergence of social structure and variation therein. 

More recently, a scheme proposed by Cantor & Whitehead (2013) extended Hinde’s 

conceptual framework by incorporating bidirectional effects between social structure and 

information flow: group structure influences the way information is transmitted, while the 

flow of information in turn can affect the social structure. For example, similarities in 

behavior, as expressed in the vocal repertoires of cetaceans or the opinions of humans, cause 

clustering of individuals. Within these groups, associates are also more likely to share 

information (Iñiguez et al. 2009; Rosvall & Sneppen 2009, Cantor et al. 2015). While the 

relationship between network structure and information flow has been empirically 

demonstrated in animal social networks (human: Iñiguez et al. 2009; birds: Farine et al. 

2015a, Kulahci et al. 2016; non-human primates: Voelkl & Nöe 2010), multiple lines of 

evidence also suggest the influence of social structure on parasite transmission (human: Jones 

& Salathe 2010; lizards: Godfrey et al. 2009; ungulates: VanderWaal et al. 2014a,b; non-

human primates: Nunn & Altizer 2006; Rushmore et al. 2017, honeybee: Naug 2008). 

Nevertheless, the dynamic feedback loop between social structure and social transmission has 

been discussed mainly in terms of information as the dominant network flow, specifically as 

it pertains to cultural transmission (Cantor & Whitehead 2013). 

 Here, I propose to extend this framework of social transmission and incorporate the 

costs of socializing in networks by including the spread of socially-transmitted pathogens 

(Figure VII.1). Instead of considering transmission as the final factor in the loop, or assume 

that information flow is the only relevant factor, I suggest simultaneous examination of 
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information and pathogen transmission as explicit and opposing entities. Each feed back into 

individual behavior and thereby influence social structure. Indeed, while access to crucial 

information is expected to drive individuals to cluster around knowledgeable individuals, 

affinity for enemy-free space, i.e. avoidance of potential social sources of infectious disease, 

should operate to reduce connectivity in a network. This presents a classical fitness for trade-

off for individuals that aim to exploit social relationships for their own benefit on the one 

hand while avoiding potential costs on the other. While information transmission has been 

well placed into the classical framework proposed by Hinde (1976; Box VII.1), whether and 

how parasite and pathogen pressures interact with social structure in ecological and 

evolutionary terms, e.g. via their dependence on social contact or proximity for transmission, 

has received far less attention. 
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Figure VII.1. Schematic representation of the feedback loop between social interaction 
(or social relationship), social structure and social transmission. Individual behavior leads 
to different patterns of social interactions, that in turn influence and are influenced by social 
structure and social transmission. The boxes in grey represent the scheme proposed by Hinde 
(1976), and in blue the implementations proposed by Cantor & Whitehead (2013), which 
include the effect of information transmission in the loop (specifically cultural transmission) 
and the incorporation of the terminology of social network analysis (noted at right in the 
figure). The orange box and green triangle reflect the implementation I propose in this thesis: 
a simultaneous examination of information and pathogen flow as explicit and opposing 
entities with the network properties representing the trade-off between both transmission 
processes. Diagram adapted from Hinde (1976) and Cantor & Whitehead (2013).  

 

 Infectious agents that are transmissible via direct contact (such as influenza, Ebola, 

HIV/AIDS, etc.) depend on the host network for propagation (Pastor-Satorras & Vespignani 

2001; Meyers et al. 2005; Guimarães et al. 2007; Salathé & Jones 2010; MacIntosh et al. 

2012; Duboscq et al. 2016). Structuring of social relationships often creates heterogeneous 
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contact patterns that differentially affect the spread of parasites and pathogens (e.g. microbial 

transmission pathways in giraffes: VanderWaal et al. 2014a). At the same time, parasite and 

pathogen acquisition affects social structure directly through mortality rates, as well as 

indirectly depending on the degree to which individuals avoid social interactions involving 

infected individuals (i.e. avoidance behavior4; Krause & Godin 1994; Keisecker et al. 1999; 

Behringer et al. 2006; Poirotte et al. 2017). For example, Caribbean spiny lobsters (Panulirus 

argus) avoid individuals that are infected with PaV1, a lethal virus (Behringer et al. 2006), 

while wild mandrills show some avoidance toward grooming group members infected with 

and shedding gastrointestinal protozoan parasites (Poirotte et al. 2017). Group size is also 

considered an influencer of disease spread, and there is evidence that social animals change 

their activity budgets, including social contact, depending on group size (e.g. colobus 

monkeys, Gogarten et al. 2014). Although the relationship between group size and infection 

risk is inconsistent across species (Rifikin et al. 2012; Ezenwa et al. 2016), multiple examples 

of this effect suggest that individuals in larger groups may be more exposed to pathogens 

(Altizer et al. 2003). Therefore, pathogens that are or can be transmitted through social 

channels may negatively affect social cohesion, directly or indirectly, by reducing social 

connectivity, while social structure continues to set the conditions under which individuals 

are exposed to potentially deleterious infectious agents, creating a bidirectional feedback 

effect. 

 

 

___________________________________________________________________________
4 AVOIDANCE: The term “avoidance” refers to actions taken by an animal to reduce the 
chances of becoming infected with pathogens or parasites (Curtis 2014). In this thesis, I use 
the term “social avoidance” to indicate avoidance of social contact or proximity with an 
infected individual.  
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 In this thesis, I cover the first level of Hinde’s framework – how individual attributes, 

such as age, dominance rank and family unit, affect social structure – in chapter 1. I 

demonstrate that group structure alters parasite transmission in animal-derived and theoretical 

networks (chapters 1, 2 and 3), covering the latter part of the social scheme proposed by 

Cantor & Whitehead (2013), with the addition of transmission costs not addressed by these 

authors. And finally, I explicitly demonstrate that the likelihood with which each individual is 

expected to transmit information and infectious agents drives social interactions, potentially 

in a way that optimizes the resultant social network (social structure) to deal with the costs 

and benefits of group-living (chapter 4). Behavioral ecologists have been aware of the 

complex relationships formed between individuals, but few have attempted to evaluate the 

resulting social system quantitatively, accounting for the interplay between these complex 

relationships (e.g. Sueur 2008, Cantor 2016, the current thesis). In addition to an extensive 

evaluation of both social structure and transmission dynamics underlying primate networks, I 

believe my work is the first to investigate the trade-off between information and parasite 

transmission in the social interaction-social structure scheme. 
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Box VII.1. How information transmission affects social structure: a brief summary 

Information transmission has been demonstrated both theoretically and empirically to cause 

clustering of individuals (Rosvall & Sneppen 2009; Cantor & Whitehead 2013). In the 

context of cultural transmission, for instance, it is known that some individuals share a given 

behavior while others do not (Franz & Nunn 2009). Such phenomena cause variability in 

social connections to the effect that individuals sharing the same behavior form strong links 

with each other, forming subgroups that increase the overall subdivision (i.e. estimated 

throughout network modularity) in the group, as well as social complexity (Boccaletti et al. 

2006; Daura-Jorge et al. 2012; Cantor & Whitehead 2013). Culture, then, directly affects 

social structure, as individuals preferentially interact with others displaying similar behavior 

patterns (Centola et al. 2007). 

 

VII.2. Do social network properties reflect a trade-off between 

information and pathogen transmission? 

One of the main goals of my thesis was to investigate whether the network topology (social 

structure) would reflect a trade-off between information and pathogen flow. Besides the 

evidence that social structure mediates transmission processes involving information and/or 

infectious agents (Kappeler et al. 2013; Duboscq et al. 2016a; White et al. 2017), it has long 

been argued that some properties of the network might favor or constrain transmission, or act 

in both ways (Cantor & Whitehead 2013; Nunn et al. 2015). Among the global network 

properties examined in the first and second chapters of my thesis, many (e.g. modularity, 

centralization, diameter) interact with group size to predict pathogen spread: increased values 

of modularity and diameter, which are both expected to increase in larger groups, caused 
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declines in pathogen spread, while high centralization had mixed effects depending on 

pathogen transmissibility. Clustering coefficient negatively affected pathogen transmission, 

but its effect appears independent of group size. These results together indicate that network 

properties can be used as a powerful estimation of transmission processes in animal societies, 

with each property potentially working as a buffer or facilitator of social transmission. If 

individuals optimize their relationships to deal with costs and benefits of social relationships, 

network properties may reflect the potential trade-off between information and pathogen 

transmission. 

My third and fourth chapters provide evidence that the structure of the network might be 

optimized to favor information flow and decrease contagion risk. For example, a peak at 

intermediate levels of modularity predicted high levels of network efficiency in both 

theoretical and empirical networks (chapter 3). The predictions generated in the simulations 

from this chapter, where I identified a non-linear relationship between network efficiency and 

modularity, were supported by empirical observations from non-human primate networks. 

This suggests that we might expect to find real-world networks in which values of modularity 

might vary across some range if social interactions are occurring to balance costs and benefits 

of social relationships. In the last chapter of my thesis, I showed that the likelihood with 

which individuals are expected to share information or pathogens with social partners might 

lead to the optimization of social networks, with relationships being formed and broken 

according to the different outcomes of social interactions. Highly centralized and low-density 

networks reflected a social structure optimized to avoid infectious agents and maximize 

information attainment in an artificial environment (chapter 4). In summary, if the topology 

of the network can be optimized in a way that balances the costs and benefits of social 

relationships, it reflects the variability in individual social behavior towards balancing the 

benefits and costs of social contact, as has been empirically demonstrated (Poirotte et al. 
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2017; Fruteau et al. 2009). Social networks are demonstrably dynamic (Zimmermamm et al. 

2004; Castellano et al. 2009), and interaction costs such as parasite and pathogen acquisition 

(Poirotte et al. 2017) as well as interaction benefits such as food availability (Fruteau et al. 

2009) each cause variation in individual decisions about with whom to interact, leading to the 

emergent social structure observed.  

 In this thesis, I do not intend to suggest that there is one single network structure 

whereby individuals optimize the costs and benefits of social relationships. Instead, I propose 

that the degree to which individuals interact socially varies dynamically, plausibly to 

optimize information flow and minimize connection costs, neither of which will be static 

across time nor stable across environments. Despite my focus on static systems (represented 

by one network per species of study and time-invariant conditions in the individual-based 

model), social networks encode dynamic relationships. Network topology evolves, as 

changes in node states affect edges, and changes in edges affect node states (for a review see 

Gross & Blasius 2008 and Castellano et al. 2009  

 

VII.3. Individual flexibility in social behavior, social transmission 

and the evolution of sociality  

Individual flexibility in social behavior arises from individuals showing changes in their 

interactions with conspecifics over time or under different circumstances. Flexible 

interactions allow individuals to deal with conflicts, social and environmental changes, which 

ultimately may result in significant increases in individual fitness. Social flexibility is also a 

term that denotes changes in individual behavior, but it is expected to happen only if 

individual behavior affects social organization (i.e. composition of the group) that 

consequently may influence the other components of the social system: social structure and 
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mating system (i.e. who mates with whom; Schradin et al. 2012). For example, African 

striped mice (Rhabdomys pumilio) change their social strategies according to population 

density: high density implies greater competition (Schradin 2004), which leads to small home 

ranges (Schradin & Pillay 2006), while low density drives solitary breeding as the best 

reproductive tactic to avoid reproductive competition (Schoepf & Schradin 2012).  

 Although individual flexibility in social behavior and social flexibility are inter-linked 

terms, species that are flexible in their social behavior might not necessarily exhibit social 

flexibility, or vice-versa. For example, primates are considered highly flexible mammals 

(Schradin et al. 2013), resulting in many changes in the patterns of social interaction 

observed, but few species, such as marmosets and tamarins, show social flexibility that leads 

to changes in the social organization (Garber 1997). In animal societies, variation in social 

behavior can occur between individuals, due to genetic variation and/or developmental 

plasticity, but differences within an individual are considered a consequence of individual 

flexibility in social behavior and/or social flexibility (for a review see Schradin et al. 2013; 

Figure VII.2). In this thesis, I am interested in how changes in individual behavior, in a 

broader sense, affect social structure and consequently social transmission. 
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Figure VII.2. Schematic representation of the mechanisms influencing individual 
behavior and their influence on social system (social organization, mating system and 
social structure). 

 

 In the first and fourth chapters of this thesis, I investigated how individual attributes 

shape social structure. I showed that the emergent properties of a network are a consequence 

of individual behavior. In macaques, for example, where species are classified into a gradient 

of social tolerance (Thierry 2007), more egalitarian species (e.g. Tonkean macaques) have 

more connected networks than species with a despotic social style (e.g. Japanese macaques), 

which leads to increased levels of modularity in the latter (Sueur et al. 2011b, 2012; 

Pasquaretta et al. 2014). This is due to aggressiveness: strict hierarchies emerge when 

individuals are more aggressive and the risk of injury is higher (Thierry 2007). Individuals 
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differ in many ways in their social activities, and those differences affect the social structure. 

The flow of information and/or pathogens in animal networks is then a consequence of social 

structural patterns, as I demonstrate in chapters 1, 2 and 3.   

 From an evolutionary perspective, changes in social structure can affect individual 

fitness in many ways. For example, as social interactions are reduced with the isolation of 

sick individuals, social avoidance will limit the spread of pathogens through groups or 

populations. Surely, social animals exhibit multiple strategies and tactics to deal with 

pathogen transmission (e.g. the immune system), but the identification of sick individuals can 

be an evolutionary advantage allowing individuals to avoid contagion. Although the 

mechanisms from which animals identify sick individuals are still unclear, demonstrations of 

social avoidance in mammalian species are increasing (e.g. olfactory recognition of sick 

individuals, Poirotte et al. 2017). Yet, it is important to bear in mind that reduced social 

interaction of diseased hosts can also occur as a byproduct of lethargy caused by the 

pathogen, and the decrease of social interactions may represent the inability of sick 

individuals to maintain proximity to healthier group members (Huffman et al. 1997). In social 

insect colonies, however, in which social immunity is better understood, cooperation between 

group members constrains disease spread throughout the colony via several mechanisms, 

such as not cannibalizing infected corpses and guarding nest entrance to bar infected 

individuals from entering (Cremer et al. 2007; Stroeymeyt et al. 2014). Parasite transmission 

is a source of mortality and may also influence the social structure, as it causes the removal of 

individuals from the network.  

 Among the several trade-offs individuals must face in social groups, such as enhanced 

predator avoidance but increased intra-group competition and increased exposure to parasites 

but increased foraging efficiency, I focused on the trade-off between information and 

pathogen transmission caused by the social contact or proximity among individuals. From 
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this perspective, individuals that exhibit flexibility in their social behavior and that better 

adjust their behaviors to meet the challenges inherent in social relationships will be better 

able to increase their own fitness.  

 

VII.4. Insights from non-human primate networks 

My doctoral research used primates as the main model of study, building on the vast amounts 

of social and behavioral information already available for this taxonomic group. I showed 

how individual centrality can affect social transmission processes, and that generalizations 

about group structure must be made carefully when attempting to understand disease 

dynamics. In the past decade, network analysis has emerged as a powerful way to investigate 

social behavior in primates (Brent et al. 2011; Sueur et al. 2011a; for a recent review see 

Rushmore et al. 2017), as well as other taxa (e.g. e.g. ants: Pinter-Wolmann et al. 2011; 

beetles: Formica et al. 2012; shark: Mourier et al. 2012; dolphins: Lusseau 2003; giraffes: 

Carter et al. 2013; birds: Oh & Badyaev 2010; meerkats: Madden et al. 2009). Still, few 

studies have addressed research questions at the scale of multiple species and/or multiple 

groups. Among the exceptions to this, Nunn et al. (2015) highlighted important 

considerations regarding the interaction between group size and modularity in predicting 

infectious disease spread, which is largely a social process. Their framework, the “social 

bottleneck hypothesis”, illustrates how network structure can decrease disease transmission in 

modular groups. Chapters 2 and 3 of this thesis were devoted to exploring this hypothesis, 

wherein I showed the variable importance of network properties in the advance of an 

outbreak and pathogen transmissibility (chapter 2), as well as that a peak in network 

efficiency is predicted at intermediate values of modularity (chapter 3). Addressing 

comparative studies is important not only to draw generalizations about our closest living 
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relatives, but also to understand, from an evolutionary perspective, the strategies species 

might have developed to deal with the trade-offs of sociality. Thereafter, I extended my 

questions to investigate the development of social networks when individuals strictly face the 

potential trade-off between information and pathogen transmission (chapter 4).   

 

VII.5. SNA and IBM: combining a methodological approach in 

behavioral ecology 

Quantifying social networks has proven an invaluable way to gain insight into the 

relationships between social structure and social transmission (Whitehead 2008a; Duboscq et 

al. 2016a; Rushmore et al. 2017). Besides the fact that social network analysis (SNA) 

provides a refined evaluation of the complexity in the social systems in which individuals are 

embedded, it also allows researchers to explore how fine-scale social structure can affect 

ecological and evolutionary processes (e.g. host-pathogen interactions and animal dispersal, 

Kurvers et al. 2014). Furthermore, SNA can be integrated easily with modeling to improve 

our understanding of how such complex systems evolve. For example, individual-based 

modeling (IBM) is a powerful tool to approximate real systems when the question under 

study is too complex or the model system evolves too slowly to be analyzed (Railsback & 

Grimm 2012). The advancement of quantitative techniques has thus allowed investigators to 

create purposeful representations of some real and complex systems, with clear applications 

in epidemiology and public health policy, but also wildlife ecology and conservation (Salathé 

& Jones 2010, Railsback & Grimm 2012, White et al. 2017). However, the combination of 

these methodologies remains under-utilized, and is especially uncommon in the field of 

behavioral ecology. 
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 One particularity of my thesis is the application of a unique combination of 

approaches: observational field studies, network analysis and theoretical modeling. In this 

work, I explored disease outbreak scenarios by simulating the spread of theoretical pathogens 

with different degrees of transmissibility in empirical primate networks from multiple groups 

and species (chapters 1 and 2). I then evaluated the emergence of variation in network 

structure under variable degrees of relationship costs and benefits (chapter 3 and 4). Social 

network analysis not only provided information concerning the mechanisms of disease 

transmission within a group, but also showed how social structure varies depending on 

factors such as group composition and size. Moreover, my methodology and results could be 

applied more generally to any living social group with a broad array of ultimate applications, 

such as animal conservation and public health (e.g. Salathé & Jones 2010; Snijders et al. 

2017). Drawing upon analytical tools applied to behavioral ecology was shown to improve 

our understanding of complex social systems. Incorporating observational and theoretical 

modeling work is a promising and perhaps even ideal next step in behavioral ecology, 

specifically to reveal patterns within complex social systems. 

 

VII.6. Limitations of study 

To afford a more comprehensive evaluation of the relationship between information and 

parasite transmission, there is room for improvement in at least two basic aspects not 

addressed in this thesis: i) data collection from individuals of all age classes and ii) 

experimental validation of the individual-based model I created, the Optimal Relationships 

Model. First, the more refined is the data that one can obtain to create the social networks 

(including age classes other than sub-adults and adults, which by and large formed the basis 

of the networks used in this thesis), the greater will be our ability to understand the dynamics 
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of transmission on those networks. Many studies have focused on the social networks of sub-

adults and adults, often excluding immature group members (Lehmann et al. 2007; Bret et al. 

2013; Duboscq et al. 2016b). The biggest reason for excluding other age categories is the 

difficulty of collecting reliable and resolute data from younger age classes, e.g. because of 

identification biases. However, recent studies have shown that juveniles can significantly 

contribute to the understanding of age and sex-specific social roles in the group. For example, 

the simulated removal of juveniles from a network of wild olive baboons (Papio anubis) 

significantly affected the resulting group structure, which leads to an incomplete 

representation of age- and sex-related social roles in animal societies (Fedurek & Lehman 

2017). 

 Another goal of future studies might be the validation of the Optimal Relationships 

Model. Although it is logistically unfeasible to perform experiments over the large temporal 

scales relevant to social mammals, I believe a more simplified system, such as that of insects, 

might provide the adequate conditions to physically manipulate the costs and benefits of 

social relationships, and ultimately the network efficiency itself. The social system I 

modelled is a simplified representation of the complex organization observed in animal 

societies, and I am aware that multiple factors can simultaneously influence individual 

decisions (e.g. resource availability, age) - factors varying according to each species. By 

testing this model in a less complex social system, I believe I will be able to further 

understand to what degree the trade-off between information and parasite transmission affects 

individuals’ decisions, and consequently, the evolution of social networks.  
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VII.7. Research contributions 

The outcomes of my thesis may be of interest to researchers in many disciplines, including 

behavioral and evolutionary ecology, network science, and epidemiology. Besides the 

contributions this research brings in highlighting social transmission processes, I believe my 

findings are also of importance to a non-academic audience interested in animal societies and 

its evolution, epidemiology and conservation. The following paragraphs frame the specific 

contributions of my doctoral thesis research at three distinct levels.  

 The first application of my thesis regards the relationship between social structure and 

the evolution of society. One of the main questions in behavioral and evolutionary biology 

has been to understand how social animals deal with costly relationships. I present network 

properties that constrain or favor social transmission according to pathogen transmissibility, 

and I bring insights into the potential trade-off between information and pathogen 

transmission. By creating the Optimal Relationships Model, I could track back the formation 

of social structures to make inferences about the effects of individual decisions on the 

emergent properties of networks. My findings therefore add a fundamental piece towards the 

big puzzle surrounding how animal societies evolved, and more specifically, how variation in 

social behavior can drive changes in the emergent properties of social structure. 

 Second, my research adds important contributions to the picture of network 

epidemiology. My study design using data from 68 groups of 21 non-human primate species 

allowed me to draw strong comparisons and highlight variables that play similar roles in the 

different groups and species. My findings show that interactions between group size and 

network properties predict outbreak size, but their influence is dependent upon the stage of 

the outbreak and the transmissibility of the pathogen (e.g. modularity negatively affects 

prevalence either at the initial or advanced stages of an outbreak when a moderately- or 
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highly-contagious pathogen is introduced into the system, respectively). This result highlights 

that epidemiological models aiming to get a detailed picture of the dynamics of the system 

should take into consideration the different stages of an epidemic and the variation in effects 

of different network properties. Identifying optimal conditions or network topologies that 

constrain disease spread is one of the most important questions in network science, 

epidemiology and public health. The current study brings important theoretical insights 

through a comparative perspective to determine factors underlying infectious agent 

transmission in social organisms. 

 Finally, my findings have application in the design of pathogen control strategies for 

wildlife conservation and public health programs. I first provided support for the estimation 

of individual centrality as a key factor in the chain of social transmission, and showed that 

indirect connections (i.e. betweenness and eigenvector centralities) are the most predictive of 

group-level disease spread, whereas direct connections (i.e. strength centrality) are a major 

predictor of each individual’s risk of acquiring an infection. Yet, I also demonstrated that 

slightly different relationships between individual and social attributes (such as age and 

dominance rank in Japanese macaques) in some networks appear less relevant than they are 

in others in affecting transmission metrics (e.g.: percentage of infected individuals and 

latency to whole group transmission). My findings thus suggest that generalizations about the 

importance of network position in pathogen flow is somehow problematic and should be 

made with caution. 
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VII.8. Future perspectives: where do we go from here?  

 

VII.8.1. Understanding the mechanisms driving sociality 

In my thesis, I have investigated the link between social structure and social transmission, but 

I did not focus on how the social environment (i.e. predation risk, feeding competition) drives 

social structure. It is well-known that parasites may either drive social structure (Freeland 

1976) and/or be “passengers” of host sociality (MacIntosh et al. 2012), but how natural 

enemies (i.e. predators and parasites) or feeding competition modulate group structure is still 

an under-explored topic. In response, I propose to expand the fourth chapter of my thesis by 

increasing the complexity of the Optimal Relationships Model to include numerous 

competing external pressures such as the spatially-explicit availability of resources and 

predation, as well as infection risk, in addition to demographic factors such as birth, death, 

immigration and emigration, to further understand how social structure evolves and 

ultimately how it affects social transmission. This investigation will help to predict patterns 

of individual behavior under a complex of environmental pressures, and may shed light on 

our understanding of social evolution. 

 

VII.8.2. Targeted vaccination in disease outbreaks: a wildlife 

conservation approach 

The indication that trait-based vaccination (e.g. age, dominance rank, family size) could be 

used as a proxy for centrality to optimize pathogen control in wild chimpanzees (Rushmore et 

al. 2013, 2014) is providing future directions for research into population management and 

conservation strategies. This is important because disease interventions such as network-
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based vaccinations in wildlife populations are being considered more and more given the 

threat of extinction facing many animals globally (Salathé & Jones 2010; Sih et al. 2017; 

White et al. 2017). However, analysis of the networks in my thesis highlights that using a 

trait-based vaccination strategy, which is thought to enhance the efficacy of the intervention 

because it should target key individuals (“super-spreaders”), might have less optimal results 

than one might hope in preventing further disease spread in cases with even just one or two 

outlying individuals. Indeed, Rushmore’s (2013, 2014) conclusions are limited to only one 

habituated chimpanzee group, highlighting the need to validate those perspectives at a 

broader comparative scale. Thus, I propose to move from these preliminary observations of 

one or a few social groups to a much deeper understanding of the role of individual- and 

group-level traits in disease spread, adding critical knowledge to inform future conservation 

and disease management strategies (Figure VII.3).  

 

 

Figure VII.3. Simplified proposed plan of research. 
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VII.8.3. Are certain populations more vulnerable to disease 

outbreaks? 

The field of network science has provided invaluable contribution on how social structure 

affects epidemic behavior (Keeling & Eames 2005; White et al. 2017; the current thesis). 

Anthropogenic activities, such as habitat fragmentation, have been documented to influence 

social structure, to have direct implications for group dynamics (e.g., decrease dispersal 

distance) and social systems. Habitat fragmentation is considered one of the major causes of 

reduced connectivity among groups/populations, and is hypothesized to significantly impact 

population health (Chapman et al. 2006; Bonnel et al. 2016), and consequently species 

survival (Chapman et al. 2013). Currently, 70% of the global remaining forest is within 1km 

of the forest’s edge, due to anthropogenic causes of fragmentation (Haddad et al. 2015). A 

ramification of my work may be to assess whether primates are sensitive to environmental 

changes that are universal (e.g. higher temperature) or whether they are more sensitive to 

changes that are local (e.g. fragment isolation), which would complicate predictions of how 

primates in general will respond to landscape fragmentation. To answer this question, I 

propose an integrative approach combining i) experimental studies, ii) field studies, and iii) 

theoretical modeling to investigate the role of landscape change on the social structure of 

non-human primates and their vulnerability to stochastic processes such as disease outbreaks. 

To achieve this goal, an international network of collaborators has been created, combining 

experts from various field sites in the world, such as Brazil, China and Uganda (Figure 

VII.4).  
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Figure VII.4. Schematic distribution of the studied species (a) and proposed study 
design to investigate the landscape’s influence on primate networks (b). 

 

VIII. Concluding remarks 

(English) The research presented in this thesis investigated the relationship between social 

structure and social transmission with the ultimate aim of understanding how social animals 

deal with the potential trade-off between acquiring information and socially-transmitted 

pathogens. By encompassing the fields of behavioral ecology, network science and 

epidemiology, this work suggests that i) individual centrality in a social network determines 

the speed of pathogen transmission but also the probability of becoming infected, both of 

which are biased to central individuals; ii) some global network properties favor pathogen 

transmission (e.g. density), some constrain it (e.g. modularity and diameter), and still others 
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have mixed effects (i.e. centralization), depending on the stage of the epidemic and the 

pathogen’s transmissibility; iii) network efficiency peaks with intermediate values of group 

substructure in theoretical and empirical networks; and, iv) variation in network properties is 

a consequence of individual decisions that reflect the trade-off between collecting 

information and avoiding infection.  

 Overall, my thesis reveals the importance of looking at mechanisms of social 

transmission with the potential to understand the complexity underlying individual 

relationships and, consequently, the great diversity in social structure observed across animal 

societies. I demonstrated that emergent network properties might reflect a trade-off between 

information and pathogen transmission if individuals optimize the costs and benefits of their 

relationships. Although this hypothesis arises from the results of a simulated system, 

empirical evidence does exist showing that individuals change their social relationships to 

increase benefits and decrease costs of social relationships. Social networks are dynamic, 

with individuals changing social relationships according to the behaviors and status of 

conspecifics. My thesis, besides contributing further to our understanding of pathogen 

transmission in empirical networks, represents the first step towards a more comprehensive 

framework for examining the potential trade-off between between the myriad connection 

costs and benefits inherent in animal societies. 

(Français) Les recherches présentées dans cette thèse se sont intéressées aux relations entre 

la structure sociale et la transmission sociale dans le but ultime de comprendre comment les 

sociétés animales effectuent un compromise entre l’acquisition de l’information et la 

transmission sociale des pathogènes. Fruit d’un travail interdisciplinaire, à la croisée de 

l’écologie comportementale, de la science des réseaux et de l’épidémiologie, ce travail 

suggère que i) la centralité des individus au sein du réseau social determine la vitesse de 

transmission des pathogènes mais également la probabilité d’être infecté; ii) certaines 
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propriétés globales du réseau favorisent la transmission de pathogènes (comme la densité) 

alors que d’autres vont la constraindre (comme la modularité et le diamètre) et certaines vont 

avoir un effet different (comme la centralité) selon l’étape de l’épidémie et le capacité de 

transmission du pathogène; iii) un pic d’efficacité du réseau à des valeurs intermédiaires de 

sous-structure de groupe dans des réseaux théoriques et empiriques; et iv) la variation des 

propriétés du réseau est la consequence de décisions individuelles réflétant le compromis 

entre la collecte d’information et l’évitement de l’infection. 

Globalement, ma thèse révèle l’importance d’étudier les mécanismes de transmission sociale 

et son potentiel dans la compréhension de la complexité sous-jacente aux relations 

individuelles et, par conséquent, de la compréhension de la diversité des structures sociales 

observée à travers les sociétés animales. J’ai ainsi démontré que les propriétés de réseau 

émergentes pourraient refléter un compromis entre transmission de l’information et 

transmission de pathogènes dans le cas où les individus optimisent les coûts et bénéfices de 

leurs relations. Bien que cette hypothèse est née des résultats d’un système simulé, des 

preuves empiriques montrant que les individus changent leurs relations sociales dans le but 

d’en augmenter les bénéfices et de diminuer leurs coûts. Les réseaux sociaux sont ainsi 

dynamiques, avec des individus changeant leurs relations sociales selon leurs comportements 

et le statut de leurs conspécifiques. Ma thèse, en plus de contribuer à la compréhension de la 

transmission des pathogènes dans des réseaux empiriques, représente la première étape dans 

le développement d’un cadre de recherche plus large afin d’examiner le potentiel compromis 

entre la myriade de coûts et bénéfices liés à la vie en groupe dans les sociétés animales. 
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Modeling Infection Transmission in Primate Networks to Predict
Centrality-Based Risk
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Social structure can theoretically regulate disease risk by mediating exposure to pathogens via social
proximity and contact. Investigating the role of central individuals within a network may help predict
infectious agent transmission as well as implement disease control strategies, but little is known about
such dynamics in real primate networks.We combined social network analysis and amodeling approach
to better understand transmission of a theoretical infectious agent in wild Japanese macaques, highly
social animals which form extended but highly differentiated social networks. We collected focal data
fromadult females living on the islands ofKoshimaandYakushima, Japan. Individual identities aswell
as grooming networks were included in aMarkov graph-based simulation. In thismodel, the probability
that an individual will transmit an infectious agent depends on the strength of its relationships with
other group members. Similarly, its probability of being infected depends on its relationships with
already infected groupmembers. We correlated: (i) the percentage of subjects infected during a latency-
constrained epidemic; (ii) the mean latency to complete transmission; (iii) the probability that an
individual is infectedfirst among all groupmembers; and (iv) each individual’smean rank in the chain of
transmission with different individual network centralities (eigenvector, strength, betweenness). Our
results support the hypothesis that more central individuals transmit infections in a shorter amount of
time and tomore subjects but also become infectedmore quickly than less central individuals. However,
we also observed that the spread of infectious agents on the Yakushima network did not always differ
from expectations of spread on random networks. Generalizations about the importance of observed
social networks in pathogen flow should thus be made with caution, since individual characteristics in
some real world networks appear less relevant than they are in others in predicting disease spread.
Am. J. Primatol. 9999:1–13, 2016. © 2016 Wiley Periodicals, Inc.

Key words: social relationship; wildlife epidemiology; agent-basedmodel; social network analysis

INTRODUCTION

In a social group, each individual is part of a
network that varies in size, distribution, and dynamics
of relationships. Observed interactions between social
animals are the outcomeof trade-offs between the costs
andbenefits of sociality [KrauseandRuxton, 2002] and
oneclear cost ofbeingsocial is thatmanypathogensare
transmitted via social interactions [Corner et al., 2003;
Drewe et al., 2011; Otterstatter and Thomson, 2007].
Heterogeneity in host associations, for example,
may influence the flow of disease-causing organisms
through populations andmediate the risk of contagion
across individuals [Newman, 2002; Nunn and Altizer,
2006]. In consequence, there has been increased effort
to investigate how association patterns and social
positions of each individual in a network can affect
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disease transmission, via experimentation, and/or
modeling, in a vast range of species (humans [Bansal
et al., 2007; Salath�e and Jones, 2010], non-human
primates [Carne et al., 2014; Griffin and Nunn, 2012],
ungulates [VanderWaal et al., 2014], reptiles [Aiello
et al., 2014; Godfrey et al., 2009]). While the network-
ing approach is appealing for its capacity to depict
complex systems [Kurvers et al., 2014],modeling offers
further utility for understanding and predicting the
behavior of these systems [Newman, 2003]. Agent-
basedmodeling, for example, represents individuals as
unique entities in the environment; by simulating local
interactions among agents and their environment,
it offers a less simplified and thus more realistic
representation of real systems [Amouroux et al., 2010;
Railsback and Grimm, 2012]. For these reasons,
combining network techniques with modeling has
emerged as a powerful tool for examining dynamics
of infectious diseases [Craft et al., 2010].

In this context, recent models exploring associa-
tion patterns have shown that global network proper-
ties, suchasmodularity [GriffinandNunn,2012;Nunn
et al., 2015], aswell as individual-level properties, such
as node centrality [Rushmore et al., 2014; Salath�e and
Jones, 2010; VanderWaal et al., 2014], may regulate
pathogen transmission. For instance, theway inwhich
individuals are more or less central in a group’s social
network directly influences the way in which an
infectious agent or information will be spread through
agroupandasaconsequence, therelationshipbetween
centrality and probability of transmission [Griffin and
Nunn, 2012; Sueur et al., 2012]. Central individuals
may act as super-spreaders of disease-causing agents,
and targeting them (e.g., during vaccination or culling
efforts) can therefore be an efficient way to implement
preventive measures against disease [Christley et al.,
2005; Rushmore et al., 2014]. However, similar studies
on information transmission have shown contrasting
results, with a demonstrated influence of social
centralities and network structure in some groups
but an absence thereof in others [Boogert et al., 2008;
Kendal et al., 2010; Schnoell andFichtel, 2012]. In this
way, it seems crucial tounderstandhowsocial network
structureat both theglobal and individual levelsmight
interact to predict transmission within a group.

Non-human primates are useful study subjects
to investigate the influence of sociality on disease
transmission. First, many species are obligate social
animals. Second, their close phylogenetic relationship
with humans means that many non-human primate
diseases are also a concern for humans [Hahn et al.,
2000; Wolfe et al., 1998]. Likewise, human diseases
are a concern for nonhuman primates, for example,
causing marked morbidity in apes through infection
linked to tourismor research activities [K€ondgen et al.,
2008; Woodford et al., 2002]. Furthermore, under-
standing transmission dynamics in primates is critical
for development of conservation and management
strategies, given that ca. 50% of primate taxa are

now under threat of extinction [Mittermeier et al.,
2009]and infectiousdisease isknowntobeasignificant
driver of population decline [Leendertz et al., 2006].
Therefore, increasing fundamental understanding of
how sociodemographic factors might interact with
disease transmission among primates is now critical,
particularly topredicthowcontinuedhumanencroach-
ment and habitat modification might impact primate
health, fitness, and population viabilities in the future
[Chapman et al., 2005]. Studies have thus begun to
investigate the variable influence of specific individu-
als and the contexts in which they interact in the
dynamics of disease spread using real world primate
networks [Carne et al., 2013, 2014; Griffin and Nunn,
2012; Rushmore et al., 2013, 2014].

In this study, we combine social network analy-
sis of empirical data and agent-based modeling to
investigate the theoretical relationship between
network properties and the propagation of infectious
agents. We focus on infectious agents transmissible
through social contact networks in Japanese mac-
aques, which provide a well studied and thus
tractable model system [MacIntosh, 2014]. Maca-
ques are generally considered the most widely
distributed and best studied group of non-human
primates [Thierry, 2007; Thierry et al., 2004], and in
many parts of their range exist in extreme proximity
to human settlements. There is also some empirical
evidence that infection by nematode parasites in
Japanese macaques specifically is related to network
centrality and position within the dominance hierar-
chy [MacIntosh, 2014; MacIntosh et al., 2012].
However, many of the epidemiological processes
involved, particularly those concerning other groups
of socially transmissible agents in these and other
macaque species, remain poorly understood.

To test our hypothesis that the structure of social
contact networks mediates the transmission of
infectious agents, we first constructed networks of
grooming, a very conspicuous behavior that provides
a good approximation of social contact [Altizer et al.,
2003] and which represents about 90% of body
contact between female Japanese macaques [Du-
boscq et al., 2016]. We then tested whether the
spread of a theoretical infectious agent on these
observed networks differed from its spread on
random networks with the same number of individ-
uals and degree distribution. Second, to further
understand the role of individuals in transmission
dynamics, we tested whether individual traits such
as age, rank, and family size affected an individual’s
network position. Recent studies have suggested that
such traits can be used as proxies of centrality and
thus used to predict importance in disease dynamics
[Rushmore et al., 2013, 2014]. We then constructed
an agent-basedmodel to simulate the transmission of
an infectious agent through the observed empirical
contact networks. Based on the hypothesis that
social network centrality and transmission dynamics
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are linked, we predicted first that central individuals
in the contact network would transmit disease faster
and tomore individuals than less central individuals.
To test this prediction, wemodeled: (i) the percentage
of individuals infected before a latency threshold of
transmission was reached, which should be higher
when starting with more central individuals, and
(ii) the latency between initial infection and the
point at which the whole group became infected,
which should be lower when starting with more
central individuals. Second, we predicted that
central individuals would also be at greater risk
of being infected, which we estimated via (i) the
probability that an individual would be infected first
among all groupmembers, which should be higher for
central individuals, and (ii) each individual’s mean
rank in the chain of transmission, which should be
lower among more central individuals. This dual
approach of social network analysis and simulation
modeling allowed us to ascertain the importance of
central individuals in disease transmission, not only
as key agents of disease spread but also as those that
are most vulnerable to being infected.

METHODS
The research presented here complied with the

Guidelines for the Care and Use of Nonhuman
Primates established by the Primate Research
Institute of Kyoto University, to the legal require-
ments of Japan and to the American Society of
Primatologists (ASP) Principles for the Ethical
Treatment of Non Human Primates.

Study Site and Subjects
We studied two well-habituated groups of Japa-

nese macaques, one provisioned but free-ranging on
Koshima island (31°270N, 131°220E; Macaca fuscata
fuscata) and the other wild (i.e., not provisioned) on
Yakushima island (30°200N, 130°300E; Macaca
fuscata yakui). Koshima is approximately 0.3 km2

in area and is mainly covered by secondary broad-
leaved evergreen forest [Iwamoto, 1974]. The main
group of Koshima macaques has been periodically
provisioned with wheat (currently ca. twice per
week) and intensively studied, with group composi-
tion recorded for ca. 60 years [Iwamoto, 1974].
During the study period (see below), the group
included approximately 51 individuals, including
21–24 adult females (�5 yo), 11–16 adult males
(�5 yo), 11–18 juveniles (1–4 yo), 1 infant (<1 yo)
born in 2012.

The southernmost population of Japanese maca-
ques living on Yakushima represents a distinct sub-
species from those in the rest of Japan. Yakushima
is a mountainous island of approximately 500km2,
much of which is protected as a UNESCO World
Natural Heritage site and by the Kagoshima

prefectural government. The study group (“Umi”)
inhabited the protected western coastal forest, which
likeKoshima is dominated by broad-leaved evergreen
secondary forest, with an estimated home range size
of roughly 0.8km2 [Sueur et al., 2013]. Umi group
varied between 59 and 70 individuals during the
study period, including 18 adult females, 11–15 adult
males, and 20–31 juveniles, with 11 infants born in
2008 and 6 infants born in 2009 [MacIntosh et al.,
2012]. Ages of individuals were estimated based on
body size and state of development of sexual organs
and perianal regions.

Behavioral Data Collection and Networks
We collected data on grooming interactions (both

directions, received and given) of adult females over
8 months (between October 2012 and May 2013) in
Koshima (N¼21) and 16 months (between Octo-
ber 2007 and August 2009) in Yakushima (N¼18).
We focused on female social networks in this study.
Japanesemacaque societies are organized into female-
bonded groups in which females form the stable core
[Yamagiwa and Hill, 1998]. As a result, we expect
females to dominate dynamics on social networks. It
was also difficult to adequately sample othermembers
of the groups, for example, because male group
affiliation is much less stable than that of females
while juveniles are often difficult to observe and
identify reliably. Both groups were habituated to the
presence of human observers and adults could be
identified using tattoos (Koshima only) and/or other
individual traits. We used grooming networks because
they are considered to be an excellent proxy of social
contacts, and in addition can avoid issues arising from
the gambit of the group [Franks et al., 2010]. This
concept underlies that all individuals seen grouping
together, duringanobservation census, areassociating
with every other individual in that group.For example,
if individual A is strongly associated with B and B is
strongly associated with C, the gambit of the group
assumes that A and C are strongly associated too.
This can result in overestimation of real associations
resulting in errors in estimating the disease transmis-
sion process. This overestimation is not observedwhen
using body contact, especially grooming, between
individuals. Previous studies have also shown no
differences in transmission processes using either
body contact or grooming interactions as the basis for
network construction [Pasquaretta et al., 2014], but
we focus on grooming to investigate infectious agents
only transmissible trough social contact.

To collect data, we conducted 15min instanta-
neous focal sampling at 1min intervals on Koshima,
while all grooming activity performed during 60min
focal samples were recorded on Yakushima [Altmann,
1974]. To confirm compatibility in the data sets, which
were collected using different sampling methods, we
transformed the continuous-time grooming matrix
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constructed from Yakushima data into an instanta-
neous scan matrix after sampling the focal data at
1min intervals. We observed that the matrices were
99.6% correlated (Mantel Z test: P¼ 9.99e-13), showing
that less than 0.5% of the data were lost when
moving from one method to the other. We are thus
confident that the Koshima and Yakushima net-
works are comparable. At both sites, we avoided
re-sampling the same individual within a day
wherever possible. When this was violated, individ-
uals were not observed within 1h of a previous
focal sample from the same individual. From the
Koshima data set, we extractedminute-data points of
grooming while for Yakushima we considered the
total grooming time between two individuals. There
was no difference in hourly observation time between
individuals on either Koshima group (mean�SD:
12.96�0.50, x2¼8.05, P¼0.99) or Yakushima group
(mean�SD: 45.61�0.81, x2¼ 4.39, P¼0.99), and
the grooming frequencies were almost identical at
both sites (Koshima: grooming given¼13.4%� 6.3%;
grooming received¼ 7.3%� 3.6%; Yakushima: groom-
ing given¼12.6%� 3.6%; grooming received¼6.7%�
1.5%; Yakushima data from MacIntosh et al. [2012]).
Although there were differences in the total observa-
tion time between the Yakushima and Koshima
groups, we believe the data set to be large enough in
each group to decrease expected errors in social
network measures [Whitehead, 2008]. However,
because of the differences in data collection and
despite the high correspondence between methods
using the Yakushima data, we remain cautious and
make no direct comparisons between the two groups.
Instead, we focus on the observed transmission events
within each separate network based on grooming
behavior, a well-conserved and highly conspicuous
behavior unlikely to differ substantially between
groups and thus bias our results.

From the undirected and weighted grooming
networks, we estimated the global measures of social
networks, defined as follows:

– Density: the ratio between the number of observed
edges and the number of possible edges in the
network [Sueur et al., 2011];

– Diameter: the longest path edge of the network;
– Overall clustering coefficient: the mean of all

nodes' clustering coefficients, which measures
how densely one individual is connected to its
neighborhood [Hanneman and Riddle, 2005];

– Average degree: the average of sum of the number
of edges of a vertex;

– Network modularity: the extent of sub-grouping
in a network [Newman, 2004];

– Transitivity: the circumstance where node i is
connected to node j, node j is tied to node k and node
i is also tied to node k [Hanneman and Riddle,
2005].

We also calculated various weighted individual-
level measures which are typically referred to as
centrality coefficients to compare the roles of
individuals in the transmission of infectious agents.
These coefficients included:

– Strength: the sum of each node’s edge values. The
individual with the most and strongest connec-
tions has the highest strength value [Sueur et al.,
2011]. In our study, we have considered two
different inputs. For Yakushima, strength indi-
cates grooming time between individuals, while for
Koshima strength indicates the number of times
two individuals were observed to groom each other
during sampling points.

– Eigenvector: the weighted connectivity of an
individual within its network, also considering
the weighted connectivity of its neighbors. Indi-
viduals tied to central individuals (i.e., thosewith a
high connectivity themselves) should have higher
centrality than those connected to less central
individuals [Borgatti et al., 2013].

– Betweenness: the number of shortest paths that
pass through the considered individual. The more
connections that are made through one individual,
the greater its value of betweenness becomes
[Hanneman and Riddle, 2005; Newman, 2004].

Most of the global measures of social networks
(density, diameter, overall clustering coefficient, and
transitivity) as well as the betweenness centrality
coefficients were estimated using Ucinet 6.4 [Borgatti
et al., 2002]. Other network measures such as
modularity, eigenvector, and strength centrality were
estimated via SocProg 2.4 [Whitehead, 2009]. Since
we built our networks based on the weightedmatrices,
we estimated theweightedmeasure of each coefficient.
The grooming networks were visualized using Gephi
0.8.2 beta [Cherven, 2013].

Individual and Social Traits Associated With
Network Centrality

We categorized Japanese macaques by age,
hierarchical rank and family size (the latter for
Koshima only). Because Koshima group has been
monitored for decades [Iwamoto, 1974], exact ages
are known for each individual. Such data were not
available for Yakushima, so we instead distributed
the sexually mature females into three age classes
(young adult�5<10 yo, adult 10–14 yo, old adult
>14) following MacIntosh et al. [2012]. We also
incorporated dominance ranks into our analysis,
which were distributed within significantly linear
dominance hierarchies in both groups (Landau’s
linearity index corrected for unknown relationships:
Koshima: h0 ¼ 0.68, P<0.001; Yakushima: h0 ¼0.40,
P¼ 0.005). Finally, family size was based on the
definition of Rushmore et al. [2013], with a family
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unit including a mother and the total number of
her living weaned offspring. An individual with no
offspring, for instance, was counted as having a
family size of one [Rushmore et al., 2013].

Random Networks
To identify if the dynamics of disease transmis-

sion ((i) percentage of infected individuals; (ii)
latency to complete transmission; (iii) probability of
acquiring an infectious agent; and (iv) latency of
acquiring an infectious agent) in the Koshima and
Yakushima networks differed from those in random
networks, we compared the distributions of infec-
tious agent transmission from the simulation on
both random and observed networks. We created 100
random networks for each focal group, maintaining
the original numbers of both individuals and
observed bonds between them, via Ucinet 6.4
[Borgatti et al., 2002]. Computer simulations were
run 1000 times for each random network.

Disease Transmission Graph-Based Model
Individual identities as well as grooming inter-

actions were included in an individual-based model
using a Markov chain process developed by Sueur
et al. [2009]. This model is basically equivalent to
the classical SI epidemiological model, in which
individuals can only move from susceptible (S) to
infected (I) classes with no possible recovery or death
of an infected individual. Traditionally, such models
considered the probability of contact for each pair
of individuals to be equal, but we allowed for
heterogeneity of relationships, which has long been
declared to improve the ability to understand and
predict disease dynamics [Keeling andEames, 2005].
To fit with the currentmodel, grooming relationships
were transformed following the description of Sueur
and Deneubourg [2011]. Observed frequencies were
first transformed to relative frequencies (i.e., divided
by the sum of observed frequencies) and then
multiplied by N �1, N being the number of group
members, to obtain corrected frequencies imple-
mented in the model. In the model, the probability
that an individual will transmit an infectious agent
to another depends on the strength of the relation-
ships it has with each non-infected individual. In
the same way, the probability that an individual
will become infected depends on its relationships
with already infected group members. Thus, the
more a non-infected individual interacts with in-
fected individuals, the greater is its probability
of being infected. Likewise, the more an infected
individual interacts with non-infected group mem-
bers, the greater is its probability of infecting others.

In the model, each individual has the same
probability of being the first infected, meaning that
we focus only on the exposure to pathogens and

assume a constant susceptibility to infection across
individuals. This probability is named intrinsic
probability l. It is important to highlight that this
lambda could be noted li but as all individuals have
the same intrinsic probability, we indicate l. An
individual i has to be infected to see its probability l
equal to 0, but if an individual k is infected and i is not
yet infected, the probability l is no longer 0. Thus,
as soon as one individual is infected, the probability
ci for another individual i to be infected is:

C i ¼ lþ C
XN

k¼1

r ðk; iÞ With C=l ¼ R0 ¼ 10;

whereN denotes the group size, r (k,i) represents the
social relationship that individual i has with individ-
ual k, andC is amimetic coefficient,whichmeans that
the probability of being infected is increased by a
coefficient C following contact with conspecifics. R0 is
the basic reproduction number used to quantify the
transmission potential of a disease; using R0¼10
allowed us to estimate properties of an outbreak with
a highly contagious pathogen, such as was estimated
formeasles inhumansandsubsequently extrapolated
for heuristic purposes to chimpanzees [Rushmore
et al., 2014]. WhileR0 is known to differ dramatically
across disease-causing organisms, using a high R0
allows us more power to identify the influence of
network structure in empirical data with small
sample sizes. However, we also simulated the
transmission of infectious agents with varying R0
and found that their dynamics are consistent in
both study groups, even though the total size of the
outbreak varies (Suppl. Fig. S1).

We implemented the model in Netlogo 3.1.5
[Railsback and Grimm, 2012]. At each run of the
model, a number between 0 and 1 was randomly
attributed to each non-infected individual; when this
number was lower than the theoretical infection
probability ci of each individual i, the individual i
became infected; if this number was higher than the
theoretical infection probability, the individual was
not infected. The identity, infection rank (order of
infection of individuals) and latency (number of runs)
of infection for each individual were scored for each
simulation. We induced two conditions, first consid-
ering the complete transmission latency and second
restricting the latency of infection to three simulation
runs. The first condition allowed us to investigate the
period required to complete infection and the order of
infection. One simulation corresponds to the infection
of all group members. The total infection latency of a
simulation is the number of runs required until all
group members are infected. The second condition
allowed us to investigate the number and identity of
individuals infected during a set latency. We ran
10,000simulations for each condition.Thesource code
is available in the supporting information.

Am. J. Primatol.

Individual Centrality and Infection Flow / 5



Data Analysis
Generalized linear models were constructed to

examine the impact of individual and social factors on
centrality position. We tested for significant relation-
ships between centrality coefficients (eigenvector,
betweenness, andstrength) and the followingpredictor
variables: age, dominance rank, and family size (range:
1–5; Koshima only). Because eigenvector centrality is
not truly independent of strength and betweenness
coefficients, we estimated the effect of the predictor
variables on each centrality measure separately.
The distribution of all response variables (centrality
measures) deviated from the Gaussian case, so all
were square-root-transformed,whichperformedbetter
than log-transformation and could accommodate the
few zeroes in the data set, to meet the assumptions of
the statistical models. For all models, we checked that
the assumptions of normally distributed and homoge-
neous residuals were fulfilled by visually inspecting a
qqplot and the residuals plotted against fitted values.
We further ran a series of diagnostics to judge the
validity of the models, including testing for variance
inflation, correlation of fitted and residual values and
Cooks’ distance, all of which suggest the suitability of
our models as no obvious violations of assumptions
were detected [Field et al., 2012].

We compared the distribution of random and
observed networks by Kolmogorov–Smirnov tests
with Bonferroni correction [Abdi, 2007]. Regarding
the dynamics of disease transmission, first we
calculated the mean latency of complete transmis-
sion (to the whole group with no time constraint)
and the percentage of infected individuals in a
time-constrained simulation (three runs). Second,

we looked at the probability of each individual being
infected given the number of times each individual
was the first to be infected by the initial infected
individual (i.e., the second to be infected among all
groupmembers).We also calculated themean rank of
infection in the transmission order (from 1 to N �1
ranks, since the initial infected individual is removed
from the analysis). We then correlated centrality
coefficients (eigenvector, betweenness, and strength)
and dynamics of transmission (complete transmis-
sion latency, percentage of infected individuals,
probability of being infected, and latency to being
infected) using Spearman tests with Bonferroni
correction. A P-value equal to or less than 0.05 was
considered to be statistically significant, and all
tests were two-tailed. Analyses were conducted in R
statistical software version 2.15.1.

RESULTS
Network Structure and Centrality Position

The two social grooming networks are illustrated
in Figure 1 and the global measures are given
in Table I. Of the global network measures pre-
sented, only modularity differed considerably be-
tween groups. We also observed some differences
concerning the interaction between individual/social
traits and centrality position. Dominance rank, but
not age, was a good predictor of eigenvector and
strength centrality in Koshima, while we foundweak
evidence to suggest that age and dominance rank
may influence eigenvector centrality in Yakushima
(Table II; Suppl. Figs. S2 and S3). Family size had no
effect on network position in Koshima.

Fig. 1. Social networks of adult female Japanese macaques in Koshima group (a) and Yakushima group (b). Networks were built using
Gephi 0.8.2 beta [Cherven, 2013]. A node (circle) represents a rank identifier, with its size and color directly related to the individual
eigenvector centrality coefficient (the higher the centrality, the stronger is the color and the larger is the size of the node). Spacing of
nodes was done using the option Force Atlas in Gephi. In this way, nodes are spaced according to their centralities but also according to
whom they are connected.
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Observed Versus Random Networks
We observed that two of the four distributions

from the simulation on the Yakushima network did
not differ significantly from those expected of a
random network (Kolmogorov–Smirnov tests with
Bonferroni correction: probability of being infected:
D¼ 0.39, P¼0.2; latency of being infected: D¼ 0.5,
P¼ 0.08; Suppl. Fig. S4). In contrast, the percentage
of infected individuals (D¼ 1, P< 0.001) and latency
to complete transmission (D¼ 1, P<0.001) differed
significantlybetweenobservedandrandomnetworks.
Whereas in the Koshima networks, the probability of
being infected (D¼ 0.52, P� 0.05), the percentage
of infected individuals (D¼0.81,P<0.001), latency to
complete transmission (D¼1, P< 0.001) and latency
of being infected (D¼0.62, P�0.05) all significantly
differed between observed and random networks
(Suppl. Fig. S5). Thus in the majority of cases,

infectious agents spread more readily in observed
than in random networks, and the transmission
properties of the Koshima network differed more
strongly from those of a random network than did the
transmission properties of the Yakushima network.

Transmitting an Infectious Agent
Individuals with higher centrality coefficients

transmitted infectious agents to the entire group with
a shorter latency in the Koshima group (N¼ 21)
regardless of the centrality coefficient used (Spearman
testswithBonferroni correction, eigenvector: r¼�0.70,
P<0.001; betweenness: r¼�0.55, P� 0.05; strength:
r¼�0.75, P<0.001). This was also generally true
in the Yakushima group (N¼18), though results
depended more on the centrality index measured.
The Yakushima group showed a strong relationship

TABLE I. Global Measures of Koshima and Yakushima Networks

Group Density Diameter Average degree Overall clustering coefficient Transitivity Modularity

Koshima 0.41 3 8.19 1.38 0.52 0.38
Yakushima 0.44 3 7.50 1.37 0.50 0.63

Definitions of social network measures are presented in the methods section.

TABLE II. Parameter Estimates From Generalized Linear Models Explaining Variation in Network Centrality
Among Female Japanese Macaques in Koshima and Yakushima Groups

Centrality coefficients Predictors Estimate Std. error t value Pr(>|t|)b

Koshima
Eigenvector (Intercept) 0.757 0.147 5.134 8.28e-05���

Rank �0.015 0.006 �2.405 0.028�

Age �0.033 0.018 �1.818 0.087†

Family size 0.070 0.053 1.307 0.209
Strength (Intercept) 1.587 0.294 5.389 4.9e-05���

Rank �0.032 0.012 �2.564 0.020�

Age �0.036 0.036 �1.003 0.330
Family size 0.059 0.107 0.555 0.586

Betweenness (Intercept) 2.915 1.073 2.718 0.015�

Rank �0.041 0.045 �0.898 0.383
Age �0.053 0.132 �0.405 0.691
Family size 0.066 0.390 0.170 0.867

Yakushima
Eigenvector (Intercept)a 0.278 0.035 7.821 4.73e-06���

Rank �0.005 0.003 �2.014 0.067†

Age (adult) 0.038 0.034 1.095 0.295
Age (old adult) 0.082 0.039 2.079 0.059†

Strength (Intercept) 0.937 0.101 9.303 2.27e-07���

Rank �0.007 0.008 �0.963 0.352
Age (adult) 0.156 0.096 1.626 0.126
Age (old adult) 0.176 0.106 1.656 0.120

Betweenness (Intercept) 2.785 0.687 4.054 0.001��

Rank �0.053 0.052 �1.020 0.325
Age (adult) 0.870 0.654 1.330 0.205
Age (old adult) 1.105 0.723 1.528 0.149

aAll comparisons made against the intercept of the first level of each factor in Yakushima (age¼ young adult).
bSignificant codes are marked as follows: “���”P< 0.001, “��”P< 0.01, “�”P< 0.05, “†”P< 0.1.
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between transmission latency and eigenvector cen-
trality (r¼�0.76; P< 0.01) as well as betweenness
centrality (r¼�0.56; P� 0.05), but strength coeffi-
cientswere onlymarginally associatedwith transmis-
sion latency (r¼�0.51; P¼ 0.09). Central individuals
also transmitted infectiousagents toagreaternumber
of subjects when compared to less central individuals,
but in both groups, betweenness centrality was not
associated with the probability of infecting others
(Koshima, eigenvector: r¼0.95, P< 0.001; between-
ness: r¼ 0.50, P¼ 0.07; strength: r¼0.99, P<0.001;
Fig. 2; Yakushima, eigenvector: r¼ 0.77, P<0.001;
betweenness: r¼0.45, P¼ 0.19; strength: r¼0.74,
P<0.01; Fig. 3).

Acquiring an Infectious Agent
Central individuals were more likely to be

infected than non-central individuals in theKoshima
group (Spearman tests with Bonferroni correction,
eigenvector: r¼0.68, P<0.01; betweenness: r¼ 0.64,
P< 0.01; strength: r¼ 0.82,P< 0.001; Fig. 2), but only
strength centrality was significantly correlated with
probability of being infected in the Yakushima group
(eigenvector: r¼ 0.27, P¼ 0.94; betweenness: r¼ 0.08,
P¼ 1.00; strength: r¼0.71, P< 0.01; Fig. 3). Consid-
ering the mean rank of each individual in the chain
of transmission, central individuals were more likely
to be infected during the first transmission event
than less central group mates, with the exception of
those with high betweenness scores (Koshima: eigen-
vector: r¼�0.93, P<0.001; betweenness: r¼�0.51,
P¼ 0.07; strength: r¼�0.98, P<0.001; Yakushima:
eigenvector: r¼�0.66, P� 0.05; betweenness: r¼
�0.35, P¼ 0.46; strength: r¼�0.61, P� 0.05).

Regarding analysis of data from Koshima, we
identified one subject (f16) having a betweenness value
1.5 times higher than the third quartile, as well as two
individuals (f12 and f13) in Yakushima with similarly
high eigenvector coefficients. These individuals were
therefore removed prior to the analysis. However, if
included, correlations between centrality and infection
were similar to those presented above (Koshima:
complete transmission latency: r¼�0.61, P<0.01;
percentage of infected individuals: r¼0.49, P¼0.07;
probability of being infected: r¼0.68,P< 0.01; latency
to being infected: r¼�0.49; P¼ 0.07; Yakushima:
complete transmission latency: r¼�0.81, P< 0.001;
percentage of infected individuals: r¼ 0.81, P< 0.001;
probability of being infected: r¼0.27,P¼ 0.85; latency
to being infected: r¼�0.66; P� 0.05).

DISCUSSION
This study aimed to test the hypothesis that

social network structure modulates disease trans-
mission, and to better understand the influence of an
individual’s centrality on the transmission of infec-
tious agents in real-world primate networks. In line

with our predictions, individuals central to the
grooming contact networks not only transmitted
infectious agents with a shorter latency to other
group members and to a higher percentage of
individuals, but were also more prone to infection
themselves, being among the first to acquire in-
fections and with a shorter latency than more
peripheral individuals. Other simulation studies
with transmissible agents whose parameters closely
match those of the agents used here also show that
direct contact interactions may facilitate the spread
of infectious agents [Griffin and Nunn, 2012;
Rushmore et al., 2013]. However, our study is among
the first to model risks associated with pathogen
transmission for central individuals, revealing their
increased exposure (here investigated by the proba-
bility and latency of infection/transmission) to highly
infectious agents. Nonetheless, even though we use
the same fundamental data (observed grooming
networks) in our simulations of transmitting or
acquiring a theoretical infectious agent, results show
some differences in the importance of observed
centrality distributions in disease spread; transmis-
sion was faster and affected more individuals in
Koshima than in Yakushima, the latter group
producing a network that behaved like a random
network in two of our four simulation analyses.
These divergences from our predictions suggest that
caution should be exercised when making general-
izations about transmission processes arising from
the network structure. Ultimately, however, net-
works of proximity or contact interactions are
generally accepted to underlie infectious disease
dynamics in real groups of animals, including
humans [Altizer et al., 2003; Taylor et al., 2001], to
which our results further attest.

Our results also showed that both global
(network-level, e.g., modularity) and individual
(node-level, e.g., centrality) metrics must be consid-
ered when predicting disease transmission dynam-
ics. Although most global network measures did
not differ between groups, we did observe a large
difference in modularity, with the Yakushima group
exhibiting a more modular network than the
Koshima group. This difference may in part explain
the reduced capacity for transmission in the Yakush-
ima network, as increased modularity is known to
constrain disease transmission (the “social bottle-
neck” hypothesis; Nunn et al., 2015). At the same
time, we observed distinct distributions of centrali-
ties in each group - the variance in the Koshima
network being higher than that in Yakushima - and a
stronger influence of central individuals and a
broader and faster transmission in the Koshima
network. The clear relationship between centrality
and infection found in the Koshima group may be
explained by the interaction between dominance
rank and centrality index. In Koshima, dominance
rank strongly correlated with eigenvector and
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strength centralities while age was marginally
associatedwith eigenvector. InYakushima, however,
the relationship between individual/social traits and
centrality measures were less consistent, with age
and dominance rank only marginally associated
with eigenvector centrality. Given that centrality
measures showed slightly different relationships
to both individual/social attributes and to transmis-
sion metrics, it is important to discuss the role of
each metric in predicting pathogen transmission.
Strength centrality refers to direct connections
between individuals, while eigenvector centrality
and betweenness coefficient refer to a combination
of direct and indirect connections. The fact that
transmission latency was strongly related to both

eigenvector and betweenness centrality in the
Yakushima group, but only marginally to strength,
suggests that indirect connections factor more
strongly in the transmission chain/dynamics than
do direct connections. By contrast, the probability of
being infected appears to be driven by direct rather
than indirect connections. It thus seems that, while
indirect connections are most predictive of latency to
complete transmission (a group-level metric), direct
connections are most predictive of an individual’s
probability of being infected (individual-level met-
ric). Too few studies discuss the relative impacts of
different levels of network connectedness [Christley
et al., 2005]; yet these details are essential to both
advancing our understanding of the relationship

Fig. 2. Relationship between centrality coefficients and dynamics of disease transmission in Koshima group. Blue diamonds represent
individual macaques and blue lines represent the mean of individuals infected and the probability of being infected. Outliers have been
removed (see text for further information).
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between network structure and disease transmission
dynamics, as well as to developing appropriate
disease-intervention strategies.

In a handful of cases, targeting central individu-
als for disease control can reduce outbreak sizes
[Salath�e and Jones, 2010] and should be more
efficient than applying control efforts randomly
[B€ohm et al., 2009; Rushmore et al., 2014]. Theoreti-
cal removal of individuals based on association
networks of orangutans and chimpanzees, for in-
stance, highlighted that the low level of association
between orangutans may limit the spread of disease
through the population, in contrast to chimpanzees
whose network structure may allow for faster spread
of disease [Carne et al., 2014]. In addition, an
observational study with a wild giraffe population
showed that transmission is more likely to occur

between individuals that are more strongly con-
nected within the network, indicating that an
individual network position is a good predictor of
transmission network position [VanderWaal et al.,
2014]. We found that transmission in Japanese
macaques is enhanced after central individuals
become infected, which suggests the existence of
super-spreaders in the population. However, the
current results demonstrate this assumption
through contrast; centrality-based vaccination, for
instance, may be well suited to the Koshima group,
but its efficacy would be more questionable in
the Yakushima network given the somewhat
reduced importance of centrality measures in our
simulations. Ultimately, disease transmission is a
stochastic process as demonstrated by our multi-
agent model, so observed results might diverge

Fig. 3. Relationship between centrality coefficients and dynamics of disease transmission in Yakushima group. Blue diamonds
represent individual macaques and blue lines represent the mean of individuals infected and the probability of being infected. Outliers
have been removed (see text for further information).
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substantially and perhaps even unpredictably from
models using deterministic methods, such as theo-
retically removing central individuals. Modeling can
highlight differences observed at the level of the
group, and these differences may have direct
implications for disease spread and should therefore
be taken into account in future endeavors designing
disease management plans.

In this context, identifying relationships be-
tween individual traits and network centrality may
be useful in assessing disease transmission dynam-
ics, particularly because social roles of individuals
can vary across groups. Rushmore et al. [2013,
2014] suggested that we might use individual traits
that correlate with centrality in disease intervention
strategies, based on their results from chimpanzee
networks showing that high-ranking males and
individuals with large family units were the most
central individuals and thus best to target in
vaccination efforts. A related outstanding question
is whether or not high dominance rank might allow
an individual to better tolerate certain infections
[MacIntosh, 2014], which would make them even
more capable of spreading infectious agents [Ezenwa
and Jolles, 2015]. In our study, however, a middle-
ranking old adult female and a low-ranking adult
female exhibited the highest eigenvector centrality
coefficients in the Yakushima group, while a middle-
ranking adult female exhibited the highest between-
ness coefficient in Koshima group, all by a very wide
margin. The presence of such “outliers” illustrates
the need for caution here; even if rank and age
are correlated with network position, we have to be
careful about using dominance or age as a proxy for
centrality in disease transmission. Analysis of the
networks in this study highlights that using a trait-
based vaccination strategy in cases with even one or
two such outlying individuals might have less
optimal results than one might hope in preventing
further disease spread. Although almost all animal
networks are structured according to sociodemo-
graphic variables (e.g., age, dominance, sex, etc.),
some can also resemble random networks in their
transmission dynamics, rendering them less rele-
vant than others in modeling disease spread; that is,
our Yakushima networks which behaved as would
random networks in some circumstances. In such
cases, using dominance or centrality is no more
useful in predicting who becomes infected or who
transmits disease than making random predictions.

However, we are aware that our model repre-
sents a simplification of the real process. The models
do not attempt to account for variation in individual
susceptibility, which itself can relate to social (e.g.,
through kinship based shared immunological factors
or even dominance hierarchy mediated variation
in physiological stress, access to food and nutr-
itional state, etc.) and other intrinsic characteristics
(innate resistance factors, chronic stress, etc.). Other

pertinent information relates to the variation we
found between study groups, and how they might be
related to different environmental effects (e.g.,
specific habitat characteristics, home range size),
and of course to contrasting population management
strategies (provisioned vs. non-provisioned), all of
which can strongly affect the expression of social
behavior [Hill, 1999]. Provisioning food to non-
human primates is expected to increase proximities
between individuals and should increase aggression
levels due to closer proximities. We tried to reduce
the direct influence of provisioning on individual
interactions by using only those data collected at
least 1 h after provisioning. Regardless, given a
sample size of two networks, we hesitate to make
any strong claims about what might have led to
the networks observed, and instead focus only on
the relative importance of central individuals and
network structure in the social transmission of
infectious agents in these divergent networks.
Studying the influence of network properties in
both groups allowed us to understand how different
social networkmeasuresmay affect the transmission
dynamics irrespective of the factors that caused the
networks to vary.

Another limitation of our study, which should be
addressed in future work, is that we included only
adult females in our social networks. This was
mainly a practicality issue, as for example juveniles
are extremely difficult to identify reliably and males,
at least in the Koshima group, rarely if ever engage
with the group outside of the mating season. Not
including such individuals, however, leads to the
construction of incomplete networks that may
misrepresent true infection dynamics. For example,
juveniles are often in contact with their mothers
and each other, and may be the most susceptible
individuals in the group to disease causing organ-
isms (e.g., MacIntosh et al. [2010]). Males are also
known to harbor larger parasite infections than
females virtually across vertebrates [Poulin, 1996],
andmay therefore be key to the spread of infection on
networks, evenwhennot occupying central positions.
Despite this limitation, however, female Japanese
macaques do form the core of the group’s social
network, presenting the most stable social relation-
ships organized into a rather rigid hierarchical
arrangement. Female Japanese macaques are thus
likely to be key players in the dynamics of disease
transmission in this species.

In conclusion, our study suggests the importance
of social network properties in disease transmission
at both the global and individual levels, showing the
role of central individuals (here in grooming net-
works) in spreading disease but also their vulnera-
bility to becoming infected. Possible interactions
between individual and global network measures
might affect the outcome of disease dynamics.
Furthermore, we show that the combined approach
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of network analysis and modeling provides a
promising tool to predict epidemics in primates and
others animals [B€ohm et al., 2009; Carne et al., 2014;
Craft and Caillaud, 2011; Salath�e and Jones, 2010],
but that caution should be exercised when generaliz-
ing since some networks or network properties may
be less relevant than others in predicting disease
dynamics. Indeed, it is well-known that detailed
analyses of social structure are important in the
broader scale of evolutionary and ecological process,
further encouraging the use of network analysis
across a vast range of topics [Kurvers et al., 2014].
Here, understanding the role of networks in disease
transmission has important implications for predict-
ing disease spread from the perspectives of conser-
vation and management, but also for understanding
the evolution of social relationships in primates and
other animals, and the trade-offs that may arise
through group living.
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The capacity to use information provided by others to guide behavior is a widespread
phenomenon in animal societies. A standard paradigm to test if and/or how animals
use and transfer social information is through social diffusion experiments, by which
researchers observe how information spreads within a group, sometimes by seeding
new behavior in the population. In this article, we review the context, methodology
and products of such social diffusion experiments. Our major focus is the transmission
of information from an individual (or group thereof) to another, and the factors that
can enhance or, more interestingly, inhibit it. We therefore also discuss reasons why
social transmission sometimes does not occur despite being expected to. We span
a full range of mechanisms and processes, from the nature of social information itself
and the cognitive abilities of various species, to the idea of social competency and
the constraints imposed by the social networks in which animals are embedded. We
ultimately aim at a broad reflection on practical and theoretical issues arising when
studying how social information spreads within animal groups.

Keywords: information, sociality, experimental design, social cognition, social network, social competency

INTRODUCTION TO SOCIAL DIFFUSION THEORY AND
EXPERIMENTS

Many organisms, from plants to social animals, have the capacity to use information provided by
others to guide their own behavior or decision (Morand-Ferron et al., 2010). Such information,
the behavior of others or its product, constitutes social information. It can be advertently (a signal)
or inadvertently (a cue) produced and may complement personal information acquired through
trial and error and direct interactions with the environment (Bonnie and Earley, 2007). The use
of social information is thought to allow individuals to adapt to their environment faster and/or
better than through collecting personal information alone. Use of social information thus provides
tremendous evolutionary advantages and is known to occur in many contexts, e.g., regarding food
location, availability and palatability, predator threats, and finding and choosing mates (Danchin
et al., 2004; Laland, 2004; Dall et al., 2005; Kendal et al., 2005; Bonnie and Earley, 2007; Taborsky
and Oliveira, 2012). Even when the information or behavior appears non-adaptive, such as many
of the behavioral traditions observed in non-human primates [e.g., hand-clasp grooming (McGrew
and Tutin, 1978) or stone-handling (Leca et al., 2012)], such traditions may still be adaptive
by preserving group cohesion or reinforcing group membership/identity through conformity for
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example. In any case, the transmission of such traditions can
be under the same social influences as that concerning more
obviously adaptive social information. In this review, our main
focus is on the transmission pathways of information between
one individual (or group thereof) and another, regardless of its
ultimate function/adaptive value. However, it must be kept in
mind that low adaptive value may in itself partly explain a lack
of diffusion of a given behavior, tradition or piece of information,
and conversely that high adaptive value may facilitate and even
enhance the diffusion process.

Within animal societies, an individual’s ability to use social
information and the properties governing its diffusion among
group members or conspecifics have been studied under diverse
frameworks, from evolutionary psychology (culture, social
learning, and communication) and behavioral ecology (public
information, eavesdropping) to neuroethology and economics
of decision-making (information processing, social influences;
Danchin et al., 2004; Dall et al., 2005; Kendal et al., 2005; Bonnie
and Earley, 2007; Taborsky and Oliveira, 2012). The common
threads binding all of these studies are twofold: (1) the source
of information is the behavior of others and (2) the outcome of
interest is the change in behavior associated with the acquisition
and use of social information (Bonnie and Earley, 2007). Social
information is thus a type of biological information, i.e., a
property of some source that elicits a change in the state of the
receiver in a (usually) functional manner. Differences between
fields rest in the information content (who, what, and how) and
packaging (signal vs. cue), as well as in the payoffs of using
social information (Bonnie and Earley, 2007). For example, an
animal’s choice of a feeding site can be influenced by whether
or not conspecifics are already feeding there (social influence or
social learning), by the conspecifics’ feeding behaviors that may
be indicative of resource quality (public information), by how
many other animals one can outcompete around the resource
(eavesdropping), or by all of the above.

The acquisition and use of social information seems
to be inherently adaptive, although some theoretical and
empirical examples show that it could also be neutral (e.g.,
symbolic/arbitrary) and sometimes maladaptive (Rogers, 1988;
Giraldeau et al., 2002). A maladaptive decision might also be
defined as an inevitable by-products of an adaptive strategy
that has evolved under strong selective pressures (Rieucau and
Giraldeau, 2011; Pelé and Sueur, 2013). This probably relates to
the existence of a trade-off between acquiring costly but accurate
information through personal experience and using cheap but
potentially less reliable information from others (Barnard and
Sibly, 1981; Giraldeau et al., 2002; Laland, 2004; Kendal et al.,
2005). Animals must thus adjust the weight they give to both
sources of information depending on circumstance. Individuals
may rely on social information when personal information is
difficult to acquire or unreliable, and when they are uncertain
about how to behave. They may instead rely on personally
acquired information when the available social information
conflicts with it or is incomplete, and/or when individuals are
confident in the quality of their own information (Giraldeau
et al., 2002; Laland, 2004; Kendal et al., 2005; Rieucau and
Giraldeau, 2011). Most likely, decisions involve taking into

account a combination of social and personal information and
the diffusion of information is thus a function of the cost-
benefit ratio of the different strategies available (Rieucau and
Giraldeau, 2011). Yellow-bellied marmot (Marmota flaviventris)
alarm calls, which are given to signal the presence of a predator,
provide an opportunity to exemplify this because the caller’s
reliability in signaling danger is directly linked to the amount
of time others allocate to personally assessing the threat: when
the caller is judged unreliable, other marmots spend more time
being vigilant (i.e., gathering personal information) before acting
(or not) upon the threat (Blumstein et al., 2004). In species
establishing recurrent and/or enduring social relationships
between group members, reliability of social information also
concerns these social relationships. For example, a middle-
ranked female rhesus macaque (Macaca mulatta) will be more
assertive toward an unfamiliar individual if she has seen a
familiar subordinate individual defeating it in some competitive
interaction (reliable social information), in contrast to conditions
in which the interaction involved a familiar dominant or
an unfamiliar individual (unreliable social information; cue
reliability approach, Dewar, 2003).

Ways of testing functional and mechanistic hypotheses about
social information and its use include: observing animals
throughout their ontogeny, observing different populations of the
same species with different behavioral traditions, or carrying out
so-called social diffusion experiments in the lab or in the field.
Social diffusion experiments investigate the transmission of social
information from one individual (or group) to the next, seeding
experimentally controlled innovations in behavior into groups of
naïve individuals and tracking and documenting the spread (or
otherwise) of the innovation (Whiten and Mesoudi, 2008; Whiten
et al., 2016). A traditional experimental paradigm is to have two
groups of subjects, an experimental group with a knowledgeable,
proficient model that others can observe performing an action,
and a control group without such an opportunity to observe.
Alternatively, one of several new behaviors is seeded in one
or few so-called informed individuals in a group of naïve
individuals in order to artificially create behavioral variation
amongst groups or populations. The aim is then to track the
progressive acquisition of the new behavior in terms of pathways
(from whom to whom the behavior is transmitted), speed,
accuracy, and characteristics of individuals involved as compared
to controls or variants (Whiten and Mesoudi, 2008; Whiten et al.,
2016).

In this article, we first review such social diffusion studies and
their goals, methods and outputs. We take a broad perspective
on such studies, whether observational or experimental, with
paired individuals or open groups, in a social learning or public
information framework, but try to focus on salient research fitting
our aims. We make no attempt to discuss what does or what does
not constitute social learning (for comprehensive discussions
of this see Galef and Laland, 2005; Hoppitt and Laland, 2008,
2013; Leadbeater, 2015, amongst others), nor to distinguish the
mechanisms by which this particular use of social information
occurs (see Laland, 2004; Hoppitt and Laland, 2013, amongst
others), nor to debate whether the use of social information is
adaptive (see Rogers, 1988; Giraldeau et al., 2002; Kendal et al.,
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2005, amongst others). Hereafter, we instead focus exclusively
on the possible pathways for information transmission within
groups or aggregations of individuals, and the factors that
may enhance or, more interestingly for us, inhibit information
transmission. We pay special attention to studies in which the
goals and outputs did not necessarily coincide because these
studies tell us as much as do studies presenting “positive” results
about how animals use, or do not use, social information. In
the second part of this article, we return to essential concepts
and expand our review on the nature of social information
itself, the putative cognitive abilities of various species, the idea
of social competency, and the influence of social networks on
the use of social information in animal societies (Table 1). To
paraphrase Bonnie and Earley (2007), our intention here is not
to revolutionize the field, but rather to continue stimulating
discussions about the abilities of animals to extract, use, and
produce information from the social environment, and their
influence on information diffusion.

SOCIAL DIFFUSION EXPERIMENTS:
GOALS, METHODS, AND OUTPUTS

One of the earliest known accounts of social transmission
of behavior is milk bottle opening among tits (Parus major,
Periparus ater, and Cyanistes caeruleus) in England, where birds
learned to pierce the lid of milk bottles left on doorsteps to
drink the cream within (Fisher and Hinde, 1949; Aplin et al.,
2013). Although this innovative behavior started in several
places independently, once present in a population it would
spread extensively, suggesting the influence of social processes
(Fisher and Hinde, 1949; Lefebvre, 1995; Aplin et al., 2013).
Another known example of social transmission among animals
comes from Japanese macaques (Macaca fuscata) washing sweet
potatoes in water, a behavior that spread gradually through
the group (Kawai, 1965). In the years following the start of
this seminal study, several other newly acquired behaviors
(e.g., begging, stone-handling) emerged and spread through
different groups of macaques in different regions of Japan
following rules of acquisition dependent mainly on age, sex,
and kinship (Kawai, 1965; Huffman et al., 2008). Since then,
almost all published experimental or natural studies of social
information transmission show that given the possibility to
observe knowledgeable individuals performing a task, the
majority of naïve, non-knowledgeable individuals subsequently
use the same technique to accomplish the same task (Morand-
Ferron et al., 2010). The non-random process of task acquisition
is generally demonstrated if it occurs either above chance or
above the proportion of naïve individuals performing the same
task in a control group without knowledgeable demonstrators
or in a group seeded with a different technique (Whiten and
Mesoudi, 2008; Whiten et al., 2016). These results seem to be
taxon-independent and pertain to insects, birds and mammals,
demonstrating the overwhelming generality of social information
use by animals (Laland, 2004; Chittka and Leadbeater, 2005;
Galef and Laland, 2005; Whiten and Mesoudi, 2008; Rieucau
and Giraldeau, 2011; Whiten et al., 2016). We can nevertheless

distinguish these studies into three, non-exclusive categories:
(1) those relating to the presence/absence of diffusion of the
behavior; (2) those regarding individual characteristics and
their influence on transmission; and (3) those interested in
the pathways and characteristics of diffusion (e.g., persistence
of transmission). Complementary to the ideas presented here,
Whiten and Mesoudi (2008) and then Whiten et al. (2016) also
provide extensive and updated reviews of diffusion studies in
animals and humans.

Presence/Absence of Diffusion
A first step in studies of social diffusion is to show that
information is actually transferred amongst animals in some
way. The literature is vast and spans contexts such as foraging,
breeding, anti-predation strategies, and social interactions.
Examples range from bumblebees (Bombus impatiens) choosing
the same-colored flowers as those chosen by conspecifics
they previously observed (e.g., Leadbeater and Chittka, 2005;
Worden and Papaj, 2005), to client fish (Scolopsis bilineatus)
spending more time near cooperative cleaner fish (Labroides
dimidiatus) than cleaner fish of unknown cooperative level
after observing other clients’ interactions with these cleaner
fish (e.g., Bshary and Grutter, 2006), to flycatchers (Ficedula
albicollis) using others’ breeding outcomes (offspring quantity
and/or quality) to select a breeding habitat (e.g., Doligez et al.,
2002).

The interest here lies in where transmission apparently did not
occur, because looking at how, why, and in what context animals
do not use social information is just as telling as when they do.
For instance, wild keas (Nestor notabilis), a mountain parrot,
failed to solve a foraging task despite having the opportunity to
observe proficient individuals solving the same task and to engage
with the experimental setup immediately thereafter (Gajdon
et al., 2004). When the experiment was repeated with captive
keas, a majority of the birds solved the task after observing a
proficient model (Huber et al., 2001; Gajdon et al., 2004). This
indicates that the absence of social information transmission was
independent of the task’s level of difficulty. It could be that wild
keas have the capacity to learn socially but some constraints
prevent them to express it – maybe a question of opportunity or
utility. This is similar to what is found in spotted hyenas (Crocuta
crocuta), a social carnivore, where individuals in captivity seem
more proficient at solving foraging tasks than those in the wild.
This difference was attributed to personality rather than more
trivial factors such as time-energy threshold, inasmuch as captive
hyenas are more exploratory and less neophobic than their
wild counterparts (Benson-Amram et al., 2013). In contrast, a
novel foraging behavior (piercing a lid to access food) spread
more quickly amongst groups of free ranging urban pigeons
(Columba livia) than amongst captive groups. This was explained
by the fact that urban pigeon groups are open to migrants which
could enhance the degree of innovation and diffusion (Lefebvre,
1986).

Looking in more details at the hyena example, whether
in captivity or in the wild, individuals presented with a box
containing meat were more likely to approach and manipulate
the box when they had seen others do it but were not more
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TABLE 1 | Summary of points examined in this review.

Transmission
process

Known influential
factors

Directions for further
studies

Initiation – Producer characteristics (sex, age, dominance rank, and personality,
motivation),

– Environment (complexity, stability),
– Type of innovation

– Competing solutions to the same problem
– Suboptimal demonstrator characteristics
– Seeding of information to individuals with different

characteristics simultaneously

Pathway – Producer/receiver characteristics
– Producer/receiver relationships (kinship, dominance difference,

“friendship”)
– Cognitive abilities (sensory output and processing)
– Social network (openness, connectedness, tolerance)
– Adaptive value
– Information characteristics

As above, and:
– Several information of varied types (e.g., social/asocial),

qualities, relevance, or congruence presented at the same
time

– Social structure disturbance/manipulation (e.g., alone/in a
social setting)

– Same type of experiments to many different species/groups
(including interspecies)

– Different task complexity/difficulty concurrently

Establishment/
termination

– Cost/benefit ratio,
– Conservatism level
– Social network structure

– Comparison between initial transmission and long-term
transmission patterns

Additional aspects:
– Technological equipment to track non-invasively: individuals’ movements (GPS, accelerometer), physical states (heart rate monitor, blood

glucose or glucocorticoid level monitor, infrared imaging), social proximities [radio-frequency identification (RFID) tags]
– Test apparatus version 2.0 with touch screens or panels, automated feeders, eye-trackers, face recognition
– Long-term population studies
– Heritability/evolution/environmental changes studies
– Taking inspiration in other diffusion domains such as epidemiology, informatics, or social media
– Building a database of protocols, pre-print, and published studies

likely to succeed in opening it (Benson-Amram et al., 2014).
In this case, social information is used indirectly to enhance
extraction of personal information but not directly to solve
an environmental problem. This could be explained by the
simplicity of the task (solvable by trial and error), or the
characteristics of the demonstrator (not relevant or reliable). It
could also be that social constraints, such as a rather competitive
environment, affects the cost/benefit ratio of social information
vs. personal information: hyenas are very good at solving goal-
oriented cooperative tasks (Drea and Carter, 2009), which may
be necessary to hunt large prey, but when they already have
access to food, they may instead pay more attention to avoiding
aggression than to new ways of obtaining the food per se. A lack
of diffusion and establishment of a behavioral pattern can also
occur when two alternatives are equally profitable. In meerkats
(Suricata suricatta), individuals were at first more likely to feed
on the same feeder as a demonstrator, but the more they explored
the experimental apparatus, the more they realized they could
easily get food at two “locations,” making it less likely they
would continue to use the demonstrator’s feeder more frequently
(Thornton and Malapert, 2009). In this example, although there
was social transmission from one demonstrator to one observer,
there was no establishment of behavioral tradition such that the
behavior spread within the whole group according to individual’s
assortativity.

In other cases, the task presented seems too difficult, not
appropriate or not ecologically relevant for the tested animals.
For instance, laboratory-reared rhesus monkeys learned to
fear snakes from watching videos of wild-reared conspecifics’
reactions to snakes, but never learned to fear a flower on the

same basis (Cook and Mineka, 1989). In a two-step foraging
task, vervet monkeys (Cercocebus aethiops) had to remove a
rope blocking a door before opening that door to retrieve food.
Although the trained model was ultimately successful at the task,
other individuals failed to master it although they were exposed to
a successful model, suggesting that the link between one gesture
and the next in a several-steps task was not evident (van de
Waal and Bshary, 2011). Another example of a behavior, this
time naturally occurring, that failed to spread is dental flossing
in Japanese macaques (Leca et al., 2010). In their study, the
authors reported several factors likely to constrain the diffusion of
innovation such as belonging to a small grooming cluster relative
to group size or having few close kin in the group, and the form,
function and context of the behavior. The most interesting point
that the authors made here is that the low adaptive value of dental
flossing, a “comfort” innovation with such a “narrow window of
applicability,” may also account for its lack of diffusion (Leca et al.,
2010).

Influence of Individual Characteristics on
Diffusion
Because social groups are often mixed groups of individuals of
different sexes, ages, and/or personalities, individuals’ interest
in, and experience and knowledge of, their environments vary.
Thus, some individuals are potentially more likely to discover
resources in the environment, to start innovating, or to correctly
assess dangers than others, creating a differentiation in the
availability and reliability of the social information produced
within a group/aggregation of animals. On the other hand, some
individuals are also more likely to learn from their conspecifics
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because they are more social (in general terms), i.e., they are more
often in proximity to others, they pay more attention to others, or
they are more often engaged in social activities.

For instance, only 54% of naïve blue tits exposed to a proficient
demonstrator solved a new foraging task (Aplin et al., 2013).
Investigation of the variables that could explain this percentage
showed that young females and subordinate males with higher
innovative problem-solving capabilities were more likely to
solve the task than others, whereas the characteristics of the
demonstrator had no influence on the performance of naïve
birds, i.e., there was no preferential attention to certain models
(Aplin et al., 2013). On the other hand, studies on vervet monkeys
demonstrated that social transmission is often influenced by kin
relationships, i.e., vertical, from mother to offspring (van de Waal
et al., 2014). When transmission is horizontal, from peer to peer,
or oblique, from adults other than parents, vervet monkeys are
more likely to copy the new foraging technique of an adult female
compared to an adult/subadult male (van de Waal et al., 2010).
Adult females of this species are philopatric and live their entire
lives in the group in which they were born. This potentially makes
them more reputable concerning food acquisition and processing
because they have more experience and are the more familiar
individuals in the group. They could also occupy more central
positions in the social network of the group and may be more
tolerant of individuals in proximity, all of which could potentially
enhance social information transmission.

Similarly, it has been experimentally shown that, visually,
monkeys do attend more to higher-ranking individuals than
to lower-ranking individuals (e.g., McNelis and Boatright-
Horowitz, 1998; Deaner et al., 2005), and to strong affiliates
compared to average affiliates (Bonnie and de Waal, 2006;
Micheletta et al., 2012). This pattern is interpreted as being more
salient in terms of acquiring social information. As another case
in point, the oldest living female in a group of African elephants
(Loxodonta africana), the matriarch, often leads the group from
one place to another and initiates group defense behavior (for
example when encountering signs of unfamiliar individuals or of
predators), potentially because she has enhanced local knowledge
of the environment and group members defer the decision of
travel/action to this informed individual (McComb et al., 2001,
2011; Mutinda et al., 2011). However, the best innovators, i.e.,
individuals more likely to start using a novel behavior, are not
necessarily the best models for information transmission. For
example, although male canaries (Serinus canaria) were better
at solving a foraging task and thus could have been selected
as demonstrators, their aggressive tendencies toward others
prevented them from being good models (Cadieu et al., 2010).
In this case, females constituted the best demonstrators because
they tolerated individuals around them, so social transmission of
an innovation mainly rested on females.

Diffusion Pathways
When social information is transmitted, determining the
pathways taken by this information within a group of individuals
as well as how fast and far it travels can give insights into the
mechanisms of social information use. Indeed, animals living in
groups or aggregations do not interact or associate randomly with

one another, but have preferred associates or affiliates which are
reflected in the heterogeneous structure of the social network of
the group/aggregation. As such, the flow of social information
is not random between individuals, but is in accordance with
the structure of the social network of the population (Krause
and Ruxton, 2002; Krause et al., 2007; Croft et al., 2008). Social
transmission of information can thus fail not only because of
some characteristics of demonstrators and/or naïve individuals,
but also because the link between knowledgeable and naïve
individuals may be suboptimal, e.g., the pair is not often together,
not strongly affiliated or even avoids association, whatever
the underlying causes. “Where” [i.e., with which individual(s)]
to seed the social information diffusion within a network of
individuals is thus as crucial as how connected the individuals
are.

In brown capuchins (now Sapajus apella) for example,
transmission during diffusion chain experiments was controlled
in that pairs of demonstrators-observers were chosen amongst
affiliates and the demonstrator was the higher-ranking of the
two, which may have facilitated transmission (Dindo et al.,
2008). In contrast, in a group of squirrel monkeys (Saimiri
sciureus), where the chosen demonstrator of a new foraging
technique was the alpha male, the open diffusion experiment
demonstrated that more central individuals in the social network
(those well connected and integrated in the group) were more
successful at mastering the technique and quicker at using it
than less central individuals (Claidière et al., 2013). Central
individuals indeed may have more opportunity to observe the
demonstrator and/or to manipulate the apparatus, especially if
the demonstrator is itself central, which would enhance the
use of social information. In a more natural setting, Brown
(1986) showed that cliff swallows (Hirundo pyrrhonota) that were
unsuccessful at bringing food back to the nest for nestlings were
more likely to follow a successful individual on their next foraging
trip than were successful foragers. Unsuccessful foragers were
also more likely to follow their nest neighbors on subsequent
trips, especially those within 1 to 5 nests away than further away
in the colony. As there was intra-individual variation in foraging
success, any bird could be a successful or unsuccessful forager and
thus a follower or a leader to a foraging patch. This led Brown to
coin the swallow colonies as “information centers” and is one of
the earliest examples of diffusion analysis in a foraging context,
albeit in a crude way (Brown, 1986).

A major step forward in the study of social diffusion is
the development of network-based diffusion analysis (NBDA).
NBDA is a tool now commonly used to demonstrate that
the expression of a behavior by an individual is the result of
it being associated with animals that themselves express this
behavior with an increased probability compared to a model
not including social effects (Franz and Nunn, 2009; Hoppitt
et al., 2010). The model specifically illustrates directed social
learning, in which information is transmitted at different rates
depending on association patterns between individuals (Coussi-
Korbel and Fragaszy, 1995). Such social effects explain variance
in lobtail feeding in whales (Allen et al., 2013) or food patch
discovery in tits (Aplin et al., 2012). The latter study not only
demonstrated that tits use social information to locate new
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food patches but also that the discovery success was linked
to individual centrality in the flock association network: more
central individuals were more likely to locate and use novel
foraging patches than those with limited social connections.
By looking at an animal or human group as a network of
connected individuals, social network analysis has facilitated
great progress in diffusion studies, and as a result, in the
understanding of animal and human culture. Because culture
is fundamentally based on the exchange of social information,
social structure and culture are indeed linked (Cantor and
Whitehead, 2013). In this perspective, diffusion studies, whether
experimental or observational, coupled with social-network-
based analysis brought substantial advances to our understanding
of how animals use social information.

FURTHER PERSPECTIVES ON SOCIAL
DIFFUSION STUDIES

Questions regarding the acquisition and use of social information
are typically concerned with when to copy (e.g., when resources
are easy or difficult to exploit/find, or when the environment
is stable or unstable), who to copy (e.g., successful or reputable
or familiar or genetically related individuals), what is copied
(i.e., what kind of information is remembered and transmitted)
and how individuals copy (i.e., the mechanisms or supports
by which the information is reproduced; Laland, 2004; Bonnie
and Earley, 2007; Whiten and Mesoudi, 2008; Whiten et al.,
2016). The literature covering each of these aspects is vast and
continues to expand almost exponentially (Galef, 2012; Whiten
et al., 2016). The challenge that remains even today is to
examine those questions in more integrative ways and to find the
right experimental, empirical, and statistical paradigm to do so
(Whiten et al., 2016).

Important aspects of diffusion that we feel deserve more
attention include social information characteristics, what makes
an animal a producer and/or a user of information, the cognitive
capacities involved in acquiring, processing, and using social
information, and finally the social competency of animals.
We also think that future work could pay more attention to
quantifying the rate at which information spreads, how far
this information can spread in a network, and the factors that
influence the flow of information. This means that an additional
focus to factors favoring social transmission could be on those
explaining an absence thereof. We now turn to these topics in
a humble attempt to participate in advancing the field of social
information use in animal societies.

Social Information Characteristics
The characteristics of social cues, i.e., information that
is inadvertently produced through interaction with the
environment, can greatly influence their transmission inasmuch
as acquiring and using social information is directly related to
the cost of acquiring and using asocial or personal information
(Boyd and Richerson, 1988). These characteristics can be
experimentally modified to assess which are important to the
animals. For example, is the number of conspecifics performing

a task sufficient, or are subtler cues necessary to decide to
use social information? For instance, experiments of social
transmission in fruit flies (Drosophila megalonaster) showed
that within an aggregation, the number of informed individuals
needed to be about twice the number of uninformed individuals
in order to observe transmission of information from informed
to uninformed individuals (Battesti et al., 2015). Experiments
with fish and birds demonstrate that individuals without a priori
information on environmental resources are more likely to
follow a large group of conspecifics to a food location compared
to a small group. But as soon as individuals can observe others
actually feeding, they would rather follow few individuals feeding
than many individuals not feeding (Kendal, 2004; Coolen
et al., 2005; Rieucau and Giraldeau, 2011). This suggests that
observing a direct link between a task and a reward is more
salient than just observing a task. Similarly, individuals with a
priori personal (or asocial) information are less influenced by
their companions’ behavior than those without. In an experiment
with nutmeg mannikins (Lonchura punctulata), individuals
without prior personal information consistently chose the feeder
associated with previously acquired social information regardless
of whether it was the mere numbers of companions present
or the numbers of companions feeding. Individuals with prior
personal information, however, did stick to their initial choice
and switch feeders only if they observed companions actually
feeding (Rieucau and Giraldeau, 2009). More subtly, homing
pigeons were shown to adjust their flight routes, to which they
generally show high fidelity, depending on those followed by
conspecifics (Biro et al., 2006). When the pre-established routes
of two pigeons did not differ greatly, a pair would converge on an
average path, supporting the “many-wrong” hypothesis arising
from a compromise between personal and social information.
However, as soon as the routes diverged beyond a distance
threshold, one individual became the leader, usually the pigeon
most faithful to its own pre-established route, supporting the
leadership hypothesis in which the most insistent, “confident,”
or less flexible individual imposes a social choice on the group.
In other cases, both pigeons defaulted to their established routes
and thus no use of social information was observed, again usually
when the routes diverged beyond a distance threshold (Biro et al.,
2006; Freeman et al., 2011).

Another characteristic of information that is likely to influence
its transmission is complexity or difficulty. A one-step task may
thus be acquired and spread faster between individuals than a task
requiring four steps to be completed. For example, callitrichid
monkeys used social information to solve a challenging foraging
task involving pulling a door toward oneself and retrieving
food inside a box, whereas they solved an easier foraging task
involving pushing a door and reaching inside to retrieve food
without using social information (Kendal et al., 2009). Similarly,
vervet monkeys easily solved a simple foraging task such as
pushing/pulling a door (van de Waal et al., 2013), but failed to
solve a two-action foraging task, even when being provided with
social information (van de Waal and Bshary, 2011). Information
complexity or stability can also emerge from the environment.
For example, the structure of the environment (open vs.
closed, arboreal vs. terrestrial) can influence how communication
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signals can be perceived (Maciej et al., 2011). Starlings (Sturnus
vulgaris) in an unpredictable environment are better at foraging
when in the presence of an informative demonstrator (who
consistently indicated the same food location) than in the
presence of an uninformative demonstrator, whereas individuals
in a predictable environment performed equally well with or
without an informative demonstrator (Rafacz and Templeton,
2003). The extent to which the complexity or stability of the
environment affects the transmission speed, accuracy, and reach
of social information is still not very clear, however. Ecological
and social environments may very well interact to affect
social information transmission inasmuch as an individual’s
perception and action are tightly linked to both (e.g., Barrett,
2011).

Some types of information are also more salient or relevant
than others, which will influence their social transmission. For
example, humans recall and repeat social information such
as gossip involving third-parties with greater accuracy and
in greater quantity than non-social information such as the
geographical description of a city (e.g., Bartlett, 1932; Mesoudi
et al., 2006). In animals, several studies hint that individuals
would probably also pay more attention to information
relating to social events as opposed to non-social events.
For example, fish choose to take a long circuitous route
with their mates rather than a shorter more direct route
alone to access food. This preference persists over several
generations even when founder demonstrators have disappeared
from the population (Laland and Williams, 1998). Similarly,
in a two-choice test paradigm where male rhesus macaques
had to choose between receiving a fruit juice reward or
receiving a fruit juice reward and seeing an image of a
conspecific, they not only chose the latter option but sacrificed
a bit of the amount of juice they could have received to
do so (Deaner et al., 2005). This choice demonstrated that
monkeys were ready to sacrifice a food reward to gather social
information.

Another characteristic we briefly mentioned before concerns
the adaptive value of a given piece of social information. If social
information that is obviously adaptive, e.g., use of a tool to
extract food among primates and corvids, versus that which is
not-so-obviously adaptive, e.g., stone-handling among Japanese
macaques, were to be seeded in the same group or aggregation,
would the spread, speed and reach of diffusion of the former
be more important than the latter? The relevance of the former
compared to the latter would intuitively lead us to predict a
positive relationship between adaptive value and these diffusion
properties. However, if these not-so-obviously adaptive socially
transmitted behaviors play a role in increasing group cohesion
through conformity for example, the answer may not be so
straightforward.

So, in general, although animals can display great interest in
an experimental apparatus or a given situation, perform a task
or a behavior to perfection, and readily observe and copy others,
we still know too little about the nature of social information
and its influence on transmission dynamics to predict when
these behavioral aspects will coincide and result in diffusion. Is
it about quality, quantity, complexity, congruence, relevance, or a

mixture of all of these traits? Determining this requires long and
patient trial-and-error tests, massive undertakings of experiments
encompassing varied conditions, contexts, and characteristics,
mathematical models and efforts in complex systems science
and, importantly, although the information can sometimes be
extracted from the study itself, a systematic report or test of the
kind of information that is tested/used. Experiments combining
tests of asocial and social information simultaneously are also
important in determining characteristics of diffusion as it is likely
that animals use a combination of both at every instant (Rieucau
and Giraldeau, 2011).

Animals as Information Processors and
Users
Each step of the transmission process requires individuals to
“innovate” on a personal level, that is, they are not necessarily
the first to express the behavior but this is the first time that
they themselves express it. In this sense, understanding limits
to innovation helps understanding constrains on social diffusion
(Brosnan and Hopper, 2014). One of these limits is within the
animals themselves, related either to individual characteristics –
explored in this section – or to cognitive abilities – explored in
the next section (for limits concerning the social environment,
see “The social competency of animals or the social network
effect”).

Characteristics of the information producers, such as relative
status, age, or sex, cannot only influence the performance
of an individual in its environment but can also condition
another animal’s decision to observe such producers and
to use the information gathered. Similarly, characteristics of
the information receiver determine its processing and use
of information and, as such, the speed, accuracy and extent
of information transmission. Individual constraints on social
diffusion (here, of innovations) stem from the propensity of
individuals to be conservative, that is, individuals tend to persist
with existing behaviors, or the existing uses of behaviors, rather
than explore novel options (Brosnan and Hopper, 2014). As a case
in point, bolder and less neophobic individuals are more likely
to produce information and to innovate than shy and neophobic
individuals because they tend to take more risks and explore their
environments more (Wilson, 1998). Lower-ranking chimpanzees
tend to be more innovative, probably because they are more
constrained in their access to food and have to find an alternative
solution more often than higher-ranking individuals (Reader and
Laland, 2001). In great tits, variation in spontaneous problem-
solving performance was unrelated to individual state (e.g.,
body condition) and not even associated with behavioral traits
(e.g., neophobia), but most likely reflected inherent individual
differences in the propensity to forage innovatively (Cole et al.,
2011). In starlings, less neophobic and higher-ranking individuals
were more likely to approach the experimental novel foraging
tasks. Group mates of these first “contactors” approached the
experimental apparatus more quickly as well if they themselves
had a propensity to feed in a novel environment (Boogert et al.,
2008).

Nevertheless, although some studies have determined which
individuals tend to learn or innovate faster or better (see

Frontiers in Psychology | www.frontiersin.org 7 August 2016 | Volume 7 | Article 1147

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-01147 August 2, 2016 Time: 13:18 # 8

Duboscq et al. Social Information Diffusion

references in previous paragraph), we are still at risk of making
a lot of assumptions about who those individuals might be
instead of testing who they actually are. When studying animals
living in group, especially in natural conditions, researchers
are indeed often constrained in the choice of knowledgeable
demonstrator(s) vs. naïve observer(s), because high-ranking
individuals monopolize the resources for example, or because
bolder individuals are more explorative. It is also very difficult
to disentangle which individual characteristics can have the most
influence, as high-ranking individuals for instance can also be
bolder than low-ranking individuals. Studies conducted with wild
animals must keep these sociodemographic constraints in mind
when being discussed or reported. Finding ecological validity
in diffusion studies is a much needed challenge (Whiten et al.,
2016).

Overall, what makes a producer and/or a user of information
varies greatly according to ecological, social, and individual
circumstances. What we need to be more aware of is that
not all individuals will produce or use social information,
in relative and absolute terms. Optimizing our knowledge
and understanding of the speed, accuracy, and spread of
social information transmission requires that the profiles of
producers and users be more systematically reported. We
also need studies that can select producers and users with
suboptimal characteristics, for example a high-ranking individual
with a lower-than-expected network centrality compared to a
low-ranking individual with a higher-than-expected network
centrality, or a lower-ranking individual with a higher-than-
expected boldness profile compared to a high-ranking individual
with a lower-than-expected boldness profile. For instance, in
several groups of vervet monkeys tested in an experimentally
induced coordination problem, dominant individuals naïve to a
foraging task learnt to wait outside of an imaginary forbidden
circle that the proficient but low-ranking individual approached
and solved the task and allowed food access to the whole group
(Fruteau et al., 2013). What is also needed is the assessment of
the effects of individual characteristics on diffusion in naturally
or spontaneously occurring innovations, observed from their
birth to their establishment or disappearance, in a population
where individuals are identifiable and their characteristics a priori
known [e.g., dental flossing (Leca et al., 2010) and louse egg-
removal techniques (Tanaka, 1998) in Japanese macaques, lobtail
feeding in humpback whales (Weinrich et al., 1992; Allen et al.,
2013), or moss-sponging in chimpanzees (Hobaiter et al., 2014)].

Cognitive Abilities
The social brain hypothesis states that increasing social
complexity drives the evolution of large brains with more
cognitive capacities, in the sense of information-processing,
because of the challenges of managing complex social
relationships (Whiten and Byrne, 1997; Dunbar, 1998; Pérez-
Barbería et al., 2007). However, the use of social information is
so widespread in the animal kingdom that one could contend
that information-processing capabilities do not relate only to
brain size (Barton, 2006; Morand-Ferron et al., 2010; Lihoreau
et al., 2012). The fact that invertebrates such as wasps and
bees are capable of memory and learning demonstrates how

complex cognitive processes are possible even with a limited
number of neurons (Lihoreau et al., 2012; Avarguès-Weber
and Giurfa, 2013; Grüter and Leadbeater, 2014). Paper wasps
(Polistes fuscatus) can recognize individuals and remember the
identity of social partners, even after a succession of interactions
with other individuals (Sheehan and Tibbetts, 2008). Honey
bees (Apis mellifera) are well known for their symbolic “dance
language,” which they use to build consensus about relocating
to a new home: the swarm integrates the different information
given by different explorative scouts through their dancing
and make a decision about a single location (Seeley, 2010).
In the field of social learning, it has been argued that social
learning does not depend on “advanced” cognitive adaptations,
and that social and asocial learning alike depend on the same
mechanisms (Heyes, 2012). This hypothesis is supported by
the facts that social and asocial learning abilities covary across
and within species (Bouchard et al., 2007; Reader et al., 2011),
that social learning occurs also in solitary animals (Fiorito and
Scotto, 1992; Wilkinson et al., 2010), and that social learning
has the same key features in diverse species, including humans
(Heyes, 1994, 2012). Heyes (1994, 2012) therefore argues
that social and asocial learning depend on a common set of
associative learning mechanisms and that social learning merely
reflects the case in which the information is provided through
a social channel (Heyes, 2012). This illustrates how the use of
social information may in fact require relatively simple and
computationally inexpensive forms of cognition (Lihoreau et al.,
2012).

However, the use of social information also involves
perceptual, attentional, and motivational processes specific to
information coming from other individuals (Heyes, 2012).
Acquiring and using social information requires animals to
link other individuals’ actions to environmental and/or social
reactions or patterns. Feedback from the social domain also
requires that individuals integrate and process stimuli not
only related to the external (e.g., sex, size) but also to the
internal (e.g., “emotional”) states of other interacting agents,
to the current social context, and to what this information
means to the individual at that moment in time in order
to respond with the appropriate behavior (Trimmer et al.,
2008; Clutton-Brock, 2009; Taborsky and Oliveira, 2012).
Throughout the evolutionary history of social species, these
social-specific processes may have been selected for and may
have further coevolved with the complexity of social life
(Heyes, 2012; Leadbeater, 2015). For instance, Pinyon jays
(Gymnorhinus cyanocephalus), a social corvid species, perform
a social learning task better than an asocial learning task
whereas Clark’s nutcrackers (Nucifraga columbiana), a less
social corvid, perform equally well in both tasks (Templeton
et al., 1999). Based on these differences, social learning
capabilities were interpreted as being adaptations to social
life (Templeton et al., 1999; Heyes, 2012). This is essentially
one of the tenants of the cultural intelligence hypothesis
(Whiten and van Schaik, 2007; van Schaik and Burkart, 2011),
which examines links between asocial and social learning
and the development and maintenance of learned skills
both horizontally and longitudinally in an effort to better
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understand the emergence and maintenance of cultures and
traditions.

From a neuroethological perspective, some parts of the
brain are specifically dedicated to social stimuli, such as face
recognition and processing, social approval (i.e., individuals
tend to conform to social norms to “fit in”), selective social
attention (e.g., individuals pay more attention to higher-ranking
individuals), or recognizing and responding to socio-emotional
signals such as fear and anger (Brothers, 1999; Insel and
Fernald, 2004; Phelps and LeDoux, 2005; Barton, 2006; Adolphs,
2008; Rilling and Sanfey, 2011). Mirror neurons are specifically
activated both when one performs an action such as reaching
for food and when one observes someone else performing that
same action (Gallese, 2007; Caggiano et al., 2009). In the broadest
sense, emotions are “an evaluative response of the organism
involving physiological arousal and expressive behavior,” and
“interfacing between sensory inputs and motor outputs in a way
that allows flexibility in the response (to a stimulus)” (Aureli and
Schino, 2004 for one definition amongst many). They function
as adaptive responses to environmental demands, preparing
individuals to cope with challenges (Aureli and Whiten, 2003;
Aureli and Schino, 2004; Phelps and LeDoux, 2005; Naqvi et al.,
2006; van den Bos et al., 2013). As shown in many (natural or
induced) experiments of brain lesions/malfunctions in humans
and animals (e.g., in the case of autism or brain damage due to an
accident), individuals that are physiologically or neurologically
stressed or impaired have difficulties making decisions in the
social domain and may thus be poor users of social information,
which would ultimately constrain social information diffusion
without giving any indication about their cognitive abilities. For
example, individuals with a damaged ventromedial prefrontal
cortex have normal intellect and problem-solving abilities under
test conditions in the lab, but make unfortunate decisions in real-
life situations and do not learn from their mistakes. This is due to
the fact that they have a generally “flat affect” and are thus unable
to use emotions to aid in decision-making (Damasio, 1994; Naqvi
et al., 2006).

From these perspectives, focusing social cognition research
on sensory information, computational challenges, and neural
networks, i.e., brain functioning, would be a rewarding way
of looking at animal cognitive abilities in the social domain
(Chittka and Niven, 2009; Barrett, 2011; Lihoreau et al.,
2012). Designing experiments and observations where animals’
motivational, emotional and perceptual capabilities concerning
their social worlds are accounted for could give important
insights into how social information is transferred within a
group.

The Social Competency of Animals or
the Social Network Effect
Ingenious mathematical models and experimental designs show
that efficient transfer of information and decision-making can
occur within animal groups in the absence of individual
recognition, advanced cognitive abilities or complex mechanisms
of transfer, and that individuals can respond spontaneously to
others that possess information. All that is needed is variation in

information holding among members of a population and simple
mechanisms of coordination (e.g., Couzin et al., 2005).

However, these kinds of simple decision rules are more
likely to be present in societies where individuals do not
form differentiated relationships with each other. When group
members have the opportunities to recognize each other and
memorize past interactions that influence future ones, they do
form differentiated relationships that can condition and influence
their decision-making processes (Sueur, 2011; Lee and Harris,
2013; Pasquaretta et al., 2014). The heterogeneous distribution
of social connections within a group also creates heterogeneous
opportunities to observe and learn from certain individuals (as
in directed social learning, Coussi-Korbel and Fragaszy, 1995).
As such, the structure of the social network of a group can
have important consequences for the social transmission of
information (Coussi-Korbel and Fragaszy, 1995; Croft et al.,
2008; Aplin et al., 2013; Cantor and Whitehead, 2013). For
example, observer deer mice (Peromyscus maniculatus) have
stronger reactions of preparatory analgesia and self-burying in
reaction to biting flies when the observer is genetically related
to or is more familiar with the demonstrator, although the
demonstrator’s behavior does not vary with social conditions
(Kavaliers et al., 2005). High-ranking rhesus macaques solve
a color-discrimination problem equally well when in a whole
group or only amongst high-ranking individuals, whereas low-
ranking individuals perform better when with other low-ranking
individuals only than when with the whole group (Drea and
Wallen, 1999). In a cooperation task, spotted hyenas adjust
their behavior to the skills and capabilities of their partners
(for example, when an adult is paired with a youngster) and
their level of cooperation is modulated by the composition of
their social group inasmuch as an individual’s performance is
better predicted by the presence of high-ranking individuals –
which can be quite aggressive – than by the subject’s prior
experience in the task to solve (Drea and Carter, 2009). An entire
field of research in animal communication is dedicated to these
moderating effects of social context, so-called “audience effects,”
i.e., individuals adjust their decisions or behaviors depending on
who is with or around them (Zuberbühler, 2008). Conformity,
i.e., doing what the majority does, is a very influential mechanism
by which culture emerges, evolves and persists (Laland, 2004;
Morgan and Laland, 2012). Reaching a consensus decision, on
where to go for example, is also a well-studied example of social
modulation of behavior (Conradt and Roper, 2009).

Social network analysis (SNA) has proven a useful and
powerful tool in understanding social influences on the patterns
of acquisition and use of social information (Croft et al., 2008;
Voelkl and Noë, 2010; Kurvers et al., 2014; Brent, 2015).
A simulation study based on a substantial dataset of primate
interaction matrices tested the hypothesis that the social structure
of a group has a strong influence on patterns of social learning
(Coussi-Korbel and Fragaszy, 1995) by comparing information
flow within networks in empirical (structured) social groups and
theoretical well-mixed groups in terms of propagation speed,
path length of transmission and resilience against information
loss (Voelkl and Noë, 2010). This study showed that information
spreads faster in well-mixed groups compared to structured
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groups. In structured social networks, information also spreads
faster when the frequency of interactions was either disregarded
(unweighted or topological networks) or distributed randomly
amongst interacting individuals. Similarly, the number of
transmission events (path length) from an innovator individual
to a target individual was greater in structured groups compared
to well-mixed groups and was related to reduced connectivity
and variation in interaction frequencies. Furthermore, variance
in average path length was related to variation in group size,
the larger the group the longer the path length, but also to
community modularity, a measure that quantifies the structuring
of a group into subgroups (Voelkl and Noë, 2010). Actually,
there is more and more evidence that the structure of a social
group, rather than its absolute size, influences network flow (e.g.,
pathogens or diseases: Griffin and Nunn, 2012; Nunn et al., 2015;
emotions, tastes, or health outcomes: Fowler and Christakis,
2008; Bakshy et al., 2012; Christakis and Fowler, 2014). At a
more global level, this is illustrated by the differences found in
cooperative performance, enhanced in socially tolerant bonobos
compared to more aggressive chimpanzees (Hare et al., 2007), or
in socially tolerant Tonkean macaques compared to non-tolerant
rhesus macaques (Petit et al., 1992). Those differences have been
attributed to the fact that social networks of tolerant species are
more diverse and open because individuals tolerate each other’s
proximity better and this potentially offers a greater opportunity
for information diffusion.

In humans, mathematical modeling has shown that social
influences can lead to disproportionate diffusion of a trend or
a fashion, an effect called the majority illusion (Lerman et al.,
2015). In a network setting, behaviors can be contagious and
spread to an entire population from a small subset of initial
individuals. The speed and spread of this contagion has been
shown to be heavily dependent on the network structure: a
trend or a disease is transmitted faster if the initial adopters
are very well connected and/or belong to very well connected
clusters, e.g., superspreaders (Fujie and Odagaki, 2007; Garcia-
Herranz et al., 2014). Because individuals take their social cues
from their local neighbors, the characteristics and positions in
the network of these initial adopters can greatly influence the
contagion of a behavior, making it appear far more common
locally than it is globally (Christakis and Fowler, 2014; Garcia-
Herranz et al., 2014; Lerman et al., 2015). This has been
termed the majority illusion and stems from the friendship
paradox in which one’s friends appear to have more friends
than one has (it also concerns tweets and academic citations
for instance). The mathematical model developed by Lerman
et al. (2015) quantifies the strength of this phenomenon and
shows that it is stronger in networks with active high-degree
nodes (active knowledgeable individuals) and heterogeneous
degree distribution (because active knowledgeable individuals
are more attractive and others in the population, non-active
non-knowledgeable, pay more attention to them). Similarly, in
health programs dedicated to educate people about hygiene and
safer practices, targeting friends of individuals – themselves
chosen randomly – in the population can have greater effects
on the spread of behavioral changes than targeting individuals
with the most social ties (Kim et al., 2015). This effect is

attributed to the specific structuring of human social networks,
which show subgroups of interconnected individuals each with
their own locally influential nodes (Newman and Park, 2003;
Fowler and Christakis, 2008; Kim et al., 2015). It also suggests
that the assumption of greater centrality linked to greater
influence on social processes is not always straightforward as
this relationship can be mediated by sub-structuring, individual
role or position, and synergies between indirect and direct
connections. In fruit flies, social network structure [for example,
homogeneous (individuals behave similarly) vs. heterogeneous]
also affects information use, specifically in oviposition site choice:
uninformed flies would either follow or avoid choices of informed
flies depending on the amount of variance in individual network
centrality among informed group mates, the greater the variance
the more uninformed individuals avoided the same site as
informed individuals (Pasquaretta et al., 2016). Social network
modeling can thus improve the underpinning social variance and
the understanding of why some behaviors spread – or on the
contrary do not spread.

A factor that is often overlooked is that, although social life is
extremely beneficial, it can also be stressful because individuals
not only have to satisfy their own needs but also must do so
while coordinating with the needs of others (Krause and Ruxton,
2002). Whether test subjects are in their social group settings
or tested singly can have tremendous effects on their stress
level and cause concomitant effects on decision-making in the
laboratory or under natural conditions (van den Bos et al., 2013).
As such, on the one hand experimental studies done in isolation
of the social context may have little predictive value in terms
of social information use in general, although they allow for
the dissection of mechanisms and functions quite difficult to
achieve in natural settings. On the other hand, the social group
context can be very inhibiting for some individuals and thus
can impede social information diffusion, such as potential or
actual conflicts with conspecifics, or the fact that performing a
task in front of conspecifics can be overwhelming (van den Bos
et al., 2013). Stress affects memory and learning (Schwabe et al.,
2012) and biases decisions (Aureli and Schino, 2004; Naqvi et al.,
2006; Starcke and Brand, 2012). For example, individual ravens
(Corvus corax) approach a novel object faster but spend less time
interacting with it when alone than when in pairs or groups,
seemingly trading off vigilance against innovation depending
on risk and opportunity assessment (Stöwe et al., 2006). Brown
rats (Rattus norvegicus) experiencing stress significantly and
progressively lose the ability to adjust their responses toward a
larger reward when transitioning from equal to unequal reward
quantities (Graham et al., 2009). The effect of stressors on
decision-making may not be of great consequence in animal
social diffusion studies apart from failed experiments, but in
humans, having to make a decision under high stress is linked to
variation and volatility which likely reflects uncontrollability and
unpredictability and can lead people or groups to make irrational
choices (Starcke and Brand, 2012).

A final aspect of the influence of sociality on social information
use is the social competence of animals. Social competence refers
to the ability of individuals to regulate the expression of their
social behavior in order to optimize their social relationships
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(Taborsky and Oliveira, 2012; Bshary and Oliveira, 2015). For
instance, it allows individuals to avoid engaging in overly costly
fights (“winner-loser” effect; Hsu et al., 2006; Taborsky and
Oliveira, 2012) and to increase or decrease their degree of
aggressiveness according to the familiarity of their opponents
(familiar = “dear enemy” effect, stranger = “nasty neighbor”
effect; Temeles, 1994; Taborsky and Oliveira, 2012). Social
competence can also explain why individuals tend to cooperate
more readily with social partners if they themselves have received
help from others previously (“generalized reciprocity”; Pfeiffer
et al., 2005; Taborsky and Oliveira, 2012). Although established
from an evolutionary ecology point of view, with reference
to phenotypic behavioral flexibility and plasticity, the vantage
point of social competence provides an overview of the general
ability and performance of individuals in a social environment
(Taborsky and Oliveira, 2012). Recently, the social competence
perspective has been paired with a game theoretic approach
in animal cooperation with exactly this goal in mind. This
more integrative framework also highlights the importance of
studying the behavior and underlying decision rules/strategies
of individuals across different social contexts, in the same way
that behavioral syndromes encompass links and feedbacks of
individual reaction norms across a variety of contexts (Bshary and
Oliveira, 2015). Social diffusion studies would benefit enormously
from taking such an integrative approach and accounting
simultaneously for variation in the individual, social, and physical
worlds.

SMART ANIMALS

Animals produce and receive, acquire and use social
information from different individuals in different contexts
and circumstances. The circumstances under which an animal
uses social information rather than selects an option based on
its own environmental sampling or the different rules animals
adopt when making such decisions have been investigated in
great details. Social diffusion experiments of all kinds are great
tools to investigate the social insights of animals. Nevertheless,
many important questions remain: how do animals distinguish
informed and uninformed individuals? How do they judge the
quality of a piece of information? What if several individuals
are deemed knowledgeable but the information they provide
conflict? What if the context in which social information is
produced changes its value compared to another context? What
if certain pieces of information are easier/less risky to get, but
are also less accurate? To what extent the spread, reach and
speed of transmission of a social information are affected by
these parameters? Answering these questions, from our point
of view, will require a more integrative approach, marrying
different fields to reflect more realistically the probable holistic
understanding animals have of their environments (Laland,
2004; Taborsky and Oliveira, 2012; Bshary and Oliveira, 2015).

On a practical side, with the accumulation of studies of
diffusion, building a database of successful and failed experiments
could better inform the scientific community. This could
take the form of depositing protocols into an open-access

database, such as the Dryad Digital Repository1, with the
advantage of having corresponding digital object identifiers
(doi), or creating a dedicated website on which to aggregate
studies, pre-prints, and protocols in the same fashion as
the Global Mammal Parasite Database2, with the advantage
that it is searchable and collaborative. With the technology
available today providing small cost-effective electronic devices
[touch-screens, eye-trackers, automated feeders, accelerometers,
radio-frequency identification (RFID) technology, GPS, etc.],
broad-scale experiments and modeling could be possible as is
now done regularly in cognitive science (Fagot and Bonté, 2010),
ecology and social network studies (Rutz et al., 2012; Krause et al.,
2013; Farine and Whitehead, 2015). One could setup providing
automated food boxes with automatic food delivery devices and
remote-controlled openings triggered by the approach of an
animal equipped with RFID tags. Providing dozens of such boxes
in a group setting would allow varying the quality, quantity,
and reliability of the information available to group members
both as producers and receivers. Tracking natural demographic
changes or experimentally inducing changes by removing/adding
individuals or manipulating the quality of a social bond could also
give insights into the causes and consequences of social network
structure on social information transmission.

This kind of diffusion experiments, with broad yet
individualized parameters, could help tackle integrated questions
related to variation and complexity of the environment,
be it social or ecological. As has already been proposed
for studies in cognitive science (see e.g., Barrett, 2011 and
Wilson and Golonka, 2013 for an overview), social diffusion
studies would also benefit from being more “embodied,” i.e.,
investigating social information use within individual, social
and environmental contexts. Furthermore, studies on social
information transmission could get inspiration from other
domains such as epidemiology, informatics security, or social
media, especially in humans, where studies also account for and
integrate social network processes in empirical and mathematical
studies, thereby providing tremendously important insights into
biological and social processes. Finally, most of the experimental
examples are situated in foraging, mating and anti-predator
contexts, but far less has been done in social contexts such as
aggression or affiliation. We know that animals are socially
aware in the sense that they recognize their group mates or
conspecifics, that they can keep track of their relationships
and that they can use social concepts such as dominance and
triadic relations (Whiten and Byrne, 1997; Dunbar, 1998; Emery,
2004; Holekamp et al., 2007; Silk, 2007). We have evidence
that animals can recognize facial expression in conspecifics
(Micheletta et al., 2015), that emotional arousal can spread
through a group (collective arousal or emotion contagion, e.g.,
De Marco et al., 2011) and that animals can also judge and use
the social reputation of others in their decisions (Alexander,
1987; Bshary and Bronstein, 2010). How animals make use of
these kinds of social information to guide their decisions in
their social relationships is an open field of investigation where

1http://datadryad.org/pages/organization
2http://gmpd.nunn-lab.org/
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social diffusion experiments can find their place. Better or further
accounting for characteristics of information, of individuals, of
cognitive and social competences is essential in making progress
in the social information field and in the understanding of how
animals make use – or not - of social information.
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Network centrality and seasonality 
interact to predict lice load in a 
social primate
Julie Duboscq1,2, Valeria Romano1,2, Cédric Sueur1,2,3 & Andrew J.J. MacIntosh4,5

Lice are socially-transmitted ectoparasites. Transmission depends upon their host’s degree of contact 
with conspecifics. While grooming facilitates ectoparasite transmission via body contact, it also 
constrains their spread through parasite removal. We investigated relations between parasite burden 
and sociality in female Japanese macaques following two opposing predictions: i) central females in 
contact/grooming networks harbour more lice, related to their numerous contacts; ii) central females 
harbour fewer lice, related to receiving more grooming. We estimated lice load non-invasively using 
the conspicuous louse egg-picking behaviour performed by macaques during grooming. We tested for 
covariation in several centrality measures and lice load, controlling for season, female reproductive 
state and dominance rank. Results show that the interaction between degree centrality (number of 
partners) and seasonality predicted lice load: females interacting with more partners had fewer lice 
than those interacting with fewer partners in winter and summer, whereas there was no relationship 
between lice load and centrality in spring and fall. This is counter to the prediction that increased 
contact leads to greater louse burden but fits the prediction that social grooming limits louse burden. 
Interactions between environmental seasonality and both parasite and host biology appeared to 
mediate the role of social processes in louse burden.

Many parasites, i.e. organisms that live and feed exclusively within or on other living organisms (hosts), are 
socially-transmitted, either directly through contact between individuals or indirectly through spatial overlap 
and resource sharing1. Risk of infection in social individuals can therefore depend partly upon the nature of their 
social interactions, making the risk of disease and pathogen transmission one of the major costs of sociality2. 
Highly social hosts are expected to encounter a more abundant and diverse parasite community than less social 
hosts, and thus to exert stronger influence on the transmission of parasites through their social networks1. Thus 
the heterogeneity and diversity of contacts between hosts must be considered when tracking parasite/disease 
transmission and attempting to understand infection risk3,4.

From this perspective, social network analysis (SNA) provides a useful tool that captures such heterogeneity 
by taking into account direct and indirect connections (edges) between individuals (nodes), allowing for mul-
tilevel analyses from individuals to populations3. For example, the number of connections an individual has 
(network degree) and their combined ‘weight’ (network strength) can be used to assess an individual’s risk of 
direct exposure to pathogens/parasites from social conspecifics, while other indices such as eigenvector centrality 
extend estimation of exposure risk to include the neighbourhood of an individual’s neighbours3,5. The use of SNA 
in epidemiological studies has also highlighted that social transmission of pathogens can be dynamic because 
host sociality itself is intrinsically dynamic3 and related to various factors which must also be taken into account 
such as environmental seasonality, age, sex, reproductive state, energetic needs and/or preferential attachment 
related to dominance rank, kinship, or friendship2,6.

One common type of network relevant to social animals derives from social grooming (allo-body-care/
allo-grooming/allo-preening, hereafter grooming). Grooming is often highlighted as a mechanism of establishing 
and maintaining group cohesion and social bonds7,8, and at least in non-human primates, its frequency has been 
linked to kinship, dominance rank and access to resources9,10. In many social animals, grooming is also studied 
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with respect to its direct and indirect health benefits: in addition to reducing physiological stress and releasing 
endorphins (“relaxing” hormones)11–13, social grooming retains the original (hygienic) function of self-grooming 
which evolved to remove dirt and other debris, ectoparasites and/or dead skin. Evidence for this hygienic func-
tion is widespread in animal societies14–16. It is further supported by the preference of groomers to groom body 
parts likely infested with ectoparasites because they are not easily accessible to the individuals themselves (e.g. 
head, shoulders)16–18, and by the finding that preventing grooming through physical incapacitation or social iso-
lation leads to sharp increases in ectoparasite loads19,20.

One common ectoparasite of mammals is the louse, which feeds on blood and requires a host during each 
stage of its life cycle. Adult lice typically lay one to several eggs (nitts) every few days, which are glued to the base 
of a hair. Like many organisms, lice respond to environmental conditions (e.g. temperature, humidity). In ungu-
lates, for instance, adult louse populations peak in spring and drop in summer20,21. Lice are also susceptible to 
their host’s physical condition (e.g. hormonal changes), which they perceive through blood meals (e.g.)21–23. Thus, 
louse reproduction can be triggered or hindered by that of their hosts20. Lice are further affected by changes in the 
pelage of their hosts–their habitat–such as those induced by moulting (sequential hair replacement) or shearing 
(e.g. in domestic sheep)23. All of these are relevant to the extent to which lice affect their hosts. Direct effects of 
infestation include activation of skin allergic reactions such as dermatitis or pruritis20, which have pronounced 
effects on an animal’s body condition, e.g. hair/feather quality20, and ultimately its fitness20. Indirect effects 
include their potential to act as vectors or intermediate hosts of many pathogens (e.g., Rickettsia prowazekii,  
Bartonella quintana, and B. recurrentis24; Rickettsia, Anaplasma, and Bartonella spp. in various animals20,25,26, 
including primates27).

Lice and their mammalian hosts are thus a good host-parasite system to study the likelihood or risk of disease/
parasite transmission within host social networks28. Body contact, including grooming, provides an opportunity 
for these parasites to transfer from one host to the next. The host contact network structure is therefore para-
mount in patterns of louse transmission and even population viability, since lice are largely host specific, have a 
direct life cycle, and may not survive more than a few hours away from their host20. At the same time, much of 
the body contact observed in many social animals occurs in the context of social grooming, which may simulta-
neously constrain the spread of such organisms through parasite removal. An individual’s lice load can thus be 
amplified or constrained by its social contact network, illustrating one of the trade-offs between costs and ben-
efits of being social. Yet, studies investigating the links between network centrality and louse infestation and/or 
louse-mediated disease are still too few, and these trade-offs thus generally remain poorly understood.

In this study, we investigated the risk of louse infestation within Japanese macaque social networks. The 
Japanese macaque (Macaca fuscata fuscata) is a social primate species living in multi-female multi-male groups, 
where individuals form linear dominance hierarchies and differentiated affiliative social relationships29. Japanese 
macaques harbour two species of louse (Pedicinis obtusus and P. eurygaster). Based on quantification of egg and 
nymphal/adult stages of lice detected on culled macaques, it was estimated that an average-sized macaque could 
harbour up to 550 louse eggs17. This was approximated to represent 230 nymph/adult lice17, with usually good 
correlation between these life stages (at least in domestic sheep)21. Thus, the number of louse eggs seems a good 
estimation of the host louse population17. Furthermore, video data analysis showed that 98.9% of what groomers 
conspicuously pick out and consume from the hair/skin of groomees consists of louse eggs30. Body parts esti-
mated to have many louse eggs and associated with higher frequencies of conspicuous louse egg-picking gestures 
are groomed longer than other body parts17,31. This louse egg-picking behaviour can thus provide an ideal estima-
tor of lice load among individuals observed under naturalistic conditions. We therefore used the number of louse 
egg-picking gestures during grooming, controlling for total number of observation records of grooming received, 
as a proxy for lice load (see Methods).

Specifically, we first assessed the extent of variation in centrality measures and lice load according to ecological 
and social contexts because host-parasite interactions can be mediated by such contexts32. Japanese macaques 
live in an environment with four distinct seasons and are strict seasonal breeders, with mating seasons occur-
ring between fall and winter and birth seasons occurring between spring and summer (with strong regional 
variation)29. As such, host energetic demands and physiology as well as social contact and proximity networks 
also change seasonally and seasonal changes in host reproductive activity can induce variation in host immune 
defence32 and social tendencies33–35. Individuals furthermore moult seasonally, hair being longest/densest in win-
ter and shortest/sparsest in summer36, which may strongly affect louse reproduction and survival but also louse 
detection during grooming. Host susceptibility to infection can also be related to an individual’s general physical 
condition37. Higher-ranking females in the dominance hierarchy are generally fitter than lower-ranking ones38–41, 
and they may thus better resist infection35,42,43. Such individual, social and environmental variables, along with 
the synergies among them, often correlate with variation in parasitism which in turn may influence transmission 
dynamics and infection risks32. As such we predicted that environmental seasonality, host reproductive status and 
dominance rank would affect host centrality, lice load and their interactions in a way that females, particularly 
low-ranking ones, may be less social and more prone to lice infestation during reproductive seasons (i.e. winter 
and summer), periods where lice population should also be either at its maximum or at its minimum due to local 
conditions (i.e. physiological and hair status of the host).

Then, we tested the relationship between centrality and lice load, accounting for the potential confounding 
factors presented above (also see Methods). Because body contact provides a transmission opportunity for lice, 
and thus an infection risk for hosts, yet grooming may constrain louse density through parasite removal, we made 
two opposing predictions: compared to less central females, 1/ more central females will be most infested with lice 
due to their higher diversity of interacting partners or their higher frequency of body contact in the network; or  
2/ more central females will be least infested with lice because they have their louse eggs removed through groom-
ing by a higher diversity of partners and/or more frequently. Evidence for a positive relationship between central-
ity and lice load would indicate that despite increasing exposure risk to potentially deleterious parasites, being 
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central still presents advantages. Conversely, a negative relationship would speak in favour of social grooming as 
an efficient antiparasite strategy that can be exploited by females through their grooming networks. To test predic-
tion 1, we investigated the relationship between estimated lice load and centrality measures based on undirected 
weighted networks of body contacts, including grooming. To test prediction 2, we looked at whether lice load was 
related to in-centrality measures derived from directed weighted networks of grooming received. Testing differ-
ent centrality measures allowed us to investigate whether it is the actual number (or diversity) of partners and/or  
the actual amount of social contact a female has that influences lice load. First, grooming skills and thus louse 
egg-picking efficiency significantly vary across individuals44. As such, being groomed for long duration by an 
individual poorly skilled at removing louse eggs can have less influence on lice load than being groomed for short 
durations by several individuals with varying degree of efficiency at removing louse eggs. Furthermore, female 
Japanese macaque society is based on strict hierarchical social rules determining who can interact with whom45. 
These social constraints can not only affect the number of partners as much as the frequency of social interactions 
of an individual, but also the areas of the body individuals have access to: lower-ranking females indeed tend 
to avoid eye contact when grooming higher-ranking ones, and thus avoid the head and frontal body parts (in 
bonobos)46. Given that lice are unevenly distributed on the body17, this may also constrain louse egg removal and 
having diverse grooming partners may thus be as advantageous as being groomed for long durations.

Results
Grooming represented 27% (median, range =  14–39%, N =  20) of all activity scans of female Japanese macaques 
of Koshima during this study. Body contact without grooming represented only 9% (median, range =  1–20%, 
N =  20) of all scans with body contact. Females were in contact with other adult females in 48% of all scans 
with body contact (median, range =  4–88%, N =  20), with males in 6% (median, range =  0–61%, N =  20 females 
and 9 males) and sub-adults, juveniles and infants in 41% (median, range =  1–96%, N =  20 females and 23–31 
non-adults). Total louse egg-picking events averaged 129 events per female over the whole study period (median, 
range: 36–320, N =  20), which represented less than one event per grooming minute-scan (median =  0.77, 
range =  0.34–2.23, N =  20).

Variation in centrality and lice load according to seasonal and individual factors.  The modu-
larity Q of social networks, representing the extent to which a network is partitioned in smaller units, shifted 
between seasons especially before and after summer where it was highest (Fig. 1). Randomisation tests showed 
that only the centrality measure degree in the contact network was significantly affected by seasonal and/or indi-
vidual factors when compared to null models that randomised the network data. Degree in the contact network 
showed significant variation across seasons (Supplementary Table S2; Figs 1 and 2): it was significantly lower in 
summer and fall compared to winter and spring (Supplementary Table S2; Fig. 2), meaning that females had sig-
nificantly more female social partners during the latter than the former seasons.

Lice load also varied across seasons, being higher in summer and fall compared to spring and winter 
(Supplementary Table S2; Fig. 2). Lice load changed marginally according to the females’ reproductive state, being 
slightly higher in reproductively active females than others (Supplementary Table S2).

Testing prediction 1: increased parasitism with increased centrality in contact networks.  
Overall, only one of the centrality measures from contact networks was related to lice load and only through an 
interaction with season (Supplementary Tables S3 & S4, Figs 3–5): females with higher degree had a lower lice 
load than those with lower degree, but only in winter and summer, whereas there was no relationship between 
degree and lice load in spring and fall. Strength did not predict lice load (Supplementary Tables S3 & S4, Figs 3–5). 
Thus, in winter (mating season) and summer (birth season), females in contact with more female social part-
ners had lower parasite burden compared to females in contact with fewer partners. In spring and fall, however, 
females showed similar parasite burden regardless of their centrality. The observed effect of degree centrality 
was significantly more pronounced than the same effect from a set of models that randomised the network data  
(p β obs <  β rand =  0.043, Supplementary Table S4). Prediction 1 was thus not fulfilled.

Testing prediction 2: decreased parasitism with increased centrality in grooming received network.  
Models with grooming received centrality measures showed a tendency towards lice load being related to 
in-degree through an interaction with season and reproductive state separately (Supplementary Table S3 & S4, 
Figs 3–5): females with higher degree in the grooming received network tended to have lower lice load than those 
with lower degree in winter and summer whereas there appeared to be no relationship between degree and lice 
load in spring and fall (Supplementary Table S3 & S4, Figs 3–5). This negative effect of centrality on lice load 
was marginally greater in reproductively active compared to inactive females (Supplementary Table S3 & S4,  
Figs 3–5). This means that in winter and summer (the mating and birth seasons respectively, i.e. when some 
females were reproductively active), females receiving grooming from more female social partners had lower par-
asite burden compared to females receiving grooming from fewer partners. In spring and fall, however, females 
showed similar parasite burden regardless of their centrality. However, the observed effect of in-degree centrality 
was not quite more pronounced than the same effect from a set of models that randomised the network data  
(p β obs <  β rand p =  0.087, Supplementary Table S4). Prediction 2 was thus partially fulfilled.

Discussion
In animal groups, increased centrality in social networks is often linked to increased parasite load and disease 
risk3. In female Japanese macaques of Koshima, centrality in terms of number of connections in contact and 
grooming received networks was negatively associated with lice load, as measured by louse egg-picking gestures 
performed during grooming. However, the relationship between degree and lice load was mediated by season in 
that females with fewer contact or grooming partners presented higher lice burden only during winter (mating 
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Figure 1.  Seasonal variation in contact and grooming networks. Sociograms of weighted contact (in blue) 
and grooming received (in orange) networks across the four seasons. Node colour shades represent variation 
in number of connections (degree), the darker the higher, and edge thickness represents the strength of the 
connection between two nodes, the thicker the stronger. A bidirectional relationship between two nodes is 
indicated by two edges clockwise. On the side of each network is given the modularity Q as well as the number 
of communities (or splits) found according to eigenvector centrality (Newman 2006).

Figure 2.  Variation in centrality indices and lice load across seasons. Coefficient plots of GLMMs testing 
the influence of seasonal and individual factors on centrality measures and lice load (here without the 
influence of centrality). Circle: coefficient value, bold line: one standard error. Levels of categorical predictors 
between parentheses indicate those not included in the intercept (the reference level is winter for season, not 
reproductively active for reproductive state).
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season) and summer (birth season). This was concurrent with a tendency towards the negative effect of degree 
centrality in grooming received network on lice load to be greater in reproductively active compared to inactive 
females. These findings did not provide support to the prediction of increased parasitism with increased contact 
centrality, but were in accordance with other studies showing that grooming received can be a predictor of lower 
ectoparasite burden15,19,20,47.

It must be stated up front that our measure of lice load is indirect, observational and dependent upon observ-
ing individuals grooming. Capturing monkeys and marking/collecting lice provides a direct estimate of lice loads 
and allows testing whether lice actually carry pathogens, but this approach is inconvenient and often impossible 
to implement in wild populations. That said, Japanese macaques are very conspicuous when picking items from 
the hair or on the skin of their grooming partners, and 98.9% of what is picked and consumed has been demon-
strated to be louse eggs30. Furthermore, body parts estimated to have many louse eggs are groomed longer with 
more frequent louse egg-picking gestures17,30. Thus, despite the indirect nature of this measure, we believe it to be 
a fair estimate of lice load, particularly when coupled with the demonstration that the amount of eggs is approxi-
mately double that of adult lice17. Such conspicuous hygiene-related behaviours thus provide useful information 
with which to investigate risks of infestation with ectoparasites and/or disease spread in wild animals, at least in 
those species in which such behaviours are readily observed.

The study of this louse egg-picking behaviour led researchers to discover that macaques groom for demonstra-
bly longer durations if they find many louse eggs to pick and eat (so called “grooming-related feeding”), irrespec-
tive of the relationship between groomer and groomee31. Studies on birds have also shown that allopreening of 
self-inaccessible body parts occurred regardless of dominance relationships, which was not true for self-accessible 
body parts15. These studies suggest that some grooming bouts or parts thereof may be less dependent upon social 
preferences than once thought, and instead linked to other ecological functions (e.g. hygiene, feeding) of social 

Figure 3.  Interaction between centrality in grooming received network and seasonality in predicting lice 
load. Sociograms of weighted grooming received networks of adult female Japanese macaques of Koshima, 
divided according to season: (a) winter (N =  19, f-ok not followed), (b) spring (N =  20), (c) summer (N =  19, 
f11 no contact with others), and (d) fall (N =  19, f23 no contact with others). Variation in node colour 
represents variation in lice load per grooming unit, the darker the node, the higher the lice load. Variation 
in node size represents variation in degree, the bigger the node, the higher the degree. Variation in edge size 
represents the strength of interactions, the thicker the edge the more frequent grooming received between two 
nodes. Edge colour matches the target node, i.e. the node receiving grooming. A bidirectional relationship 
between two nodes is indicated by two edges clockwise.
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grooming15,31. This is remarkable because social interactions between group members are often influenced by 
similarity within dyads; kin, individuals of adjacent dominance ranks, or age-mates tend to interact more fre-
quently with each other than with others. Such assortativity may ultimately reflect on the centrality of individuals 
within their network, and arises independently of the distribution of lice in the group. Yet, our study, like that of 
earlier works17,30,31, hints at the possibility that grooming-related feeding may now prove influential in determin-
ing even partially the grooming network structure, at least in macaque societies, a link that should be investigated 
further.

One ecological factor that clearly affects numerous behavioural outcomes is seasonality. We considered sea-
sonality of the environment as well as host and parasite biology, as it is generally highly relevant to infectious 
disease dynamics32. Indeed, the primary result of this study hinges on an interaction between seasonality, net-
work centrality and lice load: the relationship between parasitism and sociality can only be interpreted in light of 
seasonal variation. Winter and summer represent the mating and birth seasons in Koshima, respectively. Both 
seasons show changes in female contacts and/or proximity behaviour33–35 in two opposite fashions: an increase as 
solitary/floater males temporarily join social groups to gain mating opportunities during the mating season48, and 
new individuals are born in the birth season; or conversely, a decrease as during the mating season, consortship 
pairs seek to be alone and during the birth season, females focus a great part of their attention on their newborns, 
somewhat decreasing their involvement in other social interactions34. These two seasons, winter (mating) and 
summer (birth), also have long-lasting effects on the physiology of females (e.g. immunosuppression, energy 
costs). It is therefore not surprising to observe that the greatest contrast observed in the relationship between 
lice load and centrality (from negative to almost absent) exist between the two most physiologically (reproduc-
tively) demanding seasons and the other less demanding seasons. Similarly, louse transfers and thus infection 
risk increased during the mating season in both chipmunks (Tamias striatus) and mouse lemurs (Microcebus 
rufus), presumably because of the concomitant increase in both contact between individuals and host reproduc-
tive activity28,49. Because lice feed on blood, it has been hypothesised that their own reproduction is influenced by 
their hosts’ sexual hormones21,23, in that some stages of the host reproductive activity can trigger the parasite own 
reproductive activity. This is the case for another blood-feeding ectoparasite, the rabbit flea (Spilopsyllus cuniculi), 
in which the reproductive cycle is triggered by pregnancy and parturition of the host doe. The fleas then migrate 
en masse to the nest to breed on the immunologically-naïve young50,51, illustrating the tight links between host 
and parasite biology and the effect of environmental seasonality on the synergy between host and parasite (see 
also next paragraph).

These synergies between host and parasite biology also explain the results of this study. Lice load was highest 
in summer during the periparturient period. Females thus seemed more vulnerable to louse infestation at this 
time. This was particularly the case for reproductively active females, especially those that were less central in 
the social networks. This pattern could be due to the combination of several factors, also linked to the effect 
of environmental seasonality on host and parasite biology. First, the surge of sex hormones in the host around 
birth could have triggered louse reproductive activity and proliferation20–23. Second, the immunosuppressive 
effects of these sex hormones during challenging times such as birth and lactation could have decreased the host’s 
defence against infestation, and made them more susceptible to it52. Third, the presence of immune-naïve hosts 
(newborns) could have constituted a newly available and easy breeding ground for lice, which could have then 
transferred to other individuals, especially vertically to the mother and then on to the mothers’ social partners. 
Fourth, moulting induces changes in the habitat of lice, and in Japanese macaques, begins at the onset of spring 

Figure 4.  Coefficient plots of GLMMs. Testing prediction 1: left panel; Testing prediction 2: right panel. Circle: 
coefficient value, bold line: one standard error. Two variables separated by a column denotes an interaction. 
Levels of categorical predictors between parentheses indicate those not included in the intercept (the reference 
level is winter for season, not reproductively active for reproductive state, and non-treated for treatment). 
Black =  degree (left) or in-degree (right). Grey =  strength (left) or in-strength (right).
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Figure 5.  Effects of the interaction between number of connections in the network and seasonality or 
reproductive state on lice load. panel (a) shows degree (contact network) and season, panel (b) shows in-
degree (grooming received network) and season, panel (c) shows in-degree (grooming received network) and 
reproductive state. The four seasons (winter, spring, summer, and fall) each have their own square, the two 
reproductive state (active, not active) as well. The line represents predictions from the model and dots the raw 
data transformed (i.e. log of the response (lice load) and square-root of the predictor (centrality)) and scaled.
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and ends during summer. Hairs are therefore shortest in summer and continue to grow through autumn and 
winter when they are longest. These changes, in addition to natural variations in the louse microhabitat (like 
skin temperature or solar radiation higher in summer21), likely impact louse prevalence and intensity (sensu the 
effect of shearing on louse density in domestic sheep21). We also cannot rule out the possibility that moulting 
impacts the efficiency with which monkeys can find and extract louse eggs: beginning at the hair base, louse eggs 
would be pushed upward during regrowth and the shorter hair may increase their visibility. Increases in lice load 
in summer through fall may thus be linked to the synergistic effects of changing louse habitat, the interaction 
between lice and host reproduction, and changes in behavioural tendencies of hosts. Nevertheless, examining 
factors related to seasonal variation in lice loads, including pelage characteristics, is insufficient in itself to explain 
the observed negative relationship between centrality and lice load during reproductive seasons.

At Koshima, mean centrality indices generally seemed to vary in the opposite direction of mean lice load 
across seasons; the season in which mean centrality was lowest corresponded to the season in which mean lice 
load was highest. However, network modularity did follow somewhat closer to the pattern of mean lice load in 
that the season in which mean lice load was highest was also the season in which modularity was greatest. Greater 
modularity in a network means that the network decomposes into more modules than in a network with lower 
modularity. Greater modularity is hypothesized to negatively impact transmission of infectious agents through-
out social groups by breaking down the chain of transmission53. In our study, periods of increased lice load 
seemed concomitant with periods of higher social network modularity, reflecting either a decrease in females’ 
direct contacts and grooming exchanges or more focused exchanges within smaller cliques of individuals com-
pared to periods with lower louse infestation. It seems likely, then, that decreases in grooming network centrality 
allow lice to multiply at both the individual and group levels, especially during periods of host immunological and 
physiological vulnerability (mating and birth seasons). Conversely, avoidance of social contacts is a well-known 
mechanism to limit the spread of socially-transmitted pathogens53,54. This requires that individuals can determine 
each other’s infection status, which seems likely in many animals55,56 but absent in others57. Of course, a third 
possibility is that changes in network structure and changes in lice load are concomitant but independent. While 
lice load may be environmentally determined, female hosts naturally increase social contacts to access mating 
opportunities and decrease them to care for their infants and minimise risks (of injury, disease), which may be 
stronger drivers of network changes compared to parasitism.

But if the network reflects pathways for parasite transmission, centrality indices such as degree and strength 
measuring risk of exposure are expected to be positively related to parasite infection patterns3. In our study, the 
negative relationship between degree and lice load during the winter and summer breeding seasons relative to 
spring and fall could suggest that individuals other than females have an impact on the lice burden or the like-
lihood of louse infestation during these periods: via vertical transmission between females and their immature 
offspring21 or horizontal transmission from solitary/floater males58. Barring this third-party influence, individual 
variation in grooming/contact given and received could also influence lice load, inasmuch as the presence of a 
“super-groomer” for example could play the role of a super-spreader–a highly contagious individual or simply one 
with many social connections59. Alternatively, such a super-groomer could play the role of “super-delouser”, as 
there seemed to be variation in louse egg-picking efficiency across individuals44, or if there is variation in groom-
ing site preferences across individuals17. Ultimately, amongst the centrality measures we tested, the only predictor 
of lice load was the number of direct connections females had with others in the social network. This implies 
that infection risk was more related to who is connected to whom in the network rather than how individuals are 
connected. Thus, as was also shown in meerkats (Suricata suricatta)60, frequent social contact does not necessar-
ily increase the risk of infection. From a parasite/pathogen perspective, one contact may be all it takes to change 
environment and continue reproducing on a new host. From a host perspective, having multiple social partners 
can either increase exposure to parasites through increased likelihood of interacting with a super-spreader, or 
increase parasite removal through increased likelihood of interacting with a super-delouser. These contradicting 
possibilities might also explain why observed relationships between centrality and lice load are not straightfor-
ward: grooming simultaneously offers lice a transmission opportunity and hosts a parasite removal opportu-
nity. Our results are weighted toward the latter because less connected females generally exhibited higher louse 
burden, supporting the hypothesis that grooming is an effective antiparasite strategy to be exploited in a social 
context and providing further evidence for the benefits of being social despite the costs related to disease trans-
mission and infection risk.

In this evolutionary arms race, parasites effectively use their hosts’ behaviour to increase their own fitness1, 
but hosts have evolved diverse social and ecological strategies of parasite avoidance and removal61. Due to the 
combined difficulties of accurately depicting animal contact networks from observation and of directly monitor-
ing elusive parasite populations, experimental studies and/or alternative measures/estimations of both networks 
and parasites would help disentangling the synergistic effects of the environment and the interaction between 
host and parasite biology on transmission and infection risks from socially-transmitted pathogens62,63. For exam-
ple, experimental reduction of parasite loads influences the frequency or patterns of host social interactions64,65. 
Conversely, manipulating host contact rates can also induce changes in infection risk66.

Conclusion
In conclusion, our study shows that variation in contact and grooming network centrality in terms of number of 
connections explains variation in lice load in female Japanese macaques in that less central females have higher 
lice burden, providing further evidence of grooming as an efficacious anti-parasite strategy. However, our study 
also demonstrates that this relationship is dependent upon ecological and biological conditions, such as less 
central females have higher lice burden only during winter (cold–long, dense hair–mating season) and summer 
(hot–short, sparse hair–birth season). Our study is the first to estimate lice load from direct observation of wild 
animals and to link this estimate to the centrality status of individuals in their contact networks. This study also 
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highlights the importance of seasonal variation both in parasite intensity and in host behaviour in explaining 
variance in infection risk and exposure from socially-transmitted external parasites.

Methods
Study site and subjects.  We studied Japanese macaques on Koshima islet, Miyazaki prefecture, Japan 
(31°27′ N, 131°22′ E). The region has a warm-temperate climate with monthly mean temperatures ranging 
between 9.3 °C in January and 27.2 °C in August, and monthly mean precipitation between 35 mm in January 
(humidity 60%) and 730 mm in June (humidity 82%; data for 2014 from the Japan Meteorological Agency). 
Koshima is approximately 0.3 km2 and covered by evergreen broadleaved forest67. Provisioning and behavioural 
observations of Koshima macaques started in 1952, and demographic, ecological, behavioural, and life-history 
data have been collected since then68. The main group of Koshima macaques is currently provisioned with ca. 3 kg 
of wheat ca. twice weekly. Koshima is now inhabited by approximately 100 individuals divided into two social 
groups, Maki (ca. 15 individuals) and Main Arctic monkeys (ca. 60 individuals), along with an unknown number 
of solitary males. Monkeys are individually recognisable by facial tattoos and natural physical characteristics 
(scars, body shape or hair colour).

We observed the 19–20 adult females (> 7 years old) of the Main group. We focused on females because, in 
macaque societies, they form the core of the group and dominate dynamics of social networks, males are often 
few and not very social, and juveniles are difficult to recognise, often have their own subgroup, and usually engage 
in different age-typical activities than the adults69–71. Ten females were in oestrous during the mating season 
(winter); they were thus considered reproductively active during this period. Seven females gave birth between 
the end of June and the beginning of July (summer), and they were considered reproductively active in spring 
(as pregnant), summer and fall (as lactating). All other females were regarded as non-reproductive for this year. 
Additionally, as part of an on-going research project since 2012, half of the adult female cohort is orally admin-
istered an anthelminthic treatment several times a year (MacIntosh, unpublished data). During the observation 
period, treatment was administered to 11 females at the end of March, the middle of July and the middle of 
November (see Supplementary Table S1 and the Statistics part for more details).

Research adheres to the ASAB/ABS guidelines for the use of animals in research and was approved by the ethic 
committee of Kyoto University Primate Research Institute.

Data collection.  Data were collected from January to November 2014 (total 142 days, 350 h of observation, 
17h30 ±  1h15 per female, see Supplementary Table S1). Focal observations were balanced across females and 
time of day (morning/afternoon). To avoid the influence of artificial conditions on our data set, data other than 
dominance interactions were not collected during and up to an hour following provisioning. Focal females were 
followed for 15 min during which their main activities were recorded every minute, while their social, aggres-
sive and other affiliative interactions as well as the identity of each social partner were recorded continuously. 
Amongst recorded activities, we distinguished between grooming given, grooming received, and simple body 
contact. We also collected data on dominance interactions (i.e. winner and loser of agonistic interactions) during 
focal observations and ad libitum.

During social and self-grooming bouts, we counted the number of times per minute-scan the groomer con-
spicuously picked out something in the groomee’s hair or her own and subsequently ate it. The gesture is con-
spicuous in the sense that the groomer will focus on a narrow patch of hair, pinch the base of the hair with the 
thumb and index fingers or her teeth, pull the selected object (a louse egg in 98.9% of the cases) along the length 
of the hair, and eat it30 (see Supplementary Video S1). If the focal female was the groomer and she picked louse 
eggs from the groomee, the louse egg counts were associated to the female groomee. If the focal female was the 
groomee, the louse egg counts were associated to her directly.

Data analysis.  We divided our dataset in four parts to account for seasonal variations biologically relevant to 
the studied host-parasite system. The winter dataset included observations between January and March and cor-
responded to the macaques’ mating season72, as well as to the period in which macaque hair is at its longest and 

control factor type control for (rationale)
interactions between 

control factors
contributions of interaction to model 

fit (LR tests**)

season
categorical: 

winter, spring, 
summer, fall

host: moulting, network changes, 
physiological changes32–36,72,74 parasite: 

habitat change, fitness, population 
viability21,23,32

season* reproductive 
state* centrality ns

reproductive state
categorical: 
active, not 

active

host: network changes, physiological 
changes32–35 parasite: fitness, 

population viability20,21

season* reproductive 
state ns

rank continuous
host: physical condition, access to 
grooming partners9,37,38,43 parasite: 
fitness, population viability21,23,43

repro* centrality trend in model with in-degree as 
predictor

treatment*
categorical: 
treated, not 

treated
parasite: fitness81 season* centrality significant in model with degree; trend 

in model with in-degree as predictors

Table 1.  Summary of control factors included in GLMMs: type, rationale, interactions between them 
and whether or not interactions contributed significantly to model fit (ns = not significant). *Factor only 
included in models with lice load as response variable. **See Supplementary Table S2.
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densest36. The spring dataset included observations between April and June and corresponded to a non-breeding 
season and the period in which macaques started moulting. The summer dataset included observations between 
July and September and corresponded to the macaques’ birth season as well as the end of moulting, when the 
hair is at its shortest. Finally, the fall dataset included observations between October and November, and corre-
sponded to a non-breeding season and a period in which hair resumes growth to its full length and density. For 
each season, we computed each female’s total number of scans of grooming received (including self-grooming), 
louse egg-picking gestures, centrality measures, dominance rank, reproductive state, and treatment status.

To compute lice load, we used minute-scans of grooming received, the focal female being either the groomer 
or the groomee, and minute-scans of self-grooming per female as well as minute-counts of louse egg-picking 
gestures across all grooming received bouts per female. Lice load was then calculated per female as follows:

= ∑
∑ + ∑

minute counts of louse eggpicking gestures
minute scans of grooming received minute scans of selfgrooming

lice load
(1)

n

n n
1

1 1

where n is the total number of grooming or self-grooming bouts.
We used SNA to investigate the risk of exposure to louse infestation of females within their social network 

of female group members. First, we calculated the modularity Q of the contact and grooming received networks 
(i.e., the number of clusters in the group) based on eigenvector centrality, which provides a descriptive statistic 
of detection and characterization of community structure in networks73, the higher it is the more clustered the 
network is. Here we use it to describe the global connectedness of the female group and track its changes across 
seasons because inter-individual distances seem to vary across seasons in Japanese macaques: females showed 
lower cohesiveness in summer74. We then computed individual indices of network centrality based on two behav-
ioural datasets different from those used to estimate lice load; these data sets only included adult female-female 
interactions. The first dataset included dyadic total numbers of scans of general body contact, including groom-
ing, between females A and B, which was used to build undirected weighted networks of body contacts (Fig. 1). The 
second dataset included dyadic total numbers of scans of grooming received from female A to female B and from 
female B to female A, which was used to build directed weighted networks of grooming received (Fig. 1). Although 
the two networks are not entirely independent, their actual differences in terms of number and strength of con-
nections, and thus in terms of risk of exposure, are meaningful to test our predictions. From these networks, we 
then computed centrality indices reflecting only direct exposure to lice through the network as lice are exclusively 
transmitted through direct contact between hosts. Node degree reflected the number of direct connections an 
individual has in the network, and node strength, the sum of the weights of an individual’s direct connections (for 
a review, see)3.

To assign dominance rank, we calculated normalised David’s scores (normDS–package EloRating75), an indi-
vidual score of relative power based on the successes (winning vs. losing) of an individual in agonistic interactions 
while accounting for the other group members’ successes76. We based our calculations on matrices of decided 
aggressive interactions, in which we could define a winner and a loser, and of displacements or supplantations 
recorded ad libitum. As there was no change in female hierarchical order across seasons, but individual normDS 
varied in magnitude, we finally assigned females an ordinal rank with 1 being the highest and 20 the lowest.

Statistics.  Centrality indices were calculated with the appropriate functions provided in the package 
igraph73,77. Network measures are not independent because they derive from a network where all individuals 
are linked to some extent and this non-independence violates many assumptions from most statistical tests. 
When testing the effect of factors on network measures or the effect of network measures on other variables this 
non-independence needs to be taken into account. A robust and modern standard way to do that is to compare 
statistical models based on the original observed data to a distribution of null models based on randomised 
data78,79. In this study, we randomised networks using the function rewire.edges of the package igraph, which 
rewires the end points (or nodes) of edges (i.e. edge rearrangement78) according to a probability of establishing 
connections that we set to vary randomly between 0 and 1 at each randomisation run. We used edge rearrange-
ment to get a null model that randomly rearranges the observed interactions among pairs of nodes because we 
were confident in the observed edges and we constrained rearrangements by keeping the degree distribution of 
the original network to have a biologically meaningful null model78. Although the probability of a connection can 
be based on the number of individuals as potential partners, allowing the probability of establishing a connection 
to vary reflects natural processes of social partner choice. This approach thus provides a more conservative ran-
domisation procedure. After each randomisation, network measures were recalculated and re-integrated in the 
statistical models (exactly the same models with all control factors but with the network measure derived from 
the randomisation). After 2000 randomisations, the statistical parameters of interest (e.g. model estimates or p 
values, see Supplementary Tables S2 & S4) were compared between models based on observed data and “null” 
models based on randomised data. If a substantial proportion (95%) of statistical parameters derived from mod-
els based on observed data were lower/higher than parameters derived from models based on randomised data, 
then we could conclude that the observed effects of or on sociality were different from those expected to arise by 
chance78,79. The randomisation procedure is exactly the same for all analyses.

To analyse relationships between the main variable of interest and the main predictor(s) while accounting for 
potential confounding factors, we built General Linear Mixed Models (GLMM) with Gaussian distributions and 
identity link functions using the function lmer from the lme4 package80. All models contained three main control 
factors: dominance rank, reproductive state and season (Table 1). In models with lice load as the response variable, 
an additional confounding factor, treatment status (binary: was/was not treated, Table 1), was included as the 
experimental anthelminthic treatment (Ivermectin) administered every 4 months to half the adult female cohort 
has been shown previously to affect louse numbers81. However, we observed only a small and transient decrease 
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in estimated louse infestation approximately one week after treatment (unpublished data), and did not expect this 
result to have a significant effect on overall or seasonal lice load. Regardless, treatment was included in our models 
to control for these potentially confounding effects.

Assessment of the variation in centrality and lice load according to seasonal and individual factors.  To assess 
the variability present in host sociality and lice load that may affect the relationship between the two, we built 
GLMMs with each centrality measure as the response variable, season, reproductive state and rank as predictors, 
and individual identity as random effects. Variation in lice load was assessed from the null model that was built 
to test predictions 1 and 2 and that included season, reproductive state, treatment status and individual identity 
as well (see below).

Relationship between measures of centrality and lice load: testing predictions 1 and 2.  To address our main ques-
tion concerning the relationship between measures of centrality and lice load, we built GLMMs with lice load as 
the response variable, centrality index as the main predictor, season, reproductive state, rank, and treatment status 
as confounding factors and individual identity as a random effect. 

We also included a three-way interaction between centrality, season, and reproductive state, and its associated 
two-way interactions (centrality by season, centrality by reproductive state, and reproductive state by season). 
The effect of centrality on lice load could indeed depend on seasonal variations in both lice load and centrality, 
and lice load could also be differentially influenced by some stages of host reproduction (e.g., cycling versus lac-
tating), and these stages depend on season. Thus, it may be that the effect of the interaction between centrality 
and season on lice load varies according to female reproductive state, such as females more central in the network 
have more lice in winter and summer but only if they are reproductively active (Table 1). We used likelihood ratio 
tests (LRT) to compare models with and without interactions and removed them if they did not improve model 
fit (at p LRT >  0.100). If the p-value of the LRT was between 0.100 and 0.050, we considered the interaction 
to marginally improve model fit and kept it in the model (Supplementary Table S3). Supplementary Table S3 
shows that amongst all interactions tested, only those including centrality and either season or reproductive state 
remained in the models. Note that if an interaction was significant, predictors can be interpreted only within this 
interaction. We transformed (log or square-root) whenever necessary and then standardized (z-transformed) all 
numeric predictors for more accurate model fitting and ease of interpretation/comparison of model estimates. 
We checked several model assumptions (normality and homogeneity of residuals, variance inflation factors82) and 
no obvious violations or influential cases were detected. Because all centrality measures were correlated to each 
other to some extent (r range =  0.17–0.92, p range =  0.15–0.01), and because our dataset is comparatively small 
and thus could not accommodate their inclusion at once, we ran one model for each centrality measure. We tested 
final fitted models against a null model, comprising only control factors not involved in an interaction and the 
random effect, with a LRT. Control factors included in null models were not considered further. Whenever this 
test showed that adding predictors induced a significant improvement in model fit, we proceeded in interpreting 
the significance of the predictors. All statistics were done in R version 3.1.283. The full results are given in the 
Supplementary Information (Supplementary Tables S2–4).
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Different hypotheses explain variation in the occurrence of
self-directed behaviour such as scratching and self-grooming:
a parasite hypothesis linked with ectoparasite load, an
environmental hypothesis linked with seasonal conditions
and a social hypothesis linked with social factors. These
hypotheses are not mutually exclusive but are often considered
separately. Here, we revisited these hypotheses together
in female Japanese macaques (Macaca fuscata fuscata) of
Kōjima islet, Japan. We input occurrences of scratching
and self-grooming during focal observations in models
combining parasitological (lice load), social (dominance rank,
social grooming, aggression received and proximity), and
environmental (rainfall, temperature and season) variables.
Using an information-theory approach, we simultaneously
compared the explanatory value of models against each
other using variation in Akaike’s information criterion and
Akaike’s weights. We found that evidence for models with
lice load, with or without environmental–social parameters,
was stronger than that for other models. In these models,
scratching was positively associated with lice load and social
grooming whereas self-grooming was negatively associated
with lice load and positively associated with social grooming,
dominance rank and number of female neighbours. This study
indicates that the study animals scratch primarily because
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of an immune/stimulus itch, possibly triggered by ectoparasite bites/movements. It also confirms
that self-grooming could act as a displacement activity in the case of social uncertainty. We advocate
that biological hypotheses be more broadly considered even when investigating social processes, as
one does not exclude the other.

1. Introduction
Self-grooming, scratching, rubbing or wallowing are forms of body care behaviours in which many
animals engage frequently. In the literature, the frequency of these self-directed behaviours (SDB) has
been linked to various factors, such as ectoparasite loads [1–5], environmental conditions [6–9] and social
situations [10–16].

Ectoparasites are common parasites of many animals. Even on a small scale, infestation by
ectoparasites such as lice, ticks and fleas can cause dermatitis, pruritis (itching), skin sensitization and
other allergic reactions. Bites, stings, movements, released chemicals or body parts (e.g. urticating hair)
of ectoparasites usually trigger an ‘immune’ or ‘stimulus’ itch [1,17,18]. Although ectoparasites can
be susceptible to the immunological system of the host [19], anti-ectoparasite strategies nonetheless
tend to involve non-immunological defences such as body care [2–5]. Experimentally preventing
animals from grooming themselves or from being groomed generally leads to sharp increases in
ectoparasite infestation [2–5], whereas decreasing ectoparasite loads (e.g. by administering anti-parasite
drugs) drives reductions in social and self-grooming and scratching [20]. The prophylaxis or parasitic
hypothesis thus predicts that the frequency of self-directed behaviour is directly linked to ectoparasite
loads [2–5].

A major alternative hypothesis, at least in human and non-human primates, is the anxiety or social
hypothesis, which instead links the frequency of SDB to indicators of emotional states and postulates
that SDB function to mediate anxiety. SDB in long-tailed macaques are increased by administration of
anxiogenic drugs and decreased by that of anxiolytic drugs [21]. Rates often increase in situations of
social uncertainty linked to social (particularly aggressive) interactions, uncontrollable/unpredictable
proximity of group members, or relative dominance rank [10–16,22,23]. High scratching frequency has
also been linked to high degrees of restlessness [24,25], a symptom of generalized anxiety disorder in
humans (e.g. [26]).

Increased frequency of body care has also been related to high ambient temperatures and humidity
or rainfall [6–9]. Underlying mechanisms behind this environmental hypothesis are often linked to
ectoparasite load because the life cycle of many ectoparasites is also influenced by environmental
seasonality and their abundance thus fluctuates seasonally [8,27,28]. As the mammalian pelage
constitutes the habitat of their ectoparasites, variation in its quality should greatly influence ectoparasite
fitness and population dynamics [1], thereby creating the potential for pelage-associated variation in SDB
frequency due to habitat-associated effects on ectoparasite loads. At the same time, however, variation
in hair length and density also most probably influences the amount of time that animals devote to
pelage care for thermoregulation [29], making it difficult to determine whether SDB frequency relates
to ectoparasites or some other unrelated ecophysiological factor. Other factors such as sweating or
pilo-erection could also play a role but have rarely been investigated [9,29].

To our knowledge, hypotheses relating to whether frequencies of SDB are better explained by one or
a combination of the parasite, social and environmental hypotheses have previously not been considered
together. To deepen our understanding of the underlying mechanisms and supposed functions of SDB,
we simultaneously tested hypotheses explaining rates of such behaviours in female Japanese macaques
(Macaca fuscata fuscata) of Kōjima islet, Japan. In particular, the possibility that variation in ectoparasite
loads with seasonal factors may be an important predictor of SDB in primates has been largely dismissed,
and in general, the role of ectoparasite loads has received little consideration in the primate SDB
literature. Ectoparasites known to infest Japanese macaques include two species of lice (Pedicinis obtusus
and P. eurygaster) [30] and one species of tick (Haemaphysalis longicornis) [31]. Lice and louse eggs are
commonly observed on Japanese macaques during physical examination [30,31]. A previous study has
shown that 98.9% of what individual macaques pick out of the hair while grooming themselves or others,
using a very conspicuous sequence of behaviour, is louse eggs [30]. Ticks on the other hand are rarely
found on Japanese macaques [30,31], and the gestural sequence of removing them when found differs
from that of picking lice [30]. Fleas comprise another group of common ectoparasites, but have not been
reported to infest Japanese macaques [30,31].
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Thus, most of what is known about ectoparasites of Japanese macaques involves lice. Body parts

estimated to have many louse eggs are generally inaccessible and cannot be self-groomed, and are thus
socially groomed longer than other body parts [31,32]. The number of louse eggs present on a macaque
was also estimated to correspond to approximately double that of the nymph and adult louse population
[31], which are the stages that feed obligately on blood. Finally, lice loads estimated from louse egg-
picking gestures during grooming were recently shown to vary seasonally in Japanese macaques,
although the socio-ecological factors underlying such variation remain to be determined conclusively
[33]. Japanese macaques live in a seasonal environment with substantial variation in temperature and
rainfall throughout the year [34] and they moult seasonally, with hair being shorter and sparser in
summer and longer and denser in winter [35], which could contribute to this observed variation.

In this study, we used an information-theory framework to examine simultaneously and objectively
seven mutually non-exclusive hypotheses (formulated as statistical models) related to the occurrence
of SDB. Depending on the level of support for each hypothesis among a candidate set, we interpreted
the effect of the examined factors on SDB. Specifically, we tested a parasite hypothesis that SDB are best
explained by lice load alone. Because louse egg removal by self-grooming should be prophylactic, i.e.
it removes future blood-feeding, potentially infectious stages from the population, the occurrence of
self-grooming and lice load should be negatively associated. Alternatively, as large numbers of louse
eggs should be related to large numbers of blood-feeding nymphs/adults, i.e. those triggering the
immune/stimulus itch, a positive relationship between lice load and rates of scratching might indicate
that monkeys scratch because of their itch. We then tested a social hypothesis that SDB are best explained
by social variables alone. This hypothesis is generally related to predicted levels of anxiety and included
the following variables: aggression received, social grooming, proximity of higher-ranking individuals,
number of neighbours, dominance rank and reproductive status. According to this hypothesis, high-
ranking females should be less anxious about social outcomes and interactions because they receive
less aggression and have more social options than low-ranking females. If SDB rates are indicators of
anxiety, then they should be positively associated with dominance rank, rates of aggression received and
proximity to higher-ranking individuals or even neighbours in general. SDB rates should also be higher
when females are reproductively active, i.e. when cycling, pregnant or lactating, because they experience
changes in their energetic needs, physiology, social interactions, especially increased aggression and
coercion from males, and social networks [36–39], changes which can be sources of anxiety and thus
be related to changes in SDB rates (e.g. [40]). We also tested an environmental hypothesis that SDB are
best explained by environmental variables alone, such as seasonality, temperature and rainfall. Ambient
temperature and humidity have differential effects on the pelage of animals and on their activities.
For instance, according to the environmental hypothesis, we might predict that in summer (short hair),
less pelage care is required than in winter (long hair) to achieve the same thermoregulation efficiency.
However, hot and humid weather during summer may induce sweating, which may in fact increase the
need for pelage care compared with winter. It was thus difficult to predict the sign of the relationship
between the occurrence of SDB and environmental factors, so we left predictions open. Furthermore,
Japanese macaques are strict seasonal breeders [34], so physiological and behavioural changes are tightly
linked to season. In addition, lice loads themselves were shown to vary seasonally in Kōjima macaques
[33], so it would be difficult in any case to separate the influence of these factors on SDB.

Because these hypotheses are not mutually exclusive, we also examined the explanatory power of
models that included combinations of these main hypotheses. The parasite–social hypothesis predicted
that a combination of parasitological and social factors best explains scratching and self-grooming.
The parasite–environmental hypothesis predicted that a combination of parasitological and environmental
factors best explains scratching and self-grooming. The environment–social hypothesis predicted that a
combination of environment and social factors best explains scratching and self-grooming. Finally, the
integrated hypothesis predicted that SDB are best explained by a combination of parasitological, social and
environmental factors. After testing these hypotheses via model comparison, we present the results of
the model or set of models that best explained the occurrence of SDB in our observed data.

2. Material and methods
2.1. Study site, study subjects and data collection
We studied Japanese macaques on Kōjima, a 0.3 km2 islet in southern Japan (31°27′ N, 131°22′ E) [41].
Provisioning and behavioural observations of Kōjima macaques started in 1952, and demographic,

 on August 11, 2017http://rsos.royalsocietypublishing.org/Downloaded from 

http://rsos.royalsocietypublishing.org/


4

rsos.royalsocietypublishing.org
R.Soc.opensci.3:160571

................................................
ecological, behavioural and life-history data are available since then [42]. The study group is currently
provisioned with approximately 3 kg of wheat approximately twice weekly.

Data were collected on the 19–20 adult females (more than 7 years old; one female reached adulthood
at the beginning of the study and was followed from April onwards) of the main group (approx.
60 individuals in total, including 9 adult males and 23–31 non-adult individuals) from January to
November 2014. We focused on females because in Kōjima they form the stable core of the group
and dominate dynamics of social networks, whereas males migrate between groups, are often few,
peripheral and not very social, and juveniles are difficult to recognize and observe, and usually engage in
different age-typical activities than adults (note that intraspecific variation exists in Japanese macaques’
social structure [34,42,43]). Observations comprised 1265 15-min focal observations or a mean of 66
(±5 s.d.) per female. Females were observed following a randomized list updated day after day and
focal observations were balanced across females and time of day (morning/afternoon). The main
activities of females were recorded every minute, while their neighbours in proximity (including within
1, 5 and 10 m) were recorded every 2 min. Females were recorded as reproductively active in the
mating (winter) and birth (summer) seasons, according to the occurrence of proceptive behaviours
(e.g. approaching and presenting the hindquarters to males), male interest, and copulations, and
to the birth and subsequent nursing of an infant respectively, and in the inter-season (spring and
autumn) retrospectively if they had given birth. Data on agonistic interactions, i.e. those including
bites, chases, hits, threats and displacements/supplantations, were collected during focal observations
and ad libitum, and a winner and a loser was determined based on the receiver of the aggressive
behaviour fleeing or submitting to her aggressor in order to establish a dominance hierarchy (see
below). The number of scratching events and louse egg-picking gestures were counted in the interval
between minute-scans. The occurrence of self-grooming was recorded as an activity state (i.e. on the
minute-scan), but bouts falling within the interval between minute-scans were also counted in an
extra column.

Scratching was operationally defined as moving the fingertips quickly and repeatedly across the same
skin area [10,44]. New events started with changes in body area or breaks of more than 5 s (e.g. [25]). A
self-grooming bout was defined as an individual grooming herself continuously until she stopped for
more than 5 s. Counts of self-grooming bouts falling directly on as well as between minute-scans were
pooled for analyses. To estimate lice load, we counted the number of times the groomer conspicuously
picked something from the groomee’s hair, or her own, for each minute-scan during social and self-
grooming bouts. This louse egg-picking behaviour is defined as the groomer focusing on a narrow patch
of hair, pinching the base of the hair with the thumb and index fingers or her teeth, pulling the selected
object along the length of the hair, and eating the extracted item [30]. This louse egg-picking behaviour
is a good estimate of lice load as it has been shown that in 98.9% of the cases, a louse egg is actually
picked [30]. Louse egg counts during social grooming were assigned to the female from which eggs were
removed, regardless of whether or not she was the focal female (e.g. [33]).

2.2. Data analyses
We built our dataset based on our focal observations, which we used as the unit of analysis. For each
observation, we computed the variables listed in table 1. Because high numbers of zeros in count
variables can lead to modelling issues (e.g. zero-inflation), we transformed several count variables into
binary variables, i.e. presence/absence data, coding the occurrence of each behaviour or pattern during
the focal observation as 1 and its non-occurrence as 0 (table 1).

2.2.1. Parasitological variables

Models including these variables, alone or in combination with others (table 1), tested the parasitic
hypothesis that the occurrence of scratching and self-grooming is related to lice load.

The frequency of louse egg-picking gestures by unit of grooming received served as a proxy for louse
infestation [33]. Females collected an average of 0.77 louse eggs per grooming minute-scan (median,
range = 0.3–2.23, N = 20, 1885 louse egg-picking gestures in 5647 grooming minute-scans and 397 in
975 self-grooming minute-scans) [33]. Lice load was calculated as monthly average values of louse egg-
picking counts divided by number of grooming minute-scans [33]. A month was the shortest timeframe
under which lice load was accurately determined (i.e. the average per individual did not change after
between 7 and 11 days of observation, and 11 days of observation sometimes constituted a whole month
of data collection due to inconsistent access to the island).
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Table 1. Summary of variables taken into account and their calculations (also see the text). Per observation indicates under which form
the variable was entered in the models.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

scratching count of scratching events during minute-scans

per observation: whether (1) or not (0) scratching occurred
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

self-grooming sum of counts of self-grooming bouts between minute-scans and of self-grooming bouts
falling on a minute-scan and written as an activity

per observation: whether (1) or not (0) self-grooming occurred
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lice load count of louse egg-picking gestures during grooming divided by the number of grooming
minute-scans

per observation: monthly average
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

social grooming minute-scan record of whether the focal individual grooms or is groomed by another individual

per observation: whether (1) or not (0) social grooming occurred
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aggression received the focal individual receives a threat, a chase, a hit or a bite from another individual during
either its focal observation or ad libitum

per observation: whether (1) or not (0) the focal individual received aggression, separately
during focal and ad libitum

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

provisioning day the main group is regularly provisioned with 3 kg of wheat grains. Wheat is thrown on the
sand of the main beach of the island over a limited area, which creates an increased
potential for aggression to occur compared with when provisioning does not occur

per observation: whether (1) or not (0) the group was provisioned on that day
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dominance rank dominance rank as determined by the calculation of David’s scores (see the text)

per observation: David’s score of the focal individual (number between 1 and N− 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

proportion of higher-ranking
females within 10 m proximity

number of proximity scans with females that are higher ranking than the focal female as a
proportion of all proximity scans with females as neighbours

per observation: proportions between 0 and 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

number of female neighbours
within 5 m proximity

number of different females within 5 m proximity for each proximity scan
per observation: sum of those numbers (number between 0 and maximum 152 (19 potential
female neighbours times 8 proximity scans))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

reproductive status reproduction is seasonal in Japanese macaques but females do not cycle every year and
although they did cycle during the mating season, they may not become pregnant and give
birth. Their reproductive status can thus vary

per observation: whether (1) or not (0) the focal female was reproductively active, i.e. either
cycling, pregnant or lactating

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rainfall total amount of rain in millimetres per day over the entire study period

per observation: average amount of rain in millimetres over 3 days including 2 days before
and the day of observation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

temperature average temperature in °C per day over the entire study period

per observation: average temperature of the day of observation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

season climatic season during which the observations were carried out

per observation: winter, spring, summer, autumn
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2.2. Social variables

Models including these variables, alone or in combination with others (table 1), tested the social
hypothesis that scratching and self-grooming are related to social factors and representative of social
uncertainty or anxiety.

Social grooming reduces anxiety because it is linked with the release of rewarding opioid
neuropeptide beta-endorphins [45,46] and has been connected with a reduction in heart rate [14,47] and
SDB [10,16,22]. We thus included the occurrence of social grooming in the models as it is possible that
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it influences the likelihood of occurrence of SDB compared to observations where social grooming did
not occur.

Dominance rank is associated with social uncertainty because low-ranking individuals are more likely
to receive aggression (in this study, correlation between rank and aggression received: rPearson = −0.51,
t = −2.54, d.f.= 18, p = 0.020, N = 20). In a socially strict system such as that of Japanese macaques, low-
ranking individuals are more constrained in their behavioural options than high-ranking individuals
are [48]. Dominance rank was assigned through the calculation of normalized David’s scores (normDS),
an individual score of relative power based on the successes (winning versus losing) of an individual
in agonistic interactions while accounting for the other group members’ successes [49]. Calculations
were based on matrices of decided agonistic interactions. The highest-ranking female receives the
highest score.

To calculate individual rates of aggression received (number of events divided by observation time),
we only considered focal data. This variable was then transformed into a binary variable, with the focal
female either receiving or not receiving aggression. From the ad libitum data of each observation day,
we additionally coded whether or not the focal female received or did not receive aggression during that
day of observation, notably in order to account for the increased likelihood of aggression occurrence on
provisioning days. The occurrence of provisioning on each observation day was also therefore included
as a control factor. At the study site, provisioning involves providing the group with a small amount of
wheat over a short duration in a limited area, which dramatically increases the frequency of aggression
for the majority of the group and may thus have an influence on behaviours sensitive to social conditions.

The presence of high-ranking individuals has been shown to be a factor in social uncertainty inasmuch
as their proximity can increase the rates of SDB [7,50,51]. We calculated the number of proximity
scans up to 10 m in which higher-ranking females were present as a proportion of all scans in an
observation, thereby giving per observation a number between 0 and 1. We also counted the number
of different female neighbours within 5 m proximity for all proximity scans in an observation. We chose
two different proximity thresholds, a radius of 5 m proximity representative of social integration and
a radius of 10 m representative of social uncertainty potential. This was based on the facts that first,
Japanese macaques living under natural conditions seem to tolerate each other without aggression above
a proximity threshold of 1 m [52]. Second, given the high proportion (20%) of negative social interactions
resulting from entering the proximity of another individual [48], it is fair to assume that the approach
of a higher-ranking individual as far as 10 m can already potentially create uncertainty as to how this
animal will behave.

We finally included the reproductive status of the females as either active, i.e. cycling, pregnant
or lactating, or inactive. Indeed, reproductive activity is seasonal (with winter and summer being the
mating and birth season respectively, with variation throughout Japan [34]) and induces drastic changes
in the females’ behaviour and physiology [36–38,53], which may influence rates of SDB, either directly or
through interactions between reproductive state and social interactions, seasonal factors and/or lice load.

2.2.3. Environmental variables

Models including these variables, alone or in combination with others (table 1), tested the environmental
hypothesis that scratching and self-grooming are related to climatic factors.

Daily rainfall and daily average temperatures were extracted a posteriori from the historical records
of a meteorological service online provider (http://www.accuweather.com/en/jp/aburatsu/219041/
weather-forecast/219041) based on data from the weather station nearest to the field site and on the same
side of the coast (Aburatsu, 25 km). Because access to the island for observation was limited to days with
relatively good weather (i.e. little rain or strong winds), thereby introducing a bias towards having no
rain, we used the mean rainfall over three days including the two days preceding the observation and
the day of observation itself. We also included the categorical variable season (winter, spring, summer,
autumn) as Japanese macaques are highly seasonal animals at many levels (reproduction, moulting,
sociality, etc.) [34].

The dataset is provided in electronic supplementary material, table S1.

2.3. Statistical analyses
Analyses were carried out in R v. 3.1.2 [54]. We ran generalized linear mixed models with a binomial
error structure and logit link function with the function glmer from the lme4 package [55]. Models are
presented in table 2. Focal animal identity, date and time of day (morning/afternoon) were included as
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random factors to control for pseudo-replication and the effect of time of day on social interaction and
the frequency/occurrence of SDB [7,9,50,56]. Model assumptions (homogeneity of residuals, variance
inflation factors below or around 1, and stability of estimates [57]) were tested and found to be fulfilled
and no influential cases were detected.

To compare all alternative hypotheses simultaneously and objectively, we used an information-theory
approach based on Akaike’s information criterion (IT-AIC) which provides an objective ranking of
models from a candidate set and an estimation of their relative explanatory values [58]. The principle
of this approach relies on assessing the likelihood and uncertainty of one or several models in a
candidate set to represent the ‘reality’ or ‘truth’. This can be judged by the AIC value as well as
the difference in AICs between the model with the smallest AIC and the others (AICs in increasing
order) and the likelihood and evidence ratio of each model compared with the one with the smallest
AIC value [58]. In this way, we obtain a formal strength of evidence for each candidate model linked
to a specific hypothesis. With the package AICcmodavg (function aictab) [59], we extracted the AIC
of each model and ranked them accordingly. Convention sets a difference in AIC of more than two
as indicative of a model having stronger explanatory value than another; we nevertheless considered
models with AIC differences of up to four points as parsimonious candidate models to be conservative
[58]. The function aictab also computes each model’s Akaike’s weight, or relative likelihood, which
indicates to what extent one model is more likely than another in the candidate set to provide a
reasonable explanation of the variance in the data. Akaike’s weights were then used to compute evidence
ratios (equal to the weight of the model with the lowest AIC divided by the weight of the model to
compare it against), which determine the extent to which one model had stronger explanatory value
over another, if any. We then used the modavg function of the same package to extract weighted
parameter estimates, unconditional standard errors and 95% CIs of all predictor variables repeatedly
occurring within the set of candidate models. Parameter estimates can be averaged across all models
in the candidate set (full averaging), even those in which the variable of interest does not appear (in
which case parameters are set to zero) or only across models in which the variable of interest appears
(conditional averaging) [58]. We chose the latter strategy because we had strong a priori reasons to include
specific variables in specific models. We also chose to show average parameter estimates instead of only
those parameters estimated from the model with lowest AIC because, although the different models
offer different interpretations of the data, all interpretations from models within the candidate set are
plausible.

3. Results
Female Japanese macaques of Kōjima scratched on average 6.9 times per hour of observation
(median, range = 3.7–11.0, N = 20) and groomed themselves 4.5 times per hour of observation (median,
range = 2.0–5.7, N = 20).

Among the candidate models with the occurrence of scratching as the response variable, the parasite
model with monthly lice load had the lowest AIC value and a weight of 0.63, followed by models
including parasitological and social or environmental variables as well as environmental variables only
(cumulative Akaike’s weight of 0.92; �AIC up to 3.97; table 3 and figure 1). Within the model candidate
set, the parasite model had 5.7–7.0 times more empirical support than the three closest competing
models, i.e. those with the next lowest AICs (table 3 and figure 1). In models including lice load
as a predictor, females were more likely to scratch if they had higher monthly lice loads (averaged
β = 0.26 ± 0.15 unconditional s.e., unconditional 95% CI = 0.02–0.55; table 4). Among social factors, there
was a small tendency for the number of neighbours within 5 m proximity to increase the occurrence of
scratching (averaged β = 0.02± 0.01 unconditional s.e., unconditional 95% CI = −0.01–0.04; table 4). The
occurrence of scratching was also positively associated with the occurrence of social grooming (averaged
β = 0.29± 0.14 unconditional s.e., unconditional 95% CI = 0.01–0.56; table 4). Other social variables and
environmental factors explained little to none of the variance in the data (table 4).

Among the candidate models with the occurrence of self-grooming as the response variable, the
parasite–social model with parasitological and social variables had the lowest AIC value and an Akaike’s
weight of 0.82. Within the candidate set, the parasite–social model had 10.3 times more empirical support
than the second model in the list (table 3 and figure 1). Within this model, the occurrence of self-grooming
was negatively associated with monthly lice load (av. β = −0.27± 0.14 unc. s.e., unc. 95% CI = −0.53–0.00;
table 4). Females were more likely to groom themselves if social grooming occurred (av. β = 1.00± 0.14
unc. s.e., unc. 95% CI = 0.74–1.27; table 4), if they had a higher number of female neighbours within 5 m
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scratching

parasitic
w: 0.63–ER: —

parasitic
w: 0.00–ER: 82

par.–soc.
w: 0.09–ER: 7

par.–soc.
w: 0.82–ER: —

env.–soc.
w: 0.01–
ER: 63

env.–soc.
w: 0.02–
ER: 41

environmental
w: 0.09–ER: 7

environmental
w: 0.00–ER: 82

evidence scale:

strong > weak

par.–env.
w: 0.11–ER: 6.0

par.–env.
w: 0.00–ER: 82

integrated
w: 0.01–ER: 63

integrated
w: 0.07–ER: 12

social
w: 0.05–ER: 12.6

social
w: 0.08–ER: 10

self-grooming

Figure 1. Schematic presentation of results. With the name of the model are given Akaike’s weight (w) and evidence ratio (ER) (null
‘—’ for the ‘best’ model) of each model. Colour darkness indicates level of support, from dark grey (model with the highestw) to white
(model with lowestw) with intermediatew and ER in shades of grey in descending order of importance.

Table 3. Model characteristics. K, number of variables included; AIC, Akaike’s information criterion;�AIC, difference in AIC between the
modelwith the lowest AIC and the targetmodel; weight,model probabilities (sensuBurnham&Anderson [58]); cum.weight, cumulative
weight; ER, evidence ratio: weight of the model with the lowest AIC divided by weight of the target model. Models in italics are those
within�AIC< 4 of themodel with the lowest AIC (see the text and Burnham&Anderson [58]). Abbreviations: par, parasitic; soc, social;
env, environmental.

models K AIC �AIC weight cum. weight log-likelihood ER

scratching
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

parasitic 5 1499.94 0 0.63 0.63 −744.97 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

par–env 10 1503.44 3.51 0.11 0.74 −741.72 5.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

par–soc 13 1503.88 3.95 0.09 0.83 −738.94 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

environmental 9 1503.91 3.97 0.09 0.92 −742.95 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

social 12 1504.84 4.90 0.05 0.97 −740.42 12.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

env–soc 17 1507.74 7.80 0.01 0.99 −736.87 63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

integrated 18 1507.79 7.86 0.01 1.00 −735.90 63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

self-grooming
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

par– soc 13 1492.37 0 0.82 0.82 −733.19 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

social 12 1497.08 4.71 0.08 0.90 −736.54 10.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

integrated 18 1497.18 4.81 0.07 0.98 −730.59 11.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

env– soc 17 1499.50 7.13 0.02 1.00 −732.75 41
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

parasitic 5 1565.40 73.03 0.00 1.00 −777.70 >82
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

par– env 10 1570.78 78.41 0.00 1.00 −775.39 >82
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

environmental 9 1570.94 78.57 0.00 1.00 −776.47 >82
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

proximity (av. β = 0.05 ± 0.01 unc. s.e., unc. 95% CI = 0.02–0.07; table 4) and if they were low ranking (av.
β = −0.03 ± 0.01 unc. s.e., unc. 95% CI = −0.05–0.00; table 4).

4. Discussion
SDB such as scratching and self-grooming can be explained by a number of factors related to parasites,
sociality and the environment. Often enough, studies focus on a single hypothesis only. Taking an
integrative approach and examining all hypotheses simultaneously and objectively, this study shows that
in female Japanese macaques at Kōjima, scratching and self-grooming occurrences are better explained
by models including lice load and social factors than other combinations of variables.
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Table 4. Multi-model inference results: model averaged parameter estimates (β)± unconditional standard errors (s.e.) (95%
unconditional confidence intervals CI). In italics are variables for which CI does not include zero. Variable parameters are averaged only
over models in which the variable appears, except for the intercept’s, averaged across all models (see the text).

scratching self-grooming

β ± s.e. (95% CI) β ± s.e. (95% CI)

intercept 0.51± 0.31 (−0.10–1.12) −0.53± 0.49 (−1.48–0.43)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

monthly lice load 0.26± 0.15 (0.02–0.55) −0.27± 0.14 (−0.53–0.00)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

social grooming 0.29± 0.14 (0.01–0.56) 1.00± 0.14 (0.74–1.27)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aggression received (focal) 0.14± 0.20 (−0.25–0.53) 0.32± 0.19 (−0.05–0.70)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aggression received (ad libitum) 0.12± 0.15 (−0.19–0.42) 0.13± 0.15 (−0.16–0.43)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

feeding day 0.18± 0.17 (−0.16–0.52) 0.19± 0.16 (−0.11–0.50)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

David’s score −0.01± 0.02 (−0.05–0.02) −0.03± 0.01 (−0.05–0.00)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

prop. high-rank nn10 0.14± 0.16 (−0.18–0.46) −0.20± 0.16 (−0.52–0.11)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nb females nn5 0.02± 0.01 (−0.01–0.04) 0.05± 0.01 (0.02–0.07)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

reproductive status −0.09± 0.18 (−0.45–0.27) −0.01± 0.14 (0.28–0.27)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rainfall (3 days) 0.00± 0.01 (−0.02–0.01) 0.00± 0.01 (−0.01–0.02)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

temperature 0.03± 0.02 (−0.02–0.07) 0.03± 0.02 (−0.02–0.07)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

season winter −0.37± 0.34 (−1.03–0.30) 0.58± 0.32 (−0.05–1.21)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

season spring 0.00± 0.21 (−0.40–0.41) 0.28± 0.19 (−0.09–0.66)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

season summer −0.15± 0.32 (−0.78–0.47) −0.23± 0.29 (−0.80–0.34)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Within models including lice load, the occurrence of scratching was positively associated with
monthly lice loads. Chemicals in saliva, stings, body secretions or urticating hairs of ectoparasites all
have the potential to induce an immune itch which triggers scratching, effectively relieving the itch [1,17].
Additionally, although scratching may not remove the egg from its position on the hair or feather, it may
damage it and halt its development [5], adding a prophylactic benefit similar to that of self-grooming
with the extra advantage that with scratching, an animal can reach areas inaccessible to self-grooming
[5]. This link is commonly established in many animals such as ungulates and birds [3–5] but is neglected
in primates because, among other reasons, they are social animals and scratching was linked early on to
social events and anxiety due to social events.

Inversely, the occurrence of self-grooming was negatively linked to monthly lice loads. By grooming
themselves, females thus may be able to prevent infestation by removing future blood-sucking
ectoparasites [4]. However, the occurrence of self-grooming was also linked to the occurrence of social
grooming, larger numbers of female neighbours in relatively close proximity, as well as to lower
dominance rank. These results therefore also support the hypothesis that, in addition to its original
prophylactic function, self-grooming may act as a displacement activity that could potentially provide
an escape from socially uncertain situations [11]. For instance, Japanese macaque social behaviour is
highly biased towards kin so that individuals found often in proximity of each other are likely to be
genetically related to a high degree [48]. Given that matrilines are rather small (between two and four
adult females) and few (three) in the study group, larger numbers of female neighbours could be linked
to the increased presence of non-kin in proximity which could be related to social uncertainty and bouts
of self-grooming. Future studies could investigate the effect of the presence of kin versus non-kin in
relation to SDB when possible.

A major factor positively associated with the occurrence of SDB was the occurrence of social
grooming. Several studies have actually reported a decrease in SDB with the occurrence of grooming
in accordance with its proposed role in tension reduction [10,16,22]. However, the occurrence of social
grooming may intensify the expression of SDB, a pattern that is hypothesized to relate to the risk of
aggression due to increased proximity (e.g. [60]), the uncertainty at the beginning or end of a grooming
bout in terms of activity change or social situation (e.g. [10,23]), or behavioural transitions that could
be facilitated by SDB (as displacement activities) (e.g. [61]). Other hypotheses for increased SDB in this
context that have rarely been considered include the fact that animals may experience some kind of
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behavioural contagion, simply copying the activities of others or wanting to prolong grooming (e.g. [44]),
or they may still feel the touch of the grooming activity on their skin or a disturbance in hair arrangement
(e.g. [61]). All these explanations remain speculative pending further investigation, but it is noteworthy
that the relevant stimulus, a mild mechanical touch and/or a change of temperature (due to body contact
or disturbance of the hair or feathers), has the potential to activate the same neural sensory afferent fibres
(C fibres), i.e. those involved in the sensation of pain, temperature, touch and itch [62,63].

Interestingly, social and environmental factors that we investigated had less weight in explaining
variation in SDB when compared to lice load. This is despite the fact that Japanese macaque society
is governed by strict rules following dominance and kinship relationships where individuals are
constrained in their behavioural options [48,64] and tightly linked to a seasonally changing environment
impacting reproduction and sociality [34]. Although previous studies on primates have linked increased
urinary cortisol levels (an indicator of unbalanced homeostasis or stress) and increased scratching
rates to active reproductive state [39,40], and increased rates of SDB to challenging weather [9],
those variables accounted for little to none of the variation in SDB in female macaques of Kōjima.
One explanation could be that the measured variables are too coarse (either reproductively active or
inactive over the season and average rain amount over 3 days) to detect any meaningful pattern.
Concerning the apparent lack of effect of reproductive status on SDB, another explanation could be
linked to the seasonality of reproduction. During the mating season, many females are cycling at
the same time and many males get an opportunity to mate; as such, the degree of competition for
reproduction can be considered moderate [65]. Thus, although females are more active than when they
are not reproductively active, they may have means or opportunities to avoid stressful situations like
male coercion, for example by isolating themselves from the group to copulate with a male of their
choice [66].

It could thus be the case that animals scratch primarily because of an immune/stimulus itch triggered
by ectoparasite bites/movements. Nevertheless, this primary explanation is not exclusive of the fact
that animals can scratch because of an idiopathic non-immune itch, e.g. if they are anxious in a given
situation or if the atmosphere is hot and humid. The endocrine system is implicated in the regulation
of internal states and behaviours [67] and is linked to the immune system [68]. Long-term release of
‘stress’ hormones (glucocorticoids), whether linked to social or environmental factors, tempers immune
function and decreases its efficacy, probably making animals more susceptible to infections from diverse
parasites/pathogens [68]. Thus, an anxious animal or an animal in a challenging environment could also
be a lousier animal because of a generally weakened state.

The prophylaxis/parasitic hypothesis can actually embody altogether several reasonable explanations
for variation in SDB inasmuch as ectoparasites are often transferred from one host to the next through
body contact between hosts [1,18]; they greatly depend—sometimes solely (e.g. louse)—on their hosts for
reproduction and survival [1,18]; they are susceptible to seasonal changes due either to their own biology,
that of the host or that of the environment [28,69]; and through their blood meal they may be sensitive
to the physiological state of their hosts [19,70], which may in turn be dependent on environmental and
social conditions [36–38,71]. Revisiting studies linking SDB changes to environmental or social changes
taking into account ectoparasite loads could fill the gaps in our knowledge of mechanisms or functions
that we are still unable to explain fully, for example considering the inconsistent results about the links
between social grooming and scratching, or the so-far under-investigated difference between a stimulus
and an idiopathic itch, or the inclusion of a broader range of ectoparasites such as ticks and fleas (e.g.
[8,27,72,73]).

Previous research often examined each of the tested hypotheses separately. Our results attest
to the fact that studies should not discount the importance of hygienic/prophylactic functions of
behaviour, even when testing ideas linked to social processes. It is indeed more likely that a diversity
of factors affects the behaviour of animals, sometimes synergistically, sometimes independently. Taking
an integrative approach thus allows for a holistic view of animal behaviour. This is facilitated by the
information-theory framework used in this paper and advocated by Burnham & Anderson and others
[58,74–76]. In doing so, deeper integrative insights into an animal’s biology are attained, which provides
a basis for further investigation. Furthermore, the investigation and use of non-invasive indicators of
ectoparasite infestation, like that used in this study, can bring about further understanding of wildlife
epidemiology, infection risk and links between sociality and health.
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We thank Norscia and Palagi for their insightful commentary
on our article ‘Scratch that itch: revisiting links between self-
directed behaviour and parasitological, social and environmental
factors in a free-ranging primate’ [1]. We welcome such discussion
because we think, as the authors themselves point out at the end of
their commentary, that research needs to continue in this area. In
general, we agree that different stressors may act at different time
frames in triggering self-directed behaviours. As rightly pointed
out by Norscia and Palagi, our analysis did not take into account
the different time frames that would allow for separating the
effects of acute and chronic stressors on self-directed behaviours.
At the level of a behavioural observation of 15 min, we instead
investigated whether the occurrence of scratching and self-
grooming was linked to various factors such as lice load, social
activities, neighbours in proximity and environmental conditions,
together and/or separately. Our study was correlational and we,
therefore, avoided claims of causality, although we did address
potential causal mechanisms in the discussion.

That said, we would nonetheless like to respond to several
points made by Norscia and Palagi. First, one of the main
points of our study was to highlight biases in the investigation
of certain research hypotheses, such as those involving self-
directed behaviours. Studies in primatology have often, if perhaps
inadvertently, assumed that the primary drivers of self-directed
behaviour (SDB) are social, with parasite or abiotic factors being

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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secondary. Norscia and Palagi nonetheless state that ‘( . . . ) the association between self-directed
behaviours, and particularly scratching, with social, environmental and parasitological factors can be
considered as more than just a hypothesis. Once established that the different factors are not alternative
and that their relationship with scratching has been demonstrated, it is worth focusing on the role that
each factor can have in relation to the time scale’ (p. 2). We would fully agree with the logic here if the
premise were true. While the association between parasitological factors and self-directed behaviour is
extremely well-established in ungulates and birds [2–16], with also some evidence in insects [17–19], it
has received surprisingly little attention in non-human primate research. Despite the fact that numerous
earlier studies on the functional significance of self- and social grooming did mention the removal of
ectoparasites [20–23], it has sometimes been dismissed groundlessly or ignored altogether in more recent
studies [24–27]. There is no a priori or a posteriori reason to assume that what affects ungulates or birds
does not affect primates when the system under study, in this case the ectoparasite–host system, is more
or less identical. Along these lines, our study was an attempt to test multiple hypotheses simultaneously
and objectively using the same comprehensive dataset. A multivariate approach perhaps provides the
best opportunity to draw out the key factors influencing behaviour, and thereby contribute to advancing
the field. All speculation aside, our study reveals that, among the candidate set of hypotheses tested
(formulated as statistical models), parasite factors appear to best explain the occurrence of scratching,
while parasite and social factors appear to do so for self-grooming. If future work can now tease
out the impacts of these and other factors at distinct time scales while also accounting for alternative
explanations, such work would be most welcome indeed.

Second, in our study, at the level of the aggregate dataset, the hypotheses put forward are indeed
non-mutually exclusive in explaining general SDB patterns, as noted by Norscia and Palagi. However, at
the level of an individual SDB event, each of the hypotheses is more likely to explain the behaviour
independently than in concert, though we also acknowledge the possibility of additive or even
synergistic effects here; note that our statistical models for self-grooming suggested that such additive
effects were likely. Regardless, a single SDB may be caused by x, y or z, but seems less likely to occur
because of all three simultaneously, so the use of the term ‘alternative’ is not necessarily incorrect. That
said, contrary to the assertions of Norscia and Palagi, this does not imply that some relationships are
secondary to others. We think this distinction is meaningless, and that is why we took an integrative
approach in the first place. If we did not make that point clear enough in the original manuscript, then
we reiterate it here.

Third, some of the arguments put forth by Norsica and Palagi involve generalizations that may
not in fact be entirely supported. Essential facts concerning primates—and to some extent time
scales—are omitted in their commentary. For instance, several studies have already demonstrated quite
unambiguously that body parts estimated to have many louse eggs are generally inaccessible, cannot
be self-groomed, and are socially groomed longer than other body parts [8,10,15,24,28,29]. Furthermore,
lice loads estimated from nit-picking gestures during grooming were recently shown to vary seasonally
in Japanese macaques [30], and variation in nit-picking activity during grooming, or louse-egg feeding,
has been shown to influence grooming duration, frequency and reciprocity [28]. The findings in [29] and
[28] are especially important, not only because they align what we know about primates with what we
know about birds and ungulates, but also because they relate to the extent to which ectoparasites can
mediate social interactions, a hypothesis that is rarely acknowledged in primate studies (e.g. [30,31]).
The facts that treating animals against lice decreases grooming activity and that preventing animals from
grooming or self-grooming dramatically increases ectoparasite load [8,15] speak volumes in favour of
investigating the links between ectoparasites and SDB, in addition to further social processes also linked
to hygienic practices, regardless of time scale. So, we would argue that before dissecting when or under
what set of conditions a certain event is likely to occur, we need to first ensure that the event and these
other conditions are indeed generally related. From our perspective, such an investigation has never
been fully realized in taxa as socially complex as primates, and we therefore feel the approach taken in
our original article is justified.

Finally, Norscia and Palagi state that ‘The variation observed between time t0 and t1 cannot be linked
to parasitological factors if the load is not significantly different between t0 and t1. There is no reason
to believe that, in the absence of any other additional perturbing factor, the ectoparasite load varies
significantly in the minutes immediately preceding and following the stressful event.’ (p. 2) While this
statement belies a lack of knowledge about louse behaviour (i.e. temporal patterns in feeding behaviour),
to their credit the authors do later add that ‘It may be questioned that in the short term a change in the
parasite activity (e.g. in response to temperature, humidity or even solar radiation [18–22]), and not in
the load, could possibly cause an increase in scratching levels. However, this aspect was not tested in
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Duboscq et al. [1].’ (p. 2) Louse-induced itch could indeed depend in the long term on louse load and in
the short term on louse activity. A sudden change in a multitude of parameters might impact louse load
and/or activity quickly if it creates disturbances in the hair/pelage/skin of the animals that constitutes
the environment of the parasite. Some studies have shown that rabbit fleas respond to oestrogen blood
concentration and adapt their reproductive activity to the reproductive activity of their host [32,33]. The
variation in self-directed behaviours between t0 and t1 could therefore be linked to parasitological factors
at time scales of minutes or even seconds, although we admit that we have no information about whether
louse activity is likely to vary ‘in the minutes immediately preceding and following the stressful event’
(p. 2). Again, we have no intention here of asserting that all SDB events are related to lice, but the effect
of variation in ectoparasite load and activity across time scales should be investigated in the future, and
we think our study constitutes a step forward in that direction.

In conclusion, while we agree with most of the comments provided by Norscia and Palagi, we
highlight that the aims of our study were not so much to exclude the role of social stressors in the
production of SDB but instead to put SDB into the broader ecological framework under which they
evolved. Like Norscia and Palagi, we look forward to future studies taking an integrative view of
self-directed behaviours, accounting for various factors at different time scales in order to gain further
insights into why animals scratch that itch.
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APPENDIX F: SUPPLEMENTARY MATERIAL FOR CHAPTER 1 

 

 

Figure FS1.  Mean outbreak size across different values of pathogen infectiousness (R0). 

Mean outbreak size is shown as a percentage of individuals infected in each group. The 

graphs indicate a consistent variation of contagion in Koshima and Yakushima, although the 

latter presents as a more moderate epidemic when compared to the former. Each line 

represents the outbreak size averaged across 10000 simulations for a given R0. Definitions of 

network centralities are given in the chapter 1. 
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Figure FS2. Dispersion graphs showing individual/social factors and centrality 

coefficients in Koshima group.  There is a clear relationship between dominance rank and 

centrality (eigenvector and strength) in Koshima while age marginally influenced eigenvector 

centrality. Family size had no effect on network position. Statistical tests and values are given 

in the chapter 1. 
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Figure FS3. Dispersion and boxplot graphs showing individual/social factors and 

centrality coefficients in Yakushima group.  Age and to a lesser extent dominance rank 

influenced only eigenvector centrality in Yakushima group. As described in the main text, 

sexually-mature females were classified into three age classes (young adult ≥ 5 <10 yo, adult 

10 – 14 yo, old adult >14). Statistical tests and values are given in the chapter 1. 
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Figure FS4. Density probability plots of real and random distributions of infectious 

agent transmission in Yakushima group. Two of the four distributions from the simulated 

disease spread on the Yakushima network did not differ significantly from those expected of a 

random network (probability of acquiring an infectious agent: D = 0.39, p = 0.2; latency of 

acquiring an infectious agent: D = 0.5, p = 0.08). In contrast, the percentage of infected 

individuals (D = 1, p < 0.001) and latency to the whole group transmission (D = 1, p < 0.001) 

differed significantly between observed and random networks. 
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Figure FS5. Density probability plots of real and random distributions of infectious 

agent transmission in Koshima group. The probability of being infected (D = 0.52, p = 

0.02), the percentage of infected individuals (D = 0.81, p < 0.001), latency to complete 

transmission (D = 1, p < 0.001) and latency of being infected (D = 0.62, p = 0.02) all 

significantly differed between observed and random networks. 

 

AF1. Source code used in chapters 1 and 2.  

breed [nodes node] 

nodes-own [node-id activity]  

breed [links link] 

links-own [strength] 

patches-own [area] ;; 0 : repos; 1 : fourragement 

globals [links-list clock simulations adhesion-time mimetic-coefficient] 
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to setup 

ca 

set simulations 1 

ask patches [ 

if ((distancexy (-0.8 * max-pxcor) (0.8 * max-pycor)) < 5) 

  [ set area 1  

   set pcolor green] 

if ((distancexy 0 0) < 5) 

  [ set area 0 

   set pcolor brown] 

 ] 

end 

 

 

to simulate 

ct 

clear-plot 

import-network 

set clock 0 

set adhesion-time 0 

ask nodes [facexy -28 28 

  set activity 0] 

output-write "sim " + simulations 

ifelse mimetism? 

[dependent] 

[independent] 

output-print " " 

ifelse simulations < simulations-number 

  [set simulations simulations + 1   

    simulate] 

  [stop simulate] 

end 

 

to dependent 

set mimetic-coefficient 0.002 

ask nodes 

[if activity = 0 

  [ifelse aff? 

    [ifelse any? nodes with [activity != 0] 

       [if random-float 1 <= (((1 / resting-time)/(number-of-nodes-present)) + ( Cfoll * mimetic-

coefficient * follower)) 

          [fd 1  

          set activity 1 

          do-plot 
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          output-write node-id 

          set adhesion-time 0]]           

       [if random-float 1 <= (size * ((1 / resting-time)/ number-of-nodes-present) * (resting-

nodes)) 

          [fd 1 

         set activity 1 

         do-plot 

         output-write node-id ;; for the first individual  

         set adhesion-time 0] 

         ] 

    ] 

    [ifelse any? nodes with [activity = 1] 

      [if random-float 1 <= (((1 / resting-time) + (mimetic-coefficient * follower))/(number-of-

nodes-present)) 

        [fd 1  

        set activity 1 

        do-plot 

        output-write node-id 

        set adhesion-time 0] 

      ] 

      [if random-float 1 <= (size * (1 / resting-time)/ number-of-nodes-present) * (resting-

nodes) 

          [fd 1 

         set activity 1 

         do-plot 

         output-write node-id 

         set adhesion-time 0] 

       ] 

    ] 

    ] 

if activity = 1 

  [ifelse patch-here = patch -28 28 

     [fd 0 

     set activity 2] 

     [fd 1] 

     ] 

] 

 set clock clock + 1 

 set adhesion-time adhesion-time + 1 

 

ifelse resting-nodes < number-of-nodes-present 

[if resting-nodes >= 1 

  [ifelse adhesion-limit?  

    [if adhesion-time <= time-of-adhesion-limit 
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    [dependent] 

    ] 

    [dependent]   

  ]] 

[dependent] 

end 

 

to independent  

ask nodes 

[if activity = 0 

  [if random-float 1 <= ((1 / resting-time)/ number-of-nodes-present) * (resting-nodes) 

    [fd 1 

     set activity 1 

     do-plot 

     output-write adhesion-time 

     set adhesion-time 0] 

   ] 

 if activity = 1 

   [ifelse patch-here = patch -28 28 

     [fd 0 

     set activity 2] 

     [fd 1] 

   ] 

 ] 

set clock clock + 1 

set adhesion-time adhesion-time + 1 

ifelse resting-nodes < number-of-nodes-present 

[if resting-nodes >= 1  

  [ifelse adhesion-limit? 

    [if adhesion-time <= time-of-adhesion-limit 

      [independent] 

    ] 

    [independent] 

  ]] 

 [independent] 

end 

 

to-report number-of-nodes-present 

report count nodes 

end 

 

to-report resting-nodes 

report count nodes-at 0 0 

end 
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to-report follower 

report count nodes with [activity != 0] 

end 

 

to-report Cfoll 

report ((mean values-from __my-in-links with [activity-of __other-end != 0][label])/ 0.11) 

end 

 

to-report Caff 

report mean values-from __my-in-links [label] 

end 

 

to do-plot 

set-current-plot "adhesion-time" 

set-current-plot-pen "adhesion-time" 

plot adhesion-time 

end 

 

to import-network 

  set-default-shape nodes "monkey" 

  import-attributes 

  import-links 

end 

 

;; This procedure reads in a files that contains node-specific attributes including an unique 

;;identification number to import-attributes. 

  ;; use CAREFULLY to ensure the file is 

  ;; closed if there is an error and to notify 

  ;; user of the error 

  carefully [ 

    ;; This opens the file, so we can use it. 

    file-open "attributes.txt" 

    ;; Read in all the data in the file 

    ;; data on the line is in this order: node-id attribute1 attribute2 

    while [not file-at-end?] 

    [ 

      ;; this reads a single line into a three-item list 

      let items read-from-string (word "[" file-read-line "]") 

      create-custom-nodes 1 [   

        set node-id item 0 items 

        set size    item 1 items 

        set color   item 2 items 

      ] 
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    ] 

  ]      

  ;; this is the error handling block of the carefully command 

  [ 

    user-message (word "Error reading attributes.txt: " error-message) 

  ] 

  file-close 

end 

 

;; This procedure reads in a file that contains all the links. The file is simply 3 columns 

;;separated by spaces. The first column contains the node-id of the node originating the link.  

;; The second column the node-id of the node on the other end of the link. The third column is 

;; the strength of the link. 

 

to import-links 

  carefully 

  [ 

    ;; This opens the file, so we can use it. 

    file-open "links.txt" 

    ;; Read in all the data in the file 

    while [not file-at-end?] 

    [ 

      ;; this reads a single line into a three-item list 

      let items read-from-string (word "[" file-read-line "]") 

      ask get-node (item 0 items) 

      [  

        __create-link-to get-node (item 1 items) 

          [ set label item 2 items ] 

      ] 

    ]  

  ] 

  ;; this is the error handling block of the carefully command 

  [ 

    user-message (word "Error reading links.txt: " error-message) 

  ] 

  file-close 

end 

 

;; Helper procedure for looking up a node by node-id. 

to-report get-node [id] 

  report one-of nodes with [node-id = id] 

end 
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APPENDIX G: SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

 

 
Figure GS1. Observed (black line) and density (red line) distribution functions of latency 

to total pathogen transmission in 40 primate networks.  

 

 

Figure GS2. Phylogenetic tree used for comparative tests.  
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Figure GS3. Correlation matrix between group size, density, eigenvector centralization, 

clustering coefficient (Ccoefficient), diameter and modularity. The stronger the coefficient 

of correlation, the darker its blue (positive correlation) and the darker its red (negative 

correlation).  
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Table GS1. Details from the dataset used in chapter 2, including information on sources 

of data and group size. 

Species Common name 
Sources of data 

(literature* or co-authors) 
Group size 

Ateles geoffroyi Spider monkey Ahumada 1992 15 

Cebus capucinus 
White-faced 

capuchin 

Dr. Linda Fedigan 

Dr. Mackenzie L. Bergstrom 

Dr. Eugenia P. di Sorrentino  

5 

Cebus capucinus 
White-faced 

capuchin 
Perry 1996 6 

Cebus capucinus 
White-faced 

capuchin 

Dr. Linda Fedigan 

Dr. Mackenzie L. Bergstrom 

Dr. Eugenia P. di Sorrentino  

7 

Cebus capucinus 
White-faced 

capuchin 

Dr. Linda Fedigan 

Dr. Mackenzie L. Bergstrom 

Dr. Eugenia P. di Sorrentino 

10 

Cebus capucinus 
White-faced 

capuchin 
Dr. Margaret Crofoot 10 

Cebus capucinus 
White-faced 

capuchin 
Dr. Margaret Crofoot 12 

Cebus capucinus 
White-faced 

capuchin 
Dr. Margaret Crofoot 12 

Cercopithecus 

campbelli 

Campbell’s 

monkey 
Hunkeler et al. 1972 15 

Cercopithecus 

mitis 
Blue monkey Rowell et al. 1991 17 

Chlorocebus 

pygerythrus 
Vervet monkey  

Dr. Erica van de Waal 

M.Sc. Christèle Borgeaud 
25 

Chlorocebus 

pygerythrus 
Vervet monkey 

Dr. Erica van de Waal 

M.Sc. Christèle Borgeaud 
26 

Chlorocebus 

pygerythrus 
Vervet monkey 

Dr. Erica van de Waal 

M.Sc. Christèle Borgeaud 
37 

Colobus guereza 
Black-and-white 

colobus 
Dunbar & Dunbar 1976 8 

Erythrocebus 

patas 
Patas monkeys Nakagawa 1992 8 

Erythrocebus 

patas 
Patas monkeys Kaplan & Zucker 1980 19 
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Macaca 

arctoides 

Stump-tailed 

macaque 
Estrada et al. 1977 19 

Macaca 

assamensis 

Assamese 

macaques 
Cooper et al. 2005 19 

Macaca fuscata Japanese macaque Takahashi & Furuichi 1998 21 

Macaca fuscata Japanese macaque Dr. Andrew MacIntosh 21 

Macaca fuscata Japanese macaque Dr. Andrew MacIntosh 31 

Macaca mullata Rhesus macaque Sade 1972 16 

Macaca radiata Bonnet macaque Sugiyama 1971 16 

Macaca radiata Bonnet macaque Koyama 1973 23 

Macaca 

tonkeana 
Tonkean macaque Nunn et al. 2015 25 

Pan paniscus Bonobo Nunn et al. 2015 19 

Pan troglodytes Chimpanzee Sugiyama & Koman 1979 12 

Pan troglodytes Chimpanzee Sugiyama 1969 14 

Pan troglodytes Chimpanzee Nunn et al. 2015 24 

Papio ursinus Chacma baboon Dr. Andrew King 15 

Saguinus mystax 
Moustached 

tamarins 
Nunn et al. 2015 6 

Sapajus apella Tufted capuchin Izawa 1980 5 

Sapajus apella Tufted capuchin 
Dr. Barbara Tiddi 

Dr. Eugenia P. di Sorrentino 
8 

Sapajus apella Tufted capuchin 
Dr. Barbara Tiddi 

Dr. Eugenia P. di Sorrentino 
11 

Sapajus apella Tufted capuchin Izawa 1980 12 

Sapajus apella Tufted capuchin 
Dr. Barbara Tiddi 

Dr. Eugenia P. di Sorrentino 
13 

Sapajus 

libidinosus 

Black-striped 

capuchin 
Dr. Patrícia Izar 10 

Sapajus nigritus 
Black-horned 

capuchin 
Dr. Patrícia Izar 7 

Sapajus nigritus 
Black-horned 

capuchin 
Dr. Patrícia Izar 10 

Trachypithecus 

johnii 
Nilgiri langur Poirier 1969 10 

 

* Literature used to extract the dataset: 

Ahumada JA (1992) Grooming behavior of spider monkeys (Ateles geoffroyi) on barro 
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colorado Island, Panama. International Journal of Primatology. 13: 33–49. 

Cooper MA, Bernstein IS, Hemelrijk CK (2005) Reconciliation and relationship quality in 

assamese macaques (Macaca assamensis). American Journal of Primatology. 65: 

269-282. 

Dunbar RI, Dunbar EP (1976) Contrasts in social structure among black-and-white colobus 

groups. Animal Behaviour. 24: 84-92. 

Estrada A, Estrada R, Ervin F (1977) Establishment of a free-ranging colony of stumptail 

macaques (Macaca arctoides): social relations I. Primates. 18: 647–676. 

Hunkeler C, Bourliere F, Bertrand M (1972) Le comportement social de la Mone de Lowe 

(Cercopothecus campbelli lowei). Folia Primatologica. 17: 218-236. 

Izawa K (1980) Social behavior of the wild black-capped capuchin (Cebus apella). Primates. 

21: 443–467. 

Kaplan JR, Zucker E (1980) Social organization in a group of free-ranging patas monkeys. 

Folia Primatologica. 34: 196-213. 

Koyama N (1973) Dominance, grooming, and clasped-sleeping relationships among bonnet 

monkeys in India. Primates. 14: 225–244. 

Nakagawa N (1992) Distribution of affiliative behaviors among adult females within a group 

of wild patas monkeys in a nonmating, nonbirth season. International Journal of 

Primatology. 13: 73–96. 

Nunn CL, Jordán F, McCabe CM, Verdolin JL, Fewell JH (2015) Infectious disease and 

group size: more than just a numbers game. Philosophical Transactions of the Royal 

Society B. 370: 2014011. (doi:10.1098/rstb.2014.0111). 

Perry S (1996) Female-female social relationships in wild white-faced capuchin monkeys, 

Cebus capucinus. American Journal of Primatology. 40: 67–182. 

Poirier FE (1969) The nilgiri langur (Presbytis Johnii) troop: its composition, structure, 

function and change. Folia Primatologica. 10: 20-47. 

Rowell TE, Wilson C, Cords M (1991) Reciprocity and partner preference in grooming of 

female blue monkeys. International Journal of Primatology. 12: 319–336. 

Sade DS (1972) Sociometrics of Macaca mulatta I. Linkages and cliques in grooming 

matrices. Folia Primatologica. 18: 196-223. 

Sugiyama Y (1969) Social behavior of chimpanzees in the Budongo Forest, Uganda. 

Primates. 10: 197–225. 

Sugiyama Y (1971) Characteristics of the social life of bonnet macaques (Macaca radiata). 

Primates. 12: 247–266. 

Sugiyama Y & Koman J (1979) Social structure and dynamics of wild chimpanzees at 

Bossou, Guinea. Primates. 20: 323–339. 

Takahashi H & Furuichi T (1998) Comparative study of grooming relationships among wild 

Japanese macaques in Kinkazan A troop and Yakushima M troop. Primates. 39: 

365–374. 
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List GS1. Candidate models for the spread of a moderately contagious pathogen (N= 

40). Term codes are the same to all stages of the outbreak. 

 
Term codes:  
scale(-ccoef)     1            
scale(cent)       2           
scale(dia)        3        
scale(gsize)      4 
scale(mod)        5 
scale(-ccoef):scale(gsize)     6   
scale(cent):scale(gsize)       7   
scale(dia):scale(gsize)        8  
scale(gsize):scale(mod)        9 
                          

 

Stage 1 
Component models:  
         df logLik   AICc delta weight 
247       7  29.21 -40.93  0.00   0.14 
1247      8  30.54 -40.44  0.49   0.11 
2457      8  30.28 -39.91  1.01   0.09 
459       7  28.70 -39.90  1.03   0.09 
2347      8  29.58 -38.51  2.42   0.04 
45        6  26.52 -38.50  2.43   0.04 
24579     9  31.19 -38.37  2.56   0.04 
12457     9  31.12 -38.23  2.69   0.04 
1459      8  29.27 -37.89  3.04   0.03 
3459      8  28.92 -37.19  3.74   0.02 
12467     9  30.56 -37.11  3.82   0.02 
12347     9  30.54 -37.09  3.84   0.02 
2459      8  28.83 -37.02  3.91   0.02 
23457     9  30.45 -36.91  4.02   0.02 
146       7  27.19 -36.89  4.04   0.02 
124579   10  32.21 -36.83  4.10   0.02 
145       7  27.06 -36.62  4.31   0.02 
14        6  25.40 -36.26  4.67   0.01 
1456      8  28.41 -36.17  4.75   0.01 
4         5  23.91 -36.05  4.88   0.01 
345       7  26.68 -35.87  5.06   0.01 
12459     9  29.78 -35.56  5.37   0.01 
245       7  26.52 -35.54  5.39   0.01 
34589     9  29.76 -35.52  5.40   0.01 
23478     9  29.74 -35.47  5.46   0.01 
234579   10  31.46 -35.33  5.59   0.01 
2345789  11  33.24 -35.05  5.88   0.01 
34        6  24.75 -34.96  5.96   0.01 
124567   10  31.14 -34.69  6.24   0.01 
123457   10  31.12 -34.65  6.28   0.01 
14569     9  29.30 -34.60  6.33   0.01 
13459     9  29.27 -34.54  6.39   0.01 
23459     9  29.26 -34.52  6.41   0.01 
1245679  11  32.85 -34.27  6.66   0.01 
1346      8  27.39 -34.13  6.80   0.00 
1246      8  27.35 -34.05  6.87   0.00 
24        6  24.09 -33.63  7.30   0.00 
234578   10  30.56 -33.53  7.40   0.00 
123467   10  30.56 -33.53  7.40   0.00 
123478   10  30.55 -33.51  7.42   0.00 
1345      8  27.06 -33.48  7.45   0.00 
12456     9  28.74 -33.47  7.46   0.00 
134       7  25.46 -33.41  7.52   0.00 
234589   10  30.35 -33.12  7.81   0.00 
1234579  11  32.21 -32.99  7.94   0.00 
3458      8  26.81 -32.97  7.96   0.00 
13456     9  28.48 -32.97  7.96   0.00 
2345      8  26.80 -32.95  7.98   0.00 
348       7  24.87 -32.24  8.68   0.00 
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123459   10  29.82 -32.06  8.87   0.00 
134589   10  29.81 -32.03  8.90   0.00 
234       7  24.75 -32.01  8.92   0.00 
124569   10  29.80 -32.01  8.92   0.00 
12346     9  27.64 -31.28  9.65   0.00 
12345789 12  33.36 -31.17  9.76   0.00 
13468     9  27.55 -31.11  9.82   0.00 
134569   10  29.31 -31.04  9.89   0.00 

 

 

Stage 2 
Component models:  
          df logLik  AICc delta weight 
124579    10 -14.84 57.27  0.00   0.23 
1245679   11 -12.99 57.41  0.15   0.22 
12457      9 -17.12 58.24  0.98   0.14 
1234579   11 -14.22 59.86  2.59   0.06 
234579    10 -16.73 61.05  3.79   0.03 
123457    10 -16.74 61.06  3.80   0.03 
12345679  12 -12.88 61.31  4.05   0.03 
12459      9 -18.76 61.52  4.25   0.03 
23457      9 -18.89 61.78  4.51   0.02 
124567    10 -17.11 61.82  4.55   0.02 
1459       8 -20.88 62.40  5.14   0.02 
1234578   11 -15.54 62.50  5.24   0.02 
2457       8 -20.96 62.57  5.30   0.02 
23459      9 -19.33 62.67  5.40   0.02 
24579      9 -19.46 62.92  5.65   0.01 
123459    10 -17.75 63.08  5.81   0.01 
13459      9 -19.56 63.13  5.86   0.01 
12345789  12 -14.21 63.98  6.71   0.01 
2345789   11 -16.34 64.12  6.85   0.01 
1234567   11 -16.65 64.73  7.47   0.01 
234578    10 -18.67 64.93  7.67   0.01 
3459       8 -22.15 64.94  7.67   0.01 
124569    10 -18.76 65.10  7.83   0.00 
123456789 13 -12.66 65.32  8.05   0.00 
234589    10 -19.05 65.70  8.43   0.00 
14569      9 -20.86 65.72  8.46   0.00 
12345678  12 -15.25 66.05  8.78   0.00 
2459       8 -22.75 66.14  8.88   0.00 
12456      9 -21.14 66.27  9.01   0.00 
134589    10 -19.53 66.65  9.39   0.00 
134569    10 -19.54 66.66  9.40   0.00 
1234569   11 -17.73 66.90  9.63   0.00 
1234589   11 -17.74 66.91  9.64   0.00 
123458    10 -19.79 67.16  9.90   0.00 
 
 

Stage 3 
Component models:  
        df  logLik   AICc delta weight 
459      7 -111.74 240.98  0.00   0.28 
1459     8 -111.41 243.46  2.48   0.08 
2459     8 -111.45 243.54  2.57   0.08 
1348     8 -111.48 243.60  2.62   0.08 
3459     8 -111.68 244.00  3.03   0.06 
348      7 -113.52 244.54  3.56   0.05 
3458     8 -112.44 245.52  4.54   0.03 
34589    9 -110.83 245.66  4.68   0.03 
13458    9 -110.90 245.80  4.82   0.03 
2348     8 -112.59 245.82  4.84   0.02 
24579    9 -110.93 245.86  4.89   0.02 
12348    9 -111.17 246.35  5.37   0.02 
12459    9 -111.31 246.63  5.65   0.02 
14569    9 -111.34 246.67  5.69   0.02 
13459    9 -111.40 246.81  5.83   0.02 
23459    9 -111.45 246.90  5.92   0.01 
146      7 -114.72 246.95  5.97   0.01 
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13468    9 -111.47 246.95  5.97   0.01 
4        5 -117.80 247.37  6.39   0.01 
23478    9 -111.69 247.38  6.40   0.01 
134589  10 -109.92 247.42  6.44   0.01 
23458    9 -111.77 247.54  6.56   0.01 
123478  10 -110.39 248.36  7.38   0.01 
234589  10 -110.40 248.39  7.41   0.01 
24       6 -116.94 248.44  7.46   0.01 
45       6 -117.11 248.77  7.80   0.01 
123458  10 -110.69 248.96  7.98   0.01 
124579  10 -110.73 249.06  8.08   0.00 
14       6 -117.29 249.13  8.15   0.00 
134568  10 -110.86 249.31  8.33   0.00 
1246     8 -114.35 249.35  8.38   0.00 
234579  10 -110.89 249.37  8.39   0.00 
34       6 -117.45 249.45  8.48   0.00 
234578  10 -111.04 249.67  8.69   0.00 
1456     8 -114.55 249.75  8.77   0.00 
123468  10 -111.17 249.93  8.95   0.00 
1346     8 -114.68 250.00  9.02   0.00 
124569  10 -111.22 250.02  9.04   0.00 
12467    9 -113.05 250.11  9.13   0.00 
123459  10 -111.30 250.19  9.21   0.00 
134569  10 -111.34 250.26  9.28   0.00 
2345789 11 -109.47 250.37  9.39   0.00 
1234578 11 -109.67 250.77  9.79   0.00 
1345689 11 -109.69 250.81  9.83   0.00 
245      7 -116.73 250.95  9.98   0.00 
1234589 11 -109.77 250.97  9.99   0.00 

 
 
Stage 4 

Component models:  
       df  logLik   AICc delta weight 
459     7 -158.09 333.69  0.00   0.21 
34      6 -160.20 334.95  1.26   0.11 
247     7 -158.89 335.28  1.59   0.10 
245     7 -159.11 335.72  2.03   0.08 
124     7 -159.11 335.72  2.03   0.08 
234     7 -159.33 336.17  2.48   0.06 
1459    8 -158.09 336.83  3.14   0.04 
1247    8 -158.22 337.09  3.40   0.04 
2347    8 -158.50 337.65  3.96   0.03 
24579   9 -156.83 337.66  3.97   0.03 
2457    8 -158.51 337.67  3.99   0.03 
1245    8 -158.66 337.97  4.29   0.02 
2345    8 -158.80 338.24  4.56   0.02 
23478   9 -157.19 338.37  4.68   0.02 
1234    8 -159.00 338.65  4.96   0.02 
1246    8 -159.11 338.87  5.18   0.02 
12467   9 -157.66 339.32  5.63   0.01 
12457   9 -158.05 340.10  6.41   0.01 
12347   9 -158.17 340.34  6.65   0.01 
23458   9 -158.24 340.48  6.79   0.01 
124579 10 -156.46 340.50  6.81   0.01 
23457   9 -158.25 340.51  6.82   0.01 
234579 10 -156.70 340.99  7.31   0.01 
12345   9 -158.59 341.19  7.50   0.00 
12456   9 -158.64 341.28  7.60   0.00 
234578 10 -157.02 341.62  7.94   0.00 
123478 10 -157.15 341.89  8.20   0.00 
12346   9 -159.00 342.00  8.31   0.00 
14569   9 -159.02 342.04  8.35   0.00 
124567 10 -157.48 342.55  8.87   0.00 
124569 10 -157.52 342.62  8.94   0.00 
(Null)  4 -166.84 342.81  9.13   0.00 
123467 10 -157.66 342.90  9.21   0.00 
5       5 -165.61 342.98  9.30   0.00 
34589   9 -159.51 343.02  9.34   0.00 
3       5 -165.81 343.38  9.70   0.00 



307 
 

123457 10 -158.01 343.61  9.92   0.00 
 
 
Stage 5 
Component models:  
       df  logLik   AICc delta weight 
345     7 -142.67 302.84  0.00   0.18 
34      6 -144.92 304.38  1.54   0.08 
4       5 -146.61 304.98  2.14   0.06 
3458    8 -142.29 305.22  2.38   0.05 
2345    8 -142.57 305.79  2.95   0.04 
1345    8 -142.66 305.97  3.13   0.04 
3459    8 -142.67 305.98  3.14   0.04 
45      6 -145.84 306.23  3.39   0.03 
35      6 -145.99 306.53  3.69   0.03 
348     7 -144.61 306.73  3.89   0.03 
14      6 -146.27 307.09  4.25   0.02 
145     7 -144.80 307.10  4.26   0.02 
24      6 -146.29 307.14  4.30   0.02 
(Null)  4 -149.03 307.19  4.35   0.02 
134     7 -144.85 307.20  4.36   0.02 
234     7 -144.92 307.34  4.50   0.02 
245     7 -145.06 307.63  4.79   0.02 
5       5 -147.94 307.64  4.80   0.02 
25      6 -146.64 307.83  4.99   0.01 
34589   9 -142.03 308.05  5.21   0.01 
23458   9 -142.17 308.34  5.50   0.01 
235     7 -145.43 308.36  5.52   0.01 
13458   9 -142.19 308.37  5.53   0.01 
13456   9 -142.20 308.40  5.56   0.01 
15      6 -146.97 308.48  5.64   0.01 
3       5 -148.37 308.51  5.67   0.01 
23457   9 -142.35 308.71  5.87   0.01 
2347    8 -144.11 308.87  6.03   0.01 
23459   9 -142.57 309.14  6.30   0.01 
12345   9 -142.57 309.14  6.30   0.01 
247     7 -145.83 309.16  6.32   0.01 
459     7 -145.84 309.18  6.34   0.01 
135     7 -145.89 309.27  6.43   0.01 
2       5 -148.76 309.28  6.44   0.01 
13459   9 -142.66 309.32  6.48   0.01 
1       5 -148.78 309.33  6.49   0.01 
1245    8 -144.49 309.62  6.78   0.01 
124     7 -146.15 309.80  6.96   0.01 
1348    8 -144.61 309.86  7.02   0.01 
2348    8 -144.61 309.87  7.03   0.01 
146     7 -146.27 310.04  7.20   0.00 
1456    8 -144.70 310.05  7.21   0.00 
125     7 -146.29 310.09  7.25   0.00 
1346    8 -144.76 310.16  7.32   0.00 
1459    8 -144.80 310.25  7.41   0.00 
1234    8 -144.84 310.33  7.49   0.00 
23478   9 -143.24 310.47  7.63   0.00 
2457    8 -144.95 310.55  7.71   0.00 
2459    8 -145.06 310.76  7.92   0.00 
234578 10 -141.62 310.82  7.98   0.00 
134569 10 -141.74 311.06  8.22   0.00 
134589 10 -141.76 311.10  8.26   0.00 
23      6 -148.33 311.21  8.37   0.00 
234589 10 -141.83 311.24  8.40   0.00 
13      6 -148.37 311.29  8.45   0.00 
1235    8 -145.42 311.49  8.65   0.00 
123458 10 -142.10 311.79  8.95   0.00 
134568 10 -142.10 311.80  8.96   0.00 
123456 10 -142.13 311.85  9.01   0.00 
1247    8 -145.62 311.90  9.06   0.00 
12      6 -148.68 311.90  9.06   0.00 
12347   9 -144.04 312.08  9.24   0.00 
234579 10 -142.31 312.20  9.36   0.00 
123457 10 -142.35 312.29  9.45   0.00 
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123459 10 -142.57 312.72  9.88   0.00 
12457   9 -144.38 312.75  9.91   0.00 
12456   9 -144.40 312.80  9.96   0.00 
 
 
 

List GS2. Candidate models for the spread of a highly contagious pathogen (N= 40). 

Term codes are the same to all stages of the outbreak. 

 
Term codes:  
scale(-ccoef)     1            
scale(cent)       2           
scale(dia)        3        
scale(gsize)      4 
scale(mod)        5 
scale(-ccoef):scale(gsize)     6   
scale(cent):scale(gsize)       7   
scale(dia):scale(gsize)        8  
scale(gsize):scale(mod)        9 
 

 

Stage 1 
Component models:  
         df logLik   AICc delta weight 
1459      8 -70.17 160.98  0.00   0.24 
12459     9 -69.12 162.24  1.26   0.13 
2459      8 -71.19 163.03  2.05   0.09 
134589   10 -67.77 163.13  2.15   0.08 
13459     9 -70.05 164.11  3.13   0.05 
14569     9 -70.17 164.34  3.35   0.05 
1234589  11 -66.55 164.54  3.56   0.04 
13458     9 -70.36 164.72  3.74   0.04 
1345689  11 -67.06 165.55  4.57   0.02 
124579   10 -68.98 165.55  4.57   0.02 
23459     9 -70.80 165.61  4.63   0.02 
123458   10 -69.06 165.71  4.73   0.02 
124569   10 -69.09 165.77  4.79   0.02 
123459   10 -69.11 165.80  4.82   0.02 
3459      8 -72.71 166.07  5.08   0.02 
24579     9 -71.14 166.29  5.31   0.02 
459       7 -74.47 166.45  5.47   0.02 
234589   10 -69.82 167.22  6.24   0.01 
12345689 12 -65.94 167.44  6.46   0.01 
134568   10 -69.95 167.49  6.51   0.01 
12345789 12 -65.99 167.53  6.55   0.01 
134569   10 -70.05 167.69  6.70   0.01 
34589     9 -72.24 168.48  7.50   0.01 
1234578  11 -68.63 168.69  7.71   0.01 
234579   10 -70.67 168.92  7.94   0.00 
1245679  11 -68.80 169.03  8.05   0.00 
12348     9 -72.59 169.19  8.21   0.00 
1234579  11 -68.95 169.33  8.35   0.00 
1348      8 -74.37 169.39  8.41   0.00 
1234569  11 -69.07 169.58  8.59   0.00 
2345789  11 -69.55 170.52  9.54   0.00 

 

Stage 2 
Component models:  
        df  logLik   AICc delta weight 
459      7 -130.69 278.88  0.00   0.19 
348      7 -130.96 279.42  0.54   0.15 
1348     8 -130.17 280.99  2.11   0.07 
23478    9 -128.77 281.54  2.66   0.05 
2348     8 -130.46 281.57  2.69   0.05 
4        5 -135.01 281.79  2.90   0.05 
2459     8 -130.60 281.85  2.96   0.04 
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1459     8 -130.67 281.99  3.11   0.04 
3459     8 -130.69 282.03  3.14   0.04 
3458     8 -130.90 282.45  3.57   0.03 
24579    9 -129.62 283.25  4.36   0.02 
34589    9 -129.77 283.54  4.65   0.02 
12348    9 -129.98 283.95  5.07   0.02 
13468    9 -130.00 284.01  5.12   0.01 
123478  10 -128.24 284.07  5.19   0.01 
146      7 -133.29 284.08  5.20   0.01 
24       6 -134.78 284.10  5.22   0.01 
13458    9 -130.17 284.34  5.46   0.01 
14       6 -135.00 284.56  5.67   0.01 
45       6 -135.01 284.56  5.68   0.01 
34       6 -135.01 284.57  5.68   0.01 
23458    9 -130.46 284.91  6.03   0.01 
234578  10 -128.73 285.05  6.17   0.01 
23459    9 -130.58 285.15  6.27   0.01 
12459    9 -130.60 285.20  6.32   0.01 
14569    9 -130.64 285.27  6.39   0.01 
13459    9 -130.66 285.33  6.44   0.01 
247      7 -134.37 286.23  7.35   0.00 
134589  10 -129.42 286.42  7.54   0.00 
12467    9 -131.25 286.49  7.61   0.00 
234589  10 -129.52 286.62  7.74   0.00 
234579  10 -129.62 286.82  7.94   0.00 
124579  10 -129.62 286.83  7.95   0.00 
1246     8 -133.12 286.88  8.00   0.00 
245      7 -134.74 286.97  8.09   0.00 
234      7 -134.74 286.99  8.10   0.00 
2345789 11 -127.78 286.99  8.11   0.00 
124      7 -134.75 286.99  8.11   0.00 
1456     8 -133.25 287.14  8.26   0.00 
123468  10 -129.79 287.17  8.29   0.00 
1346     8 -133.29 287.23  8.34   0.00 
134568  10 -129.96 287.50  8.62   0.00 
145      7 -135.00 287.51  8.62   0.00 
134      7 -135.00 287.51  8.63   0.00 
345      7 -135.01 287.51  8.63   0.00 
123458  10 -129.97 287.54  8.65   0.00 
1234678 11 -128.21 287.84  8.96   0.00 
1234578 11 -128.24 287.90  9.02   0.00 
124569  10 -130.55 288.69  9.81   0.00 
123459  10 -130.57 288.73  9.85   0.00 
134569  10 -130.63 288.85  9.97   0.00 

 

 

Stage 3 
Component models:  
         df  logLik   AICc delta weight 
24579     9 -148.34 320.69  0.00   0.21 
459       7 -151.87 321.25  0.56   0.16 
245       7 -152.52 322.54  1.85   0.08 
247       7 -153.05 323.60  2.92   0.05 
124579   10 -148.04 323.67  2.98   0.05 
23478     9 -149.88 323.76  3.07   0.05 
2457      8 -151.64 323.93  3.25   0.04 
3459      8 -151.74 324.12  3.43   0.04 
234579   10 -148.33 324.24  3.55   0.04 
1459      8 -151.87 324.39  3.71   0.03 
1245      8 -152.13 324.91  4.22   0.03 
1247      8 -152.23 325.10  4.42   0.02 
234578   10 -148.79 325.16  4.48   0.02 
23459     9 -150.75 325.49  4.81   0.02 
12467     9 -150.77 325.53  4.85   0.02 
2345      8 -152.49 325.62  4.94   0.02 
12457     9 -151.23 326.46  5.78   0.01 
2347      8 -152.94 326.54  5.85   0.01 
2345789  11 -147.72 326.86  6.17   0.01 
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124567   10 -149.73 327.05  6.37   0.01 
1234579  11 -147.82 327.07  6.39   0.01 
123478   10 -149.81 327.20  6.51   0.01 
14569     9 -151.62 327.24  6.55   0.01 
23457     9 -151.63 327.26  6.58   0.01 
34589     9 -151.68 327.36  6.67   0.01 
1245679  11 -148.03 327.49  6.81   0.01 
12456     9 -151.96 327.92  7.23   0.01 
12345     9 -152.11 328.21  7.53   0.00 
123467   10 -150.37 328.33  7.65   0.00 
12347     9 -152.20 328.39  7.71   0.00 
1234578  11 -148.78 328.98  8.30   0.00 
1234567  11 -149.24 329.92  9.23   0.00 
123457   10 -151.17 329.93  9.24   0.00 
1234678  11 -149.54 330.50  9.82   0.00 
12345789 12 -147.54 330.64  9.95   0.00 

 

Stage 4 
Component models:  
        df  logLik   AICc delta weight 
247      7 -132.58 282.66  0.00   0.11 
2347     8 -131.70 284.05  1.39   0.06 
24       6 -134.77 284.08  1.42   0.06 
4        5 -136.39 284.54  1.88   0.04 
34       6 -135.18 284.91  2.25   0.04 
1247     8 -132.16 284.97  2.31   0.04 
2457     8 -132.18 285.00  2.33   0.03 
14       6 -135.26 285.06  2.40   0.03 
245      7 -133.81 285.13  2.47   0.03 
2        5 -136.70 285.16  2.50   0.03 
(Null)   4 -138.16 285.46  2.80   0.03 
25       6 -135.47 285.48  2.82   0.03 
23457    9 -130.88 285.76  3.10   0.02 
146      7 -134.26 286.02  3.36   0.02 
234      7 -134.32 286.15  3.49   0.02 
345      7 -134.37 286.24  3.57   0.02 
2345     8 -132.84 286.33  3.66   0.02 
124      7 -134.45 286.39  3.73   0.02 
1        5 -137.32 286.41  3.75   0.02 
145      7 -134.48 286.45  3.79   0.02 
1245     8 -133.09 286.83  4.17   0.01 
12457    9 -131.49 286.99  4.33   0.01 
45       6 -136.23 287.01  4.35   0.01 
234579  10 -129.78 287.14  4.48   0.01 
24579    9 -131.58 287.17  4.51   0.01 
15       6 -136.33 287.21  4.55   0.01 
125      7 -134.88 287.27  4.61   0.01 
348      7 -134.89 287.28  4.62   0.01 
12347    9 -131.67 287.33  4.67   0.01 
134      7 -134.92 287.35  4.68   0.01 
3        5 -137.79 287.35  4.69   0.01 
23478    9 -131.68 287.36  4.70   0.01 
1246     8 -133.36 287.37  4.71   0.01 
5        5 -137.87 287.51  4.85   0.01 
12       6 -136.52 287.58  4.92   0.01 
235      7 -135.18 287.85  5.19   0.01 
23       6 -136.67 287.89  5.23   0.01 
1456     8 -133.81 288.28  5.61   0.01 
2459     8 -133.81 288.28  5.61   0.01 
12467    9 -132.16 288.31  5.65   0.01 
1345     8 -133.86 288.36  5.70   0.01 
35       6 -137.04 288.63  5.96   0.01 
2348     8 -134.08 288.81  6.15   0.01 
3458     8 -134.10 288.85  6.19   0.01 
1346     8 -134.12 288.88  6.22   0.00 
12456    9 -132.46 288.91  6.25   0.00 
1234     8 -134.26 289.16  6.50   0.00 
123457  10 -130.79 289.16  6.50   0.00 
13       6 -137.32 289.18  6.52   0.00 
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23458    9 -132.65 289.29  6.63   0.00 
12345    9 -132.65 289.30  6.64   0.00 
234578  10 -130.87 289.32  6.66   0.00 
3459     8 -134.35 289.35  6.69   0.00 
1459     8 -134.48 289.60  6.94   0.00 
23459    9 -132.83 289.66  7.00   0.00 
124579  10 -131.04 289.67  7.01   0.00 
135      7 -136.23 289.96  7.29   0.00 
459      7 -136.23 289.96  7.29   0.00 
1348     8 -134.77 290.18  7.52   0.00 
12459    9 -133.09 290.19  7.52   0.00 
14569    9 -133.10 290.20  7.53   0.00 
1235     8 -134.84 290.33  7.66   0.00 
2345789 11 -129.46 290.35  7.69   0.00 
123      7 -136.52 290.53  7.87   0.00 
124567  10 -131.49 290.57  7.91   0.00 
12346    9 -133.31 290.63  7.97   0.00 
123467  10 -131.61 290.81  8.15   0.00 
123478  10 -131.62 290.83  8.17   0.00 
13456    9 -133.46 290.92  8.26   0.00 
1234579 11 -129.76 290.95  8.29   0.00 
124569  10 -131.76 291.12  8.45   0.00 
34589    9 -133.70 291.39  8.73   0.00 
13458    9 -133.77 291.54  8.88   0.00 
13459    9 -133.85 291.69  9.03   0.00 
13468    9 -134.01 292.02  9.36   0.00 
123456  10 -132.24 292.06  9.39   0.00 
12348    9 -134.07 292.14  9.48   0.00 
234589  10 -132.35 292.29  9.62   0.00 
1234567 11 -130.61 292.65  9.99   0.00 

 

 

Stage 5 
Component models:  
      df  logLik   AICc delta weight 
4      5 -102.04 215.84  0.00   0.15 
24     6 -101.05 216.65  0.82   0.10 
14     6 -101.17 216.89  1.05   0.09 
34     6 -101.30 217.14  1.30   0.08 
348    7  -99.94 217.38  1.55   0.07 
45     6 -101.70 217.95  2.11   0.05 
146    7 -100.43 218.36  2.52   0.04 
459    7 -100.67 218.83  3.00   0.03 
124    7 -100.75 219.00  3.16   0.03 
234    7 -100.82 219.13  3.30   0.03 
245    7 -100.96 219.42  3.59   0.02 
134    7 -101.03 219.57  3.73   0.02 
247    7 -101.04 219.57  3.74   0.02 
145    7 -101.11 219.72  3.88   0.02 
2348   8  -99.55 219.74  3.90   0.02 
345    7 -101.20 219.89  4.06   0.02 
2459   8  -99.77 220.19  4.35   0.02 
3458   8  -99.83 220.31  4.48   0.02 
1348   8  -99.92 220.49  4.66   0.01 
1246   8  -99.96 220.57  4.73   0.01 
1459   8 -100.13 220.90  5.06   0.01 
3459   8 -100.23 221.11  5.28   0.01 
1456   8 -100.26 221.16  5.33   0.01 
1346   8 -100.38 221.41  5.57   0.01 
1234   8 -100.70 222.04  6.20   0.01 
1247   8 -100.72 222.08  6.24   0.01 
1245   8 -100.73 222.10  6.26   0.01 
2347   8 -100.77 222.19  6.36   0.01 
2345   8 -100.78 222.20  6.37   0.01 
2457   8 -100.89 222.43  6.59   0.01 
1345   8 -101.00 222.64  6.80   0.00 
23458  9  -99.50 223.00  7.16   0.00 
23478  9  -99.51 223.02  7.18   0.00 
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12348  9  -99.55 223.09  7.25   0.00 
12459  9  -99.61 223.22  7.38   0.00 
23459  9  -99.66 223.33  7.49   0.00 
24579  9  -99.75 223.50  7.67   0.00 
34589  9  -99.76 223.52  7.68   0.00 
12467  9  -99.77 223.54  7.70   0.00 
13458  9  -99.83 223.66  7.83   0.00 
12456  9  -99.86 223.72  7.89   0.00 
13468  9  -99.91 223.83  7.99   0.00 
12346  9  -99.96 223.92  8.08   0.00 
14569  9 -100.04 224.07  8.24   0.00 
13459  9 -100.04 224.08  8.24   0.00 
13456  9 -100.24 224.47  8.64   0.00 
12347  9 -100.65 225.30  9.47   0.00 
12457  9 -100.66 225.33  9.49   0.00 
12345  9 -100.68 225.36  9.53   0.00 
23457  9 -100.70 225.39  9.56   0.00 
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APPENDIX H: SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

 

H.1: Code to create truncated networks and to estimate global network metrics in R v. 

3.0.1 

library(igraph) 

library(erer) 

library(brainwaver) 

 

ctr <- function(A){ 

   # formula eigenvector centralization 

               ls<-apply(A,1,sum) 

               cmax<-max(ls) 

               n<-length(ls) 

               C<-sum(cmax-ls)/((n-1)*(n-2)) 

               C 

               } 

 

prop.mySF <- function(n,power=2){ 

  # a list shows all the properties and matrix etc. for n with m going from 1 to n-1 

                             ls<-create.netSF(n,power=1) 

                             mylist<-list() 

                             length(mylist)<-n-1 

                             for (i in 1:(n-1)) { 

mylist[[i]]<-data.frame( 

"Global.Efficiency"=round(2*n/(sum(as_adjacency_matrix(ls[[i]],sparse=F))*diameter(ls[[

i]])),3)                  

"Group.Size"=n, 

"Density"=round(graph.density(ls[[i]]),1), 

                            "Centralization"=round(ctr(as_adjacency_matrix(ls[[i]],sparse=F)),1), 

"Modularity"=round(cluster_leading_eigen(ls[[i]],membership= 

membership(ls[[i]],sparse=F)),1), 

"Adjacency.Matrix"=as_adjacency_matrix(ls[[i]],sparse=F))    

                                           } 

mylist 

                            } 

 

create.netSF<-function(n,power=2){ 

                             # create n-1 truncated networks  

                             mv<-c(1:(n-1))  #vector of m for a group size n 

                             list.graph<-list() 

                             length(list.graph)<-(n-1)  

                             for (i in 1:(n-1)) {  

                             list.graph[[i]]<-sample_pa(n,power,m=mv[i],directed=F) 

                             # create n-1 truncated networks for n nodes, m from 1 to n-1 
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                                           } 

                             list.graph 

                             } 

 

test<-prop.mySF(8,power = 2) # a list of n = 8, m = 1:n-1 

# a list combining the metrics estimated for n and m from 1 to n-1 of random networks 

write.list(test,file="name.csv",row.names = FALSE)  

#write the list to a csv file named     "name.csv" 

 

 

Table HS1. Published empirical data on global efficiency and modularity originally measured 

for 68 primate social groups of 21 species extracted from the Supplementary Material of 

Pasquareta et al. 2014*. 

Species Family Interaction Origin 
Group 

size 
Modularity 

Global 

Efficiency 

Alouatta palliata Aotidae Proximities Wild 17 0.254 0.1 

Cebus capucinus Cebidae Body contacts Wild 7 0.214 0.1842 

Cebus capucinus Cebidae Body contacts Wild 12 0.415 0.25 

Cebus capucinus Cebidae Body contacts Wild 14 0.489 0.1591 

Cebus capucinus Cebidae Body contacts Wild 13 0.357 0.2063 

Cebus capucinus Cebidae Body contacts Wild 5 0.208 0.5 

Cebus capucinus Cebidae Body contacts Wild 6 0.197 0.4 

Cebus capucinus Cebidae Body contacts Wild 10 0.31 0.1136 

Saimiri sciureus Cebidae Proximities Captive 8 0.499 0.1667 

Saimiri sciureus Cebidae Proximities Captive 10 0.603 0.1389 

Saimiri sciureus Cebidae Body contacts Captive 12 0.339 0.1818 

Saimiri sciureus Cebidae Proximities Captive 9 0.748 0.1406 

Sapajus apella Cebidae Body contacts Wild 11 0.382 0.1111 

Sapajus apella Cebidae Body contacts Wild 10 0.001 0.1333 

Sapajus apella Cebidae Body contacts Wild 10 0.41 0.1351 

Sapajus apella Cebidae Body contacts Wild 8 0.412 0.2051 

Sapajus apella Cebidae Body contacts Wild 12 0.362 0.1818 

Sapajus apella Cebidae Body contacts Captive 7 0.237 0.3333 

Sapajus apella Cebidae Body contacts Wild 5 0.362 0.2778 

Sapajus apella Cebidae Body contacts Wild 8 0.491 0.2353 

Cercopithecus 

diana 
Cercopithecidae Body contacts Captive 7 0.373 0.1842 
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Cercopithecus 

mitis 
Cercopithecidae Body contacts Wild 17 0.197 0.0833 

Chlorocebus 

pygerythrus 
Cercopithecidae Body contacts Wild 38 0.195 0.0413 

Chlorocebus 

pygerythrus 
Cercopithecidae Body contacts Wild 25 0.189 0.0576 

Chlorocebus 

pygerythrus 
Cercopithecidae Body contacts Wild 26 0.178 0.0335 

Erythrocebus 

patas 
Cercopithecidae Body contacts Wild 8 0.372 0.2857 

Macaca arctoides Cercopithecidae Body contacts Wild 21 0.295 0.1313 

Macaca arctoides Cercopithecidae Body contacts Captive 14 0.22 0.0778 

Macaca fuscata Cercopithecidae Body contacts Wild 25 0.227 0.0504 

Macaca fuscata Cercopithecidae Body contacts Wild 31 0.392 0.0662 

Macaca fuscata Cercopithecidae Proximities Captive 14 0.322 0.0787 

Macaca fuscata   Cercopithecidae Body contacts Wild 21 0.489 0.1094 

Macaca fuscata   Cercopithecidae Body contacts Captive 22 0.435 0.088 

Macaca mulatta Cercopithecidae Body contacts Captive 9 0.251 0.1324 

Macaca mulatta Cercopithecidae Body contacts Captive 10 0.399 0.1563 

Macaca radiata Cercopithecidae Body contacts Wild 23 0.228 0.071 

Macaca tonkeana Cercopithecidae Body contacts Captive 10 0.256 0.1351 

Macaca tonkeana Cercopithecidae Body contacts Captive 25 0.255 0.0541 

Macaca tonkeana Cercopithecidae Body contacts Captive 18 0.208 0.06 

Macaca tonkeana Cercopithecidae Body contacts Captive 10 0.212 0.2222 

Mandrillus sphinx Cercopithecidae Body contacts Captive 18 0.367 0.15 

Homo sapiens Hominidae Proximities NA 22 0.483 0.1128 

Homo sapiens Hominidae Proximities NA 34 0.44 0.1236 

Homo sapiens Hominidae Proximities NA 29 0.185 0.0604 

Homo sapiens Hominidae Proximities NA 11 0.293 0.1196 

Pan paniscus Hominidae Proximities Captive 5 0.066 0.2778 

Pan troglodytes Hominidae Body contacts Wild 12 0.331 0.12 

Pan troglodytes Hominidae Body contacts Captive 9 0.174 0.1452 

Pan troglodytes Hominidae Body contacts Captive 5 0.19 0.5 

Pan troglodytes Hominidae Body contacts Captive 11 0.134 0.2 

Pan troglodytes Hominidae Proximities Captive 7 0.204 0.1842 

Pan troglodytes Hominidae Proximities Captive 7 0.191 0.3333 
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Pan troglodytes Hominidae Body contacts Captive 9 0.176 0.5 

Pan troglodytes Hominidae Proximities Captive 6 0.255 0.2727 

Pan troglodytes Hominidae Proximities Captive 6 0.195 0.4 

Pan troglodytes Hominidae Proximities Captive 8 0.145 0.1538 

Pan troglodytes Hominidae Body contacts Captive 8 0.153 0.2857 

Pan troglodytes Hominidae Body contacts Captive 10 0.108 0.2222 

Pan troglodytes   Hominidae Proximities Wild 21 0.366 0.0972 

Pan troglodytes   Hominidae Proximities Captive 17 0.204 0.0634 

Pongo pygmaeus Hominidae Proximities Captive 5 0.535 0.2778 

Eulemur catta Lemuridae Proximities Wild 12 0.367 0.1091 

Eulemur catta Lemuridae Proximities Wild 12 0.427 0.1017 

Eulemur catta Lemuridae Proximities Wild 11 0.55 0.131 

Eulemur fulvus Lemuridae Body contacts Captive 11 0.463 0.1146 

Eulemur rufifrons Lemuridae Proximities Wild 12 0.312 0.1429 

Eulemur rufifrons Lemuridae Proximities Wild 11 0.367 0.1667 

Eulemur rufifrons Lemuridae Proximities Wild 14 0.441 0.1037 

*Pasquareta et al. (2014). Sci. Rep. 4: 7600. (doi:10.1038/srep07600). 

 

 

Figure HS1. Observed (black line) and gamma (red line) distribution functions of global 

efficiency. The distribution of our response variable (global efficiency) deviated from the 

Gaussian case and performed better as a gamma distribution. 
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Figure HS2. Correlation matrix among network properties and group size. The stronger 

the coefficient of correlation, the darker the blue (positive correlation) and the darker the red 

(negative correlation).  
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Figure HS3. Theoretical (shaded grey) and empirical (shaded blue) distribution 

functions of modularity (a) and global efficiency (c) for small-sized groups. The 

distribution of both variables differs between the theoretical and empirical networks 

(Modularity: D = 0.63, p = 1.09
e-12

; Global efficiency: D = 0.24, p = 0.04). Figure b shows the 

relationship between modularity and global efficiency for theoretical and empirical networks. 

Our results suggest that the slope between them are statistically different (p = 1.47
e-08

). 

Intercepts are at 0.21 in empirical and 0.15 in theoretical networks. 
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Figure HS4. Theoretical (shaded gray) and empirical (shaded green) distribution 

functions of modularity (a) and global efficiency (c) for medium-sized groups. The 

distribution of both variables differs between the theoretical and empirical networks 

(Modularity: D = 0.52, p = 0.0002; Global efficiency: D = 0.35, p = 0.03). Figure b shows the 

relationship between modularity and global efficiency for theoretical and empirical networks. 

Our results suggest that the slope between them are not statistically different (p = 0.10). 

Intercepts are at 0.08 in empirical and 0.05 in theoretical networks. 
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APPENDIX I: SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

 

 

I.1: The ODD PROTOCOL 

The model description follows the ODD (Overview, Design concepts, Details) protocol for 

describing individual-based models (Grimm et al. 2006; Grimm et al. 2010). 

 

Purpose  

Our model, named the Optimal Relationship Model, aims to identify the type of social 

network structure that arises from relationships that maximize interactions with informed 

individuals and minimize interactions with infected individuals.  

 

Entities, state variables, and scales  

- Agents/entities: The model has one type of agent, called an individual. Individuals are 

provided with three state variables: 1) a unique identification number is provided to each 

individual and remains constant through time; 2) a value for My-Information, which is the 

probability of an interaction partner perceiving the agent as being informed during a social 

interaction; and, 3) a value for My-pathogen, which is the probability of an interaction partner 

perceiving the agent as being infected during a social interaction. 

- Environment: The model has two global variables, called social-increase and social-

decrease. These control the degree to which an individual either increases or decreases its 

interactions with a given partner following a ‘positive’ (information perceived) or ‘negative’ 

(pathogen perceived) interaction.  

- Temporal scale: One simulation comprises 10000-time steps set arbitrarily to provide a 

large number of possible interactions among group members.  

- Collectives: not applied. 

- Spatial units: not applied. 
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Process overview and scheduling 

Included in chapter 4.  

 

Design concepts 

Basic principles: Acquiring information or pathogens via social transmission may deeply 

affect an individual’s fitness. In animal societies, the network properties optimizing the 

spreading of information should also increase the pathogen transmission rate, creating a trade-

off between information transmission and infection risk. We aimed to explore this potential 

trade-off by examining social network properties and investigating which structure arise when 

individuals maximize contact with conspecifics providing high values of information but low 

values of pathogen. 

Emergence: The structure of the network is dependent upon the perceptions that individuals 

have of other group members with which they have interacted, i.e. as informed or infected. As 

they interact with others, they increase their probabilities of interacting with individuals 

characterized by low cost-benefit ratios (more information than pathogens). Predictions for 

each condition can be found in the introduction of chapter 4.  

Adaptation: Individuals will interact with those providing more information than pathogens. 

The more beneficial the relationship, the stronger the weight of the relationship becomes, and 

the higher the probability of interaction. 

Objectives: Individuals create and reinforce social bonds with group members that provide 

them with a higher probability of acquiring information and a lower probability of acquiring 

pathogens.  

Learning: There is not a learning function in the model. However, learning is implicit in the 

way that individuals update the weights of their relationships after each interaction. In our 

model, the terms ‘learn’ and ‘perceive’ can be used interchangeably, though we recognize that, 
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in reality, these are very different concepts. 

Prediction: Individuals predict the outcome of future interactions based on their previous 

interactions with each individual. 

Sensing: not applied. 

Interaction: Individuals directly interact with each other, but the interaction does not 

change the status of an individual, i.e. its own values of My-Information and My-Pathogen do 

not change. At the end of each interaction, individual I simply updates the weight of its 

relationship with individual j.  

Stochasticity: Several processes in the model are stochastic:  

1. Probability of selecting a given interaction partner: after an individual is activated, it 

chooses an interaction partner. Which individual is chosen depends on the weights of the 

relationships between itself and all other group members. As the simulation progress, 

individuals with higher weights have higher chances of being selected as interaction partners.   

2. Probability of perceiving group members as informed, infected, both or neither: after a 

social interaction, an individual perceives its interaction partner as being informed, infected, 

both or neither. The probability of perceiving any of these four possible outcomes is given by 

the value of My-information and My-pathogen of the interaction partner (see section 1 for 

more information). All probabilities add to 1.  

Collectives: not applied. 

Observation: From the model, we collected data on each individual’s interaction partners, 

the values of My-information and My-pathogen of each individual, the types of interaction 

observed (if individual could perceive only information, only pathogen, both information and 

pathogen or neither), and the initial and updated values of the relationship weights for each 

dyad. At the end of each simulation, a csv.file, containing the records of these data is created.  
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Initialization 

The relationships between all individuals are set with an initial weight, determined by the 

ratio derived from the maximum possible weight (1) divided by the number of individuals in 

the group (N) minus 1. Thus, at the beginning of the simulation, all individuals have the same 

probability of being selected as interaction partners. Values of My-information and My-

pathogen set at the initialization settings do not vary among simulations. 

 

Input data 

Any data is necessary to be included prior to each simulation.  

 

Sub-models 

The model has no sub-models.  

 

I.2. Source code of the Optimal Relationships Model 

extensions [ nw 

          matrix 

          r 

         ] 

 

breed [ individuals individual ] 

 

individuals-own [ 

  My-information 

  My-pathogen   ] 

 

directed-link-breed [ connections connection ] 

 

connections-own [ 

  weight 

              ] 

 

globals[ 

  simulations 

  Group-matrix 

  IDActor 

  IDReceiver 
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  Interaction 

  Type-of-interaction 

  Old-weight 

  New-Weight 

  social-increase 

  social-decrease 

            ] 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;; SETUP PROCEDURES ;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

to setup 

  clear-all 

  ask patches [ set pcolor 92 ] 

  set-default-shape individuals "circle" 

  ; number of individuals in the group controlled by the slider group-size 

  create-individuals group-size   

  [ 

    ; sets initial position of individuals in the patch 

    setxy (random-xcor * 0.50) (random-ycor * 0.50)        

    ; links are created between individuals in the group 

    create-connections-to other individuals                   

    set color blue 

  ] 

 ask individual 0 [set My-information 0 set My-pathogen 1] 

 ask individual 1 [set My-information 0 set My-pathogen 0.34867844] 

 ask individual 2 [set My-information 0 set My-pathogen 0.107374182] 

 ask individual 3 [set My-information 0 set My-pathogen 0.028247525] 

 ask individual 4 [set My-information 0 set My-pathogen 0.006046618] 

 ask individual 5 [set My-information 0 set My-pathogen 0.000976563] 

 ask individual 6 [set My-information 0 set My-pathogen 0.000104858] 

 ask individual 7 [set My-information 0 set My-pathogen 0.0000059] 

 ask individual 8 [set My-information 0 set My-pathogen 0.000000102] 

 ask individual 9 [set My-information 0 set My-pathogen 0.0000000001] 

; individuals have the same probability for interacting at the first-time activation. 

ask connections [ set weight (1 / (group-size - 1)) ]      

; creating a matrix to record the final number of interactions among individuals                                                               

set Group-matrix matrix:make-constant group-size group-size 0    

set-default-shape connections "default" 

data-collection-reset 

reset-ticks 

end 

 

to setup2 

  clear-ticks clear-turtles clear-patches clear-drawing clear-all-plots 

  ask patches [ set pcolor 92 ] 

  set-default-shape individuals "circle" 

  create-individuals group-size 

  [ 
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    setxy (random-xcor * 0.50) (random-ycor * 0.50) 

    create-connections-to other individuals 

    set color blue 

 

  ] 

 ask individual 0    [set My-information 0 set My-pathogen 1] 

 ask individual 1    [set My-information 0 set My-pathogen 0.34867844] 

 ask individual 2 [set My-information 0 set My-pathogen 0.107374182] 

 ask individual 3 [set My-information 0 set My-pathogen 0.028247525] 

 ask individual 4 [set My-information 0 set My-pathogen 0.006046618] 

 ask individual 5 [set My-information 0 set My-pathogen 0.000976563] 

 ask individual 6 [set My-information 0 set My-pathogen 0.000104858] 

 ask individual 7 [set My-information 0 set My-pathogen 0.0000059] 

 ask individual 8 [set My-information 0 set My-pathogen 0.000000102] 

 ask individual 9 [set My-information 0 set My-pathogen 0.0000000001] 

 ask connections [ set weight (1 / (group-size - 1)) ] 

 set Group-matrix matrix:make-constant group-size group-size 0 

 set-default-shape connections "default" 

 data-collection-reset 

 reset-ticks 

end 

 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;; GO PROCEDURES ;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

to go 

  set simulations 0 

  while [simulations < simulations-number] 

        [ 

        data-collection-reset  

        setup2 

        let simulation-over FALSE 

        create-title-data-collection 

        while [simulation-over = FALSE] [ 

                                        interact 

                                        tick-advance 1  

                                        update-plots 

                                        if ticks >= Max-number-interactions [set simulation-over TRUE] 

                                        ] 

  set simulations simulations + 1 

  ] 

end 

 

 

to  create-title-data-collection 

  let File_name word "Simulation" (word simulations ".csv") 

  ;file-delete File_name 

  file-open File_name 



326 
 

  file-type "IDActor" 

  file-type "," 

  file-type "IDReceiver" 

  file-type "," 

  file-type "Interaction" 

  file-type "," 

  file-type "Type-of-interaction" 

  file-type "," 

  file-type "Old-weight" 

  file-type "," 

  file-type "New-Weight" 

  file-type "," 

  file-type "My-information_Actor" 

  file-type "," 

  file-type "My-pathogen_Actor" 

  file-type "," 

  file-type "My-information_Receiver" 

  file-type "," 

  file-type "My-pathogen_Receiver" 

  file-type "," 

  file-print "" 

  file-close 

end 

 

 

to interact 

  ask individuals [ ;activate all individuals to interact at the same time step 

  data-collection-reset 

  let ME self ;to call individual that is activated 

  let IDActiveAgent [who] of ME ;gets the identity of the Activated Individual 

  let InteractionPartner individual (select-partner IDActiveAgent)  

  let IDInteractionPartner [who] of InteractionPartner ;show the ID of interaction partner 

  if IDInteractionPartner = -1 [ error "Interaction Partner = -1" ] 

  set IDActor (IDActiveAgent + 1) ;provide identities to individuals starting from 1 and not 

from 0, as set in NetLogo. Fill the csv file. 

  set IDReceiver (IDInteractionPartner + 1) 

  set Old-weight [weight] of connection IDActiveAgent IDInteractionPartner  

  matrix:set Group-matrix IDActiveAgent IDInteractionPartner (matrix:get Group-matrix 

IDActiveAgent IDInteractionPartner + 1)  

  ;create a matrix that records the number of interactions 

  set Interaction 1                                                                                           

  ;set the probability of outcome based on the values of My-information and My-pathogen.  

  ;The higher the value of information, the higher the probability of interaction and the 

same for pathogen. 

  let Pinf [My-information] of InteractionPartner * (1 - [My-pathogen] of 

InteractionPartner) ;Probability of acquiring only information 

  let Ppat [My-pathogen] of InteractionPartner * (1 - [My-information] of 

InteractionPartner) ;Probability of acquiring only pathogen 

  let Pinfpat [My-information] of InteractionPartner * [My-pathogen] of InteractionPartner 

;Probability of acquiring information and pathogen 
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  let Pnone (1 - [My-information] of InteractionPartner) * (1 - [My-pathogen] of 

InteractionPartner) ;Probability of acquiring nothing 

  let Prob random-float 1 

  ifelse Prob < Pinf [  

 

;INDIVIDUAL GETS INFORMATION 

                                  set Type-of-interaction 1 ;to be recorded in the output file 

                                  ;output-print "Type-of-interaction" output-print Type-of-interaction 

                                  let delta 0 ;set the initial increment of weight = 0 

                                  set social-increase random-normal 0.20 0.05 

                                  set social-decrease random-normal 0.20 0.05 

                                  foreach n-values group-size [ [?1] -> ?1 ] [ [?1] -> if IDActiveAgent 

!= ?1 and IDInteractionPartner != ?1 [  

             ;if the picked individual is different from the Actived Agent and 

the Interaction Partner, 

                                        ;set the increment to be equivalent to 20%±5% of the weight 

between the Activated Agent and the picked individual. 

                                        ;it means that once one individual gets information from the 

Interaction Partner, the others group members 

                                        ;proportionally loose 20% of their weight to the Activated Agent 

                                                                                        set delta delta + ( [weight] of 

connection IDActiveAgent ?1 * social-increase) 

                                                                             ;and then, decrease 20% of the weight 

between the Activated Agent and the picked individual 

                                                                                        ask connection IDActiveAgent ?1 

[let OldW [weight] of connection IDActiveAgent ?1 

                                                                                                                                                         

set weight weight - ( weight * social-increase ) 

                                                                                                                                                          

]] ] 

                                  ask connection IDActiveAgent IDInteractionPartner [set weight 

weight + delta] ;increase weight of connection by 20%                                       

    ;check if the sum of relationships is different of 1 

                                  let sam 0  

                                  foreach n-values group-size [ [?1] -> ?1 ] [ [?1] -> if IDActiveAgent 

!= ?1 [ set sam sam + ( [weight] of connection                  

         IDActiveAgent ?1 )] ] 

                     ] 

 

       [ifelse Prob < (Pinf + Ppat) [ 

 

      ;INDIVIDUAL GETS PATHOGEN 

                                     set Type-of-interaction 2 

                                     let weight-diference 0 ;represents the total weight of the Activated 

Individual and the others individuals in the group,                  

 ;except the Interaction Partner 

                                     set social-increase random-normal 0.20 0.05 

                                     set social-decrease random-normal 0.20 0.05 

                                     foreach n-values group-size [ [?1] -> ?1 ] [ [?1] -> if IDActiveAgent 

!= ?1 and IDInteractionPartner != ?1 [ 
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                                                                                                                             set weight-

diference weight-diference + ( [weight] of        

         connection IDActiveAgent 

?1 )] ] 

                                     let delta ([weight] of connection IDActiveAgent 

IDInteractionPartner * social-decrease)  

                                     foreach n-values group-size [ [?1] -> ?1 ] [ [?1] -> if IDActiveAgent 

!= ?1 and IDInteractionPartner != ?1                                                                                   

        [ask connection IDActiveAgent ?1  ;update the connection between the 

Activated Agent and the group member 

                                                                                [ let OldW [weight] of connection 

IDActiveAgent ?1 

                                                                                  set weight weight + (delta * (weight / 

weight-diference)) ;proportional for each weight 

                                                                                  ] ;its is add to their connection a relative 

proportion of the weight decreased between the       

  ;Activated Agent and the Interaction Partner 

                                                                                ] ] 

                                     ask connection IDActiveAgent IDInteractionPartner [set weight 

weight - delta] 

                                     let sam 0 

                                     foreach n-values group-size [ [?1] -> ?1 ] [ [?1] -> if IDActiveAgent 

!= ?1 [ set sam sam + ( [weight] of connection       

          IDActiveAgent ?1 )] 

] 

                                    ] 

 

               [ifelse Prob < (Pinf + Ppat + Pinfpat) [ 

 

                ;INDIVIDUAL GETS INFORMATION AND PATHOGEN 

 

                                                       let diference Pinf - Ppat 

                                                       set social-increase random-normal 0.20 0.05 

                                                       set social-decrease random-normal 0.20 0.05 

                                                       ifelse diference > 0 

                                                       [  

           ;INDIVIDUAL GETS MORE INFORMATION THAN PATHOGEN 

                                                       set Type-of-interaction 3 

                                                       let delta 0  

                                                       foreach n-values group-size [ [?1] -> ?1 ] [ [?1] -> if 

IDActiveAgent != ?1 and IDInteractionPartner != ?1 

                                                                           [ 

                                                                           set delta delta + ( [weight] of connection 

IDActiveAgent ?1 * (social-increase * abs diference)) 

                                                                           ask connection IDActiveAgent ?1 [let OldW 

[weight] of connection IDActiveAgent ?1 

                                                                           set weight weight - ( weight * (social-

increase * abs diference)) 

                                                                                                     ]] 

                                                                            ] 
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                                                       ask connection IDActiveAgent IDInteractionPartner [set 

weight weight + delta] 

                                                       let sam 0 

                                                       foreach n-values group-size [ [?1] -> ?1 ] [ [?1] -> if 

IDActiveAgent != ?1 [ set sam sam + ( [weight] of       

         connection IDActiveAgent 

?1 )] ] 

                                                     ] 

                                                       ;INDIVIDUAL GETS MORE PATHOGEN THAN 

INFORMATION 

                                                       [ 

                                                       set Type-of-interaction 4 

                                                       let weight-diference 0 ; the sum of weight from 

remanining partners 

                                                       foreach n-values group-size [ [?1] -> ?1 ] [ [?1] -> if 

IDActiveAgent != ?1 and IDInteractionPartner != ?1               

  [set weight-diference weight-diference + ( [weight] of connection 

IDActiveAgent ?1 )] ] 

                                                       let delta ([weight] of connection IDActiveAgent 

IDInteractionPartner * (social-decrease * abs diference)) 

                                                       foreach n-values group-size [ [?1] -> ?1 ] [ [?1] -> if 

IDActiveAgent != ?1 and IDInteractionPartner != ?1 

                                                                                       [ask connection IDActiveAgent ?1 

                                                                                       [ set weight weight + (delta * 

(weight / weight-diference))] 

                                                                                       ] ] 

                                                       ask connection IDActiveAgent IDInteractionPartner [set 

weight weight - delta]                                                           let 

sam 0 

                                                       foreach n-values group-size [ [?1] -> ?1 ] [ [?1] -> if 

IDActiveAgent != ?1 [ set sam sam + ( [weight] of       

         connection IDActiveAgent 

?1 )] ] 

                                                      ] 

                                                      ] 

 

                                                 [if Prob < (Pinf + Ppat + Pinfpat + Pnone) [ 

  ;INDIVIDUAL GETS NEITHER INFORMATION NOR PATHOGEN = NO UPDATE OF 

WEIGHT   

                                                                      set Type-of-interaction 5 

                                                                      let sam 0 

                                                                      foreach n-values group-size [ [?1] -> ?1 ] [ [?1] 

-> if IDActiveAgent != ?1 [ set sam sam + ( [weight] of connection IDActiveAgent ?1 )] ] 

                                                                      ] 

                          ] 

            ] 

        ] 

  set New-weight [weight] of connection IDActiveAgent IDInteractionPartner 

  data-collection 

          ] 
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 end 

 

 

to-report select-partner [IDActiveAgent] 

  let Prob random-float 1.0       ;probability of interacting or not with a given group member 

  let IDPartner -1                      ;error-message. For ex: no individual is selected. 

  let InteractionProbPartner 0     

  foreach n-values group-size [ [?1] -> ?1 ] ; call all possible individuals to interact until its 

InteractionProbPartner > Prob 

  [ [?1] ->                                  ; selection of first interaction partner 

  if IDActiveAgent != ?1 [set InteractionProbPartner InteractionProbPartner + ([weight] of 

connection IDActiveAgent ?1)] 

  if InteractionProbPartner >= Prob [ 

  set IDPartner ?1 

   report IDPartner] 

  ] 

let sam 0 

foreach n-values group-size [ [?1] -> ?1 ] [ [?1] -> if IDActiveAgent != ?1 [ set sam sam + 

( [weight] of connection IDActiveAgent ?1 )] ] 

error "No interaction partner" 

report -1 ; error-message 

end 

 

 

to update-information-rate 

  ask individuals [set My-information random-float 1] 

end 

 

 

to update-pathogen-rate 

  ask individuals [set My-pathogen random-float 1] 

end 

 

 

to data-collection 

  let File_name word "Simulation" (word simulations ".csv") 

  file-open File_name 

  file-type IDActor 

  file-type "," 

  file-type IDReceiver 

  file-type "," 

  file-type Interaction 

  file-type "," 

  file-type Type-of-interaction 

  file-type "," 

  file-type Old-weight 

  file-type "," 

  file-type New-Weight 

  file-type "," 

  file-type [My-information] of turtle (IDActor - 1) 
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  file-type "," 

  file-type [My-pathogen] of turtle (IDActor - 1) 

  file-type "," 

  file-type [My-information] of turtle (IDReceiver - 1) 

  file-type "," 

  file-type [My-pathogen] of turtle (IDReceiver - 1) 

  file-type "," 

  file-print "" 

  file-close 

end 

 

 

to data-collection-reset 

  set IDActor -1 

  set IDReceiver -1 

  set Interaction -1 

  set Type-of-interaction -1 

  set Old-weight -1 

  set New-Weight -1 

en 
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Contexte scientifique 

Comprendre le lien entre le comportement individuel et l’organisation et le fonctionnement 

d’une population a longtemps été crucial en Ecologie et en Biologie Evolutive. La structure 

sociale d’un groupe animal ou d’une population peut théoriquement réguler la transmission 

d’information et les risques de pathogènes via les contacts ou la proximité sociale. L’étude 

des sociétés humaines de chasseurs-cueilleurs a, par exemple, montré que les individus à 

haute centralité sociale – ceux le plus interconnectés dans le groupe – ont une meilleure valeur 

sélective que leurs congénères mais aussi plus de maladies. En outre, la façon dont les 

animaux interagissent et développent des relations peut profondément affecter la dynamique 

et la chaine de transmission sociale. Ceci créerait donc un compromis entre le risque 

d’infection et le flux d’information, nous conduisant à la question suivante: 

 

Comment la forme des réseaux sociaux influence la transmission de l’information et 

des parasites dans les sociétés animales? 

 

Afin de répondre à cette question, j’ai combiné des approches empirique
1
 et théorique

2
 afin 

de comprendre l’influence de la structure sociale sur la transmission. J’ai commencé par 

étudier le rôle de la centralité individuelle et des propriétés globales du réseau (tels que le 

niveau de modularité, la centralisation et la densité) en lien avec une approche 

épidémiologique appliquée aux primates non-humains.  

 

1 Prise de données comportementales de macaques japonais à Koshima pendant 9 mois et 

collaboration avec des   primatologues fournissant des données comportementales de 20 autres espèces 

de primates 

2
 Approches théoriques d’analyses des réseaux sociaux et de systèmes multi-agents. 
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J’ai finalisé la thèse en utilisant une approche théorique où j’ai à la fois estimé l’efficience 

des réseaux selon le niveau de modularité et prédit un scénario de transmission sociale 

optimale où les individus maximisent leurs chances d’acquérir des informations mais 

minimisent le risque d’être infectés. J’ai donc organisé ma thèse en quatre études: 

 

Etude 1 – Modéliser la transmission des pathogènes dans les réseaux de primates afin 

de prédire les risques liés à la centralité individuelle (publication 1 dans la liste de 

publications*).  

* Cette étude a été mise en avant par la Société Américaine de Primatologie 

 Dans cette première étude de mon doctorat, j’ai adressé la question de l’influence de la 

centralité individuelle sur la chaine de transmission dans les réseaux de primates. J’ai associé 

l’analyse des réseaux sociaux à la modélisation individus-centrée pour prédire la transmission 

d’agents infectieux théoriques chez deux groupes sauvages de macaques japonais. Mes 

collaborateurs et moi-même avons collecté des données de macaques femelles adultes vivant 

sur les îles de Koshima et de Yakushima. Au Japon, durant respectivement huit et seize mois. 

Les identités des macaques ainsi que les réseaux de toilettage ont été implémentés dans des 

simulation de Markov à base de réseaux (Markov graph-based simulation). Dans ce modèle, 

la probabilité qu’un individu transmette un agent pathogène dépend de la force de ses 

relations sociales avec les autres membres du groupe. De la même façon, la probabilité qu’il 

soit infecté dépend de ses relations avec les membres du groupe déjà infectés. J’ai ensuite 

testé les corrélations entre les centralités individuelles (eigenvector, force et betweenness) 

avec (i) le pourcentage d’individu infectés durant un temps donné, (ii) la latence moyenne 

d’infection complète (à tout le groupe), (iii) la probabilité qu’un individu soit infecté en 

premier, (iv) le rang moyen d’infection de chaque individu dans la chaine de transmission. 

Les résultats de cette étude soutiennent l’hypothèse que les individus les plus centraux 
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socialement transmettent un pathogène en un temps plus court et sont plus sujets à être 

infectés et plus rapidement que leurs conspécifiques moins centraux. Cependant, j’ai aussi 

observé que la transmission des agents infectieux du réseau de macaques de Yakushima ne 

différait pas, pour toutes les mesures testées, d’une transmission dans des réseaux aléatoires. 

La généralisation de l’influence des réseaux dans la transmission des pathogènes doit donc 

être faite avec précaution, puisque l’influence des caractéristiques individuelles dans certains 

réseaux réels semblent être moins pertinente par rapport à d’autres pour prédire les épidémies. 

Cette étude a donc mis en lumière que l’utilisation de stratégie de vaccination basée sur les 

caractéristiques individuelles – qui est censée améliorer l’efficacité des interventions en 

ciblant les individus clés (« super-diffuseurs ») - pouvait donc être moins efficace que 

suggérée. 

 

Etude 2 - La diffusion des pathogènes et l’effet de la variation de la connectivité 

sociale: une évaluation à travers la vitesse de contagion (publication 10 dans la liste de 

publications) 

Dans cette seconde étude, je suis passé des mesures individuelles (étude 1) aux 

propriétés globales des réseaux, avec l’objectif de comprendre les mécanismes qui sous-

tendent les épidémies dans les réseaux sociaux de primates. Comme les maladies infectieuses 

sont considérées comme une des menaces majeures pour la survie des espèces, plusieurs 

études se sont focalisées sur le rôle du réseau social au stade final d’une épidémie (nombre 

d’infectés, rapidité d’infection). Cependant, aucune étude n’a jamais été faire sur l’influence 

de ce réseau à différents moments de l’épidémie, du début à la fin de cette dernière. Dans 

cette étude, j’ai utilisé une approche comparative. Les données de 40 groupes sauvages de 21 

espèces de primates non humains ont été utilisées pour comprendre comment la centralisation 

du réseau, sa densité, son diamètre, ou la modularité interagissent avec la taille de groupe 
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pour optimiser ou contraindre la diffusion d’agents infectieux, à cinq moments différents 

d’une épidémie. J’ai implémenté les données empiriques des contacts sociaux dans un modèle 

stochastique dynamique considérant la force des interactions entre les membres du groupe et 

j’ai examiné la dynamique des pathogènes via le pourcentage moyen d’individus infectés à 

chacun des cinq moments de l’épidémie. Les résultats montrent que la prévalence d’une 

épidémie est plus grande proportionnellement quand la taille des groupes augmente, mais la 

centralisation et la modularité, et d’une moindre importance le coefficient de clustering et le 

diamètre, influencent le nombre d’individus infectés. Cependant cette influence dépend du 

moment de l’épidémie et de la virulence du pathogène. Ces résultats soutiennent l’hypothèse 

de l’engorgement social selon laquelle un nombre accru de sous-groupes sociaux réduit le 

coût des relations sociales dont la diffusion des pathogènes. Cette étude aide à mieux 

comprendre quelle propriété du réseau pourrait être ciblée selon le moment d’une épidémie 

afin de stopper la progression de cette dernière. 

 

Etude 3 – Des niveaux intermédiaires de sous-divisions de groupes sociaux favorisent 

la transmission sociale (publication 8 dans la liste de publications) 

La troisième étude de ma thèse concerne l’application d’une approche théorique pour 

comprendre la relation entre la modularité des groupes sociaux et l’efficience de la 

transmission sociale. Parmi les propriétés des réseaux, il a été avancé qu’une modularité 

accrue, c’est-à-dire un nombre de sous-divisions important des groupes, est une contribution 

majeure à l’évolution des réseaux biologiques tels que les réseaux protéiques, les réseaux 

neuronaux ou les réseaux métaboliques bactériens. Tout au long de ma thèse, des indices 

variés suggérèrent que les structures modulaires peuvent diminuer la vitesse de la 

transmission sociale. Alors qu’une relation linéaire peut être envisagée entre la vitesse de 

propagation et la modularité, aucune preuve ne permet encore de déterminer à quel degré 
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l’efficience des réseaux, proxy de la transmission sociale, est modularité dépendant. Dans 

cette étude, j’ai créé 2798 réseaux invariants d’échelle (« scale-free ») et différents en taille de 

groupe afin de tester comment le réseau - en terme de densité, de modularité et de 

centralisation - et la taille du groupe affectent l’efficience de transmission. J’ai également 

utilisé 68 réseaux sociaux de primates – captifs et sauvages – afin de déterminer si les 

résultats trouvés dans nos conditions théoriques étaient vérifiés via ces données empiriques. 

Les résultats de cette étude montrent une relation non linéaire entre la modularité et 

l’efficience globale avec des niveaux d’efficience maximaux atteints à des niveaux 

intermédiaires de modularité, à la fois dans les données théoriques et les données empiriques. 

L’identification de ce phénomène améliore notre compréhension sur la variation des réseaux 

sociaux, en lien avec la performance des transmissions sociales, et en plus de fournir les bases 

de discussion de l’évolution des systèmes complexes incluant les sociétés animales. 

 

Etude 4 – Investiguer le compromis entre une transmission optimale de l’information 

et un risqué réduit de pathogènes dans les sociétés animales via un modèle multi-agents 

(publication 9 dans la liste de publications) 

Dans cette dernière partie de ma thèse, j’ai créé un modèle multi-agent appelé le 

Modèle de Relations Optimales (Optimal Relationship Model) afin de simuler les conditions 

optimales à la transmission de l’information et des parasites et ceci, dans l’objectif ultime de 

comprendre les patrons émergents des structures sociales. Cette approche apporte une 

contribution importante pour prédire et comprendre quelles propriétés du réseau interagissent 

pour maximiser les bénéfices de la socialité tout en diminuant les coûts liés à la transmission 

des pathogènes. Dans cette étude, j’ai contrôlé la quantité d’information et de pathogène de 

chaque individu, totalisant vingt conditions différentes, puis j’ai observé l’évolution de 

réseaux sociaux variant en taille (10, 30, 70). Le modèle théorique stipule que les individus ne 
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sont pas conscients de la quantité d’information et de pathogènes de leur conspécifiques mais 

en interagissant avec eux, ils apprennent quels individus sont informés et lesquels sont 

parasités. Ils ajustent donc leurs interactions sociales en fonctions de ces deux quantités afin 

d’être connectés aux individus les plus informés mais les moins parasités. Les simulations de 

cette étude permettent de déterminer que les réseaux sont plus centralisés et moins denses 

quand les valeurs de pathogènes et d’information varient entre les individus. Comme attendu, 

les individus développent de fortes relations avec les individus les plus informés. Les 

préférences sociales observées dans le modèle indiquent que les individus, selon les règles du 

modèle, optimisent leurs relations pour réduire le nombre de connections (augmentant 

l’isolation relative) et en étant en contact avec ceux fournissant les bénéfices les plus 

importants. Cette approche innovante apporte de nouvelles questions et hypothèses à tester 

quant à l’évolution des relations et des structures sociales chez les animaux.  

 

En conclusion, les principaux objectifs de cette thèse étaient d’étudier comment les 

réseaux sociaux façonnent la transmission sociale, soit au niveau individuel, soit au 

niveau global et finalement comprendre comment les individus équilibrent leurs 

relations entre les coûts et les bénéfices de la vie en groupe. Les résultats de ma thèse ne 

fournissent pas seulement une meilleure compréhension quant aux mécanismes de la 

transmission sociale dans un groupe, mais également quant aux variations et à la 

dynamique des réseaux en fonction de différents facteurs comme la taille de groupe et 

les pressions écologiques. Ceci permet de conclure sur l’évolution du comportement 

social en fonction des compromis de la vie en groupe. 

Des études complémentaires sont nécessaires pour étudier le lien entre la 

complexité du comportement et l’influence environnementale telle que la disponibilité 

des ressources ainsi que la dynamique des populations tels que l’immigration, les 
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naissances ou les décés des membres du groupe, et ceci dans le but de complexifier les 

modèles multi-agents développés ici et d’avoir une vision plus approfondie de l’évolution 

des systèmes sociaux.  
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Résumé 

La structure sociale d’un groupe peut théoriquement réguler la transmission des informations 

et le risques de maladies via les contacts sociaux et la proximité. En théorie, les mêmes 

propriétés de réseau qui favorisent la transmission d’information favorisent également la 

transmission de pathogènes, créant de fait un potentiel compromis entre eux. Dans ma thèse, 

j’ai utilisé des données empiriques, des analyses de réseaux et modèle de simulation 

individuel afin de comprendre l’influence des structures sociales sur la transmission sociale 

chez les primates et dans des réseaux théoriques. Mes études ont montré que i) les macaques 

japonais centraux dans le groupe transmettent les pathogènes plus rapidement mais sont 

également plus susceptibles d’être infectés; ii) le nombre d’individus infectés dans 40 groupes 

de primates est dépendant des propriétés globales du réseau et de l’étape de l’infection: iii) un 

pic d’efficacité de réseau à des valeurs intermédiaires de sous-structure de groupe dans des 

réseaux empiriques et théoriques; et iv) des variations dans les propriétés de réseaux sont la 

conséquence de décisions individuelles en fonction de compromise entre la collecte 

d’information et l’évitement de l’infection. Ainsi, ma thèse a démontré les mécanismes de 

transmission social et indiqué que les propriétés de réseau pourrait réflecter un compromise 

entre transmission de l’information et transmission de pathogène. 

 

Abstract 

Social structure can theoretically regulate information transmission and disease risk via social 

contact or proximity. In theory, the same network properties that favor information 

transmission also favor pathogen transmission creating a potential trade-off between them. In 

my thesis, I used empirical data, network analysis and individual-based modelling to 

understand the influence of social structure on social transmission in primate and theoretical 

networks. My studies show that i) central Japanese macaques transmit disease faster but are 

also more prone to acquiring infectious agents; ii) the number of infected individuals in 40 

wild primate groups is dependent on global network properties and epidemic time; iii) 

network efficiency peaks with intermediate values of group substructure in theoretical and 

empirical networks; and, iv) variation in the network properties is a consequence of individual 

decisions given the trade-offs between collecting information and avoiding infection. 

Altogether, my thesis reveals the mechanisms of social transmission and indicates that 

network properties might reflect a trade-off between information and pathogen transmission. 
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