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                         In me the tiger sniffs the rose. 

                                                   —— Siegfried Sassoon 

 

                                         

                                         修学好古，实事求是。* 

                                                    ——《汉书》 

                                   

*Rechercher la vérité à partir des faits. – Livre de Han 
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Abbréviations                                                                  
 

Å        Ångström 

Ac   Acétyle 

acac       Acétylacetonate 

AIF    Apoptosis Inducing Factor 

Akt    Protein Kinase B 

An   Anisyle 

Ar   Aryle 

ARN        Acide Ribonucléique 

ATM   Ataxia telangiectasia mutated 

ATR        Ataxia telangiectasia and Rad3-related protein 

 

Bcl-2    B-cell lymphoma 2 

BMF    Bcl-2 modifying factor 

Bn    Benzyle 

Boc   Di-tert-butyl dicarbonate   

brsm    Based on recovered starting material 

Bu    Butyle 

BuLi    Butyllithium 

CamK    Calmodulin-dependent protein kinase 

CAN    Ceric ammonium nitrate 

CDK    Cyclin-dependent kinase 

 

DBDMH    1,3-Dibromo-5,5-diméthylhydantoin 

DBU     1,8-Diazabicyclo[5.4.0]-undec-7-ène 

DCC     N,N’-Dicyclohexyl-carbodiimide 

DCE    1,2-Dichloroéthane 

DDQ    2,3-Dichloro-5,6-dicyano-1,4-benzoquinone 

DIBAL-H    Hydrure de diisobutylaluminium  

DIPEA     N,N-Diisopropyléthylamine 

DMAP     4-Diméthylaminopyridine 

DMF     Diméthylformamide 

DMSO     Diméthyl sulfoxide 

DTBMP      2,6-Di-tert-butyl-4-méthylpyridine  

 

EGF    Endothelial growth factor 

eIF4    Eukaryotic initiation factors 

éq    Equivalent 

ERK   Extracellular-signal-regulated kinase 

 

A 

B 

C 

D 

E 
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ESI     Electrospray ionisation 

Et    Ethyle 

 

FL     Flavagline 

Grp     Gastrin-releasing peptide 

GDP         Guanosine diphosphate 

HMPA        Hexaméthylphosphoramide 

HR-MS     High resolution-mass spectrometry 

HSF     Heat shock factor 

Hsp     Heat shock protein 

HSQC     Heteronuclear single-quantum correlation spectroscopy 

HUVEC     Human umbilical vein endothelial cells 

IGF1   Insulin-like growth factor 

IgM   Immunoglobulin M 

JNK      c-Jun N-terminal kinases 

KHMDS       Potassium bis(triméthyl-silyl)amide 

 

LC-MS      Liquid chromatography-mass spectrometry 

LDA   Lithium Diisopropylamide 

L-selectride®  Lithium tri-sec-butyl-borohydride  

  

Mcl-1      Myeloid cell leukemia protein 1 

MAP         Mitogen activated proteins 

m-CPBA    Acide méta-chloroperoxybenzoïque  

MCM         Minichromosome maintenance protein complex 

Me   Méthyle 

MEK      Mitogen-activated protein kinase 

MLK          Mixed lineage kinases 

m-TOR        Mammalian target of rapamycin 

 

NAP      2-Naphthylméthyle 

NBS    N-bromosuccinimide 

NF-kB        Nuclear factor-kappa B 

NMO         N-méthylmorpholine N-oxide 

NMP      N-Méthylpyrrolidone 

NOESY      Nuclear Overhauser effect spectroscopy 

 

F 

H 

I 

J 

K 

L 

M 

N 
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Pd/C      Palladium sur charbon 

Ph     Phényle 

PHB     Prohibitine 

PhMe     Toluène 

PKC-δ        Protéine kinase C 

Pr     Propyle 

p-TsOH     Acide para-toluènesulfonique 

 

Raf     Rapidly accelerated fibrosarcoma 

Red-Al®       Sodium bis(2-methoxy-ethoxy) aluminum hydride  

 

Shp  Src homology region 2 domain-containing phosphatase 

 

TADDOL  α,α,α,α-Tétraaryl-1,3-dioxolane-4,5-diméthanol 

TBAF      Fluorure de tétra-n-butylammonium 

TBDMS       Tert-butyldiméthylsilyl 

TES       Triéthylsilyle 

TEMPO        (2,2,6,6-Tétraméthylpipéridin-1-yl)oxyl 

Tf       Triflurométhanesulfonyle 

TFA     Acide trifluoroacétique 

TGF-β       Transforming growth factor  

THF    Tétrahydrofurane 

TMS    Triméthylsilyle 

TMSOTf      Triméthylsilyl trifluorométhanesulfonate 

TRPM6      Transient receptor potential ion channel 6 

Ts    Tosyle 

TXNIP         Thioredoxin-interacting protein 

 

       VEGF      Vascular endothelial growth factor 
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1. Introduction 

1.1. Les produits naturels : une source vitale d’agents anticancéreux 

1.1.1. La place du produit naturel en oncologie 

Les produits naturels sont les métabolites secondaires qui contribuent à la 

survie des organismes, notamment en tant qu’arme chimique ou en transmettant de 

l'information d'un organisme à l'autre. Comparé aux drogues synthétiques, les 

produits naturels ont une tendance à avoir plus de centres chiraux, plus d’atomes 

d’oxygène, moins d’atomes d’azote et des systèmes cycliques plus variés. Ils ciblent 

des protéines qui présentent statistiquement plus d’interactions protéine-protéine 

que celles qui sont ciblées par des drogues purement synthétiques.1 

Les produits naturels ont une longue histoire dans le traitement du cancer. 

Hartwell, dans sa revue sur les plantes ayant une activité anticancéreuse, énumère 

plus de 3000 espèces de plantes qui auraient été utilisées dans le traitement du 

cancer.2 Ces molécules isolées servent souvent de modèles pour la préparation 

d’analogues et de pro-drogues possédant une activité biologique plus efficace. 

   La synthèse de l’aspirine par Charles Gerhard à la faculté de pharmacie à 

Strasbourg en 1853, a pavé la route pour la chimie médicinale du produit naturel.3 

En 1964, l’actinomycine est devenue le premier produit naturel approuvé pour une 

indication oncologique. D’autres médicaments à base de produits naturels tel que les 

anthracyclines, les alcaloïdes de la pervenche, l’épipodophyllotoxine, les dérivés de la 

camptothécine et les taxoïdes sont toujours utilisés dans le traitement des cancers.  

Avec l’émergence dans les années 90 des thérapies ciblées, qui reposent sur des 

                                                             
1
 Dancík, V., Seiler,K.P., Young,D.W., Schreiber,S.L., Clemons, P.A., J. Am. Chem. Soc., 2010, 132, 

9259–9261. 
2 Hartwell, J. L., Plants Used Against Cancer: A SurVey; Quarterman: Lawrence, MA, 1982. 
3
 Gerhardt, C., Justus Liebigs Ann.Chem., 1853, 87, 149–179. 
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anticorps ou des petites molécules de synthèse, les groupes pharmaceutiques ont 

pour la plupart perdu leur intérêt dans les produits naturels. Si les thérapies ciblées 

ont un succès éclatant dans le traitement de la leucémie myéloïde chronique et de 

certaines formes de cancers du système gastro-intestinal, de la prostate ou du foie, 

dans la plupart des autres cas ces traitements prolongent rarement la vie des 

patients de plusieurs années. Il existe donc un besoin urgent de développer des 

médicaments originaux. Les effets limités des thérapies ciblées ont justifié un retour 

des produits naturels en oncologie. Ainsi, on observe depuis 2007 la mise sur le 

marché en moyenne d’un nouveau médicament anticancéreux dérivé de produit 

naturel chaque année (Figure 1).  

Certains des nouveaux agents induisent une forte cytotoxicité en agissant sur 

des cibles classiques, comme l’ADN (pour la trabectédine) ou des microtubules (pour 

l’ixabépilone, la vinflunine et l’éribuline), tandis que d’autres ciblent des événements 

comme la biosynthèse de stéroïdes (pour l’acétate d’abiratérone), le remodelage des 

histones (pour le romidépsine), la synthèse des protéines (pour l’homoharringtonine) 

ou leur dégradation (pour le carfilzomib). Les dérivés de la rapamycine sont 

atypiques. Ces molécules ne sont pas cytotoxiques, mais peuvent être considérés 

comme des agents de thérapie ciblée grâce à leur inhibition de la signalisation 

mTOR.4   

Au contraire des thérapies ciblées qui sont conçues pour un type spécifique de 

cancer, le développement de produits naturels s’appuie fortement sur la compétence 

des pharmacologues et cliniciens pour identifier leur mécanisme d’action et leur 

indication optimale en clinique. 

Nous avons décrit dans une revue intitulée «Cancer wars: natural products strike 

back » (Publication n° 1) cette réhabilitations des produits naturels par les industries 

pharmaceutiques qui a lieu depuis quinze ans.4 

                                                             
4
 Basmadjian, C., Zhao, Q., Bentouhami, E., Djehal, A., Nebigil, C. G., Johnson, R. A., Serova, M., de 

Gramont, A., Faivre, S., Raymond, E., Désaubry, L. G., Front. Chem., 2014, 2 : 20. 
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Figure 1. Structure des médicaments anticancéreux dérivés de produits naturels mis 

sur le marché depuis 2007. 
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1.1.2. Aglaia 

La famille des Méliacées comprend environ 50 genres d’arbres et arbustes 

dicotylédones et 500 espèces d’origine tropicale, dont l’Aglaia est le genre le plus 

représenté (Figure 3). Les espèces d’Aglaia se trouvent principalement dans les 

forêts tropicales du sud-est de l’Asie, du Sri Lanka et l’Inde, traversant la Birmanie, la 

sud de Chine, le Viêt Nam, la Malaisie, l’Indonésie, l’Australie et les îles Fidji, à l’est   

jusqu’aux Samoa et au nord jusqu’aux îles Mariannes (Figure 2). 

Figure 2. Distribution des espèces d’Aglaia (recopié de la référence 5). 

Certaines espèces d’Aglaia sont utilisées en médecine traditionnelle pour 

l’insuffisance cardiaque, le traitement de la diarrhée, la toux, l’inflammation et des 

blessures.5 Les extraits d’Aglaia sont aussi utilisés comme bactéricides, insecticides 

et en parfumerie.6  

Après la première découverte d’un cyclopenta[b]benzofurane, le rocaglamide, 

par King et ses collègues en 1982,7 une centaine de composés de la même famille, 

                                                             
5
 Proksch, P., Edrada, R., Ebel, R., Bohnenstengel, F.I., Nugroho, B.W., Curr. Org. Chem., 2001, 5, 

923-938. 
6
 Janaki, S., Vijayasekaran, V., Viswanathan, S., Balakrishna, K., J. Ethnopharmacol., 1999, 67(1), 

45-51. 
7
 Lu King, M., Chiang, C.-C., Ling, H.-C., Fujita, E., Ochiai, M., McPhail, A. T., J. Chem. Soc., Chem. 

Commun., 1982, 20, 1150-1151. 
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les  flavaglines, ont été isolées d’une trentaine d’espèces d’Aglaia.8 Les autres 

types de composés issus de l’Aglaia comprennent des lignanes, des flavonoïdes, des 

bisamides, et terpénoïdes.9 

  

Figure 3. Arbre, fruit et fleur d’Aglaia (recopié de la référence 10). 

            

 

  

  

 

                                                             
8
 Kim, S., Salim, A.A., Swanson, S.M., Kinghorn, A.D., Anticancer Agents Med. Chem., 2006, 6(4), 

319-345. 
9
 (i) Brader, G., Vajrodaya, S., Greger, H., Bacher, M., Kalchhauser, H., Hofer, O., J. Nat. Prod., 1998 

61(12), 1482-90. (ii) Grege, H., Pache, T., Brem, B., Bacher, M., Hofer, O., Phytochemistry. 2001 57(1), 

57-64. (iii) Greger, H., Pacher, T., Vajrodaya, S., Bacher, M., Hofer, O., J. Nat. Prod., 2000, 63(5), 

616-20. (iv) Saifah, E., Puripattanavong, J., Likhitwitayawuid, K., Cordell, G.A., Chai, H, Pezzuto, J.M., J. 

Nat. Prod., 1993, 56(4), 473-7. (v) Puripattanavong, J., Weber, S., Brecht, V., Fram, A.W., Planta Med., 

2000, 66(8):740-5. (vi) Ebada, S.S., Lajkiewicz, N., Porco, J.A. Jr, Li-Weber, M., Proksch, P. M., Proksch, 

P., Fortschr Chem Org Naturst., 2011, 94, 1- 58. 
10

http://www.arkive.org/chinese-perfume-tree/aglaia-odorata/ et http://herbaria.plants.ox.ac.uk/ 

bol/plants400/Profiles/AB/Aglaia  

https://www.ncbi.nlm.nih.gov/pubmed/9868148
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1.2. Flavaglines 

1.2.1. Découverte 

Les flavaglines sont caractérisées par un squelette cyclopenta[b]benzofurane, 

dont les représentants les plus connus sont le rocaglamide (1), le rocaglaol (2) et le 

silverstrol (3) (figure 4). Ce dernier est substitué par un pseudo-sucre.11  

 

Figure 4. Exemples de flavaglines naturelles. 

1.2.2. Propriétés pharmacologiques 

Les flavaglines présentent un profil d’activité biologique unique qui a attiré 

l’attention de nombreux biologistes. En effet, elles présentent des activités 

insecticides, antifungiques, anti-inflammatoires, neuroprotectrices et surtout 

anticancéreuses. Ces dernières sont les plus étudiées jusqu’à présent. 

 A la concentration de l’ordre du nanomolaire, les flavaglines inhibent la 

prolifération des cellules tumorales et ne présentent pas de toxicité sur les cellules 

saines telles que les cellules HUVEC (cordons ombilicaux), les neurones, les cellules 

épithéliales intestinales et les lymphocytes.12  A notre connaissances, Hausott et 

coll. sont les premiers à avoir montré que les cellules normales (dans ce cas-là les 

cellules épithéliales intestinale IEC18) sont 1,000 fois moins sensibles à la cytotoxicité 
                                                             
11

 Basmadjian, C., Thuaud, F., Ribeiro, N., Désaubry, L., Fut. Med. Chem., 2013, 5 (18), 2185-2197. 
12

 Hausott, B., Greger, H., Marian, B., Int. J. Cancer., 2004, 109 (6), 933-940 ; Ribeiro, N., Thuaud, F., 

Bernard, Y., Gaiddon, C., Cresteil, T., Hild, A., Hirsch, E.C., Michel, P.P., Nebigil, C.G., Dé saubry, L., J. 

Med. Chem. 2012a, 55, 10064– 10073 ; Su, B.N., Chai, H., Mi, Q., Riswan, S., Kardono, L.B., Afriastini, 

J.J., Santarsiero, B.D., Mesecar, A.D., Farnsworth, N.R., Cordell, G.A., et al., Bioorg. Med. Chem., 2006, 

14, 960–972 ; Thuaud, F., Ribeiro, N., Gaiddon, C., Cresteil, T., Désaubry, L., J. Med. Chem., 2011, 54, 

411–415; Zhu, J.Y., Lavrik, I.N., Mahlknecht, U., Giaisi, M., Proksch, P., Krammer, P.H., Li-Weber, M., 

Int. J. Cancer, 2007, 121, 1839–1846. 

https://www.ncbi.nlm.nih.gov/pubmed/15027128
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des flavaglines (IC50 > 10 μM) par rapport aux cellules tumorales (SW480 et HT29/HI 

I) ou d’adénome prémalin (VACO235 et LT97).  

Un autre effet intéressant des flavaglines est qu’elles potentialisent l’efficacité de 

médicaments anticancéreux dans divers modèles murins de cancer.8 

Par ailleurs, les flavaglines présentent des activités anti-inflammatoires et 

cytoprotectrices. A une concentration nanomolaire, elles induisent une forte 

immunosuppression via l’inactivation du facteur nucléaire des lymphocytes T 

activées, suite à une activation des MAP kinases JNK et p38.13 A une concentration 

plus élevée, les flavaglines peuvent aussi inhiber la voie de signalisation NF-kB, qui 

est impliquée dans l’inflammation.14  

En 2005, des chercheurs de chez Bayer ont montré que la flavagline synthétique 

IMD-019064 inhibe la signalisation du NF-kB, et la libération des médiateurs 

pro-inflammatoires. De plus, ce composé protège les neurones dopaminergiques 

dans le modèle de Parkinson et aussi contre la neuro-inflammation consécutive à un 

traumatisme cérébral chez la souris.15 

Nos collaborateurs, Christian Gaiddon et Canan Nebigil, tous à Strasbourg ont 

respectivement montré que des flavaglines synthétisées au laboratoire protègent les 

neurones contre l’apoptose induite par le cisplatine et les cardiomyocytes contre 

l’apoptose induite par un médicament anticancéreux, la doxorubicine.16 

1.2.3. Cible moléculaire et mécanisme d’action 

1.2.3.1. Les Prohibitines 

 En 2012, en utilisant un ligand de chromatographie d’affinité synthétisé au 

laboratoire, Li-Weber et ses collègues au DKFZ à Heidelberg ont identifié par 

spectrométrie de masse les prohibitines (PHBs) comme étant les cibles moléculaires 

                                                             
13

 Proksch, P., Giaisi, M., Treiber, M. K., et al., J. Immunol, 2005, 174(11), 7075-7084. 
14

 Baumann, B., Bohnenstengel, F., Siegmund, D., et al., J. Biol. Chem., 2002, 277 (47), 44791-44800. 
15

 Fahrig, T., Gerlach, I., Horva th, E., Mol. Pharmacol., 2005, 67(5), 1544-1555. 
16

 Bernard, Y., Ribeiro, N., Thuaud, F., Turkeri, G., Dirr, R., Boulberdaa, M., Nebigil, C.G., and 

Désaubry, L., PLoS ONE, 2011, 6, e25302. 
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des flavaglines.17 Les prohibitines, PHB1 et PHB2, sont des protéines d’échafaudage 

qui s’associent entre elles pour former des oligomères, ou avec d’autres protéines 

pour contrôler leur activité. Les fonctions des PHBs sont régulées par des 

modifications post-traductionnelles induites par la signalisation d’Akt, la CamK IV, la 

PKC-δ et par les récepteurs d’insuline, de l’IGF1, de l’EGF, de l’TGF-β et de l’IgM. Ces 

modifications modulent l’affinité de PHBs pour des lipides spécifiques et contrôlent 

leur localisation intercellulaire.   

 Les PHBs sont essentielles pour maintenir l’intégrité structurelle et fonctionnelle 

des mitochondries, en particulier l’apoptose et la résistance au stress oxydatif. Dans 

le noyau, elles contrôlent la transcription et la synthèse de l’ADN en interagissant 

avec plusieurs facteurs de transcription, comme par exemple, les récepteurs aux 

androgènes et estrogènes ou encore p53. Elles interagissent aussi avec les histones 

désacétylases, l’histone méthyltransférases, les co-répresseurs transcriptionnels et 

les protéines d’entretien de minichromosomes (protéines MCM). Dans le cytoplasme, 

les PHBs régulent l’activité de nombreuse protéines de signalisation, par exemple, les 

kinases c-Raf, Akt et MLK2, la phosphatase Shp1/2, les protéines chaperonnes Hsp70 

et mortaline/Grp75, la phospholipase Cγ2, et le canal au magnésium TRPM6.  

 K. Rajalingam et al. ont montré en particulier que l’activation de C-Raf par Ras 

requiert une interaction directe entre C-Raf et les PHBs.18 G. Polier et al. ont montré 

qu’en se liant sur PHBs, les flavaglines inhibent cette intéraction et bloquent ainsi 

l’activation de la voie Ras-C-Raf-ERK qui est nécessaire à la survie cellulaire d’un 

grand nombre de tumeurs.19 

1.2.3.2. eIF4A  

eIF4A (les facteurs d’initiation eukaryotique de la traduction 4A) est une des trois 

                                                             
17

 Polier, G., Neumann, J., Thuaud, F., Ribeiro, N., Gelhaus, C., Schmidt, H., Giaisi, M., Köhler, R., 

Müller, Wolfgang W., Proksch, P., Leippe, M., Janssen, O., Désaubry, L., Krammer, Peter H., Li-Weber, 

M., Chemistry & Biology, 2012, 19 (9), 1093-1104. 
18

 Rajalingam, K., Rudel, T., Chemistry&Biologiy, 2012, 19, 1077–1078. 
19

 Polier, G., Neumann, J., Thuaud, F., Ribeiro, N., Gelhaus, C., Schmidt, H., et al., Chem. Biol., 2012, 

19, 1093–1104. 
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sous-unités du complexe eIF4F impliqué dans le recrutement de l’ARNm aux 

ribosomes. Il est nécessaire à la traduction d'un petit nombre d’ARNm codant 

principalement les facteurs qui contrôlent l’oncogenèse, l’angiogenèse, et la 

chimiorésistance.8  

Rizzacasa et ses collègues ont démontré en 2013 par chromatographie d’affinité 

que les flavaglines se fixent aussi directement à l’eIF4A.20 Auparavant, Pelletier et 

collaborateur avaient montré que les flavaglines inhibent eIF4A en renforçant sa 

liaison avec l’ARNm et en empêchant ainsi son recyclage.21  

De manière intéressante, les gènes domestiques n’ont pas besoin de l’eIF4A pour 

leur traduction, ce qui explique, au moins partiellement, pourquoi les flavaglines 

montrent une cytotoxicité sélective aux cellules cancéreuses. 

1.2.3.3. Les mécanismes anticancéreux  

Pour l’instant seuls les PHBs et eIF4A ont été découvertes comme étant les cibles 

des flavaglines (Figure 5). Laquelle de ces deux familles de cibles joue le rôle plus 

important reste une question soumise à débat. Cela peut d’ailleurs varier selon le 

type de tumeur. On ignore également si ce sont les PHBs ou eIF4A qui sont impliqués 

dans l’activation d’AIF (du facteur d’induction de l’apoptose), caspase 12, du p38, 

AFM, ATR et JNK. L’effet des flavaglines sur les voies de signalisation en aval des PHBs 

et d’eIF4a sont examinée par différentes équipes avec qui nous collaborons. 

 

 

 

 

 

 

 

 

                                                             
20

 Chambers, J. M., Lindqvist, L. M., Webb, A., Huang, D. C. S., Savage, G. P., Rizzacasa, M. A., Org. 

Lett., 2013, 15 (6), 1406-1409. 
21

 Cencic, R., Carrier, M., Galicia-Vázquez, G., Bordeleau, M.-E., Sukarieh, R., Bourdeau, A., Brem, B., 

Teodoro, J. G., Greger, H., Tremblay, M. L., Porco, J. A., Jr., Pelletier, J., PLoS ONE 2009, 4 (4), e5223. 
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Figure 5. Mécanismes anticancéreux des flavaglines. 1. Inhibition de l’activation du 

C-Raf Ras-dépendent. 2, 3. Translocation du caspase-12 et de l’AIF au noyau pour 

induire l’apoptose. 4. Translocation du cytochrome C au noyau pour induire la voie 

intrinsèque d’apoptose. 5. Activation de la transcription médiée par p38 de la famille 

du Bcl-2 pro-apoptotique. 6. Induction de la voie ATM/ATR-Chk1/2-Cdc25A menant à 

l’arrêt du cycle cellulaire. 7. Activation de la transcription JNK-dépendante des 

protéines pro-apoptotiques c-FLIP et ligand de CD95. 8. Inhibition hypothétique 

PHB-dépendante de machine de traduction. 9. Inhibition de l’eIF4A mène à une 

baisse de l’expression des protéines impliquées dans la progression du cycle 

cellulaire, la résistance à l’apoptose et l’angiogenèse. Cette inhibition de la synthèse 

protéique s’accompagne d’une suppression de l’activité du facteur de transcription 

HSF1 et la surexpression du suppresseur de tumeur TXNIP.  TXNIP bloque 

l’absorption du glucose et empêche "l’effet Warburg". 10. Inhibition hypothétique de 

la chimiorésistance médiée par PHB1 à la surface cellulaire (recopié de la référence 

11).  
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1.2.4. Relation structure-activité 

 

 

Figure 6. Relations structure-activité reliées à l’activité antiproliférative de 

flavaglines.11 

 

 Le remplacement du groupe méthoxy en position 4’ de rocaglaol par un 

attracteur d’électron, par exemple le brome (R8 = Br) renforce la cytotoxicité, lorsque 

sa suppression diminue la cytotoxicité de l’ordre de trois, suggérant que un groupe 

hydrophobe est nécessaire à cette position.6 L’introduction d’un groupe méthoxy en 

position 4’’ (R7 = OMe) sur l’autre phényle est défavorable pour cette activité (Figure 

6).  

Le remplacement du groupe hydroxyle en position 1 par un groupe formamide 

ou un groupe sulfonamide ne change pas significativement l’activité antiproliférative. 

L’introduction d’un amide ou un ester méthylique en position 2 rend le composé 

sensible à la résistance multidrogue, ce qui a un effet délétère important quand à ses 

effets in vitro et in vivo.  

 L’introduction d’un méthoxy en position 8b rend le composé quasiment inactif, 

par contre la suppression du groupe méthoxy en position 8 diminue significativement 

l’activité du composé. Finalement, le remplacement du groupe méthoxy en position 

6 par un groupe dioxanyle permet d’augmenter la cytotoxicité, mais altère sa 

biodisponibilité.  
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1.3. Synthèse de Flavaglines 

 Possédant un squelette compact, avec 2 centres chiraux quaternaires adjacents 

et 2 cycles aromatiques en position cis sur un cyclopentyle très fonctionnalisé, les 

flavaglines représentent un défi en synthèse organique qui a attiré l’attention de 

plusieurs laboratoires de synthèse organique depuis les années 90. Nous avons décrit 

ces travaux dans une revue publiée dans Eur. J. Org. Chem. (Publication N°2). 

1.3.1. Première synthèse totale du Rocaglamide 

En 1990, la première synthèse totale de Rocaglamide est réalisée par le groupe 

de Trost.22 Cette approche est basée sur une cycloaddition [3+2] énantioselective du 

composé 4 avec l’oxazepinedinone 5 pour générer la cyclopentanone 6 (85%, Schéma 

1). Ensuite, 7 étapes sont nécessaires pour former le squelette de flavagline, mais 

avec une mauvaise configuration par rapport au produit naturel. La stéréochimie est 

corrigée par 6 étapes supplémentaires pour donner le rocaglamide 1. Bien que cette 

approche nécessite plusieurs étapes, elle demeure la seule synthèse 

énantiospécifique jusqu’à présent.   

    

Schéma 1. Synthèse énantiospécifique de Trost.22 

  

                                                             
22

 Trost, B.M., Greenspan, P.D., Yang, B.V., Saulnier, M.G., J. Am. Chem. Soc. 1990, 112, 9022–9024. 
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1.3.2. Synthèse de rocaglamide avec une benzofuranone comme 

intermédiaire  

 Les stratégies développées par Taylor, Dobler, et Qin sont toutes basées sur un 

intermédiaire commun, la benzofuranone 9 qui est préparée par une addition de 

Michael intermoléculaire, puis transformée en squelette tricyclique par une 

cyclisation intramoléculaire (Schéma 2). 

 Cette approche a été originalement développée par Taylor et collaborateurs. Ils 

ont rapporté une synthèse basée sur une addition de Michael intermoléculaire 

associée à une cyclisation intramoléculaire induite par SmI2, pour construire le 

squelette tricyclique de rocaglamide.23 L’aldéhyde 10 a été préparé par addition de 

Michael du benzofurane 9 sur le cinnamaldéhyde trans, puis a été converti en 

cyclopentanone 13 via une cyclisation et une oxydation de Swern. Les trois étapes 

suivantes ont permis d’obtenir le β-cétoester 14 qui a été ensuite converti en   

Schéma 2. Synthèse de rocaglamide de Taylor, Dobler et Qin.24,25,26 

                                                             
23

 Davey, A .E., Schaeffer, M. J., Taylor, R. J. K., J. Chem. Soc., Chem. Commun., 1991, 1137-1139 ; 

Davey, A. E., Schaeffer, M. J., Taylor, R. J. K., J. Chem. Soc., Perkin Trans. 1, 1992, (20), 2657- 2666. 
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rocaglamide 1 en 2 étapes. Dobler et ses collègues ont ensuite amélioré cette 

synthèse. Ils ont utilisé le même type d’addition intermoléculaire pour former 

l’aldéhyde 10, mais ont modifié l’étape de cyclisation. En effet, au lieu de la 

cyclisation catalysée par SmI2, la cyanohydrine 12 a été utilisée dans une réaction 

umpolung pour générer la cyclopentanone 13 après déprotection. La carboxylation 

de la cétone a aussi été modifiée en utilisant le réactif de Stiles pour donner l’ester 

14. Ce dernier a ensuite été converti au rocaglamide 1 en 3 étapes.24 

 En 2008, Qin et ses collègues ont modifié l’approche de Taylor en introduisant 

d’un groupe méthoxycarbonyle sur l’accepteur de Michael. La carboxylation de Stiles 

n’est alors plus nécessaire. Une condensation de benzofuranone 9 avec le diméthyl 2- 

benxylidenemalonate a permis d’obtenir le composé 11, qui a été ensuite engagé 

dans un couplage pinacolique initié par SmI2 pour former le squelette du rocaglamide 

14.25 

 

1.3.3. Synthèse du rocaglaol par le groupe de Ragot 

    En 2004, le groupe de Ragot a réalisé la synthèse de flavaglines basée sur une 

ouverture d’hydroxyépoxide (Schéma 3).26 La cyclopentènone 17 a été obtenue en 

deux étapes à partir de la bromocétone 15 et l’ylure de triphénylphosphine 16. Le 

β-cétoester a subit ensuite une décarbonylation, une α-bromination et une 

élimination de HBr pour donner l’énone α-bromé 18. Ensuite une réaction de Suzuki 

avec l’acide boronique 19 a permis d’obtenir l’énone 20 qui a ensuite subit une 

réduction diastéréosélective par le L-sélectride, puis une époxydation et une 

ouverture d’époxyde pour former le didéméthoxyrocaglaol 22. 

                                                             
24

 Dobler, M. R., Bruce, I., Cederbaum, F., Cooke, N. G., Diorazio, L. J., Hall, R. G., Irving, E., 

Tetrahedron Lett., 2001, 42 (47), 8281-8284. 
25

 Li, H., Fu, B., Wang, M. A., Li, N., Liu, W. J., Xie, Z. Q., Ma, Y. Q., Qin, Z., Eur. J. Org. Chem., 2008, 

(10), 1753-1758. 
26

 Diedrichs, N., Ragot, J. P., Thede, K., Eur. J. Org. Chem., 2005, (9), 1731-1735. 
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Schéma 3. Synthèse du rocaglaol de Ragot26 

 

1.3.4. Synthèses des flavaglines par une réaction de Nazarov 

 Le groupe de Magnus est le premier à avoir synthétisé le squelette tricyclique 

des flavaglines en utilisant une cyclisation de Nazarov comme étape clée. Cette 

cyclisation est aussi connue comme la réaction d’Isler-Mukaiyama. Le composé 24 a 

été préparé à partir de l’alcyne 23. Ensuite, une cyclisation de type Nazarov de 24 en 

présence de tétrachlorure d’étain a permis d’obtenir le composé 25. Après 

hydrosilylation de ce dernier, l’ester méthylique a été introduit en présence de 

palladium et de monoxyde de carbone. Finalement, le composé 28 a été obtenu par 

formation d’un peroxyde de tert-butyle en présence de Darco G-60 qui est ensuite 

réduit par un amalgame d’aluminium et de mercure (Schéma 4).27 
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Schéma 4. Synthèse du (±)-1,2-anhydro-rocaglamide par Magnus.27 

 

 Cette approche n’a pas abouti au rocaglamide, mais de 

(±)-1,2-anhydro-rocaglamide 28. En 2009, cette stratégie a été améliorée en utilisant 

une réaction de Nazarov induite par du bromure d’acétyle (Schéma 5).28 Tout 

d’abord, l’iodophénol 29 a été engagé dans un couplage de Kumada/Sonogashira, 

suivi par une insertion de CO pour donner le composé 30. L’ester a été d’abord 

converti en phosphonate pour réagir avec le benzaldéhyde dans les conditions de 

Masamune-Roush pour fournir le composé 31. L’étape suivante est la réaction clé : la 

cyclisation de Nazarov. D’abord, le diènone 31 est traité par divers acides de Lewis, y 

compris SnCl4, AlCl3, TiCl4 and Sc(OTf)3. Tous les essais ont donné le produit de 

réaction de rétro Friedel-Crafts.  Ensuite, ils ont examiné des acides Bronsted. 

L’utilisation d’HCl concentré a donné la cyclopentènone désirée après 48h à 100°C 

mais avec un rendement faible (12%), et l’utilisation d’HBr n’a conduit qu’à une 

                                                             
28

Magnus, P.,Freund, W. A., Moorhead, E. J., Rainey, T., J.Am. Chem. Soc., 2012, 134 (14), 6140-6142. 
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déméthylation de l’éther. Finalement, en présence du bromure d’acétyle, la 

cyclopentènone 34 a été obtenue avec un bon rendement (81%). Le remplacement 

de ce dernier par un chlorure d’acétyle n’a donné que le produit de départ inchangé 

même après chauffage à 150°C dans un tube scellé.  

Schéma 5. Synthèse du rocaglate du méthyle de Magnus utilisant une réaction de 

Nazarov induite par du bromure d’acétyle.28 

Ces auteurs ont proposé un mécanisme pour cette cyclisation : un oxonium 32 

est obtenu après l’acétylation de la cétone 31, celui-ci cyclise ensuite pour donner un 

acétoxonium 33 qui permet d’obtenir la cyclopentènone 34 après hydrolyse. Il est à 
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noter que le remplacement du groupe méthyle vinylique par un hydrogène diminue 

le rendement à 12%, et le produit cyclisé n’est pas observé lorsqu’il s’agit d’un nitrile. 

La cétone 34 a été ensuite transformée en déhydroflavagline 38 en 6 étapes avec un 

rendement de 41%. Seulement deux étapes supplémentaires sont nécessaires pour 

aboutir au rocaglate de méthyle. 

En 2009, Frontier et coll. ont publié une synthèse de flavaglines qui utilise 

également une réaction de type Nazarov dans l’étape clé (Schéma 6).29 Le produit de 

départ est la benzofuranone 9 qui a été convertie en aldéhyde 39 par alkylation en 

présence de bromure de vinylmagnésium, puis par clivage de l’alcool allylique ainsi 

obtenu. Après introduction du groupement phénylacétylène et protection de l’alcool 

propargylique, le composé 40 a été déprotoné par du tert-butyllithium et additionné 

à du chlorure de tributylétain pour donner l’intermédiaire 41. Le squelette tricyclique 

des flavaglines a été ensuite obtenu par une cyclisation intramoléculaire de type 

Nazarov entre l’oxyde d’allène généré in situ par réaction avec du m-CPBA. Les étapes 

suivantes comprenant une carbonylation catalysée au paladium permettent d’aboutir 

au cétoester 14, qui a été ensuite converti en rocaglamide 1. Tout comme la stratégie 

initiale de Magnus, cette voie de synthèse utilise une réaction de Nazarov comme 

une approche directe et originale pour construire le squelette des flavaglines. 

                                                             
29
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Schéma 6. Synthèse du rocaglamide de Frontier.29 
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2. Objectifs 

 Notre objectif principal était de développer une nouvelle voie de synthèse de 

flavaglines, pour synthétiser des composés originaux ayant potentiellement de 

meilleures activités biologiques. Un deuxième objectif consistait à synthétiser deux 

isostères de flavaglines, FL47 et FL48 (Figure 7), pour lesquelles l’hydroxyle en 

position 8b a été remplacé par un formamide ou un sulfonamide, donneurs de liaison 

hydrogène.  

 

Figure 7. Isostères des flavaglines à synthétiser 
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3. Résultats 

 Afin d’accéder au squelette cyclopenta[b]benzofurane des flavaglines, plusieurs 

approches ont été examinées.  

 3.1.  Première approche pour la synthèse des flavaglines  

3.1.1. Etude rétrosynthétique 

   Pour synthétiser les flavaglines, une nouvelle voie de synthèse est proposée 

basée sur la construction d’un intermédiaire clé 44. Le rocaglaol 2 peut être 

synthétisé à partir de la cyclopentènone 44 en utilisant la méthode de Ragot qui a 

été décrite dans la partie 1.3.3. Cette cyclopentènone peut être synthétisée par un 

réarrangement allylique suivi par une cyclisation catalysée à l’or à partir de l’alcool 

propargylique 45. Ce dernier peut être obtenu par une condensation avec du 

triméthoxybenzène lithié à partir du composé 46 qui peut être préparé par une 

acylation suivie par un couplage de Sonogashira à partir de l’acide 47. Cet acide peut 

être formé par une réaction de Perkin à partir de l’acide carboxylique 48 et du 

benzaldéhyde. Cette partie des travaux a été effectuée conjointement avec Christine 

Basmadjian qui était aussi doctorante au laboratoire et a été décrite dans la 

publication N°3.30 

Schéma 7. Etude rétrosynthétique pour la préparation du rocaglaol 78. 
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3.1.2. Synthèse de l’intermédiaire cyclopentènone 44  

Tout d'abord, une réaction de Perkin a permis de former stéréosélectivement 

l’acide 47 qui a été ensuite transformé en chlorure d’acyle. Ce dernier a été engagé 

dans un couplage de Sonogashira pour obtenir le composé 46. Enfin, l’alkylation avec 

du triméthoxybenzène lithié a conduit à l’alcool propargylique 45. 

   Une étherification catalysée au molybdène (VI), en présence de NH4PF6 et 

d'EtOH, a permis de transformer le carbinol 45 en éther 49.31 Celui-ci a été ensuite 

engagé dans une désilylation pour donner le composé 50.  

 

 

Schéma 8. Synthèse du précurseur de la cyclopenténone.31 

 

3.1.3. Cyclisation catalysée à l’or (I) 

Rhee et al. ont synthétisé la cyclopentènone 55 à partir du 

siloxypent-3-ène-1-ynes 51 en utilisant une cyclisation catalysée à l’or (I) (Schéma 

9).32  Ils ont proposé qu’en présence d’un complexe électrophile de l’or, une 

siloxycyclisation a conduit à l’intermédiaire 52. Le carbocation 53 a été ensuite 

                                                             
31

 Yang, H., Fang, L., Zhang, M., Zhu, C., Eur. J. Org. Chem., 2009, 666-672. 
32

 An, S. E., Jeong, J., Baskar, B., Lee, J., Seo, J., Rhee, Y. H., Chem. Eur. J., 2009, 15, 11837-11841. 
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obtenu par une rupture de la liaison C-O. Une carbocyclisation intramoléculaire 

suivie par l’élimination de l’or (I) a donné l’intermédiaire 54 qui a été ensuite 

transformé en cyclopentènone 55 à l’aide de l’isopropanol. 

  

Schéma 9. Méthode de cyclisation catalysé à l’or (I) développée par Rhee et al.33  

     Nous avons considéré que le groupe phényle et le groupe triméthoxyphényle 

du composé 50 peuvent suffisamment stabiliser le carbocation 53 pour permettre à 

cette réaction d’avoir lieu. Cette hypothèse a été supportée par le travail de Toste et 

al. sur la synthèse de l’éther d’indènyle à partir d’un éther benzylique en utilisant une 

carboalkoxylation catalysée à l’or.33      

 A partir du composé 50, dans la condition décrite par Rhee et al., la 

cyclopentènone 44 a été obtenue avec 63% de rendement (Schéma 3). 

Schéma 10. Synthèse de la cyclopentènone 44. 

Nous avons ensuite essayé de synthétiser deux autres cyclopentènones (Schéma 

11). Les substrats 58a et 58b ont été préparés à partir du chlorure d'acyle 56 qui a 

été engagé successivement dans un couplage de Suzuki, une éthynylation, une 

éthérification catalysée au molybdène (VI) et une désilylation. L'éther 58a, substitué 

                                                             
33
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par un phényle (R = H), a été ensuite transformé en cyclopentènone 59a avec 50% de 

rendement, dans les conditions de cyclisation précédentes. Nous avons noté de 

manière intéressante, que l'introduction d'un atome de chlore en position para du 

phényle améliore le rendement de 50% à 75%.  

 

Schéma 11 : Synthèse des cyclopentènones 59a et 59b 

 

3.1.4. Essais de transformation de la cyclopentènone aux flavaglines 

   A partir de la cyclopentènone 44, une déprotection sélective du groupe méthoxy 

a permis d’obtenir l’ènone 60 qui a été ensuite réduite en l’alcool 61 (Schéma 12). 

Mais la synthèse du précurseur de flavagline 62 n’a pas abouti même si diverse 

méthodes ont été essayé pour activer cet alcool allylique, ces échecs sont 

probablement dus à la tension du cycle et à l’instabilité de l’intermédiaire 

carbocation. 

  Le groupe phénol du composé 60 a été ensuite protégé par un groupe 

2-naphtylméthyle (NAP) pour donner une paire d’atropoisomères. Le NAP a été 

choisi parce que la déprotection peut être effectuée beaucoup plus facilement et 

rapidement que celle d'un benzyle par hydrogénation. 34   Une réduction en 

                                                             
34
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http://pubs.acs.org/author/Spencer%2C+Jonathan+B


RESULTATS 

43 

 

présence du L-sélectride a permis d’obtenir l’alcool 63, mais l’époxydation de ce 

dernier n’a pas abouti bien qu’une quinzaine de conditions aient été essayées 

(t-BuOOH ; Ti(OiPr)4 ; VO(acac)2 ; m-CPBA ; H2O2 ; NaOH ; ...). Ce résultat suggère que 

la méthode de Ragot est limitée à la préparation des flavaglines ne possédant pas les 

substituants nécessaires pour l’activité pharmacologique. 

Malheureusement aucune de ces méthodes n'a donné les produits désirés, nous 

conduisant ainsi à exploiter une nouvelle voie de synthèse des flavaglines.  

 

Schéma 12 : Essais pour synthétiser le rocaglaol 78 à partir de la cyclopentènone 44. 
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3.2.  Deuxième approche pour la synthèse des flavaglines basée sur 

une réaction de Nazarov 

   Nous nous sommes alors inspirés des travaux de Magnus dont l'étape clée repose 

sur une réaction de Nazarov.35 Cette réaction met en jeu une électrocyclisation-4π 

conrotatoire du cation 1,4-pentadiènyle, lui-même formé à partir d’une ènone 

(Schéma 13).36 

 

 

Schéma 13. Mécanisme de la réaction de Nazarov. 

  Dans les travaux de Magnus, le bromure d'acétyle a été utilisé pour activer la 

cétone (Schéma 14). Le mécanisme implique une acylation du carbonyle, suivi d'une 

cyclisation du cation allylique. Ce carbocation est stabilisé par les groupements 

voisins. L'énolate est formé après la perte d'un proton, qui est hydrolysé ensuite pour 

donner la cyclopentènone.  

 Les travaux de Cavalli 37  ont montré que l’introduction d’un groupement 

thioéther en position α du groupement carbonyle peut induire une meilleure 

réactivité et ainsi favoriser la cyclisation. En effet, le soufre stabilise davantage la 

charge positive du carbocation de l'état de transition. L'autre avantage du thioéther 

est qu'il peut être transformé en différents groupements fonctionnels. 

 

 

                                                             
35

 Magnus, P., Freund, W.A., Moorhead, E.J., Rainey, T., J. Am. Chem. Soc., 2012, 134, 6140−6142. 
36

 Vaidya, T., Eisenberg, R., Frontier, A.J., ChemCatChem., 2011, 3, 1531-1548. 
37

 Cavalli, A., Pacetti, A., Recanatini, M., Prandi, C., Sarpi, D., Occhiano, E.G., Chem. Eur. J., 2008, 14, 

9292–9304. 
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Schéma 14. Etape clé de la synthèse du rocaglate de méthyle et hypothèse de 

          travail.35 

 Dans un premier temps, nous avons cherché à tester notre hypothèse en 

essayant de synthétiser la cyclopentènone 65. Les précurseurs 66 puissent être 

préparée à partir de la benzofurane 67, synthétisée à partir des produits 

commerciaux le 68 et le 69 (Schéma 15).  

 Schéma 15. Rétro-synthèse pour accéder à la cyclopentènone 65. 
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   Tout d’abord, une cycloaddition de l’oxopropionate 69 sur la benzoquinone 68 a 

permis d’obtenir les benzofuranes 67a et 67b selon la procédure décrite par Chan.38 

Après méthylation par l'iodométhane, une réduction de l'ester 70b en aldéhyde 72b 

par du DIBAL-H a été entreprise. Cette étape ne donnant qu'une dégradation, les 

esters 70a et 70b ont d'abord été réduits par LiAlH4 en alcools 71a et 71b. Les essais 

d'oxydation par MnO2 n'ayant que donné les produits de départ inchangés, les 

alcools ont été oxydés dans la condition de Swern pour obtenir les aldéhydes 72a et 

72b. 

Schéma 16 : Synthèse des aldéhydes 72a et 72b. 

    Pour obtenir le précurseur de la cyclisation de Nazarov, nous avons préparé des 

thioéthers vinyliques comme décrit dans le schéma 17. A partir de phénylacétylène, 

le thioéther 73a a été synthétisé par la méthode d'Oshima39 en présence du TEMPO 

et de n-propanethiol. De même le thioéther 73b a été préparé sélectivement à partir 

du 4-méthylthiophénol en présence d’éthylate de sodium. 

                                                             
38

 Mothe, S. R., Susanti, D., Chan, P. W. H., Tetrahedron Lett., 2010, 51 (16), 2136-2140. 
39

 Kondoh, A., Takami , K., Yorimitsu, H., Oshima, K., J. Org. Chem., 2005, 70, 6468–6473. 
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Schéma 17 : Synthèse des thioéthers 73a et 73b. 

 

  Les thioéthers ont été ensuite traités par du n-BuLi et additionné sur les 

aldéhydes 72a et 72b préalablement activé par du BF3∙Et2O pour renforcer  

caractère électrophile (Scéma 18). Il est important de noter qu'un excès de thioéther 

est nécessaire à la réaction. Les substrats 74a, 74b, et 74c ont ainsi été obtenus. 

L'oxydation des alcools divinyliques obtenus par MnO2 a permis d'obtenir les 

précurseurs de la réaction de Nazarov 66a, 66b et 66c. 

 Après obtention des ènones 66, diverses conditions ont été testées pour la 

cyclisation de Nazarov. La cyclopentenone 65 a été seulement formée lorsque R1 = 

n-Pr. Le meilleur rendement (31%) a été obtenu en présence de 1,5 équivalent de 

bromure d’acétyle. Cependant, la réaction est difficilement reproductible. Dans 

d’autres essais, les rendements n'étaient que de 14% et 13%.  
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Schéma 18. Synthèse des cyclopentènones 65. 

   

    Ne jugeant pas les substrats 66 suffisamment réactifs lors des essais de la 

réaction de Nazarov, nous avons décidé de synthétiser une autre ènone 75 qui devait 

présenter une meilleure réactivité (Figure 8). Pour obtenir ce composé, une voie de 

synthèse différente a été envisagée pour accéder au squelette benzofurane.   

 

Figure 8. Nouveau substrat 75 pour la réaction de Nazarov. 

 En vue de l'obtention de ce composé, le benzofurane 30 a été préparé selon 

l'approche de Magnus et ses collaborateurs7 (Schéma 19). La première étape a été 
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une iodation en position ortho du diméthoxyphénol. Le rendement de cette réaction 

est modéré (29%) en raison d'une compétition avec l'iodation en position para et la 

di-substitution. Le produit iodé a été ensuite engagé dans un couplage de 

Kumada/Sonogashira pour donner le composé 76 qui est alors cyclisé en présence du 

catalyseur au palladium sous atmosphère de CO. Le benzofurane 30 a été ainsi 

obtenu avec un rendement de 72%. 

 

Schéma 19. Synthèse du benzofurane 30. 

 Le rendement des premières étapes de la synthèse étant modéré, nous avons 

tenté de trouver une méthode plus efficace basée sur les travaux de Larock40 

(Schéma 10). Cette fois l'iodation de triméthoxybenzène a été effectuée avec un 

rendement de 94%. Cette amélioration repose sur la symétrie du produit de départ 

qui résout le problème de régiosélectivité. Le couplage de Sonogashira avec le 

4-méthoxyphénylacétylène nous a donné l'alcyne 23 avec un rendement de 70%.  

La cyclisation catalysée au mercure n'a pas permis d'obtenir le produit désiré 30, 

mais la cétone 77 qui résulte d'une hydratation de l'alcyne.  

 

 

Schéma 20. Essais pour synthétiser le benzofurane 30. 

                                                             
40

 Larock, R. C., Harrison, L. W., J. Am. Chem. Soc., 1984, 106 (15), 4218-4227. 
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  A cause du problème de reproductibilité pour préparer la cyclopentènone 65 et 

l’inaccèssibilité du précurseur de la cyclopentènone 75, il nous a semblé plus 

pertinent de chercher une nouvelle voie de synthèse des flavaglines. 
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3.3.  Nouvelle approche pour la synthèse des flavaglines basée sur 

une sélénocyclisation 5-endo-trig 

3.3.1. Etude rétrosynthétique 

Les réactions de sélénocyclisation représentent une approche performante 

pour la synthèse d’hétérocycles oxygénérés complexes.41 Ce processus implique la 

formation d’un ion séléniranium qui sera capturé par le nucléophile pour former le 

produit cyclisé (Schéma 21).  

 

Schéma 21. Processus de sélénocyclisation.  

 Un des intérêts de cette reaction est qu’elle peut parfois s’effectuer 

en opposition aux règles de Baldwin.42 En 2006, Denmark et al.43 ont publié une 

sélénocyclisation de type 5-endo-trig d’un acide β,γ-insaturé, en présence de 

chlorure de benzènesélénenyle et d’une base. Par ailleurs, He et al.44 ont réalisé en 

2014 une synthèse de furan-2(5H)-one par une cyclisation de type 5-endo-trig en 

utilisant une résine de bromure de sélényle (Schéma 22).  

 

 

 

Schéma 22. Exemples de sélénocyclisations 5-endo-trig.  

En se basant sur leurs travaux, nous avons envisagé la synthèse des flavaglines 

                                                             
41

 Nicolaou, K.C., Tetrahedron, 1981, 37, 4097-4109. 
42

 Johnson, C.D., Acc. Chem. Res., 1993, 26, 476-482. 
43

 Denmark, S.E., Edwards, M.G., J. Org. Chem., 2006, 71, 7293-7306.                                      
44

 He, R.J., Zhu, B.C., Wang, Y.G., Appl. Organomet. Chem., 2014, 28, 523-528. 
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en utilisant une sélénocyclisation comme étape clée. L’analyse rétrosynthétique 

initiale est représentée dans le Schéma 23. La fonction diol de 78 peut être introduite 

par une dihydroxylation de la double liaison du composé 79. Cette insaturation est 

formée par une élimination du sélénium du composé 80, et ce dernier est obtenu par 

une sélénocyclisation de type 5-endo-trig sur le composé 81 qui est formé par une 

condensation entre le diméthoxyphénol 83 et la cyclopentanone 82. 

 

Schéma 23. Première analyse rétrosynthétique.   

  

3.3.2. Modèle de réaction et découverte de la cyclisation spontanée 

   Pour tester la faisabilité de cette stratégie, nous avons d’abord examiné les 

condensations du 3,5-diméthoxyphénol sur la 2-phényl-cyclohexanone 84 

commerciale, dans les conditions décrites par Trost dans la synthèse du 

rocaglamide.45 

De manière intéressante, au lieu d’obtenir le produit de condensation, la 

réaction avec le composé 84 a nous donné un produit cyclisé 86 avec un rendement 

de 69%. Nous supposons que cette cyclisation spontanée fait intervenir la 

carbocation benzylique 85 (Schéma 24). La structure du composé 86 a été vérifiée 

par cristallographie RX (Figure 9).  

                                                             
45

 Trost, B.M., Greenspan, P.D., Yang, B.V., Saulnier, M.G., J. Am. Chem. Soc., 1990, 112, 9022-9024. 
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Schéma 24. Condensation du 3,5-diméthoxyphénol 83 avec la cyclohexanone 84. 

 

 
Figure 9. Structure cristallographique du composé 86. 

En nous basant sur ces résultats préliminaires, nous avons modifié notre 

rétrosynthèse (Schéma 25). Les dernières étapes sont restées inchangées, mais le 

système tricyclique sera construit par une addition du phénol 83 sur la 

cyclopentanone 82 suivie par une cyclisation spontanée. 

 
 

Schéma 25. Analyse rétrosynthétique modifiée. 

 



RESULTATS 
 

54 
 

3.3.3. Préparation des cyclopentènones et essais de cyclisation spontanée 

Pour vérifier que l’étape de condensation peut s’effectuer entre le 

3,5-diméthoxyphénol 83 et une cyclopentanone (ou bien une cyclohexanone comme 

précédemment), nous avons cherché, dans un premier temps, à synthétiser la 

cyclopentènone 88 (Schéma 26).  

L’addition du réactif de Grignard préparé à partir de 89 sur la 

cyclopentanone46 suivie d’une réaction de déshydratation47 a permis de préparer la 

cyclopentène 91. Malheureusement, ce dernier n’a pas pu être transformé en 

cyclopentanone 88 par oxydation.48 

 

Schéma 26. Premier essai de synthèse de la cyclopentanone 88. 

 Lors la recherche d’une nouvelle approche pour former le composé 88, les 

travaux de Piancatelli et al. ont retenu notre attention.49 Ces auteurs ont décrit la 

synthèse d’une hydroxycyclopentènone 93 par un réarrangement catalysé par un 

acide de Lewis, ZnCl2 (Schéma 27). Dans le mécanisme proposé, ce réarrangement 

est initié par l’activation de carbinol 92 par du ZnCl2, ensuite une cascade de 

transformations permet d’obtenir un cation pentadiènyle 94 qui subit une cyclisation 

conrotatoire pour former finalement le produit 93. De plus, cette réaction est plus 

                                                             
46

 Zhou, L., Liu, X.H., Ji, J., Zhang, Y.H., Wu, W.B., Liu, Y.B., Lin, L.L., Feng. X.M., Org. Lett., 2014, 16 
(15), 3938-3941. 
47

 Hamon, D.P.G., Tuck, K.L., Christie, H.S., Tetrahedron, 2001, 57, 9499-9508. 
48

 Thaher, B.A., Koch, P., Amo, V.D., Knochel, P., Laufer, S., Synthesis, 2008, 2, 225-228. 
49

 Piancatelli, G., Scettri, A., David, G., D’Auria, M., Tetrahedron, 1978, 34, 2775-2778. 
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rapide et donne un meilleur rendement lorsque R est un groupe aromatique. 

 

Schéma 27. Réaction de Piancatelli.48 
   

Le carbinol 95 a été obtenu quantitativement à partir du furane et de 

l’anisaldéhyde. Ensuite, dans la condition de Piancatelli, cet alcool a été converti en 

composé 96 avec 64% de rendement (Schéma 28). L’hydrogénation de ce composé à 

40 bars d’hydrogène a nous donné un mélange de produits : l’ènone 97 (34%) 

résultant de l’hydrogénation de la double liaison suivie d’une déshydratation, et 

l’alcool 98 (17%) issu d‘une double hydrogénation du composé 97. L’alcool 98 a été 

ensuite engagé dans une oxydation de Swern pour former le composé 88. 

 

 

Schéma 28. Préparation du composé 88 et réaction modèle. 

 

 Ce composé 88 a été engagé dans une réaction modèle avec le 

3,5-diméthoxyphénol 83 dans les conditions précédemment décrites, pour fournir le 
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produit cyclisé 99 avec 50% de rendement (Schéma 28).  

Encouragé par ces résultats préliminaires, nous avons concentré ensuite nos 

efforts sur la préparation de la cyclopentanone 82 pour appliquer cette cyclisation à 

la formation du squelette de flavaglines. Pour cela, nous avons d’abord cherché à 

améliorer la préparation du composé 97. L’hydrogénation du composé 96 sous 

pression atmosphérique a permis d’obtenir le composé 100 qui a été directement 

engagé sans purification dans une étape de déshydratation en présence de silice. La 

cyclopentènone 97 a été ainsi obtenue avec 70% de rendement (Schéma 29).  

 

 
 

Schéma 29. Conversion du composé 96 en cyclopentènone 97. 

 

 Afin d’introduire un groupe phényle en position β de l’ènone 97, plusieurs 

méthodes ont été testés. Dans un premier temps, l’addition 1,4 d’un phénylcuprate50 

n’a donné que le produit de départ et les produits oligomérisés qui n’ont pas été 

identifiés (Schéma 30).  

 

 

Schéma 30. Essai de l’addition conjuguée du phényle. 

 

 Nous nous sommes ensuite inspirés des travaux du groupe de Csàkÿ qui a décrit 

l’addition d’acide phénylboronique sur une cyclopentènone catalysée au Rh(I).51 

Plusieurs essais ont été effectués dans les conditions de Csàkÿ avec différents additifs 

et systèmes de solvants (Schéma 31). Cependant, le composé 82 a été isolé une seule 

                                                             
50

 Becheanu, A., Baro, A. Laschat,S., Frey, W., Eur. J. Org. Chem., 2006, 2215-2225. 
51

 De la Herrán, G., Mba, M., Murcia, M. C., Plumet, J., Csákÿ, A. G., Org. Lett., 2005, 7, 1669-1671. 
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fois et avec un rendement faible (Entrée 4). 

 

 

Schéma 31. Addition conjuguée catalysée au Rh(I). 

 

Entrée Additif Solvant Rdt du 82 

1 LiOH (0,5 éq) Dioxane / H2O (4/1) 0% 

2 LiOH (0,5 éq) Dioxane / H2O (10/1) 0% 

3 Chlorure de guanidium / LiOH (1 éq) Dioxane / H2O (4/1) 0%  

4 Chlorure de guanidium / LiOH (1 éq) Dioxane / H2O (10/1) 9%  

5 CsF (3 éq) Dioxane / H2O (10/1) 
trace en 

RMN 

Tableau 1. Résultats de l’addition conjuguée catalysée au Rh(I). 

La méthode qui a finalement été adoptée pour insérer un groupe phényle fait 

appel à l’addition de phényllithium sur le carbonyle pour former d’abord l’alcool 101. 

Ce dernier a été engagé ensuite dans un réarrangement oxydatif en présence de 

pyridinium dichromate,52 pour générer la cyclopentènone 102 (Schéma 32). 

Schéma 32. Synthèse de la cyclopentanone 82. 

Pour réduire la cyclopentènone 102 en cyclopentanone 82, divers essais ont 

                                                             
52

 Trost, B. M., Pinkerton, A. B., J. Org. Chem., 2001, 66, 7714-7722. 
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été effectués (Schéma 32). Les résultats sont récapitulés dans le tableau 2.  

Lorsque la réaction a été effectué dans l’éthanol, en présence de Pd/C et sous 

une pression atmosphérique d’hydrogène, la cyclopentanone 82 a été obtenue mais 

avec un rendement de 57%, avec l’alcool comme sous-produit et produit de 

dégradation (entrée 1). L’essai avec du catalyseur de Lindlar a permis de récupérer 

seul le produit de départ (entrée 2). Avec la 2-nosyle hydrazine comme agent de 

réduction, le produit de départ inchangé a été également récupéré (entrée 3). Le 

choix s’est finalement porté sur le Pd(OH)2 qui a conduit à la formation de la 

cyclopentanone 82 accompagné uniquement de l’alcool correspondant comme 

produit secondaire (entrée 4). Lorsque l’éthanol a été remplacé par l’AcOEt, le 

rendement a été amélioré à 90% (entrée 5). 

Entrée Réactif-catalyseur Durée Solvant Rendement 

1 Pd/C, H2 2 h EtOH 57 % 

2 Lindlar, H2 24 h EtOH 0 % 

3 
 

18 h ACN 0 % 

4 Pd(OH)2/C, H2   12h         EtOH 32% 

5 Pd(OH)2/C, H2 4 h AcOEt 90 % 

Tableau 2. Résultats de l’hydrogénation de la cyclopentènone 102. 

Une fois obtenue, la cyclopentanone 82 a été engagée dans la condensation 

avec le 3,5-diméthoxyphénol selon la méthode précédemment développée (Schéma 

33). Cependant, la réaction à température ambiante n’a pas permis d’obtenir le 

produit cyclisé et seuls les produits de départ ont été récupérés. La réaction chauffée 

à 50°C a donné les produits cyclisés 103a et 103b avec 22% de rendement dans un 

rapport 10/1. 
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Schéma 33. Condensation et cyclisation spontanée. 

Figure 10. Résultat de Noesy du composé 103a. 

  La stéréochimie relative de 103a a été établie par analyse NOESY (figure 10). 

Cette cyclisation permet d’accéder au squelette tricyclique des flavaglines, mais avec 

une mauvaise stéréochimie de manière préférentielle.  

3.3.4. Etude rétrosynthétique modifiée 

 Nous avons alors décidé de changer de stratégie en utilisant à nouveau une 

sélénocyclisation pour former le squelette tricyclique. (Schéma 34). 

 

Schéma 34. Nouvelle analyse rétrosynthétique. 
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     La configuration désirée peut être établie par une hydrogénation de la double 

liaison du composé 104 à la fin de synthèse, le groupe d’alcool allylique du 104 peut 

être installé à partir du composé 105 qui est obtenu par une oxidation/élimination à 

partir du composé 106. Ce dernier est issu de la sélénocyclisation du composé 107 

qui est le résultat de condensation entre la cyclopentènone 102 et le bromophénol 

108. 

3.3.5. Essais de condensation de dérivés bromés du phloroglucinol sur 

cyclpentènone 

    Le bromophénol 108 a été préparé selon une méthode décrite dans la 

littérature (Schéma 35).53 Une acylation du 3,5-diméthylephénol 83 suivie par une 

bromation en présence du NBS a permis d’obtenir le bromophénol acétylé 110, qui a 

été ensuite saponifié pour former le bromophénol 108. 

Schéma 35. Synthèse du bromophénol 108 selon la méthode de Haufe et al.53
 

 Ensuite, la condensation entre le bromophénol 108 et la cyclopentènone 102 a 

été tentée avec plusieurs méthodes différentes, mais toujours en basant sur 

l’addition nucléophile du groupe carbonyle par un lithien. Pour étudier l’influence du 

groupe phénol, nous avons préparé également le bromophénol 111 protégé par un 

groupe benzyle.54 Comme notre stock de cétone 102 était limité, nous avons 

examiné la réactivité du composé 108 ou 111 métallés sur du benzaldéhyde quand la 

réactivité de ces composés était incertaine (Schéma 36). 

 

                                                             
53

 Runge, M., Haufe, G., J. Org. Chem., 2000, 65 (25), 8737–8742. 
54

 Murata, T., Shimada, M., Sakakibara, S., Yoshino, T., Masuda, T., Shintani, T., Sato, H., Koriyama, Y., 

Fukushima, K., Nunami, N., Yamaguchi, M., Fuchikami, K., Komura, H., Watanabe, A., Ziegelbauer, 

K.B., Bacon, K.B., Lowinger, T.B., Bioorg. Med. Chem. Lett., 2004, 14 (15), 4019-4022. 
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Schéma 36. Essais de condensation de dérivés bromés du phloroglucinol sur 

cyclpentènone 102 ou le benzaldéhyde 

  

Entrée Bromophénol Condition
c
 Substrat Résultat

a
 

1 

 

n-BuLi (2éq), 

THF 

-78°C à t.a. 

PhCHO   PhCHO  +  

2 

 

n-BuLi (2éq), 

THF 

-78°C à t.a. 

  102     102 +   

3 

 

n-BuLi, THF 

-78°C à t.a. 
PhCHO 

 

4 

 

n-BuLi, THF 

-78°C à t.a. 
  102 102 +  

5 

 

PhLi, THF 

-78°C à t.a. 
PhCHO 

 

6 

 

PhLi, THF 

-78°C à t.a. 
  102 

102 +                                   + 
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7 

 

nBuLi, THF 

puis LaCl3∙2LiCl 

-78°C à t.a. 

  102      102  +  

8 

 

nBuLi, THF 

-78°C à t.a. 
102 + CeCl3       102  + 

9 

 

nBuLi (2éq), 

Et2O 

0°C à t.a. 

102 + CeCl3 
     102  +  

a : les résultats sont déterminés par analyse RMN 1H du produit brut.  

b : le rendement est calculé en basant sur produit 112 isolé après une chromatographie. 

c : tous les solvants sont anhydres ou distillés avant l’utilisation. 

Tableau 3. Essais de condensation de dérivées métallés du phloroglucinol protégé sur une 

cétone et du benzylaldéhyde. 

    Les résultats de la condensation ont été récapitulés dans le Tableau 3. D’abord, 

la méthode de Evans55 basée sur la formation d’un lithien o-lithiophénoxide a été 

testée, mais elle n’a pas permis d’obtenir le produit désiré. L’analyse RMN 1H du 

produit brut a montré que le phénol protoné 83 et les substrats inchangés ont été 

obtenus (entrées 1 et 2).  

 Dans un deuxième temps, les essais ont été effectués avec le bromophénol 111 

protégé par un groupe benzyle. La réaction avec du benzaldéhyde a permis d’obtenir 

le produit désiré 112 avec 65% de rendement, en revanche, la réaction avec l’ènone 

102 n’a donné que le produit protoné 113 et l’ènone inchangée 102 (entrées 4).  

                                                             
55

 Talley, J. J., Evans, I. A., J. Org. Chem., 1984, 49, 5267-5269. 
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Schéma 37. Condensation décrite par Rychnovsky et coll.56 

     Nous nous sommes ensuite inspirés des travaux du groupe de Rychnovsky qui 

a réalisé une condensation entre un bromophénol protégé 115 et un aldéhyde α, β – 

insaturé 116 (Schéma 37).56 Cette réaction ne peut marcher qu’avec du PhLi. Avec 

du n-BuLi, du sec-BuLi ou du t-BuLi, seul le produit protoné a été obtenu. En Basant 

sur ces travaux, nous avons effectué les condensations en remplaçant le n-BuLi par 

du PhLi. La réaction avec du benzaldéhyde a donné le produit 112 avec 50% de 

rendement (entrée 5), par contre, avec de l’ènone 102, la réaction a donné toujours 

le produit protoné 113, l’ènone inchangée et une faible quantité de composé 114 qui 

résulte d’une attaque de PhLi sur l’ènone (entrée 6).  

Selon ces résultats, nous avons considéré que l’effet stérique des deux 

groupes aryle de l’ènone 102 a empêché l’attaque nucléophile du composé 108. Pour 

compenser cet effet, nous avons pensé dans un premier temps à ajouter un 

halogénure de lanthanide, par exemple, du LaCl3∙2LiCl ou du CeCl3, qui peut favoriser 
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l’attaque du lithien sur la cétone énolisable et encombrée.57  

 

 

Schéma 38. Condensation de Tius.58 

 Nous avons d’abord testé la méthode décrite par le groupe de Tius qui a 

condensé un aryle 119 et une ènone encombrée 120 en présence du LaCl3∙2LiCl 

(Schéma 38).58 Malheureusement, cette méthode n’a pas abouti avec nos substrats 

(entrée 7).  

La méthode de Dimitrov a été ensuite tentée en utilisant du CeCl3 anhydre pour 

activer la cétone.59 Les réactions n’ont donné toujours que les phénols protonés et 

l’ènone 102 inchangée (entrée 8 et 9).  

 

3.3.6. Formation de l’oxime et essais de condensation 

Nous avons pensé dans un deuxième temps à installer un groupe attracteur en 

position α de la fonction cétone, par exemple, une oxime, pour la rendre plus 

déficiente en électron et compenser la gêne stérique.  

La céto-oxime 122 a été préparé à partir de l’ènone 102 en présence du butyle 

nitrite et du HCl concentré. Les oximes méthylées 123a et 123b ont été obtenus aussi 

par une conversion de l’oxime 122 en utilisant du diméthyle de sulfate comme agent 

de méthylation (Schéma 39). 
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Schéma 39. Préparation des oximes méthylées 123a et 123b. 

 

Ayant un proton acide en position α de l’oxime, le traitement de 123a et 123b 

par un composé lithié va conduire à un énolate non réactif vis-à-vis d’un nucléophile. 

Nous avons donc cherché à condenser ces composés avec un phénol dans des 

conditions acides (Schéma 40). 

 

 

Schéma 40 : Déprotonation possible en condition basique. 

      

     De ce fait, la condensation en présence d’un acide de Lewis a été tentée entre 

l’oxime et le 3,5-diméthoxyphénol 83 (Schéma 42). La condensation entre l’oxime 

122 et le 3,5-dimethoxyphénol a été effectuée en présence du BF3·Et2O, mais elle n’a 

donné que les produits de départ inchangés.  

     De manière intéressante, lorsque la condensation a été effectuée entre l’oxime 

méthylée 123a ou 123b avec du 3,5-diméthoxyphénol 83, au lieu d’obtenir le 

composé désiré, les deux spiroxanthènones 124a et 124b ont été formées (Schéma 

41). Nous avons considéré que ces deux composés spiro résultent d’une double 

addition du phénol sur l’oxime suivi par une déshydratation. La structure du composé 

124a a été vérifiée par cristallographie RX (Figure 11). La condensation de 

α-céto-oximes O-méthylées sur des phénols donnant lieu à des structures originales, 

l’étude de cette réaction sera poursuivie au laboratoire et les composés ainsi obtenus 
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seront testés pour leur cytotoxicité dans un panel de lignées cancéreuses et aussi 

pour leur activité dans des tests in vitro d’affections tropicales. 

 

 

Schéma 41 : Essais de condensation avec l’oxime dans la condition acide. 

 

Figure 11 : Structure RX du composé 124a. 
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3.4. Modification bioisostérique de flavaglines 

 

Il a été décrit que la molécule 126 ayant un groupe méthoxy en position 8b 

n’est pas cytotoxique,60 ce qui suggère qu’un groupe donneur d’hydrogène est 

nécessaire pour l’activité anticancéreuse (Figure 12). Par ailleurs, Il avait été déjà  

montré au laboratoire que le remplacement du groupe hydroxyle en position 1 par 

un groupe formamide (127) ou un groupe sulfonamide (128) ne change pas 

significativement leurs activités anticancéreuses et cardioprotectrices. Cette 

observation nous a incités à examiner si les remplacements en position 8b par les 

mêmes donneurs d’hydrogène sont aussi tolérés. 

 

Figure 12 : Modification structurale des flavaglines en position C1 et C8b. 

 

Deux conditions de substitution nucléophile par l’azoture ont été d’abord 

essayées,61,62 mais aucune des deux n’a abouti, dans les deux cas, le produit de 

départ 78 reste inchangés (Schéma 42). 
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Schéma 42 : Premiers essais de substitution nucléophile par un azoture. 

 

 Les premiers résultats indiquent que cet alcool tertiaire n’est pas assez activé 

dans la condition acide. Nous avons pensé, dans un deuxième temps, à transformer 

cet alcool tertiaire en groupe carbonate pour générer un carbocation benzylique 

(Schéma 43).  

 

Schéma 43 : Formation et réactivité du carbonate 2. 

 

 L’épi-rocaglaol racémique 78 a été traité par le triphosgène en présence de la 

pyridine à basse température. Cette réaction a permis d’obtenir le carbonate 131 

avec 80% de rendement. Ce dernier a ensuite été engagé dans les conditions de 

substitution nucléophile pour introduire le groupe azoture. Deux conditions ont été 

testées, mais aucune réaction n’a eu lieu. Même à 140°C au micro-onde (condition 

3),63 le produit de départ est resté inchangé. 

 

  Nous avons alors cherché à augmenter la réactivité de cet électrophile en 

passant par un sulfate cyclique (Schéma 44). 
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Schéma 44. Essai d’introduction d’un sulfate. 

 

Le diol 78 a été d’abord traité par le chlorure de thionyle dans un milieu 

basique.64 Le sulfite obtenu a été ensuite engagé dans une oxydation en présence du 

périodate de sodium et chlorure de ruthénium. Au lieu de former le sulfate désiré, 

une dégradation a été observée indiquant que le sulfate est instable. 

Par rapport au groupe carbonate qui n’est pas assez réactif et au groupe 

sulfate qui l’est trop, nous avons considéré que le sulfite 132 peut être un meilleur 

choix pour introduire le groupe azoture. Nous avons été heureux d’observer la 

formation de l’azoture 134 avec un rendement de 63% (Schéma 45). 

     Pour réduire le groupe azoture en amine, une réaction de Staudinger en 

présence d’un triphénylphosphine a d’abord été tentée, mais n’a pas abouti.  En 

revanche, l’espèce réductrice Sn(SPh)3 formée in situ a permis d’obtenir l’amine 

désirée 135 avec un rendement de 85%. 65  Finalement, l’amine 135 a été 

transformée en formamide 129 et sulfonamide 130.66,67 
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Schéma 45. Formation du formamide 129 et du sulfonamide 130. 

 

     La cytotoxité des isostères 129 et 130 a été examinée dans des cellules 

cancéreuses humaines après 72h de traitement. Malheureusement, ces deux 

composés ne présentent pas de cytotoxicité significative dans les lignées de cellules 

cancéreuses Hep3B et HuH7. Ces travaux ont été publiés dans Tetrahedron Letters.68 
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3.5.  Etude pharmacologique du FL3 et de la fluorizoline  

Au cours de ma thèse, j’ai été amenée à synthétiser deux composés : le FL3 

(selon une méthode développée au laboratoire, Schéma 46) et la fluorizoline, un 

ligand cytotoxique des prohibitines développé par  Lavilla et ses collègues 

(Schéma 47).69  

 

Schéma 46. Synthèse du FL3 

 

 

Schéma 47. Synthèse de la fluorizoline. 

Ces composés ont été examinés dans les laboratoires de Canan Nebigil et Guy 

Fuhrmann à l’Université de Strasbourg, Stéphan Vagner à l’institut Curie à Orsay, 

Caroline Robert à Gustave Roussy à Villejuif, Arianne Theiss à l’Université Baylor à 

Dallas, Krishnaraj Rajalingam à l’Université du centre médical de Mayence et Joost 
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Hoenderop à l’Université Radboud à Nimèque. 

3.5.1. Activation du canal au magnésium TRPM6 (publication n° 5). 

      L’homéostasie du magnésium est hautement régulée, notamment par le 

canal TRPM6 au niveau rénal et intestinal. L'équipe du Pr Joost G.J. Hoenderop à 

l'Université Radboud à Nimègue (Pays-Bas) concentre son activité sur les canaux au 

magnésium TRPM6 et TRPM7. Cette équipe avait précédemment montré que la 

PHB2 inhibe TRPM6.70  

      Dans la présente étude, cette équipe a démontré par patch clamp que les 

flavaglines lèvent cette inhibition.71 Aucun autre composé testé dans ce laboratoire 

ne présente d'effet aussi prononcé. Des formes mutantes de TRPM6 insensibles à la 

régulation par l’insuline ne sont pas sensibles à cette activation par les flavaglines. La 

signalisation du récepteur à l’insuline active une GTPase, Rac1 (Ras-related C3 

botulinum toxin substrate 1) pour induire la localisation de TRPM6 à la surface des 

cellules. La surexpression d’une forme mutante dominante négative de Rac1 bloque 

les effets des flavaglines sur TRPM6. Ces travaux suggèrent donc que les flavaglines 

agissent au niveau de Rac1 pour induire une translocation de TRPM6 dans les 

radeaux de la membrane plasmique à partir de réservoirs intracellulaires (Figure 13).  

      Des études préliminaires in vivo avec du FL3 (0.1 mg/kg i.p, 1 fois par jour 

durant 7 jours,) n’ont malheureusement pas montré de changement dans la 

concentration sérique et urinaire en Mg2+. 
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Figure 13. Modèle proposé d’induction de la translocation de TRPM6 à la surface des 

cellules par les flavaglines. Les flavaglines activent les effecteurs en aval du récepteur 

à l’insuline. La PHB2 et CDK5, qui régulent toutes deux TRPM6 sont localisées dans 

les radeaux lipidiques (Figure copiée de la référence 71). 

 

3.5.2. Mécanisme d’action cardioprotectrice des flavaglines (publication n° 6). 

La cardiotoxicité induite par les anthracyclines en général, et la doxorubicine 

en particulier, demeure un problème important en oncologie. Bien que plusieurs 

stratégies aient été explorées, la seule approche efficace est l'emploi du dexrazoxane 

(Cardioxane, Zineccard), un chélateur du fer. Cependant cette protection n'est pas 

totale et ce médicament peut induire la formation de tumeurs secondaires, ce qui a 

conduit à son limité de usage. La recherche de médicaments susceptibles de limiter 

la cardiotoxicité anthracyclines constitue donc un important domaine d'investigation 

au niveau international.72  

L'équipe de Canan Nebigil à Strasbourg avait précédemment montré que les 

flavaglines protègent les cardiomyocytes in vitro et in vivo contre l'apoptose induite 

par la doxorubicine. La présente étude a montré que cette cardioprotection est 
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médiée par la PHB1 et le facteur de transcription STAT3 (Figure 14). 73  La 

doxorubicine induit une translocation dans le noyau de la PHB1 et de STAT3 qui 

interagissent ensemble pour conduire à l’apoptose. En revanche, le FL3 induit une 

localisation de ces deux protéines dans les mitochondries où elles activent des voies 

de survie. Cette localisation de STAT3 est induite par une rapide phosphorylation de 

STAT3. Par ailleurs, le FL3 induit augmente considérablement l’expression de la PHB1 

(Figure 15). Cette observation est importante, car comme beaucoup de types 

cellulaires, les cardiomyocytes surexpriment la PHB1 quand elles sont stressées pour 

activer des voies de survie.74  

 

Figure 14. Mécanisme d’action 

cardioprotecteur des flavaglines 

(copié de la référence 72). 

Figure 15. Expression de PHB1 après 10 h 

de traitement par le véhicule (DMSO), le 

FL3, la doxorubicine ou la doxorubicine + 

FL3 comparée aux cellules non traitées 

(NT) (n = 3) (copié de la référence 73). 
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3.5.3. Effets cytotoxiques et pro-différenciateurs des flavaglines sur des 

cellules souches cancéreuses (publication n° 7). 

Guy Fuhrmann, à la Faculté de pharmacie de Strasbourg, a montré que le FL3, 

bloque la prolifération des cellules de carcinome embryonnaire humain NT2/D1 ou 

induit leur différenciation selon la dose utilisée (Figure 16). Ces cellules représentent 

un modèle de cellules souches cancéreuses.75 Il est important de noter que le FL3 

n’affecte pas la survie des cellules souches non-cancéreuses, ce qui augmente son 

potentiel thérapeutique pour rendre les cellules souches cancéreuses sensibles aux 

thérapies conventionnelles. 

 

Figure 16. Induction de l’apoptose ou de la différenciation par les flavaglines de 

cellules de carcinome embryonnaire humain NT2/D1 (modèle de cellules souches 

cancéreuses). 

 

  

3.5.4. Effet anti-inflammatoire et cytoprotecteur du FL3 dans un modèle 

murin de la maladie de Crohn (publication n° 8). 

     Le Pr Arianne Theiss à l’Université de Baylor à Dallas a démontré que le FL3 

diminue l’inflammation dans un modèle d’inflammation chronique des intestins 

(maladie de Crohn) induite par du Dextran Sulfate de Sodium (DSS) chez la souris, et 

augmente aussi la résistance de l’épithélium intestinal face à l’apoptose induite par 

l’inflammation.76 En effet, la structure de l’épithélium intestinal des souris traitées 

par du FL3 et du DSS est bien moins déstructurée que celui des souris ayant reçu du 

DSS seul (Figure 17A). Un calcul de score clinique et histologique met en évidence le 

caractère anti-inflammatoire et cytoprotecteur prometteur du FL3 dans ce modèle 
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d’affection (Figure 17B).  

L’équipe du Pr Theiss a examiné le mode d’action du FL3 et a montré qu’il est 

dual. D’une part il diminue l’inflammation en bloquant la production de facteurs 

pro-inflammatoires comme le factor nucléaire kappa B (NF-kB) p65 ou la 

cyclooxygénase 2. D’autre part il augmente la survie de l’épithélium intestinal face au 

stress induit par des agents pro-inflammatoires comme le TNFα ou l’interféron γ. Au 

niveau moléculaire, le FL3 induit l’expression de la PHB1 de manière similaire à ce qui 

avait observé dans les cardiomyocytes. En résumé, ces travaux démontrent in vitro et 

in vivo que le FL3 présente de puissants effets anti-inflammatoires dans un modèle 

de la maladie de Crohn. L’étude du potentiel thérapeutique dans cette affection est 

actuellement poursuivie dans le laboratoire du Pr Theiss. 

 

Figure 17. Effets anti-inflammatoires et cytoprotecteurs du FL3 dans un modèle 

d’inflammation du colon induit par du DSS. Les souris ont reçu du DSS pendant 6 

jours et du FL3 (0.1 mg/kg i.p.) ou du véhicule (veh) une fois par jour de J0 à J4. Les 

souris témoins ont seulement eu de l’eau de boisson sans DSS. A. 

Photomicrographies représentatives de sections distales du colon colorées à 

l’hémotoxyline et à l’éosine. B. Scores  de dommages cliniques et histologiques 

(copié de la référence 75).  

 

 

3.5.5. Potentialisations des effets anticancéreux des inhibiteurs de MEK dans 

le mélanome métastatique N-RAS positif (publication n° 9). 

     Les protéines RAS sont des petites GTPases qui existent sous 4 formes : NRAS, 

HRAS, KRAS4A et KRAS4B, ces deux dernières résultant d’un épissage différentiel. 

Elles sont activées par des récepteurs tyrosine kinases pour réguler différentes voies 

de signalisation (Figure 18) impliquées notamment dans le contrôle du métabolisme, 



RESULTATS 

77 

 

de la prolifération et de la survie cellulaire. Un quart des patients présentent une 

mutation de ces gènes (NRAS, HRAS et KRAS), ce qui en fait une des familles 

d’oncogènes les plus fréquemment mutés dans les cancers humains. Ces 3 gènes ne 

sont pas mutés avec la même fréquence : KRAS est le plus fréquemment mutés (85%), 

suivi de NRAS (12%) et HRAS (3%).77  

 
 

Figure 18. Signalisation de RAS. Ras est activée par des Facteurs d’Echange 

Guanyliques (GEFs, encadré vert) et désactivés par des protéines activatrices de 

GTPases (GAPs, encadré rouge). Les protéines RAS activent 4 types principaux 

d’effecteurs : les protéines RASSF (Ras association domain family), RalGDS (Ral 

Guanine nucleotide Dissociation Stimulator), les kinases RAF, et les phosphoinositide 

3-kinases (PI3K) (copié de la référence 77). 

 

     Une mutation de NRAS conduisant à une activation constitutive des voies des 
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MAP kinases et PI3K/Akt/mTOR est retrouvée chez 10 à 15% des patients souffrant 

d’un mélanome, ainsi que dans une pléthore d’autres cancers, notamment des 

leucémies, et de cancers colorectaux ou pulmonaires. Malgré des efforts de 

recherche importants depuis plus de 30 ans, il n’y a pas encore d’inhibiteur de RAS 

qui soit actuellement utilisé comme médicament. En revanche, il existe des 

médicaments, comme le trametinib, cobimetinib ou le vemurafenib, qui ciblent les 

kinases MEK ou BRAF qui sont en aval de la signalisation de RAS. Cependant, comme 

pour beaucoup de thérapies ciblées, ces médicaments perdent leur efficacité après 

quelques mois de traitements.  

      Les équipes de Stéphan Vagner et Caroline Robert avaient montré que le FL3, 

permettait de lever la résistance aux inhibiteurs de BRAF dans un modèle murin de 

mélanome métastatique ayant développé une résistance au vémurafenib.78  

      Dans la présente étude, ces équipes ont montré qu’en inhibant eIF4F, le FL3 

potentialise les effets cytotoxiques in vitro d’un inhibiteur de MEK, le rametinib, dans 

des lignées de mélanomes présentant une mutation de NRAS (Figure 19).79 

 

 

  

                                                             
78

 Boussemart, L., Malka-Mahieu, H., Girault, I., Hemmingsson, O., Allard, D., Tomasic, G., Thomas, 

M., Ribeiro, N., Thuaud, F., Basmadjian, C., Mateus, C., Routier, E., Kamsu-Kom, N., Agoussi, S., 

Eggermont, A., Désaubry, L., Robert, C., Vagner, S., Nature, 2014, 513, 105-109. 
79

 Malka-Mahieu, H., Girault, I., Rubington, M., Leriche, M., Welsch, C., Kamsu-Kom, N., Zhao, Q., 

Désaubry, L., Vagner, S., Robert, C., Cell Cycle, 2016, 15, 2405-2409. 



RESULTATS 

79 

 

 

Figure 19. L’activation d’un récepteur tyrosine kinase (RTK) par un facteur de 

croissance active la voie PI3K/Akt/mTOR et celles des MAP kinases. Ces deux voies 

convergent vers l’activation du complexe eIF4F qui est inhibé par le FL3 (Figure 

copiée de la référence 78). 

 

 

3.5.6. Inhibition de KRAS par les flavaglines et la fluorizoline (publication 

n° 10 ) 

En 2014, les équipes de chimie organique des Pr Fernando Albericio et Rodolfo 

Lavilla de l’Université de Barcelone associés à leurs collaborateurs biologistes ont 

décrits une série de trifluorothiazolines diarylées qui présentent une cytotoxicité 

p53-dépendante sur un panel de lignées cancéreuses, le composé le plus cytotoxique 
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étant la fluorizoline.80 Ces auteurs ont démontré par chromatographie d’affinité que 

ces composés se lient aux PHBs. Par la suite, l’équipe des Pr Daniel Iglesias-Serret et 

Joan Gil, au sein de la même université, ont montré qu’une déplétion partielle en 

PHBs confère une résistance aux effets cytotoxiques de la fluorizoline, démontrant 

ainsi l’implication des PHBs dans le mécanisme d’action cytotoxique de ce 

composé.81  

Dans la présente étude, l’équipe du Pr Rajalingam a montré que la PHB1 est 

surexprimée dans les cancers du poumon non à petites cellules (NSCLCs), et que 

cette surexpression est corrélée à un pronostic défavorable.82 De manière toute à 

fait inattendue, il a été trouvé que les flavaglines et la fluorizoline bloquent la liaison 

du GTP à KRAS muté ou activé par la signalisation de l’EGF. En effet l’activation d’un 

Récepteur Tyrosine Kinase, comme celui à l’EGF par exemple, induit le recrutement 

de Facteurs d'Echange de nucléotides Guanyliques (GEF, comme SOS par exemple) 

via les protéines adaptatrices SHC et Grb2 (Figure 20).83 SOS induit le remplacement 

du GDP lié à RAS par du GTP, ce qui induit une dimérisation de cette protéine qui  

peut alors activer ses effecteurs, notamment les kinases RAF ou les phosphoinositide 

3-kinases (PI3K). 

 

Le Pr Rajalingam avait déjà démontré en 2005 que les PHBs doivent interagir 

avec B-RAF pour que celle-ci puisse être activée par RAS.84  Cependant, une 

modulation de l’échange GTP-GDP lié à RAS par les PHBs n’avait jamais été examinée.  

                                                             
80

 Pérez-Perarnau, A., Preciado, S., Palmeri, C. M., Moncunill-Massaguer, C., Iglesias-Serret, D., 

González-Gironès, D. M., Miguel, M., Karasawa, S., Sakamoto, S., Cosialls, A.M., Rubio-Patiño, C., 

Saura-Esteller, J., Ramón, R., Caja, L., Fabregat, I., Angew. Chemie. Int. Ed., 2014, 53, 10150–10154. 
81

 Moncunill-Massaguer, C., Saura-Esteller, J., Pérez-Perarnau, A., Palmeri, C.M., Núñez-Vázquez, S., 

Cosialls, A. M., González-Gironès, D. M., Pomares, H., Korwitz, A., Preciado, S., Albericio, F., Lavilla, R., 

Pons, G., Langer, T., Iglesias-Serret, D., Gil, J., Oncotarget, 2015, 6, 41750-41765. 
82

 Yurugi, H., Marini, F., Weber, C., David, K., Zhao, Q., Binder, H., Désaubry, L., Rajalingam, K., 

Oncogene, 2017, 36, 1-12.  
83

 Lu, S., Jang, H., Muratcioglu, S., Gursoy, A., Keskin, O., Nussinov, R., Zhang, J., Chem. Rev., 2016, 

116, 6607−6665. 
84

 Rajalingam, K., Wunder, C., Brinkmann, V., Churin, Y., Hekman, M., Sievers, C., Rapp, U. R., Rudel, 

T., Nat. Cell Biol., 2005, 7(8), 837-843. 



RESULTATS 

81 

 

 

 

Figure 20. L’activation du récepteur à l’EGF induit une cascade d’événement 

conduisant à un échange du GDP lié à RAS par du GTP et à une activation des voies 

RAF/MEK/ERK et PI3K/Akt/ mTOR (Figure copiée de la référence 81). 

 

 

Cette observation que les flavaglines et la fluorizoline bloquent KRAS est 

importante, car les mutations qui activent cette protéine sont retrouvées dans 75 à 

95 % des cancers du pancréas, près de 50% des cancers colorectaux et dans de 

nombreux autres types de cancer. Après plus de trente ans de recherche intensive, 

aucun médicament ciblant KRAS n’est disponible. Plusieurs approches ont été 

envisagées, mais aucune ne combine efficacité thérapeutique et effets secondaires 

acceptables (Tableau 4).85 
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Structure des inhibiteurs de KRAS Mécanisme d’action 

 

 

Inhibiteur spécifique du mutant 

oncogénique de KRAS-G12C. 

 

 

 

Inhibiteur irréversible qui alkyle le 

complexe RAS-SOS bloquant ainsi la 

liaison au GTP. 

 

Inhibiteurs qui ralentissent l’échange 

GDP → GDP. 

 

 

Activateur de l’échange GDP → GDP 

qui bloque l’activation des voies 

RAF/MEK/ERK et PI3K/Akt/mTOR. 

 

 

 

Inhibiteurs qui se lient à GTP-RAS pour 

bloquer l’interaction avec RAF. 

 

Inhibiteur de la phosphodiestérase δ 

(PDEδ) qui bloque l’interaction entre 

cette protéine et KRAS, perturbant 

ainsi la localisation intracellulaire de 

ce dernier. 

 

Tableau 4. Exemples représentatifs de composés inhibant KRAS.83 
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4. Conclusion 

      Nous avons développé trois accès synthétiques à des intermédiaires 

fonctionnalisés de flavaglines. Dans un premier temps, une cyclopentènone 

tri-substituée a été obtenue par une cyclisation catalysée à l’or (I). Les essais de 

transformation de cette cyclopentènone en flavaglines en utilisant une méthode déjà 

décrite n’ont pas abouti, ce qui suggère que cette approche est limitée à la 

préparation des flavaglines ne possédant pas les substituants nécessaires pour 

l’activité pharmacologique. Nous avons également montré les limites de la réaction 

de Nazarov pour synthétiser les flavaglines, en mettant notamment en évidence le 

manque de réactivité d’ènones substituées par un thioéther. Dans un troisième 

temps, une condensation/cyclisation spontanée a été découverte et a permis de 

transformer une cyclopentènone di-substituée en cyclopenta[b]benzofurane. 

      Nous avons aussi synthétisé deux isostères de flavaglines en introduisant un 

formamide ou un sulfonamide en position 8b, démontrant ainsi l’importance de  

l’hydroxyle dans cette position. 

      De plus, au cours de cette thèse, du FL3 et un autre ligand des prohibitines, la 

fluorizoline, ont été ré-synthétisés. Nos collaborateurs ont démontré leur efficacité 

thérapeutique dans des modèles de cancers, d’inflammation chronique des intestins 

(maladie de Crohn) ou encore dans la prévention des effets adverses des 

chimiothérapies au niveau cardiaque. Cette efficacité couplée à un mécanisme 

d’action originale nous incite à poursuivre ces travaux. Notre objectif ultime étant 

d’identifier des dérivés brevetables des flavaglines et de la fluorizoline susceptibles 

de rentrer dans des essais cliniques. 
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5. Partie expérimentale 

 

Généralités :  

Tous les réactifs commerciaux ont été utilisés sans purification sauf le 

benzaldéhyde qui a été distillé avant utilisation. Tous les solvants anhydres utilisés 

sont commerciaux ou conservés sur tamis moléculaire. Toutes les réactions sensibles 

à l’humidité ou l’oxygène ont été effectuées sous atmosphère d’argon et dans des 

ballons séchés à 110°C.  

 Les réactions ont été suivies par chromatographie sur couche mince (plaque 

CCM Merck DC Platten Kieselgel 60 F254). La révélation des plaques a été effectuée 

par irradiation ultraviolette à 254 ou 365 nm, puis par immersion dans un révélateur 

(KMnO4 ou vanilline) si nécessaire. Les colonnes chromatographiques ont été 

réalisées avec du gel de silice fine Merck 60 ; 0,040 - 0,065 mm (230 - 400 mesh).   

 Les spectres RMN 1H et 13C ont été enregistrés sur des spectromères Brüker (400 

MHz/ 100 MHz) ou (500 MHz / 125 MHz). Les conditions sont spécifiées pour chaque 

spectre (température 25°C sauf indication contraire). Les multiplicités sont désignées 

comme suit : s, singulet ; d, doublet ; t, triplet ; q, quadruplet ; m, multiplet ; dd, 

doublet de doublet ; dt, doublet de triplet. Le déplacement chimique (δ) est donné 

en ppm. Le pic résiduel de solvant sert de référence, CHCl3 (7.26 ppm, 1H ; 77.16 ppm 

pour le pic central, 13C), DMSO (2.50 ppm, 1H ; 39.52 ppm pour le pic central, 13C). 

 Les analyses par spectroscopie de masse basse et haute résolution ont été 

réalisées par le Service Commun d’Analyse (SCA) de la faculté de pharmacie d’Illkirch. 

Les spectres de masse basse résolution ont été réalisés avec un appareil Agilent 

1200SL (LC-MS : simple quadripôle, source multimode ES/APCI). Les spectres de 

masse haute résolution ont été réalisés sur un appareil Brüker MicroTOF-Q (ESI 

Q-TOF). 
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5.1. Procédure pour le chapitre 3.1. 

 

 

 

 

 

Acide (E)-2-(4-méthoxyphényl)-3-phénylacrylic (47) 

 

De l’anhydride acétique (76 ml) a été ajouté aux gouttes à gouttes à 0°C à un 

mélange de l’acide acétique (33 g, 0.2 mol), du benzaldéhyde (22 ml, 0.22 mol) et de 

la triéthylamine (27.4 ml, 0.2 mol). Le milieu réactionnel a été sous agitation à 50°C 

pour 2h, à 100°C pour 5h. Le milieu réactionnel a été refroidi à température 

ambiante puis une solution de NaOH (1M) a été ajoutée jusqu’au pH = 8. Le milieu a 

été extrait avec de l’éther, et la phase aqueuse a été acidifié avec de l’HCl concentré à 

0°C. Le précipité obtenu a été filtré et dissous dans de l’acétate d’éthyle, séché sur 

MgSO4, filtré et évaporé à sec. Le composé 47 a été obtenu sous forme d'une poudre 

blanche quantitativement (50g). 

 

RMN 1H (CDCl3, 400 MHz) δ 7.94 (s, 1H, CH), 7.47 - 7.11 (m, 5H, CHar), 7.18 (d, 2H, J = 

8,9 Hz, CHar), 6.92 (d, 2H, J = 8,7 Hz, CHar), 3.85 (s, 3H, OCH3) ppm ;  

 

RMN  13C (CDCl3, 100MHz) δ 173.5, 159.5, 142.4, 131.2 (2C), 130.9 (2C), 129.5, 128.7, 

128.5, 128.5 (2C), 128.2, 114.4 (2C), 55.4 ppm.  

 

HR-MS masse calculée pour C16H14O3 : 254.0943, trouvée : 255.1013 (M+H)+. 

 

Point de fusion : 135.2 °C 
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Chlorure de (E)-2-(4-Méthoxyphényl)-3-phénylacryloyle (56) 

Une quantité catalytique de DMF (235µl, 3 mmol) a été ajoutée à une solution du 

composé 47 (30.75 g, 0.121 mol) dans du CH2Cl2 (160 ml). Le mélange a été refroidi à 

0°C puis du chlorure d’oxalyle (11.76 ml, 0.139 mol) a été ajouté aux gouttes à 

gouttes. Le milieu réactionnel a été agité à température ambiante pour 12h puis 

concentré à sec. Il a été lavé 3 fois avec du toluène, puis évaporé à sec pour donner 

quantitativement le composé 56 (33g), sous forme d'une poudre beige.  

RMN 1H (CDCl3, 400 MHz) δ 8.08 (s, 1H, CH), 7.30 - 7.12 (m, 7H, CHar), 6.75 (d, 2H, J = 

8.9 Hz, CHar), 3.85 (s, 3H, OCH3) ppm;  

RMN 13C (CDCl3, 100 MHz) δ 169.8, 160.0, 147.6, 136.0, 131.5 (2C), 131.2 (2C), 130.6, 

128.6 (2C), 128.4, 126.8, 114.7 (2C), 54.4 ppm. 

HR-MS : masse calculée pour C16H13ClO2: 272.0604, trouvée 272.0604 [C16H13ClO2
·]+. 

Point de fusion : 137.1 °C 
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(E)-2-(4-Méthoxyphényl)-1-phényl -5- (trimethylsilyl)pent-1-èn-4-yn-3-one (46) 

Le composé 56 (26 g, 0.095 mol), du Pd(PPh3)2Cl2 (1.33 g, 1.9 mmol) et du CuI (720 

mg, 3.8 mmol) ont été ajouté successivement sous argon à une solution du 

triméthylsilylacétylène (13.16 g, 0.134 mol) dans du 1,4-dioxane (500 ml). La 

triéthylamine (39.8 ml) a été ensuite ajouté à 0°C. Le milieu réactionnel a été agité à 

80°C pour 12h, après refroidi à température ambiante, il a été filtré sur célite. Le 

filtrat a été concentré à sec. La chromatographie sur silice a donné le composé 46 

sous forme d'une poudre jaune avec 64% de rendement. 

RMN 1H (CDCl3, 400 MHz) δ 8.10 (s, 1H, CH), 7.27 - 7.20 (m, 3H, CHar), 7.15 (d, 2H, J = 

7.1 Hz, CHar), 7.08 (d, 2H, J = 8.7 Hz, CHar), 6.93 (d, 2H, J = 8.7 Hz, CHar), 3.84 (s, 3H, 

OCH3), 0.29 (s, 9H, CH3) ppm;  

RMN 13C (CDCl3, 100 MHz) δ 179.4, 159.7, 145.6, 141.2, 134.7, 131.2 (2C), 131.2 (2C), 

129.9, 128.3 (2C), 126.6, 114.4 (2C), 101.1, 100.4, 55.3, -0.6 (3C) ppm. 

HR-MS : masse calculée pour C21H22O2Si : 334.1349, trouvée : 335.1469 (M+H)+. 

Point de fusion : 84.6 °C 
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(E)-2-(4-Méthoxyphényl)-1-phényl-3-(2,4,6-triméthoxyphényl)-5-(tri-methylsilyl)pe

nt-1-èn-4-yn-3-ol (45) 

Du sec-BuLi (1.4 M, 80.6 ml, 0.113 mol) a été ajouté au goutte à goutte à -78°C à une 

solution du 1,3,5-triméthoxybenzène (18.9 g, 0.113 mol) dans du THF anhydre (250 

ml), puis le mélange a été agité à 0°C pour 1h. Le lithien a été ensuite ajouté au 

goutte à goutte à -78°C à une solution du composé 46 (25.2 g, 0.075 mol) dans du 

THF anhydre (250 ml). Le milieu réactionnel a été agité à 0°C pour 3h puis quenché 

avec une solution saturée de KHSO4, extrait avec de l’éther. La phase organique a été 

séchée sur MgSO4, filtrée et concentrée. La chromatographie sur silice a donné le 

composé 45 sous forme d'une poudre blanche avec 71% de rendement (26.6 g). 

RMN 1H (CDCl3, 400 MHz) δ 7.21 (s, 1H, CH), 7.09 - 7.04 (m, 3H, CHar), 6.93 - 6.90 (m, 

4H, CHar), 6.72 (d, 2H, J = 8.7 Hz, CHar), 6.50(s, 1H, OH), 6.07 (s, 2H), 3.78 (s, 3H, 

OCH3), 3.77 (s, 3H, OCH3), 3.63 (s, 6H, OCH3), 0.21 (s, 9H, CH3) ppm;  

RMN 13C (CDCl3, 100 MHz) δ 160.4, 159.0 (2C), 158.7, 143.6, 137.4, 131.8 (2C), 130.2, 

129.5, 127.9 (2C), 127.0, 126.5, 113.2 (2C), 111.4, 107.8, 92.8 (2C), 88.7, 76.9, 56.3 

(2C), 55.4, 55.3, 0.3 (3C) ppm. 

HR-MS : masse calculée pour C30H34O5Si : 502.2176, trouvée : 525.2077 (M+Na)+. 

Point de fusion : 110.2 °C 
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(Z)-(5-Ethoxy-4-(4-méthoxyphényl)-5-phényl-3-(2,4,6-triméthoxy-phényl) 

pent-3-èn-1-yn-1-yl) trimethylsilane (49) 

Un mélange de MoO2(acac)2 (26 mg, 0.08 mmol), NH4PF6 (13 mg, 0.08 mmol) et de 

l’éthanol (140 µl, 2.39 mmol) dans du CH3CN (4 ml) a été agité à 65°C pour 10min, 

puis le composé 45 (400 mg, 0.8 mmol) a été ajouté. Le milieu réactionnel a été sous 

agitation à 65°C pour 3h, puis refroidi à température ambiante, filtré sur célite et 

concentré à sec. La chromatographie sur silice a donné le composé 49 sous forme 

d'un solide jaune avec 42% de rendement (296mg). 

RMN 1H (CDCl3, 400 MHz) δ 7.48 (d, 2H, J = 7.6 Hz, CHar), 7.29 - 7.25 (m, 2H, CHar), 

7.21 - 7.17 (m, 1H, CHar), 6.63 (dd, 2H, J = 8.9 et 2.0 Hz, CHar), 6.43 (dd, 2H, J = 8.8 et 

2.0 Hz, CHar), 6.30 (s, 1H, CH), 5.92 (dd, 2H, J = 12.9 and 2.0 Hz, CHar), 3.97 - 3.89 (m, 

1H, CH2), 3.81 - 3.73 (m, 1H, CH2), 3.72 (s, 3H, OCH3), 3.69 (s, 3H, OCH3), 3.63 (s, 3H, 

OCH3), 3.61 (s, 3H, OCH3), 1.30 (t, 3H, J = 7 Hz, CH3), 0.17 (s, 9H, CH3) ppm;  

RMN 13C (CDCl3, 100 MHz) δ 160.8, 158.2, 158.2, 151.6, 141.4, 130.1, 130.0 (2C), 

127.8 (2C), 126.6, 126.5 (2C), 117.0, 112.0 (2C), 110.3, 105.4, 97.0, 91.0, 91.0, 81.2, 

64.0, 56.0, 55.8, 55.3, 55.3, 55.0, 15.4, 0.3 (3C) ppm. 

HR-MS : masse calculée pour C32H38O5Si : 530.2489, trouvée : 553.2394 (M+Na)+. 

Point de fusion : 119.9 °C 
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(E)-2-(5-Ethoxy-4-(4-méthoxyphényl)-5-phénylpent-3-èn-1-yn-3-yl)-1,3,5-triméthox

ybenzène (50) 

 

Du K2CO3 (110 mg, 0.08 mmol) a été ajouté à une solution du composé 49 (210 mg, 

0.396 mmol) dans du MeOH (500 µL). Le milieu a été agité à température ambiante 

pour 3h, puis lavé par de l’eau et extrait avec de l’éther. La phase organique a été 

séchée sur MgSO4, filtrée et concentrée. La chromatographie sur silice a donné le 

composé 50 sous forme d'une huile jaune clair avec 75% de rendement (136 mg). 

 

RMN 1H (CDCl3, 400 MHz) δ 7.54 (d, 2H, J = 8.0 Hz, CHar), 7.32 - 7.28 (m, 2H, CHar), 

7.24 - 7.20 (m, 1H, CHar), 6.66 (dd, 2H, J = 9.0 et 2.1 Hz, CHar), 6.46 (dd, 2H, J = 8.9 et 

2.1 Hz, CHar), 6.28 (s, 1H, CH), 5.94 (dd, 2 H, J = 19.3 et 2.1 Hz, CHar), 3.99 - 3.93 (m, 

1H, CH2), 3.82 - 3.77 (m, 1H, CH2), 3.75 (s, 3H, OCH3), 3.72 (s, 3H, OCH3), 3.65 (s, 3H, 

OCH3), 3.63 (s, 3H, OCH3), 3.2 (s, 1H, CH), 1.31 (t, 3H, J = 6.9 Hz, CH3) ppm;  

 

RMN 13C (CDCl3, 100 MHz) δ 160.9, 158.2, 158.0, 157.9, 152.2, 141.0, 129.7, 129.7, 

127.8, 126.7, 126.4, 115.9, 112.1, 109.7, 90.8, 90.7, 83.7, 81.3, 80.2, 64.1, 55.9, 55.76, 

55.3, 54.9, 15.4 ppm. 

 

HR-MS : masse calculée pour C29H30O5 : 458.2093, trouvée : 459.2171 (M+H)+. 
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Procédure générale (N° 1) de la cyclisation catalysée à l’or : 

Un mélange du Au[(C6H5)3P]Cl (5%) et du AgSbF6 (5%) dans du CH2Cl2 a été agité à 

température ambiante pour 10 min. Une solution du composé 50, 58a ou 58b (1 éq) 

dans du CH2Cl2 et de l’isopropanol (1.1 éq) ont été ajouté successivement. Le milieu 

réactionnel a été agité à température ambiante pour 12h, puis filtré sur célité et 

concentré à sec. La chromatographie sur silice a donné le composé cyclisé. 

 

 

3-(4-Mméthoxyphényl)-4-phényl-2-(2 ,4, 6-triméthoxyphényl)cyclopent-2-èn-1-one  

(44) 

Le composé 44 a été obtenu selon la procédure générale (N° 1) à partir du composé 

50 (170 mg, 0.37 mmol), avec du Au[(C6H5)3P]Cl (9 mg, 0.019 mmol), du AgSbF6 (6.5 

mg, 0.019 mmol) et de l’isopropanol (31 µL, 0.4 mmol) dans du CH2Cl2 (4 ml). Le 

rendement est 63% (100 mg). Le composé est sous forme d'une huile marron. 

RMN 1H (CDCl3, 400 MHz) δ 7.32 (d, 2H, J = 8.1 Hz, CHar), 7.27 - 7.24 (m, 4H, CHar), 

7.16 (m, 1H, CHar), 6.62 (d, 2H, J = 9.0 Hz, CHar), 6.24 (d, 1H, J = 2.1 Hz, CHar), 6.17 (d, 

1H, J = 2.1 Hz, CHar), 4.63 (dd, 1H, J = 7.4 et 1.9 Hz, CH2), 3.85 (s, 3H, OCH3), 3.76 (s, 

3H, OCH3), 3.70 (s, 3H, OCH3), 3.57 (s, 3H, OCH3), 3.17 (dd, 1H, J = 18.1 et 7.6 Hz, CH), 

2.48 (dd, 1H, J = 18.3 et 1.9 Hz, CH2) ppm;  

RMN 13C (CDCl3, 100 MHz) δ 206.9, 168.6, 161.8, 160.3, 158.6, 156.9, 151.4, 144.3, 

132.1, 129.9(2C), 129.4, 128.9(2C), 127.4(2C), 126.6, 113.4 (2C), 91.6, 91.4, 55.7, 
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55.9, 55.4, 55.1, 47.2, 45.9 ppm. 

HR-MS : masse calculée pour C27H26O5: 430.1780, trouvée: 431.2071 (M+H)+. 

 

 

Procédure générale (N° 2) pour synthétiser la propènone 56-1 : 

 

Un mélange du chlorure d’acyle 56 (1 éq), de l’acide arylboronique (1.2 éq), du 

PdCl2(PPh3)2 (2%), et du K3PO4∙H2O (1.2 éq) dans du toluène a été agité à 80°C pour 

4h sous argon. Le milieu a été refroidi à température ambiante, filtré sur célite et 

concentré. La chromatographie sur silice  a donné  la propènone 56-1. 

 

 

 

 

 

 

 

 

 

 

 

 

(E)-2-(4-Méthoxyphényl)-1, 3-diphénylprop-2-èn-1-one (56a-1). 

 

Le composé 56a-1 a été obtenu selon la procédure générale (N° 2) à partir du 

chlorure d’acyle 56 (1 g, 3.7 mmol), de l’acide phénylboronique (540 mg, 4.4 mmol), 

du PdCl2(PPh3)2 (49 mg, 0.07 mol), et du K3PO4∙H2O (1.095 g, 4.41 mmol) dans du 

toluène (16 ml) selon la procédure générale. Le rendement est 54% (626 mg). 

 

RMN 1H (CDCl3, 400 MHz) δ 7.86 (dd, 2H, J = 8.3 et 1.3 Hz, CHar), 7.56 - 7.52 (m, 1H, 

CHar), 7.46 - 7.42 (m, 2H, CHar), 7.23 - 7.18 (m, 6H, CHar et CH), 7.15 - 7.11 (m, 2H, 

CHar), 6.88 (d, 2H, J = 8.8 Hz, CHar), 3.82 (s, 3H, OCH3) ppm; 
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RMN 13C (CDCl3, 100 MHz) δ 198.1, 159.5, 140.6, 139.5, 138.4, 135.2, 132.2, 131.1 

(2C), 130.4, 129.9 (2C), 128.9, 128.8, 128.4 (4C), 114.4 (2C), 55.3 ppm.  

 

HR-MS : masse calculée pour C22H18O2: 314.1307, trouvée : 315.1385 (M+H)+. 

 

 

 

 

 

 

(E)-1-(4-Chlorophényl)-2-(4-méthoxyphényl)-3-phénylprop-2-èn-1-one  (56b-1) 

Le composé 56b-1 a été obtenu selon la procédure générale (N° 2) à partir du 

chlorure d’acyle 56 (1 g, 3.7 mmol), de l’acide 4-chlorophénylboronique (688 mg, 4.4 

mmol), du PdCl2(PPh3)2 (49 mg, 0.07 mol), et du K3PO4∙H2O (1.095 g, 4.41 mmol) 

dans du toluene (16 ml). Le rendement est 54% (696 mg). 

RMN 1H (CDCl3, 400 MHz) δ 7.78 (dd, 2H, J = 8.9 et 2.0 Hz, CHar), 7.40 (dd, 2H, J = 8.9 

et 2.0 Hz, CHar), 7.24 - 7.20 (m, 3H, CHar), 7.19 - 7.13 (m, 5H, CHar et CH), 6.87 (dd, 2H, 

J = 8.9 et 2.0 Hz, CHar), 3.82 (s, 3H, OCH3) ppm;  

RMN 13C (CDCl3, 100 MHz) δ 196.8, 159.6, 140.3, 136.6, 138.6, 136.7, 135.1, 131.3 

(2C), 131.0 (2C), 130.4 (2C), 129.1, 128.7 (2C), 128.5, 128.4 (2C), 114.5 (2C), 55.4 

ppm. 

HR-MS: masse calculée pour C22H17ClO2: 348.0917, trouvée 349.0922 (M+H)+. 
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Procédure générale (N° 3) pour synthétiser l’alcool propargylique : 

 

Du sec-BuLi ou du n-BuLi (1.1 éq) a été ajouté sous argon au gouttes à goutte à -78°C 

à une solution du tert-Butyldiméthylsilylacétylène (1.05 éq) dans du THF anhydre, le 

mélange a été agité à 0°C pour 1h puis ajouté au goutte à goutte à une solution du 

composé 56-1 (1 éq) dans du THF anhydre. Le milieu réactionnel a été agité à -78°C 

pour 2h puis quenché avec une solution saturée de NH4Cl, extrait avec de l’éther. La 

phase organique a été séchée sur MgSO4, filtrée et concentrée. La chromatographie 

sur silice a donné l’alcool propargylique 57.  

 

 

 

 

(E)-5-(Tert-butyldimethylsilyl)-2-(4-méthoxyphényl)-1,3-diphénylpent-1-èn-4-yn- 

3-ol (57a) 

Le composé 57a a été obtenu selon la procédure générale (N° 3) à partir du composé 

56a-1 (600 mg, 1.9 mmol), avec du tert-Butyldiméthylsilylacétylène (280 mg, 2 mmol) 

et du sec-BuLi (1.3M, 1.6 ml, 2.1 mmol) dans du THF anhydre (13 ml). Le rendement 

est 50% (430 mg). Le composé est sous forme d'une huile incolorée.  

RMN 1H (CDCl3, 400 MHz) δ 7.58 - 7.56 (m, 2H, CHar), 7.34 - 7.26 (m, 3H, CHar), 7.23 (s, 

1H, CH), 7.09 - 7.07 (m, 3H, CHar), 6.90 - 6.88 (m, 2H, CHar), 6.73 (dd, 4H, J = 16.4 et 

9.0Hz, CHar), 3.77 (s, 3H, OCH3), 2.64 (s, 1H, OH), 0.95 (s, 9H, CH3), 0.15 (s, 3H, CH3), 

0.14 (s, 3H, CH3) ppm;  

RMN 13C (CDCl3, 100 MHz) δ 159.0, 143.7, 142.6, 136.5, 131.8, 129.6, 129.2, 128.0, 
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128.0, 127.9, 127.4, 127.1, 126.9, 113.6, 107.5, 91.8, 76.8, 55.2, 26.2, 16.8, -4.50, 

-4.54 ppm. 

HR-MS: masse calculée pour C30H34O2Si: 454.2328, trouvée : 454.2328 [C30H34O2Si ∙]+. 

 

 

 

(E)-5-(Tert-Butyldimethylsilyl)-3-(4-chlorophényl)-2-(4-méthoxy-phényl)-1-phénylpe

nt-1-èn-4-yn-3-ol (57b)  

Le composé 57b a été obtenu selon la procédure générale (N° 3) à partir du composé 

56b-1 (68 mg, 0.49 mmol), avec du tert-Butyldiméthylsilylacétylène (170 mg, 0.49 

mmol) et du n-BuLi (1.6M, 0.33 ml, 0.52 mmol) dans du THF anhydre (8 ml). Le 

rendement est 69% (162 mg). Le composé est sous forme d'une poudre blanche. 

RMN 1H (CDCl3, 400 MHz) δ 7.49 (dd, 2H, J = 8.7 et 2.0 Hz, CHar), 7.27 (dd, 2H, J = 8.8 

et 2.0 Hz, CHar), 7.24 (s, 1H, CH), 7.10 - 7.08 (m, 3H, CHar), 6.90 - 6.88 (m, 2H, CHar), 

6.78 - 6.74 (m, 4H, CHar), 3.78 (s, 3H, OCH3), 1.00 (s, 9H, CH3), 0.15 (d, 6H, J = 6.5Hz, 

CH3) ppm ;  

RMN 13C (CDCl3, 100 MHz) δ 159.2, 143.3, 141.4, 136.3, 133.7, 131.8 (2C), 129.6 (2C), 

128.8, 128.3 (2C), 128.2 (2C), 128.1(2C), 127.8, 127.3, 113.8 (2C), 107.1, 92.3, 76.4, 

55.3, 26.3 (3C), 16.8, -4.5, -4.6 ppm. 

HR-MS : masse calculée pour C30H33ClO2Si : 488.1938, trouvée : 511.1840 (M+Na)+. 
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Procédure générale (N° 4) pour synthétiser de l’éther 57-1: 

Un mélange de MoO2(acac)2 (10%), du NH4PF6 (10%) et de l’éthanol (3 éq) dans du 

CH3CN a été agité à 65°C pour 10min. Le composé 57 (1 éq) a été ajouté, puis le 

milieu a été agité à 65°C pour 2h. Il a été ensuite refroidi à température ambiante, 

filtré sur célite puis concentré. La chromatographie sur silice a donné de l’éther. 

 

 

 

 

 

 

(Z)-Tert-butyl(5-éthoxy-4-(4-méthoxyphényl)-3,5-diphénylpent-3-èn-1-yn-1-yl) 

dimethylsilane (57a-1) 

Le composé 57a-1 a été obtenu selon la procédure générale (N° 4) à partir du 

composé 57a (400 mg, 0.88 mmol), avec du MoO2(acac)2 (29 mg, 0.088 mmol), du 

NH4PF6 (14 mg, 0.088 mmol) et de l’éthanol (150 µL, 2.64 mmol) dans du CH3CN (4 

ml). Le rendement est 16% (60 mg). Le composé est sous forme d'une poudre beige. 

RMN 1H (CDCl3, 400 MHz) δ 7.41 (d, 2H, J = 7.2 Hz, CHar), 7.30 - 7.27 (m, 2H, CHar), 

7.24 - 7.20 (m, 3H, CHar), 7.12 - 7.10 (m, 3H, CHar), 6.70 (d, 2H, J = 8.9 Hz, CHar), 6.57 

(d, 2H, J = 8.9 Hz, CHar), 6.40 (s, 1H, CH), 3.88 - 3.81 (m, 1H, CH2), 3.78 - 3.71 (m, 1H, 

CH2), 3.70 (s, 3H, OCH3), 1.32 (t, 3H, J = 7 Hz, CH3), 1.03 (s, 9H, CH3), 0.22 (d, 6H, J = 

1.9 Hz, CH3) ppm ; 

RMN 13C (CDCl3, 100 MHz) δ 158.6, 149.7, 138.4, 131.6 (2C), 130.0 (2C), 129.0, 128.0 

(2C), 127.7 (2C), 127.0, 126.1, 126.3 (2C), 124.3, 113.0 (2C), 106.1, 99.0, 82.3, 64.3, 

55.0, 26.4 (3C), 17.0, 15.5, -4.4, -4.4 ppm. 
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HR-MS : masse calculée pour C32H38O2Si : 482.2641, trouvée : 482.2641 pour 

[C32H38O2Si∙]+.  

Point de fusion : 105.9°C 

 

 

 

(Z)-Tert-butyl(3-(4-chlorophényl)-5-éthoxy-4-(4-méthoxyphényl) 

-5-phénylpent-3-èn-1-yn-1-yl)diméthylsilane (57b-1) 

 

Le composé 57b-1 a été obtenu selon la procédure générale (N° 4) à partir du 

composé 57b (100 mg, 0.2 mmol), avec du MoO2(acac)2 (7 mg, 0.02 mmol), du 

NH4PF6 (4 mg, 0.02 mmol) et de l’éthanol (40 µl, 0.6 mmol) dans du CH3CN (1 ml). Le 

rendement est 30% (30 mg). Le composé est sous forme d'une huile incolorée. 

 

RMN 1H (CDCl3, 400 MHz) δ 7.36 - 7.34 (m, 2H, CHar), 7.27 - 7.23 (m, 2H, CHar), 7.22 - 

7.19 (m, 1H, CHar), 7.11 - 7.04 (m, 4H, CHar), 6.65 (dd, 2H, J = 8.9 et 2.1 Hz, CHar), 6.57 

(dd, 2H, J = 9.0 et 2.3 Hz, CHar), 6.32 (s, 1H, CH), 3.70 (s, 3H, OCH3), 3.81 - 3.79 (m, 1H, 

CH2), 3.72 - 3.64 (m, 1H, CH2), 1.28 (t, 3H, J = 7.0 Hz, CH3), 1.00 (s, 9H, CH3), 0.20 (d, 

6H, J = 1.5 Hz, CH3) ppm ;  

 

RMN 13C (CDCl3, 100 MHz) δ 158.8, 150.3, 140.8, 136.9, 132.8, 131.5 (2C), 131.3 (2C), 

128.6, 128.0 (2C), 128.0, 127.9(2C), 127.1, 126.3 (2C), 123.0, 113.1 (2C), 105.5, 99.5, 

82.3, 64.4, 55.1, 26.4 (3C), 17.0, 15.5, -4.4, -4.4 ppm. 
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HR-MS : masse calculée pour C32H37ClO2Si : 516.2251, trouvée : 516.2251 pour 

[C32H37ClO2Si∙]+.  

 

 

Procédure générale (N° 5) de désilylation des composés 58 : 

Du méthanol (3 gouttes) et du TBAF (1.0 M, 2.4 éq) ont été ajouté à 0°C à une 

solution du composé 57-1 (1 éq) dans du THF. Le milieu a été agité à température 

ambiante pour 40 min, puis quenché avec une solution saturée de NH4Cl et extrait à 

l’éther. La phase organique combinée a été lavée avec de la saumure, séchée sur 

MgSO4, filtrée et concentrée. La chromatographie sur silice a donné le produit 

désilylé. 

 

 

 

 

(E)-(1-Éthoxy-2-(4-méthoxyphényl) pent-2-èn-4-yne-1,3-diyl) dibenzène (58a). 

 

Le composé 58a a été obtenu selon la procedure générale (N° 5) à partir du compose 

57a-1 (50 mg, 0.14 mmol), avec du TBAF (1.0 M, 0.35 ml, 0.35 mmol) et 3 gouttes de 

méthanol dans du THF (18 ml). Le rendement est 93% (48 mg). 

 

RMN 1H (CDCl3, 400 MHz) δ 7.39 (d, 2H, J = 8.0 Hz, CHar), 7.28 - 7.25 (m, 2H, CHar), 

7.22 - 7.17 (m, 3H, CHar), 7.13 - 7.08 (m, 3H, CHar), 6.69 (d, 2H, J = 8.9 Hz, CHar), 6.54 

(d, 2H, J = 8.9 Hz, CHar), 6.29 (s, 1H, CH), 3.84 - 3.78 (m, 1H, CH2), 3.75 - 3.69 (m, 1H, 

CH2), 3.68 (s, 3H, OCH3), 3.42 (s, 1H, CH), 1.28 (t, 3H, J = 7.0 Hz, CH3) ppm ; 
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RMN 13C (CDCl3, 100 MHz) δ 158.7, 150.5, 140.8, 138.4, 131.6 (2C), 129.9 (2C), 128.9, 

128.0 (2C), 127.8 (2C), 127.1, 127.1, 126.3 (2C), 123.2, 112.9 (2C), 84.0, 83.3, 82.2, 

64.3, 55.1, 15.4 ppm. 

 

HR-MS : masse calculée pour C26H24O2 : 368.1776, trouvée : 391.1674 (M+Na)+. 

 

 

 

(E)-1-Chloro-4-(5-éthoxy-4-(4-méthoxyphényl)-5-phénylpent-3-èn-1-yn-3-yl)benzèn

e (58b) 

 

Le composé 58b a été obtenu selon la procédure générale (N° 5) à partir du composé 

57b-1 (25 mg, 0.05 mmol), avec du TBAF (1.0 M, 0.12 ml, 0.12 mmol) et 3 gouttes de 

méthanol dans du THF (6 ml). Le rendement est 75% (15 mg). 

 

RMN 1H (CDCl3, 400 MHz) δ 7.37 - 7.35 (m, 2H, CHar), 7.28 - 7.25 (m, 2H, CHar), 7.23 - 

7.21 (m, 1H, CHar), 7.12 - 7.06 (m, 4H, CHar), 6.66 (dd, 2H, J = 8.9 et 2.1 Hz, CHar), 6.57 

(dd, 2H, J = 8.9 et 2.1 Hz, CHar), 6.26 (s, 1H, CH), 3.83 - 3.75 (m, 1H, CH2), 3.70 (s, 3H, 

OCH3), 3.73 - 3.65 (m, 1H, CH2), 3.43 (s, 1H, CH), 1.28 (t, 3H, J = 7.0 Hz, CH3) ppm ;  

 

RMN 13C (CDCl3, 100 MHz) δ 158.9, 151.1, 140.6, 136.8, 133.0, 131.5 (2C), 131.3 (2C), 

128.4, 128.1 (2C), 128.0 (2C), 127.2, 126.3 (2C), 121.9, 113.1 (2C), 83.6, 83.5, 82.2, 

64.4, 55.1, 15.5 ppm. 

 

HR-MS : masse calculée pour C26H23ClO2 : 402.1387,   trouvée : 402.1386 pour 

[C26H23ClO2
 ∙]+. 
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3-(4-Méthoxyphényl)-2,4-diphénylcyclopent-2-èn-1-one (59a) 

 

Le composé 11a a été obtenu selon la procédure générale (N° 1) de la cyclisation 

catalysée à l’or, à partir du composé 58a (48 mg, 0.13 mmol), avec du Au[(C6H5)3P]Cl 

(4 mg, 0.007 mmol), du AgSbF6 (2 mg, 0.007mmol) et de l’isopropanol (11 µl, 0.148 

mmol) dans du CH2Cl2 (0.8 ml). Le rendement est 50% (23 mg). Le composé est sous 

forme d'une huile jaune. 

 

RMN 1H (CDCl3, 400 MHz) δ 7.46 - 7.40 (m, 3H, CHar), 7.39 - 7.31 (m, 5H, CHar), 7.25 - 

7.23 (m, 2H, CHar), 7.19 (dd, 2H, J = 8.9 et 2.1 Hz, CHar), 6.70 (dd, 2H, J = 9.0 et 2.3 Hz, 

CHar), 4.64 (dd, 1H, J = 7.4 et 2.1 Hz, CH), 3.77 (s, 3H, OCH3), 3.29 (dd, 1H, J = 18.7 et 

7.4 Hz, CH2), 2.65 (dd, 1H, J = 18.7 et 2.1 Hz, CH2)  ppm ;  

RMN 13C (CDCl3, 100 MHz) δ 206.6, 169.6, 160.5, 143.0, 139.9, 132.7, 130.8 (2C), 

129.8 (2C), 129.1 (2C), 128.6 (2C), 128.0, 127.5 (2C), 127.0, 127.0, 113.7 (2C), 55.3, 

47.1, 46.2 ppm. 

HR-MS : masse calculée pour C24H20O2 : 340.1463, trouvée : 340.1463 pour 

[C24H20O2
∙]+. 
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2-(4-Chlorophényl) -3- (4-méthoxyphényl)-4- phénylcyclopent-2-èn-1-one (59b).  

Le composé 59b a été obtenu selon la procédure générale (N° 1) de la cyclisation 

catalysée à l’or, à partir du composé 58b (48 mg, 0.119 mmol), avec du Au[(C6H5)3P]Cl 

(4 mg, 0.007 mmol), du AgSbF6 (2 mg, 0.007mmol) et de l’isopropanol (11 µl, 0.148 

mmol) dans du CH2Cl2 (0.8 ml). Le rendement est 75% (33 mg). 

RMN 1H (CDCl3, 400 MHz) δ 7.33 (dd, 2H, J = 8.5 et 1.9 Hz, CHar), 7.27 -7.23 (m, 3H, 

CHar), 7.19 - 7.15 (m, 3H, CHar), 7.12 (dd, 2H, J = 9.0 et 2.1 Hz, CHar), 6.66 (dd, 2H, J = 

8.9 et 2.0 Hz, CHar), 4.56 (dd, 1H, J = 7.4 et 2.1 Hz, CH), 3.72 (s, 3H, OCH3), 3.22 (dd, 

1H, J = 18.9 et 7.5 Hz, CH2), 2.59 (dd, 1H, J = 18.8 et 2.1 Hz, CH2) ; 

RMN 13C (CDCl3, 100 MHz) δ 206.3, 170.2, 160.7, 142.7, 138.5, 134.0, 131.2(2C), 

131.0, 130.8(2C), 129.1(2C), 128.9(2C), 127.5(2C), 127.1, 126.8, 113.9 (2C), 55.3, 47.2, 

46.1 ppm. 

HR-MS : masse calculée pour C24H19ClO2 : 374.1074, trouvée : 375.1155 (M+H)+. 
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5.2. Procédure pour le chapitre 3.2. 

Procédure générale (N° 6) pour l’addition des β-cétocarbonyles sur la 

benzoquinone : 

Du Cu(OTf)2 (0.05 éq) a été ajouté à une solution de l’oxopropionate (2éq) dans du 

toluène,  puis une solution de benzoquinone (1éq) dans du toluène a été ajouté au 

goutte à goutte. Le milieu réactionnel a été chauffé à reflux pour 10h puis quenché 

avec une solution saturée de NH4Cl. La phase aqueuse a été extraite avec de l’acétate 

d’éthyle. La phase organique combinée a été lavée avec de la saumure, puis séchée 

sur MgSO4, filtrée et concentrée. La chromatographie sur silice et la cristallisation 

dans de l’éther a donné du benzofurane. 

 

 

 

5-Hydroxy-2-(4-méthoxyphényl)benzofuran-3-carboxylate d’éthyle (67a). 

 

Le composé 67a a été obtenu selon la procédure générale (N° 6) à partir de 

l’oxopropionate 69a (82.2g, 370mmol) dans du toluène (500 ml) avec de la 

benzoquinone 68 (20 g, 185 mmol) et du Cu(OTf)2 (3.05 g, 9.3 mmol). Le rendement 

est 54%. Le composé est sous forme d'une poudre blanche. 

 

RMN 1H (CDCl3, 400 MHz) δ 7.93 (2H, d, J = 9.1 Hz, CHar), 7.41 (1H, d, J = 2.3Hz, CHar), 

7.29 (1H, d, J = 8.8 Hz, CHar), 6.93 (2H, d, J = 9.1 Hz, CHar), 6.81 (1H, dd, J = 8.8 Hz et 

2.5 Hz, CHar), 4.34 (2H, q, J = 7.1 Hz, CH2), 3.83 (3H, s, OCH3), 1.34 (3H, t, J = 7.2 Hz, 

CH3) ppm ;  
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RMN 13C (CDCl3, 100 MHz) δ 164.5, 162.2, 161.4, 152.7, 148.8, 131.3, 128.5, 122.3, 

113.7, 113.6, 111.7, 107.8, 107.7, 60.8, 55.5, 14.5 ppm. 

 

Point de fusion : 157.5°C 

 

 

 

 
 

5-Hydroxy-2-phénylbenzofuran-3-carboxylate d’éthyle (67b) 

 

Le composé 67b a été obtenu selon la procédure générale (N° 6) à partir de 

l’oxopropionate 69b (32.4ml, 185mmol) dans du toluène (250 ml) avec de la 

benzoquinone 68 (10 g, 92 mmol) et du Cu(OTf)2 (1.53 g, 4.6 mmol). Le rendement 

est 53% (13.8 g). Le composé est sous forme d'une poudre blanche. 

 

RMN 1H (CDCl3, 400 MHz) δ 8.00 - 7.97 (m, 2H, CHar), 7.52 (dd, 1H, J = 0.4 et 2.6 Hz, 

CHar), 7.50 - 7.47 (m, 3H, CHar), 7.39 (d, 1H, J = 8.8 Hz, CHar), 6.89 (dd, 1H, J = 2.6 et 

8.8 Hz, CHar), 4.99 (s, 1H, OH), 4.40 (q, 2H, J = 7.2 Hz, CH2), 1.39 (t, 3H, J = 7.2 Hz, CH3) 

ppm ; 

 

RMN 13C (CDCl3, 100 MHz) δ 161.4, 161.8, 152.6, 148.9, 130.3, 129.7, 129.5 (2C), 

128.2, 128.0 (2C), 113.9, 11.7, 108.8, 107.6, 60.7, 14.3 ppm. 

 

BR-MS : masse calculée pour C17H14O4 : 282.1, trouvée : 283.0 (M+H)+. 
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Procédure générale (N° 7) pour la méthylation des benzofuranes 70: 

 

A une solution de benzofurane (1 éq) dans du DMF, du MeI (1.5 éq), du K2CO3 (2 éq), 

et du Cs2CO3 (0.1 éq) ont été ajoutés. Le milieu réactionnel a été agité pour 18h à 

38°C, puis concentré à sec. Le mélange a été extrait avec de l’acétate d’éthyle. La 

phase organique a été lavée par de l’eau et de la saumure, séchée sur MgSO4, filtrée 

et concentrée. La purification par chromatographie sur silice et la cristallisation dans 

l’éther a donné le produit méthylé. 

 

 
 

5-Méthoxy-2-(4-méthoxyphényl)benzofuran-3-carboxylate d’éthyle (70a) 

 

Le composé 70a a été obtenu selon la procedure générale (N°7) à partir du 

benzofurane 67a (30.92 g, 99 mmol) dans du DMF (370 ml) avec du MeI (9.25 ml, 

149 mmol), du K2CO3 (27.39 g, 198 mmol) et du Cs2CO3 (3.23 g, 9.9 mmol). Le 

rendement est 77%. Le composé est sous forme d'un solide noir. 

 

RMN 1H (CDCl3, 400 MHz) δ 7.93 (2H, d, J = 9.1 Hz, CHar), 7.41 (1H, d, J = 2.3 Hz, CHar), 

7.29 (1H, d, J = 8.8 Hz, CHar), 6.93 (2H, d, J = 9.1 Hz, CHar), 6.81 (1H, dd, J = 8.8 et 2.5 

Hz, CHar), 4.34 (2H, q, J = 7.1 Hz, CH2), 3.89 (3H, s, OCH3), 3.83 (3H, s, OCH3), 1.34 (3H, 

t, J = 7.2 Hz, CH3) ppm ;  

 

RMN 13C (CDCl3, 100 MHz) δ 164.4, 161.8, 161.3, 156.9, 148.7, 131.3, 128.3, 122.4, 

113.8, 113.7, 111.6, 108.0, 105.1, 77.2, 60.6, 56.0, 55.5, 14.5 ppm. 

 

Point de fusion : 172.0°C 
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5-Méthoxy-2-phénylbenzofuran-3-carboxylate d’éthyle (70b) 

 

Le composé 70b a été obtenu selon la procedure générale (N° 7) à partir du 

benzofurane 67b (10 g, 35.2 mmol) dans du DMF (120 ml) avec du MeI (3.3 mL, 52.8 

mmol), du K2CO3 (9.7 g, 70.4 mmol) et du Cs2CO3 (1.14 g, 3.5 mmol). La reaction est 

quantitative. Le composé est sous forme d'une poudre jaune. 

 

RMN 1H (CDCl3, 400 MHz) δ 8.00 - 7.98 (m, 2H, CHar), 7.57 (d, 1H, J = 2.6 Hz, CHar), 

7.50 - 7.47 (m, 3H, CHar), 7.42 (d, 1H, J = 8.9 Hz, CHar), 6.96 (dd, 1H, J = 9 et 2.8 Hz, 

CHar), 4.40 (q, 2H, J = 7.2 Hz, CH2), 3.90 (s, 3H, OCH3), 1.41 (t, 3H, J = 7.2 Hz, CH3) 

ppm ;  

 

RMN 13C (CDCl3, 100 MHz) δ 164.2, 161.5, 157.0, 149.0, 130.3, 129.9, 129.6(2C), 

128.1(2C), 128.1, 114.3, 110.8, 109.1, 105.0, 60.7, 56.0, 14.4 ppm. 

 

BR-MS : masse calculée pour C18H16O4 : 296,1, trouvée : 297.2 (M+H)+. 

 

 

Procédure générale (N° 8) pour la réduction des esters : 

Une solution de l’ester (1éq) dans du THF anhydre a été ajouté sous argon au goutte 

à goutte à 0°C à une suspension du LiAlH4 (5 éq) dans du THF anhydre. Le mélange a 

été agité à 0°C pour 2h puis quenché avec de l’eau.  Une solution de NaOH (15%) a 

été ajoutée et le précipité a été filtré. Le filtrat a été concentré pour donner le 

produit de réduction. 
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(5-Méthoxy-2-(4-méthoxyphényl)-benzofuran-3-yl)méthanol (71a) 

 

Le composé 71a a été obtenu selon la procédure générale (N° 8) à partir de l’ester 

70a (24.9 g, 78 mmol) dans du THF anhydre (500 ml) avec du LiAlH4 (14.7 g, 388 

mmol). Le rendement est 88%. 

 

RMN 1H (CDCl3, 400 MHz) δ 7.76 (d, 2H, J = 9.0 Hz, CHar), 7.37 (d, 1H, J = 8.9 Hz, CHar), 

7.12 (d, 1H, J = 2.6 Hz, CHar), 7.01 (d, 2H, J = 9.0 Hz, CHar), 6.88 (dd, 1H, J = 8.9 et 2.6 

Hz, CHar), 4.91 (d, 2H, J = 5.3 Hz, CH2), 3.87 (s, 6H, OCH3), 1.70 (t, 1H, J = 5.3 Hz, OH) 

ppm; 

RMN 13C (CDCl3, 100 MHz) δ 160.3, 156.3, 154.7, 148.9, 130.1, 128.9(2C), 123.1, 

114.4(2C), 113.7, 113.1, 111.7, 101.9, 56.1, 55.8, 55.5 ppm. 

 

 

(5-Méthoxy-2-phénylbenzofuran-3-yl)méthanol (71b) 

Le composé 71b a été obtenu selon la procédure générale (N° 8) à partir de l’ester 

70b (10.5 g, 35.2 mmol) dans du THF anhydre (175 ml) avec du LiAlH4 (7.3 g, 193.6 

mmol). Le rendement est 96%. Le composé est sous forme d'une poudre blanche. 

RMN 1H (CDCl3, 400 MHz) δ 7.85 - 7.83 (m, 2H, CHar), 7.52 - 7.48 (m, 2H, CHar), 7.44 - 

7.40 (m, 2H, CHar), 7.16 (d, 1H, J = 2.5 Hz, CHar), 6.93 (dd, 1H, J = 8.9 et 2.6 Hz, CHar), 
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4.98 (d, 2H, J = 5.4 Hz, CH2), 3.89 (s, 3H, OCH3) ppm ; 

RMN 13C (CDCl3, 100 MHz) δ 156.2, 154.3, 149.0, 130.3, 129.8, 128.9, 128.8 (2C), 

127.3 (2C), 115.0, 113.6, 111.8, 102.0, 56.0, 55.7 ppm. 

BR-MS : masse calculée pour C16H14O3 : 254.0943, trouvée : 254.0949 [C16H14O3
∙]+. 

 

Point de fusion : 102.7°C 

 

 

 

 

 

Procédure générale (N° 9) pour l’oxydation de l’alcool primaire 

 

A -78°C, une solution du DMSO (2 éq) dans du CH2Cl2 anhydre a été ajoutée sous 

argon au goutte à goutte à une solution de (COCl)2 (1.2 éq) dans du CH2Cl2 anhydre. 

Une solution de l’alcool primaire (1 éq) dans du CH2Cl2 anhydre et de la triéthylamine 

(2.5 éq) ont été ensuite ajoutée successivement à la même température. Le milieu 

réactionnel a été agité pour 2h, et la température a été laissée remonter à -40°C. Le 

milieu réactionnel a été acidifié jusqu’à pH = 7 avec une solution saturée de NH4Cl. La 

phase organique a été lavée avec de la saumure, séchée sur MgSO4, filtrée et 

concentrée. La chromatographie sur silice a permis d’obtenir l’aldéhyde 

correspondant. 

 

 
 

5-Méthoxy-2-(4-méthoxyphényl)-benzofuran-3-carbaldehyde (72a) 

 

Le composé 72a a été obtenu selon la procédure général (N° 9) à partir de l’alcool 

71a (19.32 g, 68 mmol), dans du CH2Cl2 anhydre (450 ml), avec du (COCl)2 (7 mL, 82 
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mmol), du DMSO (9.66 mL, 136 mmol) et de la triethylamine (23,5 mL, 170 mmol). Le 

rendement est 26%. Le composé est sous forme d'une poudre jaune. 

 

RMN 1H (CDCl3, 400 MHz) δ 10.30 (s, 1H, CHO), 7.80 (d, 2H, J = 8.9 Hz, CHar), 7.74 (d, 

1H, J = 2.6 Hz, CHar), 7.41 (d, 1H, J = 9.0 Hz, CHar), 7.07 (d, 2H, J = 8.9 Hz, CHar), 6.96 

(dd, 1H, J = 9.0 et 2.6 Hz, CHar), 3.91 (s, 3H, OCH3), 3.90 (s, 3H, CH3) ppm ;  

RMN 13C (CDCl3, 100 MHz) δ 186.8, 166.4, 162.1, 157.6, 148.8, 130.8, 126.4 (2C), 

121.4, 117.0, 115.1, 114.8 (2C), 111.7, 104.4, 56.1, 55.7 ppm. 

 

 

5-Méthoxy-2-phénylbenzofuran-3-carbaldehyde (72b) 

 

Le composé 72b a été obtenu selon la procédure générale (N° 9) à partir de l’alcool 

71b (5 g, 19.7 mmol), dans du CH2Cl2 anhydre (130 ml), avec du (COCl)2 (2 mL, 23.6 

mmol), du DMSO (2.8 ml, 39.4 mmol) et de la triethylamine (7 mL, 49 mmol). Le 

rendement est 87%. Le composé est sous forme d'une poudre jaune claire. 

 

RMN 1H (CDCl3, 400 MHz) δ 10.34 (s, 1H, CHO), 7.85 (m, 2H, CHar), 7.76 (d, 1H, J = 2.6 

Hz, CHar), 7.57 (m, 3H, CHar), 7.45 (d, 1H, J = 8.9 Hz, CHar), 8.00 (dd, 1H, J = 9.0 et 2.8 

Hz, CHar), 3.91 (s, 3H, OCH3) ppm;  

 

RMN 13C (CDCl3, 100 MHz,) δ 186.9, 166.1, 157.7, 149.1, 131.2, 129.3 (2C), 129.2 (2C), 

128.9, 126.2, 117.9, 115.6, 111.9, 104.4, 56.2ppm. 

 

 

Point de fusion : 112.0°C 



PARTIE EXPERIMENTALE 
 

112 
 

 

(Z)-Propyl(styryl)sulfane (73a) 

Du 1-propanethiol (10.63 ml, 117.6 mmol) a été ajouté à une suspension de Cs2CO3 

(3.19 g, 9.8 mmol) dans du DMSO (600 ml), et le mélange a été agité pour 15 

minutes. Du TEMPO (3.06 g, 19.5 mmol) a été ensuite ajouté, et après 15 minutes, 

du phénylacetylène (10.75 mL, 98.0 mmol) a été ajouté. Le milieu réactionnel a été 

agité à la température ambiante pour 3h puis quenché avec de l’eau et extrait avec 

de l’éther. La phase organique a été séchée sur MgSO4, filtrée et concentrée. La 

chromatographie sur silice a donné l’éther thiovinylique 73a avec  un rendement de 

66%. 

RMN 1H (CDCl3, 400 MHz) δ 7.49 (d, 2H, J = 7.3 Hz, CHar), 7.35 (t, 2H, J = 7.5 Hz, CHar), 

7.21 (t, 1H, J = 7.3 Hz, CHar), 6.33 (d, 1H, J = 10.9 Hz, CH), 6.25 (d, 1H, J = 10.9 Hz, CH), 

2.77 (t, 2H, J = 7.2 Hz, CH2), 1.73 (six., 2H, J = 7.3 Hz, CH2), 1.03 (t, 3H, J = 7.4 Hz, CH3) 

ppm ; 

 RMN 13C (CDCl3, 100 MHz) δ 137.2, 128.7, 128.3, 127.8, 126.7, 125.4, 77.2, 38.1, 

23.7, 13.3 ppm. 

 

 

(Z)-Styryl(p-tolyl)sulfane (73b) 

A 0°C, du sodium (2.37 g, 0.103 mol) a été dissous dans de l’éthanol absolu (100 mL).  

Du 4-méthylbenzènethiol (12.75 g, 0.103 mol) et du phénylacétylène (10.8 mL, 0.098 
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mol) ont été ajouté successivement à la température ambiante. Le milieu réactionnel 

a été chauffé à reflux pour 12h puis refroidi à 0°C et versé dans de l’eau glacée.  Le 

précipité obtenu a été filtré et séché sous vide pour donner le composé 73b avec un 

rendement de 73%. 

RMN 1H (CDCl3, 400 MHz) δ 7.55 (d, 2H, J = 8.5 Hz, CHar), 7.42 - 7.36 (m, 4H, CHar), 

7.29 - 7.25 (m, 1H, CHar), 7.17 (d, 2H, J = 7.9 Hz, CHar), 6.56 (d, 1H, J = 10.8 Hz, CH), 

6.48 (d, 1H, J = 10.8 Hz, CH), 2.36 (s, 3H, CH3) ppm;   

RMN 13C (CDCl3, 100 MHz) δ 137.5, 136.7, 132.8, 130.6 (2C), 130.0 (2C), 128.8 (2C), 

128.4 (2C), 127.1, 127.1, 126.6, 21.2 ppm. 

 

Procédure générale (N°10) pour la formation de l’alcool divinylique 

Du n-BuLi (1.6M, 1.6 éq) a été ajouté au goutte à goutte à -78°C sous argon à une 

solution de l’éther thiovinylique (1.5 éq) dans du THF anhydre. Le mélange a été agité 

pour 45 minutes à la même température. Parallèlement, du BF3.Et2O (1.1 éq) a été 

ajouté à -78°C à une solution de l’aldéhyde (1 éq) dans du THF anhydre, et le 

mélange a été agité à la même température pour 45 minutes. Le milieu d’aldéhyde a 

été ajouté ensuite au goutte à goutte dans le milieu de l’éther thiovinylique lithié à 

-78°C. Après 2h de l’agitation à la même température, le milieu réactionnel a été 

quenché avec de l’eau et une solution saturée de bicarbonate. La phase aqueuse a 

été extraite avec de l’éther, la phase organique combinée a été lavée avec de l’eau et 

séchée sur MgSO4, filtrée et concentrée. La chromatographie sur silice a donné 

l’alcool divinylique. 
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(Z)-1-(5-Méthoxy-2-(4-méthoxyphényl)-benzofuran-3-yl)-3-phényl-2-(propylthio)pr

op-2-èn-1-ol (74a) 

Le composé 74a a été obtenu selon la procedure générale (N° 10) à partir de 

l’aldéhyde 72a (1.50 g, 5.3 mmol) et du thiovinylether 73a (1.42 g, 8.0 mmol)  dans 

du THF anhydre (140 mL) avec du n-BuLi (5.3 mL, 8.5 mmol) et du BF3∙Et2O (0.73 mL, 

5.8 mmol). Le rendement est 72% (1.76 g). Le composé est sous forme d'une huile 

jaune. 

RMN 1H (CDCl3, 400 MHz) δ 7.73 (d, 2H, J = 8.9 Hz, CHar), 7.62 (d, 2H, J = 7.3 Hz, CHar), 

7.39 (d, 1H, J = 8.9 Hz, CHar), 7.33 (t, 2H, J = 7.3 Hz, CHar), 7.25 (t, 1H, J = 7.4 Hz, CHar), 

7.24 (d, 1H, J = 2.6 Hz, CHar), 7.19 (s, 1H, CH), 6.90 (d, 2H, J = 8.9 Hz, CHar), 6.88 (dd, 

1H, J = 8.9 et 2.6 Hz, CHar), 5.74 (s, 1H, CH), 3.97 (s, 3H, OCH3), 3.76 (s, 3H, OCH3), 

2.84 (s, 1H, OH), 2.53 (m, 2H, CH2), 1.50 (six., 2H, J = 7.4 Hz, CH2), 0.80 (t, 3H, J = 7.4 

Hz, CH3) ppm; 

RMN 13C (CDCl3, 100 MHz) δ 160.5, 155.9, 154.8, 149.4, 136.3, 132.0, 129.6, 129.5, 

128.6, 128.2, 127.7, 123.1, 114.5, 114.3, 113.3, 111.7, 104.0, 77.2, 70.2, 66.0, 56.0, 

55.5, 34.8, 23.2, 13.4 ppm. 
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(Z)-1-(5-Méthoxy-2-phénylbenzofuran-3-yl)-3-phényl-2-(propylthio) prop-2-èn-1-ol 

(74b) 

Le composé 74b a été obtenu selon la procedure générale (N°10) à partir de 

l’aldéhyde 72b (200mg, 0.787 mmol) et du thiovinylether 73a (200mg, 1.18 mmol)  

dans du THF anhydre (20 mL) avec du n-BuLi (788 µl, 8.5 mmol) et du BF3∙Et2O (0.73 

mL, 5.8 mmol). Le rendement est 23% (77 mg).  Les produits de départ récupérés : 

l’éther thiovinylique 73a (143mg, 68%) et l’aldéhyde 72b (98mg, 50%). 

RMN 1H (CDCl3, 400 MHz) δ 7.85 (d, 2H, J = 8.4 Hz, CHar), 7.62 (d, 2H, J = 7.3 Hz, CHar), 

7.51 - 7.45 (m, 3H, CHar), 7.42 (d, 1H, J = 8.5 Hz, CHar), 7.34 (t, 2H, J = 7.3 Hz, CHar), 

7.25 (m, 2H, CHar), 7.18 (s, 1H, CH), 6.91 (dd, 1H, J = 8.9 et 2.5 Hz, CHar), 5.78 (dd, 1H, 

J = 3.4 et 1.6 Hz, CH), 3.77 (s, 3H, OCH3), 2.86 (d, 1H, J = 3.4Hz, OH), 2.62 - 2.48 (m, 

2H, CH2), 1.49 (sext., 2H, J = 7.3 Hz, CH2), 0.80 (t, 3H, J = 7.3 Hz, CH3) ppm;  

RMN 13C (CDCl3, 100 MHz) δ 155.8, 154.4, 149.5, 136.1, 136.0, 132.1, 130.4, 129.5, 

129.1, 128.7, 128.3, 128.1, 127.9, 127.6, 115.5, 113.6, 111.7, 104.0, 69.9, 55.9, 34.6, 

23.1, 13.2 ppm. 
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(Z)-1-(5-Méthoxy-2-phénylbenzofuran-3-yl)-3-phényl-2-(p-tolylthio) prop-2-èn-1-ol 

(74c) 

Le composé 74c a été obtenu selon la procédure générale (N° 10) à partir de 

l’aldéhyde 72b (3g, 0.012 mmol) et du thiovinylether 72b (4g, 0.018 mmol) dans du 

THF anhydre (300 ml) avec du n-BuLi (11.8 ml, 0.019 mmol) et du BF3∙Et2O (1.64 mL, 

0.013 mmol). Le rendement est 86% (4.83 g).   

RMN 1H (CDCl3, 400 MHz) δ 7.65 (d, 2H, J = 7.4 Hz, CHar), 7.58 - 7.55 (m, 2H, CHar), 

7.45 (s, 1H, CH), 7.40 (d, 1H, J = 8.9 Hz, CHar), 7.37 - 7.26 (m, 7H, CHar), 7.13 (d, 2H, J = 

8.0 Hz CHar), 6.90 (dd, 1H, J = 8.9 et 2.6 Hz, CHar), 6.92 (d, 2H, J = 7.8 Hz, CHar), 5.61 

(dd, 1H, J = 3.5 et 1.4 Hz, CH), 3.76 (s, 3H, OCH3), 2.60 (d, 1H, J = 3.5 Hz, OH), 2.24 (s, 

3H, CH3) ppm ;  

RMN 13C (CDCl3, 100 MHz) δ 155.8, 154.5, 149.4, 137.3, 135.7, 135.2, 133.3, 131.2, 

130.3, 129.7, 129.6, 129.1, 128.7, 128.5, 128.3, 128.1, 128.0, 127.6, 115.2, 113.6, 

111.7, 103.8, 69.1, 55.9, 21.1 ppm. 
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Procédure générale(N° 11) pour l’oxidation de l’alcool secondaire 

Du MnO2 (6 éq) a été ajouté à une solution de l’alcool divinylique (6 éq) dans du 

CH2Cl2. Après l’agitation à la température ambiante pour 48h, le milieu réactionnel a 

été filtré sur célite et purifié sur silice pour donner la cétone divinylique 

correspondante. 

 

(Z)-1-(5-Méthoxy-2-(4-méthoxyphényl)-benzofuran-3-yl)-3-phényl-2-(propylthio) 

prop-2-èn-1-one (66a) 

Le composé 66a a été obtenu selon la procédure générale (N° 11) à partir de l’alcool 

74a (1.5 g, 4.23 mmol) dans du CH2Cl2 (100 mL) avec du MnO2 (2.21 g, 0.025 mol). Le 

rendement est 72% (1.4g). Le composé est sous forme d'un solide jaune. 

RMN 1H (CDCl3, 400 MHz) δ 7.79 (d, 2H, J = 8.9 Hz, CHar), 7.49 (d, 2H, J = 7.3 Hz, CHar), 

7.44 (d, 1H, J = 8.9 Hz, CHar), 7.43 (s, 1H, CH), 7.33 (t, 2H, J = 7.3 Hz, CHar), 7.31 (t, 1H, 

J = 7.3 Hz, CHar), 7.27 (d, 1H, J = 2.5 Hz, CHar), 6.94 (dd, 1H, J = 8.9 et 2.6 Hz, CHar), 

6.92 (d, 2H, J = 8.9 Hz, CHar), 3.82 (s, 3H, OCH3), 3.79 (s, 3H, OCH3), 2.78 (t, 2H, J = 7.4 

Hz, CH2), 1.58 (six., 2H, J = 7.3 Hz, CH2), 0.92 (t, 3H, J = 7.4 Hz, CH3) ppm ;  

RMN 13C (CDCl3, 100 MHz) δ 190.5, 161.3, 160.3, 157.0, 148.7, 141.3, 137.5, 135.1, 

131.4, 130.5, 130.47, 129.2, 128.9, 128.3, 115.4, 114.3, 114.2, 113.4, 111.9, 103.7, 

56.0, 55.5, 35.2, 23.5, 13.4 ppm. 

BR-MS masse calculée pour C28H26O4S : 458.2, trouvée : 459.1 (M+H)+. 

Point de fusion : 78.6°C 
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(Z)-1-(5-méthoxy-2-phénylbenzofuran-3-yl)-3-phényl-2-(propylthio)prop-2-èn-1-one 

(66b) 

Le composé 66b a été obtenu selon la procédure générale (N° 11) à partir de l’alcool 

74b (75 mg, 0.174 mmol) dans du CH2Cl2 (3 mL) avec du MnO2 (91 mg, 1.5 mmol). Le 

rendement est 87% (65 mg). 

RMN 1H (CDCl3, 400 MHz) δ 7.82 - 7.79 (m, 2H, CHar), 7.48 - 7.45 (m, 4H, CHar), 7.41 - 

7.39 (m, 3H, CHar et CH), 7.32 - 7.29 (m, 4H, CHar), 6.98 (dd, 1H, J = 9.0 et 2.6 Hz, CHar), 

3.81 (s, 3H, OCH3), 2.80 (t, 2H, J = 7.4 Hz, CH2), 1.60 (six., 2H, J = 7.3 Hz, CH2), 0.93 (t, 

3H, J = 7.3 Hz, CH3) ppm ;  

RMN 13C (CDCl3, 100 MHz) δ 190.5, 159.7, 157.0, 149.0, 142.3, 137.0, 135.0, 130.5 

(2C), 130.2, 130.0, 129.3, 128.9 (2C), 128.8, 128.7 (2C), 128.3 (2C), 116.5, 114.9, 

112.1, 103.6, 56.0, 35.2, 23.5, 13.5 ppm. 

BR-MS masse calculée pour C27H24O3S : 428.1, trouvée : 429.1 (M+H)+. 
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(Z)-1-(5-Méthoxy-2-phénylbenzofuran-3-yl)-3-phényl-2-(p-tolylthio)prop-2-èn-1-on

e (66c) 

Le compose 66c a été obtenu selon la procédure générale (N°11)  à partir de l’alcool 

74c (2 g, 4.18 mmol) dans du CH2Cl2 (65 mL) avec du MnO2 (2.18 g, 25.1 mmol). La 

réaction est quantitative (2 g). Le composé est sous forme d'une poudre jaune. 

RMN 1H (CDCl3, 400 MHz) δ 7.67 - 7.65 (m, 3H, CHar), 7.56 - 7.54 (m, 2H, CHar), 7.38 - 

7.33 (m, 7H, CHar et CH), 7.02 (d, 2H, J = 8.0 Hz, CHar), 6.97 (d, 1H, J = 2.5 Hz, CHar), 

6.89 (dd, 1H, J = 8.9 et 2.5 Hz, CHar), 6.80 (d, 2H, J = 7.9 Hz, CHar), 3.78 (s, 3H, OCH3), 

2.11 (s, 3H, CH3) ppm;  

RMN 13C (CDCl3, 100 MHz) δ 156.3, 148.5, 141.4, 139.6, 137.8, 137.6, 134.8, 131.9 

(2C), 130.6 (2C), 130.1, 130.0, 128.0, 123.9, 129.7 (2C), 129.6, 128.5 (2C), 128.5 (2C), 

128.4 (2C), 116.8, 114.4, 111.6, 103.4, 56.0, 31.1, 21.0 ppm. 

BR-MS masse calculée pour C33H24O3S : 476.1, trouvée : 477.1 (M+H)+. 

Point de fusion : 122.5°C 
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7-Méthoxy-3a-(4-méthoxyphényl)-3-phényl-2-(propylthio)-3a,8b-dihydro-1H-cyclo-

penta[b]benzofuran-1-one (65a) 

Du AcBr (24 µL, 0.33 mmol) a été ajouté à une solution de la cétone 66a (100 mg, 

0.22 mmol) dans du 1,2-DCE (3 mL). Le milieu réactionnel a été chauffé à 65°C pour 

24h puis à 80°C pour 24h, après il a été quenché à température ambiante avec une 

solution saturée du bicarbonate, et la phase aquese a été extraite avec du CH2Cl2. La 

phase organique a été lavée avec de l’eau, séchée sur MgSO4, filtrée et concentrée. 

La purification sur silice a donné la cyclopentènone 65a avec 31% de rendement 

(31mg). 

NMR 1H (CDCl3, 400 MHz) δ 7.53 (d, 2H, J = 7.3 Hz, CHar), 7.30 (t, 1H, J = 6.4 Hz, CHar), 

7.33 (t, 2H, J = 7.3 Hz, CHar), 7.25 (d, 2H, J = 8.9 Hz, CHar), 6.97 (d, 1H, J = 2.5 Hz, CHar), 

6.88 (d, 1H, J = 8.9 Hz, CHar), 6.80 (d, 2H, J = 8.9 Hz, CHar), 6.80 (dd, 1H, J = 2.6 et 8.9 

Hz, CHar), 4.05 (s, 1H, CH), 3.77 (s, 3H, OCH3), 3.76 (s, 3H, OCH3), 2.91 (t, 2H, J = 7.4 Hz, 

CH2), 1.40 (six., 2H, J = 7.4 Hz, CH2), 0.80 (t, 3H, J = 7.4 Hz, CH3) ppm ;  

RMN 13C (CDCl3, 100 MHz) δ 165.2, 159.2, 155.0, 152.8, 137.7, 133.2, 132.5, 129.6 

(2C), 128.0 (2C), 126.2 (2C), 124.1, 116.1, 114.2 (2C), 110.8, 109.8, 95.7, 62.8, 56.1, 

55.3, 33.1, 23.4, 13.1 ppm. 

BR-MS masse calculée pour C28H26O4S : 458,2, trouvée : 459.8 (M+H)+. 
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Procédure générale (N° 12) pour l’iodation des arènes 

Du H2O2 (30%  aq. , 0.6-0.9 éq) et du I2 (0.4-0.7 éq) ont été ajoutés à une solution 

d’arène(1 éq) dans de l’eau. La suspension a été agitée à température ambiante à 

50°C pour 7 à 16 heures. Le milieu réactionnel a été dilué avec du CH2Cl2, lavé avec 

une solution saturée de Na2S2O3 et de l’eau. La phase organique a été séchée sur 

MgSO4, filtrée et concentrée. Une chromatographie sur silice a donné le produits 

iodé. 

 

 

 
 

2-Iodo-3,5-diméthoxyphénol (76-1) 

Le composé 76-1 a été obtenu selon la procédure générale (N° 12) à partir de 

3,5-diméthoxyphénol (15 g, 97.4 mmol) dans de l’eau (180 mL) avec du H2O2 (30% aq., 

7.17 g, 63.3 mmol) et du I2 (12.4 g, 48.7 mmol). Le milieu a été agité pour 16 heures à 

temperature ambiante. Le rendement est de 29% (7.75 g). Le composé est sous 

forme d'une poudre beige. 

RMN 1H (CDCl3, 400 MHz) δ 6.29 (d, 1H, J = 2.6 Hz, CHar), 6.06 (d, 1H, J = 2.6 Hz, CHar), 

5.47 (s, 1H, OH), 3.84 (s, 3H, OCH3), 3.79 (s, 3H, OCH3) ppm;  

RMN 13C (CDCl3, 100 MHz), δ 161.9, 158.7, 156.2, 92.7, 91.7, 66.8, 56.1, 55.2 ppm. 

Point de fusion : 67.5°C 
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3,5-Diméthoxy-2-((4-méthoxyphényl)éthynyl)phénol (76) 

L’iodophénol 76-1 (3.06 g, 10.92 mmol) et du 4-méthoxyphényl acéthylène (1.55 mL, 

12.01 mmol) ont été dissous dans du THF anhydre (25 ml) sous argon. Du EtMgBr 

(22.93 mL, 22.93 mmol) a été ajouté au goutte à goutte à 0°C puis le mélange a été 

agité pour 5 minutes à la même température. Du Pd(PPh3)2Cl2 (146 mg, 0.21 mmol) a 

été ensuite ajouté à température ambiante. Le milieu réactionnel a été chauffé à 

70°C pour 2h puis quenché avec une solution de HCl (0.5 M), et la phase aqueuse a 

été extraite avec de l’acétate d’éthyle. La phase organique a été lavée avec de l’eau, 

séchée sur MgSO4, filtrée et concentrée pour donner le tolane 76 avec 52% de 

rendement. Le composé est sous forme d'une poudre beige. 

RMN 1H (CDCl3, 400 MHz) δ 7.48 (d, 2H, J = 8.9 Hz, CHar), 6.88 (d, 2H, J = 8.9 Hz, CHar), 

6.19 (d, 1H, J = 2.3 Hz, CHar), 6.06 (d, 1H, J = 2.3 Hz, CHar), 5.98 (s, 1H, OH), 3.86 (s, 3H, 

OCH3), 3.83 (s, 3H, OCH3), 3.80 (s, 3H, OCH3) ppm;  

RMN 13C (CDCl3, 100 MHz) δ 161.8, 160.9, 159.7, 158.7, 133.1, 115.0, 113.9, 98.9, 

92.4, 92.1, 91.4, 78.2, 56.0, 55.5, 55.3 ppm. 

Point de fusion : 83.8°C 
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4, 6-diméthoxy-2-(4-méthoxyphényl)-benzofuran-3-carboxylate de méthyle (30) 

Du CBr4 (3.85 g, 11.6 mmol), du Pd(OAc)2 (25 mg, 0.11 mmol) et du NaHCO3 (0.970 g, 

11.6 mmol) ont été ajoutés à une solution du tolane 76 (1.5 g, 5.29 mmol) dans du 

méthanol (30 ml). Le milieu réactionnel a été mis sous pression atmosphérique du 

CO et agité pour 12h à température ambiante. Il a été filtré sur célite, concentré et 

séché sous vide pour donner l’ester 30 avec 72% (1.3 g) de rendement. Le composé 

est sous forme d'une poudre marron. 

RMN 1H (CDCl3, 400 MHz) δ 7.75 (d, 2H, J = 9.0 Hz, CHar), 6.96 (d, 2H, J = 8.9 Hz, CHar), 

6.65 (d, 1H, J = 2.0 Hz, CHar), 6.35 (d, 1H, J = 1.9 Hz, CHar), 3.92 (s, 3H, OCH3), 3.89 (s, 

3H, OCH3), 3.85 (s, 3H, OCH3), 3.85 (s, 3H, OCH3) ppm ;  

RMN 13C (CDCl3, 100 MHz) δ 166.3, 160.4, 159.6, 155.5, 153.8, 153.6, 128.7(2C), 

122.6, 114.1(2C), 111.0, 107.9, 95.3, 88.1, 56.0, 55.9, 55.5, 55.4 ppm. 

 

Point de fusion : 64.2°C 

 

 

 

 

 

2-Iodo-1,3,5-triméthoxybenzène (23-1) 

Le composé 23-1 a été obtenu selon la procédure générale (N° 12) à partir du 

3,5-diméthoxyphénol (15 g, 97.4 mmol) dans de l’eau (180 mL) avec du H2O2 (30% aq., 
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4.50 mL, 40,0 mmol) et du I2 (5.08 g, 20.0 mmol). Le milieu a été agité à 50°C pour 7 

heures. Le rendement est 94% (12.01 g). 

RMN 1H (DMSO-d6, 400 MHz) δ 6.28 (s, 2H, CHar), 3.80 (s, 9H, OCH3) ppm;  

RMN 13C (CDCl3, 100 MHz) δ 161.9, 159.3, 91.6, 66.3, 56.4, 55.5 ppm. 

 

 

 

1,3,5-Triméthoxy-2-((4-méthoxyphényl)ethynyl)benzène (23) 

Du 4-méthoxyphénylacétylène (3.5 g, 26.5 mmol), du Pd(PPh3)2Cl2 (280 mg, 0.40 

mmol) et du CuI (76 mg, 0.40 mmol) ont été ajouté à une suspension du 

2-iodo-1,2,3-triméthoxybenzène 23-1 (3.91 g 13.3 mmol) dans du DMF (30 ml), de la 

triéthylamine (30 ml) a été ensuite ajouté au goutte à goutte sous argon. Le milieu 

réactionnel a été chauffé à 80°C pour 12h puis refroidi à température ambiante et 

filtré sur célite. Le filtrat a été concentré et purifié sur silice pour donner le tolane 23 

avec 70% de rendement (2.73 g). 

RMN 1H (CDCl3, 400 MHz) δ 7.49 (d, 2H, J = 8.9 Hz, CHar), 6.84 (d, 2H, J = 8.9 Hz, CHar), 

6.12 (s, 2H, CHar), 3.88 (s, 6H, OCH3), 3.83 (s, 3H, OCH3), 3.81 (s, 3H, OCH3) ppm ; 

RMN 13C (CDCl3, 100 MHz) δ 162.2, 161.5, 159.3, 133.1 (2C), 116.6, 113.9 (2C), 96.3, 

94.9 (2C), 90.7 (2C), 80.5, 56.2 (2C), 55.5, 55.4 ppm. 
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2-(4-Méthoxyphényl)-1-(2,4,6-triméthoxyphényl)ethan-1-one (77) 

Du Hg(OAc)2 (3.31 g, 10.4 mmol) a été ajouté à 0°C à une solution du tolane 23 (2.40 

g,  8.4 mmol) dans de l’acide acétique glacial (150 ml). Le milieu réactionnel a été 

agité à 0°C pour 1h et sous sonication pour 1h. Il a été versé à une solution de 

saumure (150 ml) à 0°C, et le mélange a été agité à température ambiante pour 10 

min. Il a été ensuite filtré, lavé par de l’eau et du pentane puis séché sous vide. La 

recristallisation dans du CHCl3 a donné 2.11 g de produit brut qui a été engagé 

directement à l’étape suivante. 

Du LiCl anhydre (379 mg, 8.9 mmol), du PdCl2 (721 mg, 4.1 mmol), et du MgO (327 

mg, 8.2 mml) ont été mélangé dans du méthanol (50 mL). Le milieu a été agité à 

-78°C pour 20 minutes. L’intermédiare synthétisé (2.11 g, 4.1 mmol) a été ajouté puis 

le milieu réactionnel a été mis sous pression atmosphérique du CO et agité à 

température ambiante pour 16h.  Du charbon activé et de l’éther ont été ajouté 

puis le milieu a été filtré sur célité, lavé avec une solution saturée de NH4Cl. La phase 

organique a été séchée sur MgSO4, filtrée et concentrée pour donner la cétone 77 

avec 80% de rendement (1.04 g). 

RMN 1H (CDCl3, 400 MHz) δ 7.12 (d, 2H, J = 8.7 Hz, CHar), 6.81 (d, 2H, J = 8.7 Hz, CHar), 

6.01 (s, 2H, CHar), 3.97 (s, 2H, CH2), 3.81 (s, 3H, OCH3), 3.78 (s, 3H, OCH3), 3.74 (s, 6H, 

OCH3) ppm ; 

RMN 13C (CDCl3, 100 MHz) δ 201.9, 162.4 (2C), 158.4, 158.2, 130.9 (2C), 127.1, 113.7 

(2C), 90.7 (2C), 55.9, 55.5, 55.3 (2C), 50.7 ppm. 

BR-MS : masse calculée pour C18H20O5: 316,1, trouvée : 317.2 (M+H)+. 
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5.3. Procédure pour le chapitre 3.3 

 

 

 

(4aS,9bS)-7,9-dimethoxy-4a-phenyl-1,2,3,4,4a,9b-hexahydrodibenzo[b,d]furan (86) 

 

A 0°C, du BF3∙OEt2 (180 µl, 2.96 mmol) et le composé 83 (200 mg, 1.3 mmol) qui est 

dissous préallablement dans du dichlorométhane anhydre (2 ml) ont été ajouté 

successivement dans une solution du composé 84 (227 mg, 1.3 mmol) dans du 

dichlorométhane (3 ml). Le milieu réactionnel a été agité à température ambiante 

pour 12h puis a été chauffé à 50°C pour 4h. Il a été ensuite neutralisé par une 

solution saturée de sodium bicarbonate, puis extrait  par de l’éther, séché sur 

MgSO4, filtré et concentré. Le produit brut obtenu a été purifié par une 

chromatographie sur la silice, et le produit 86 a été obtenu sous forme d'une poudre 

blanche, avec un rendement de 69% (278 mg).  

 

RMN 1H (CDCl3, 400 MHz) δ 7.46 (d, 2H, J = 7.5 Hz, CHar), 7.29 (t, 2H, J = 7.6 Hz, CHar), 

7.20 (t, 1H, J = 7.6 Hz, CHar), 6.18 (s, 1H, CHar), 5.97 (s, 1H, CHar), 3.77 (s, 3H, OCH3), 

3.72 (s, 3H, OCH3), 3.56 (t, 1H, J = 6.1 Hz, CH), 2.17 - 2.11 (m, 1H, CH2), 2.08 - 2.03 (m, 

1H, CH2), 2.01 - 1.94 (m, 1H, CH2), 1.75 - 1.68 (m, 1H, CH2), 1.68 - 1.61 (m, 2H, CH2), 

1.52 - 1.46 (m, 2H, CH2) ppm ; 

 

RMN 13C (CDCl3, 100 MHz) δ 161.5, 160.7, 156.9, 147.6, 128.2, 126.9, 125.0, 111.1, 

91.6, 91.4, 88.9, 55.6, 55.3, 45.5, 35.1, 27.1, 20.0, 19.9 ppm. 

 

Point de fusion : 100.8°C 
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Furan-2-yl(4-méthoxyphényl)méthanol (95) 

 

A -78°C, du n-BuLi dans de l’hexane (1.6M, 20.6 ml, 33.0 mmol) a été ajouté sous 

argon à une solution de furane (3.2 ml, 44.1 mmol) dans du THF anhydre (35 ml). Le 

mélange a ensuite été agité à 0°C pendant 30 minutes. Du p-anisaldéhyde (2.7 ml, 

22.05 mmol) dilué dans du THF (20 ml) a été ajouté au goutte à goutte à -78°C. Le 

mélange a été agité à la même température pour 30 minutes puis quenché par 

l’ajout de 5 ml de solution aqueuse saturée de NH4Cl. Les deux phases ont été 

séparées et la phase aqueuse a été extraite avec de l’éther. Les phases organiques 

recombinées ont été lavées à la saumure, séchées sur MgSO, filtrées et concentrée. 

Le produit 95 a été obtenu quantitativement sous forme d’huile jaune (9g).  

 

RMN 1H (CDCl3, 400 MHz) δ 7.39 (s, 1H, OH), 7.35 (d, 2H, J = 8.7 Hz, CHar), 6.90 (d, 2H, 

J = 8.7 Hz, CHar), 6.32 (dd, 1H, J = 3.1 et 1.8 Hz, CH), 6.11 (d, 1H, J = 3.3 Hz, CH), 5.77 

(d, 1H, J = 4.3 Hz, CH), 3.81 (s, 3H, OCH3), 2.46 (d, 1H, J = 4.4 Hz, CH) ppm ; 

 

RMN 13C (CDCl3, 100 MHz) δ 159.5, 156.5, 142.5, 133.4, 128.1 (2C), 114.0 (2C), 110.3, 

107.3, 69.9, 55.4 ppm. 
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4-hydroxy-5-(4-méthoxyphényl)cyclopent-2-èn-1-one (96) 

Du composé 95 (4.7 g, 23 mmol) a été dissous dans un mélange acétone/eau (160 

ml/6.5 ml), puis du ZnCl2 (3.13 g, 23 mmol) a été ajouté. Le mélange a été agité pour 

24h en reflux. La solution obtenue refroidie à température ambiante a été acidifiée 

jusqu’à pH = 3 par une solution de HCl (1N). Le mélange a été extrait avec de l’éther 

puis séché sur MgSO4, filtré et concentré. La chromatographie sur silice a donné le 

produit 96 sous forme d’un solide brun avec 66% de rendement (3.1g).  

RMN 1H (CDCl3, 400 MHz) δ 7.61 (dd, 1H, J = 5.7 et 2.0 Hz, CH), 7.05 (d, 2H, J = 8.7 Hz, 

CHar), 6.88 (d, 2H, J = 8.7 Hz, CHar), 6.35 (d, 1H, J = 5.8 Hz, CH), 4.97 (s, 1H, OH), 3.80 

(s, 3H, OCH3), 3.41 (d, 1H, J = 2.8 Hz, CH), 2.24 (d, 1H, J = 6.1 Hz, CH) ppm ; 

RMN 13C (CDCl3, 100 MHz) δ 205.8, 161.8, 159.1, 134.5, 129.6, 128.9 (2C), 114.6 (2C), 

79.2, 61.6, 55.5 ppm.   

Point de fusion : 75.4°C 

 

 

 

2-(4-méthoxyphényl)cyclopent-2-èn-1-one (97)         

Du Pd/C (10 wt. %, 267 mg, 0.25 mmol) a été ajouté à une solution du composé 96 (1 

g, 4.89 mmol) dans de l’éthanol (125 ml), et le milieu réactionnel a été agité sous H2 
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(1 atm) pour 4h. Le mélange réactionnel a été filtré sur célite, puis de la silice (15 g) a 

été ajoutée au filtrat. La suspension obtenue a été agitée pour 48h à température 

ambiante, filtré et concentré. La chromatographie sur silice a donné le produit 97 

sous forme d’un solide jaune avec 70% de rendement (643 mg). 

RMN 1H (CDCl3, 400 MHz) δ 7.74 (t, 1H, J = 3.0 Hz, CH), 7.67 (d, 2H, J = 8.7 Hz, CHar), 

6.92 (d, 2H, J = 8.7 Hz, CHar), 3.82 (s, 3H, OCH3), 2.71 - 2.67 (m, 2H, CH2), 2.60 - 2.57 

(m, 2H, CH2) ppm. 

RMN 13C (CDCl3, 100 MHz)  δ 208.0, 159.9, 143.0, 128.5 (2C), 124.5, 114.1 (2C), 55.5, 

36.0, 26.3 ppm. 

Point de fusion : 108.8 °C 

 

 

 

2-(4-méthoxyphényl)-1-phénylcyclopent-2-èn-1-ol (101) 

 

A -78°C, une solution de phényllithium dans de l’éther (1.8 M, 7.11 ml, 12.8 mmol) a 

été ajoutée au goutte à goutte à une solution du composé 97 (1.5 g, 8.0 mmol) dans 

du THF anhydre (75 ml). Le mélange a été agité à la même température pour 1h, puis 

quenché par l’ajout d’une solution aqueuse saturée de NH4Cl. Les deux phases ont 

été séparées, et la phase aqueuse a été extraite avec de l’éther. Les phases 

organiques recombinées ont été séchées sur MgSO4, filtrées et concentrées. La 

chromatographie sur silice a donné le produit 15 sous forme d'une huile jaune avec 

80% de rendement (1.7 g).  

 

 



PARTIE EXPERIMENTALE 
 

130 
 

RMN 1H (CDCl3, 400 MHz) δ 7.48 (d, 2H, J = 8.7 Hz, CHar), 7.34 (m, 2H, CHar), 7.28 - 

7.23 (m, 3H, CHar), 6.74 (d, 2H, J = 8.7 Hz, CHar), 6.99 (t, 1H, J = 2.5 Hz, CH), 3.75 (s, 3H, 

OCH3), 2.67 - 2.61 (m, 1H, CH2), 2.55 - 2.48 (m, 1H, CH2), 2.40 (t, 2H, J = 6.5 Hz, CH2), 

2.21 (s, 1H, OH) ppm ; 

 

RMN 13C (CDCl3, 100 MHz) δ 158.7, 146.3, 129.3 (2C), 128.3 (2C), 128.1, 126.8 (2C), 

126.5, 124.7, 113.6 (2C), 87.7, 55.1, 45.5, 29.2 ppm. 

 

 

Synthèse du 2-(4-méthoxyphényl)-3-phénylcyclopent-2-èn-1-one (102) 

 

A 0°C, du pyridinium dichromate (4.60 g, 12.24 mmol)  a été ajouté à une solution 

du composé 101 (1.63 g, 6.12 mmol) dans du CH2Cl2 (40 ml). Le mélange a été agité à 

la même température pour 4h. Le milieu réactionnel a été dilué dans de l’éther, filtré 

sur célite, puis lavé à l’éther, et le filtrat a été concentré à sec. La chromatographie 

sur silice a donné le produit 102 sous forme d’un solide blanc avec 76% de 

rendement (1.23 g).  

 

RMN 1H (CDCl3, 400 MHz) δ 7.37 - 7.28 (m, 5H, CHar), 7.15 (d, 2H, J = 8.7 Hz, CHar), 

6.86 (d, 2H, J = 8.7 Hz, CHar), 3.81 (s, 3H, OCH3), 3.05 - 3.03 (m, 2H, CH2), 2.71 - 2.69 

(m, 2H, CH2) ppm ;  

 

RMN 13C (CDCl3, 100 MHz) δ 208.0, 167.1, 159.2, 139.3, 136.0, 130.7, 129.7 (2C), 

128.4 (2C), 128.0 (2C), 124.4, 114.0 (2C), 55.2, 34.8, 29.5 ppm.  

 

Point de fusion : 94.0°C 
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2-(4-méthoxyphényl)-3-phénylcyclopentan-1-one (82) 

 

Du Pd(OH)2/C ( 20 wt. %, 400 mg, 0.57 mmol) a été ajouté à une solution du 

composé 102 (1.15 g, 4.34 mmol) dans de l’acétate d’éthyle (40 ml). Le mélange a été 

agité sous H2 (1 atm) pour 4h à température ambiante, puis filtré sur célite. Le filtrat 

a été concentré, puis séché sous pression réduite pour obtenir le composé 82 sous 

forme d’un solide jaune avec 90% de rendement (1.04 g).  

 

RMN 1H (CDCl3, 400 MHz) δ 7.30 - 7.26 (m, 2H, CHar), 7.22 - 7.18 (m, 3H, CHar), 6.97 

(d, 2H, J = 8.7 Hz, CHar), 6.81 (d, 2H, J = 8.7 Hz, CHar), 3.75 (s, 3H, OCH3), 3.48 - 3.40 

(m, 2H, CH2), 2.73-2.66 (m, 1H, CH), 2.50 - 2.44 (m, 2H, CH2), 2.14 - 2.07 (m, 1H, CH) 

ppm ; 

 

RMN 13C (CDCl3, 100 MHz) δ 217.1, 158.8, 141.9, 129.8 (2C), 129.3 (2C), 128.8 (2C), 

127.3, 127.0, 114.3 (2C), 62.3, 55.4, 50.7, 38.8, 29.6 ppm. 

 

Point de fusion : 78.1°C 
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2-(4-méthoxyphényl)cyclopentan-1-one (88) 

 

A -78°C, une solution de DMSO (0.15 ml, 2.07 mmol) dans du CH2Cl2 (2 ml) a été 

ajoutée doucement à une solution de chlorure d’oxalyle (0.09 ml, 1.05 mmol) dans 

du CH2Cl2 (3 ml). Après 5 minutes d’agitation, une solution de cyclopentanol 98 (180 

mg, 0.94 mmol) dans du CH2Cl2 (1 ml) a été ajoutée pendant 10 minutes. Après 15 

minutes d’agitation, de la triéthylamine (0.63 ml, 4.7 mmol) a été ajoutée pendant 15 

minutes. La température a ensuite été laissée remonter à température ambiante. Le 

mélange a été dilué avec 4 ml d’eau, et les phases obtenues ont été séparées. La 

phase aqueuse a été extraite avec du CH2Cl2, et les phases organiques recombinées 

ont été lavées successivement avec d’une solution aqueuse de HCl (1%), de Na2SO4 

(5%) et de l’eau, puis séchées sur MgSO4, filtrées et concentrées. La chromatographie 

sur silice a donné le produit 88 avec 90% de rendement (159 mg).  

 

RMN 1H (CDCl3, 400 MHz) δ 7.12 (d, 2H, J = 8.7 Hz, CHar), 6.88 (d, 2H, J = 8.7 Hz, CHar), 

3.79 (s, 3H, OCH3), 3.30 - 3.25 (m, 1H, CH), 2.50 - 2.43 (m, 2H, CH2), 2.30 - 2.25 (m, 1H, 

CH2), 2.17 - 2.05 (m, 2H, CH2), 1.98 - 1.89 (m, 1H, CH2) ppm ; 

 

RMN 13C (CDCl3, 100 MHz) δ 218.5, 158.7, 130.6, 129.2(2C), 114.3 (2C), 55.5, 54.7, 

38.5, 32.0, 21.0 ppm. 
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6,8-diméthoxy-3a-phényl-2,3,3a,8b-tétrahydro-1H-cyclopenta[b]benzofurane (99) 

A 0°C, du BF3·Et2O (0.07 ml, 0.54 mmol) et du 3,5-diméthoxyphénol (69 mg, 0.48 

mmol) ont été ajouté sous argon à une solution du composé 88 (90 mg, 0.48 mmol) 

dans du CH2Cl2 anhydre (2,5 ml). Le mélange a été agité pour 4h à 0°C puis 12h à 

température ambiante. La réaction a ensuite été quenchée par l’ajout de 2 ml de 

solution aqueuse saturée du NaHCO3, les phases obtenues ont été séparées et la 

phase aqueuse a été extraite avec de l’éther. La phase organique a été séchée sur 

MgSO4, filtrée et concentrée. La chromatographie sur silice a donné le produit 99 

sous forme d’une huile incolore avec 54% de rendement (85 mg).  

RMN 1H (CDCl3, 400 MHz) δ 7.34 (d, 2H, J = 8.7 Hz, CHar), 6.90 (d, 2H, J = 8.7 Hz, CHar), 

6.08 (d, 1H, J = 1.8 Hz, CHar), 6,05 (d, 1H, J = 1.9 Hz, CHar) 3.72 (s, 6H, OCH3), 3.70 (s, 

3H, OCH3), 3.61 (d, 1H, J = 8.4 Hz, CH), 2.25 (dd, 1H, J = 13.3 et 5.4 Hz, CH2), 2.08 - 

1.96 (m, 2H, CH2), 1.79 (m, 2H, CH2), 1.58 - 1.47 (m, 1H, CH2) ppm ; 

RMN 13C (CDCl3, 100 MHz) δ 161.9, 161.7, 158.9, 156.7, 137.5, 126.1 (2C), 113.9 (2C), 

110.1, 101.4, 91.3, 87.8, 52.8, 42.7, 34.5, 25.4 ppm. 
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(3R,3aS,8bS)-6,8-diméthoxy-3a-(4-méthoxyphényl)-3-phényl-2,3,3a,8b-tétrahydro-1

H-cyclopenta[b]benzofuran (103a) 

(3S,3aS,8bS)-6,8-diméthoxy-3a-(4-méthoxyphényl)-3-phényl-2,3,3a,8b-tétrahydro-1

H-cyclopenta[b]benzofuran (103b) 

Du BF3·Et2O (0.03 ml, 0.17 mmol) et du 3,5-diméthoxyphénol (22 mg, 0.15 mmol) ont 

été ajouté sous argon à une solution du composé 82 (40 mg, 0.15 mmol) dans du 

CH2Cl2 anhydre (1,2 ml). Le mélange a été agité pour 4h à 50°C, puis neutralisé par 

l’ajout de 1 ml de solution aqueuse saturée de NaHCO3, les phases obtenues ont été 

séparées et la phase aqueuse a été extraite avec de l’éther. La phase organique a été 

séchée sur MgSO4, filtrée et concentrée. La chromatographie sur silice a donné un 

mélange du produit 103a et 103b avec 22% de rendement (13 mg). 

Composé 103a 

RMN 1H (CDCl3, 400 MHz) δ 7.27 (d, 2H, J = 8.7 Hz, CHar), 7.20 - 7.19 (m, 3H, CHar), 

7.02 - 7.00 (m, 2H, CHar), 6.82 (d, 2H, J = 8.7 Hz, CHar), 6.11 (s, 1H, CHar), 6.00 (s, 1H, 

CHar), 6.92 (d, 1H, J = 7.3 Hz, CH), 3.78 (s, 6H, OCH3), 3.77 (s, 3H, OCH3), 3.41 (dd, 1H, 

J = 11.7 et 5.5 Hz, CH2), 2.17 - 2.23(m, 2H, CH2), 2.11 - 2.04 (m, 2H, CH2) ppm ; 

RMN 13C (CDCl3, 100 MHz) δ 161.8, 161.7, 158.6, 156.6, 138.4, 136.8, 129.3(2C), 

127.7(2C), 126.6, 126.2(2C), 113.6(2C), 109.8, 100.8, 91.4, 87.9, 59.6, 55.7, 55.4, 55.3, 

54.0, 32.4, 30.5 ppm. 

Composé 103b 

RMN 1H (CDCl3, 400 MHz) δ 7.11 - 7.07 (m, 3H, CHar), 6.93 - 6.90 (m, 2H, CHar), 6.63 

(d, 2H, J = 8.7 Hz, CHar), 6.18 (s, 1H, CHar), 6.05 (s, 1H, CHar), 4.12 - 4.08 (m, 1H, CH), 

3.82 (s, 3H, OCH3), 3.79 (s, 3H, OCH3), 3.70 (s, 3H, OCH3), 3.58 (d, 1H, J = 5.4 Hz, CH), 
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1.98 - 2.23 (m, 2H, CH2) ppm. 

 

 

(Z)-5-(Hydroxyimino)-2-(4-méthoxyphényl)-3-phénylcyclopent-2-èn-1-one (122) 

A 0°C, du nitrite de n-butyle (53µl, 0.46 mmol) et de l’HCl concentré (46µl, 1.5mmol) 

ont été ajouté sous argon à une solution du composé 102 (100mg, 0.38mmol) dans 

du 1,4-dioxane (2ml). Le milieu réactionnel a été agité pour 30 min à température 

ambiante, puis versée dans de l’eau glacée. Les phases obtenues ont été séparées et 

la phase aqueuse a été extraite avec de l’acétate d’éthyle. Les phases organiques 

recombinées ont été séchées sur MgSO4, filtré et concentré. La chromatographie sur 

silice a donné le produit 122 sous forme d’une poudre jaune avec 70% de rendement 

(78 mg). 

RMN 1H (CDCl3, 400 MHz) δ 8.57 (bs, 1H, OH), 7.42 (m, 2H, CHar), 7.38 - 7.37 (d, 1H, 

J=6.9 Hz, CHar), 7.34 - 7.31 (m, 2H, CHar), 7.24 - 7.22 (d, 2H, J=8.7 Hz, CHar), 6.91 - 6.89 

(d, 2H, J=8.5 Hz, CHar), 3.83 (s, 3H, OCH3), 3.76 (s, 2H, CH2) ppm ;  

RMN 13C (CDCl3, 100 MHz) δ 159.7, 158.9, 153.5, 141.4, 134.6, 130.7(2C), 130.6, 

128.6(2C), 128.5(2C), 123.5, 114.2(2C), 55.3, 30.9 ppm.  

HR-MS  masse calculée pour C18H15NO3 : 293.1052, trouvée : 294.1122 (M+H+). 

 

Point de fusion : 224.7°C 
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(Z)-5-(Méthoxyimino)-2-(4-méthoxyphényl)-3-phénylcyclopent-2-èn-1-one (123a) 

(E)-5-(Méthoxyimino)-2-(4-méthoxyphényl)-3-phénylcyclopent-2-èn-1-one (123b) 

A 0°C, du sulfate de diméthyle (50µl, 0.51mmol) a été ajouté à une solution du 

composé 122 (100mg, 0.34mmol) dans l’acétone, puis du K2CO3 (70mg, 0.51mmol) a 

été ajouté en 3 portions. Le milieu réactionnel a été agité pour 1h à température 

ambiante, puis filtré et concentré. La chromatographie sur silice a donné le produit 

123a sous forme d’un solide jaune clair avec 36% de rendement (38 mg) et le produit 

123b sous forme d’une huile jaune avec 53% de rendement (55 mg).  

Composé 123a (f1 36%) 

RMN 1H (CDCl3, 400 MHz) δ 7.40 - 7.33 (m, 5H, CHar), 7.21 (d, 2H, J=8.7Hz, CHar), 6.89 

(d, 2H, J=8.7 Hz, CHar), 4.16 (s, 3H, OCH3), 3.82 (s, 3H, OCH3), 3.67 (s, 2H, CH2) ppm ;  

RMN 13C (CDCl3, 100 MHz) δ 190.4, 159.8, 158.7, 152.2, 141.5, 134.8, 130.9, 130.6, 

128.7, 128.6, 123.8, 114.3, 63.7, 55.4, 31.5 ppm.  

HR-MS : masse calculée pour C19H17NO3 : 307.1208, trouvée : 308.1268 (M+H+).  

Point de fusion : 116.7°C 

Composé 123b (f2 53%) 

RMN 1H (CDCl3, 400 MHz) δ 7.42 - 7.29 (m, 5H, CHar), 7.21 (d, 2H, J=8.7 Hz, CHar), 

6.91 (d, 2H, J = 8.7 Hz, CHar), 4.28 (s, 3H, OCH3), 3.89 (s, 2H, CH2), 3.84 (s, 3H, OCH3) 

ppm ; 
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RMN 13C (CDCl3, 100 MHz) δ 190.4, 159.8, 158.7, 152.2, 141.5, 134.8, 130.9 (2C), 

130.6, 128.7(2C), 128.6 (2C), 123.8, 114.3 (2C), 63.7, 55.4, 31.5 ppm.  

HR-MS : masse calculée pour C19H17NO3 : 307.1208, trouvée : 330.1093 (M+Na+). 

 

 

 

 

1',3',6',8'-Tétraméthoxy-3-(4-méthoxyphényl)-4-phénylspiro[cyclopentane-1,9'-xant

hen]-3-èn-2-one (124a) 

1'-hydroxy-3',6',8'-trimethoxy-3-(4-methoxyphenyl)-4-phenylspiro[cyclopentane-1,

9'-xanthen]-3-en-2-one (124b) 

A 0°C, une solution de BF3 méthanolate (50% w/w, 50µl, 0.6mmol) a été ajouté sous 

argon à une solution du composé 123a ou 123b (80mg, 0.26mmol) dans du 

1,2-dichloroéthane (2 ml). Le milieu a été agité pour 30min à 0°C. Une solution de 

3,5-diméthoxyphénol (60mg, 0.39mmol) dans du 1,2-dichloroéthane (1 ml) a été 

ajouté doucement à 0°C, puis le milieu réactionnel a été agité à la même 

température pour 2h, et à température ambiante pour 12h. Le milieu réactionnel a 

été neutralisé par l’ajout d’une solution saturée de bicarbonate, et la phase aqueuse 

a été extraite avec de l’éther. Les phases organiques recombinées ont été séchées sur 

MgSO4, filtrées et concentrée. La chromatographie sur silice a donné le produit 124a 

sous forme d’un solide jaune avec 30% de rendement (43 mg) et le produit 124b sous 

forme d’un solide jaune avec 30% de rendement (41mg).  

Composé 124a 

RMN 1H (CDCl3, 400 MHz) δ 7.32 - 7.22 (m, 5H, CHar), 7.29 (d, 2H, J = 8.0 Hz, CHar), 

6.84 (d, 2H, J = 8.7 Hz, CHar), 6.21 (d, 2H, J = 1.5Hz, CHar), 6.07 (d, 2H, J = 1.5Hz, CHar), 
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3.78 (s, 3H, OCH3), 3.75 (s, 6H, OCH3), 3.58 (s, 6H, OCH3), 3.23 (s, 2H, CH2) ppm.   

RMN 13C (CDCl3, 100 MHz) δ 210.2, 160.7, 160.1(2C), 159.3, 158.7(2C), 152.3(2C), 

137.3, 137.3, 137.3, 131.0 (2C), 129.0, 128.7 (2C), 128.1 (2C), 126.1, 114.2 (2C), 107.1, 

94.5 (2C), 93.4 (2C), 55.8 (2C), 55.7 (2C), 55.5, 51.7, 46.7 ppm 

HR-MS : calculé pour C34H30O7 : 550.1992, trouvé : 573.1879 (M+Na+). 

 

Point de fusion : 248.6°C 

Composé 124b 

RMN 1H (CDCl3, 400 MHz) δ 7.31 (d, 2H, J = 7.1 Hz, CHar), 7.26 - 7.24 (m, 3H, CHar), 

6.76 (d, 2H, J = 8.5 Hz, CHar), 6.23 (s, 1H, CHar), 6.16 (s, 1H, CHar), 6.09 (s, 1H, CHar), 

5.93 (s, 1H, OH), 5.86 (s, 1H, CHar), 3.75 (s, 3H, OCH3), 3.72 (s, 3H, OCH3), 3.65 (s, 3H, 

OCH3), 3.59 (s, 3H, OCH3), 3.31(d, 2H, J = 11 Hz, CH2) ppm ; 

 

RMN 13C (CDCl3, 100 MHz) δ 211.0, 162.0, 160.0, 159.5, 159.0, 158.5, 155.1, 152.3, 

137.3, 136.9, 130.9 (2H), 129.0, 128.5 (2H), 128.1 (2H), 125.7, 114.0 (2H), 106.6, 

105.3, 97.8, 94.3, 93.7, 93.2, 55.7, 55.6, 55.4, 55.3, 51.3, 46.6, 30.5 ppm. 

 

HR-MS : calculé pour C33H28O7 : 536.1835,  trouvé : 537.1907 (M+H+) 

 

Point de fusion : 242.8°C 
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5.4. Procédure pour le chapitre 3.4 

 

 
8,10-Diméthoxy-5a-(4-méthoxyphényl)-5-phényl-3a,4,5,5a-tétrahydro-[1,3,2]dioxat

hiolo[4',5':2,3] cyclopenta[1,2-b] benzofuran 2-oxide (132).  

A 0°C, de la pyridine (0.23 ml, 2.87 mmol) et du chlorure de thionyle (0.17 ml, 2.3 

mmol) ont été ajouté doucement sous argon à une solution d’épi-rocaglaol (500 mg, 

1.15 mmol) dans du CH2Cl2 anhydre (5ml). Le milieu réactionnel a été agité pour 3h à 

0°C, puis lavé par une solution saturée de bicarbonate et une solution saturée de 

KHSO4 successivement. La phase organique a été séchée sur MgSO4 et évaporée à sec. 

Le sulfite 132 a été obtenu quantitativement (552 mg).  

RMN 1H (CDCl3, 400 MHz) δ 7.23 (d, 2H, J = 8.9 Hz, CHar), 7.20 - 7.18 (m, 2H, CHar), 

7.16 - 7.12 (m, 3H, CHar), 6.68 (d, 2H, J = 9.0 Hz, CHar), 6.26 (d, 1H, J = 1.9 Hz, CHar), 

6.12 (d, 1H, J = 1.9 Hz, CHar), 5.35 (dd, 1H, J = 8.8 and 7.5 Hz, CH), 3.85 (s, 3H, OCH3), 

3.84 (s, 3H, OCH3), 3.71 (m, 1H, CH), 3.70 (s, 3H, OCH3), 3.08 - 2.92 (m, 2H, CH2) ppm. 
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8b-Azido-6,8-diméthoxy-3a-(4-méthoxyphényl)-3-phényl-2,3,3a,8b-tétrahydro-1H-c

yclopenta[b]benzofuran-1-ol (134).  

De l’azoture de sodium (434 mg, 6.66 mmol) a été ajouté sous argon à une solution 

du sulfite 132 (535mg, 1.11 mmol) dans du DMF anhydre (10ml). Le milieu a été agité 

pour 24h à 75°C puis a été refroidi à température ambiante et quenché par une 

solution de l’acide sulfurique (20%, 3.3ml). La phase aqueuse a été extraite avec de 

l’éther, puis la phase organique combinée a été lavée par de l’eau et une solution 

saturée de bicarbonate, séchée sur MgSO4, filtrée et concentrée. La trituration avec 

du tert-butyl methyl ether a donné le produit 134 sous forme d’un précipité blanc qui 

a été filtrée et séchée sous vide, avec 63% de rendement (320 mg). 

RMN 1H (CDCl3, 400 MHz) δ 7.22 (d, 2H, J = 8.9 Hz, CHar), 7.10 – 7.07 (m, 3H, CHar), 

6.92 -6.90 (m, 2H, CHar), 6.70 (d, 2H, J = 8.9 Hz, CHar), 6.35 (d, 1H, J = 1.9 Hz, CHar), 

6.16 (d, 1H, J = 1.9 Hz, CHar), 4.86 (td, 1H, J = 7,7 and 2.5 Hz, CH), 3.90 (s, 3H, OCH3), 

3.86 (s, 3H, OCH3), 3.73 (s, 3H, OCH3), 3.51 (dd, 1H, J = 14.4 and 6.3 Hz, CH), 2.87 (d, 

1H, J = 2.5 Hz, OH), 2.57 - 2.51 (m, 1H, CH2), 2.38 - 2.29 (m, 1H, CH2) ppm ;  

RMN 13C (CDCl3, 100 MHz) δ 164.4, 160.2, 158.8, 157.8, 137.8, 128.9 (2C), 128.3 (2C), 

127.8 (2C), 127.1, 126.7, 112.8 (2C), 106.9, 103.7, 92.5, 89.4, 81.4, 73.4, 55.9, 55.8, 

55.2, 51.4, 36.7 ppm. 

HR-MS masse calculée pour C26H25N3O5 : 459.1794, trouvée : 482.1678 (M + Na)+. 

Point de fusion : 168.0°C 
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8b-Amino-6,8-diméthoxy-3a-(4-méthoxyphényl)-3-phényl-2,3,3a,8b-tétrahydro-1H-

cyclopenta[b]benzofuran-1-ol (135).  

Sous argon, un mélange du SnCl2 anhydre (87 mg, 0.457 mmol), du thiophénol (0.19 

ml, 1.829 mmol) et de la triéthylamine (0.19 ml, 1.372 mmol) a été agité à 

temperature ambiante pour 2 minutes. Une solution du composé 134 (140 mg, 0.305 

mmol) dans du THF anhydre (6 ml) a été ajoutée. Le milieu réactionnel a été agité à 

température ambiante pour 3h, puis neutralisé jusqu’à pH = 7 avec une solution 

saturée de bicarbonate. La phase aqueuse a été extraite avec de l’éther et la phase 

organique combinée a été séchée sur MgSO4 et évaporée à sec. La trituation avec 

l’éther a donné le produit 135 sous une forme d’un précipité blanc, avec 85% de 

rendement (112mg,). 

RMN  1H (CDCl3, 400 MHz) δ 7.20 (d, 2H, J = 8.9 Hz, CHar), 7.10 -6.07 (m, 5H, CHar), 

6.71 (d, 2H, J = 8.9 Hz, CHar), 6.27 (d, 1H, J = 1.9 Hz, CHar), 6.11 (d, 1H, J = 2.0 Hz, CHar), 

4.67 (t, 1H, J = 7.5 Hz, CH), 3.86 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 3.72 (s, 3H, OCH3), 

3.57 (dd, 1H, J = 14.4 et 7 Hz, CH), 2.68 -2.61 (m, 1H, CH2), 2.33 – 2.24 (m, 1H, CH2) 

ppm ;  

RMN  13C (CDCl3, 400 MHz) δ 163.2, 159.1, 158.7, 157.3, 138.8, 128.5 (2C), 128.2 

(2C), 127.8, 127.7 (2C), 126.4, 113.8, 113.3 (2C), 104.2, 92.3, 89.4, 72.3, 71.1, 55.8, 

55.7, 55.2, 50.3, 37.4 ppm. 

HR-MS masse calculée pour C26H27NO5: 433.1889, trouvée : 434.1959 (M + H)+. 

Point de fusion : 207.8°C 
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N-1-Hydroxy-6,8-diméthoxy-3a-(4-méthoxyphényl)-3-phényl-1,2,3,3a-tétrahydro-8

bH-cyclopenta[b]benzofuran-8b-yl)formamide  (129).       

Un mélange de l’acide formique (1ml) et l’anhydride acétique (1 ml) a été agité à 

60°C pour 1h puis refroidi à 0°C. Une solution du composé 135 (50 mg, 0.12 mmol)  

dans du THF (2ml) a été ajouté et le milieu réactionnel a été ensuite agité à 0°C pour 

15min puis à température ambiante pour 12h. Le milieu a été quenché avec une 

solution saturée du bicarbonate, et la phase aqueuse a été extraite avec de l’éther. La 

phase organique a été séchée sur MgSO4 et concentrée à sec. Le produit brut obtenu 

a été traité ensuite par une solution du méthanol ammoniaque et agité à 

température ambiante pour 12h, puis évaporé à sec.  Le résidu obtenu a été lavé 

par de l’eau puis séché sous vide. La chromatographie de phase inverse 

semi-préparative a donné le composé 129 avec 30% de rendement (16mg). 

RMN  1H (CDCl3, 400 MHz) δ 7.45 (d, 1H, J = 11.9 Hz, CHO), 7.10 - 7.07 (m, 3H, CHar), 

7.08 (d, 2H, J = 9.3 Hz, CHar), 6.97 - 6.95 (m, 2H, CHar), 6.70 (d, 2H, J = 8.8 Hz, CHar), 

6.30 (d, 1H, J = 1.4 Hz, CHar), 6.13 (d, 1H, J = 1.4 Hz, CHar), 6.08 (t, 1H, J = 7.4 Hz, CH), 

3.86(s, 3H, OCH3), 3.83(s, 3H, OCH3), 3.71(s, 3H, OCH3), 3.65 (dd, 1H, J = 14.3 et 7.5 

Hz, CH), 2.88 - 2.81 (m, 1H, CH2), 2.44 - 2.35 (m, 1H, CH2) ppm;  

RMN 13C (CDCl3, 400 MHz) δ 164.7, 164.2, 159.1, 159.0, 157.3, 137.3, 128.5 (2C), 

128.0 (2C), 126.9, 126.7, 113.7 (2C), 108.0, 103.5, 92.9, 89.8, 73.4, 71.4, 55.9, 55.8, 

55.2, 50.4, 35.5 ppm. 

HR-MS masse calculée pour C27H27NO6: 461.1834, trouvée 484.1727 (M + Na)+. 
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N-1-Hydroxy-6,8-diméthoxy-3a-(4-méthoxyphényl)-3-phényl-1,2,3,3a-tétrahydro-8

bH-cyclopenta[b]benzofuran-8b-yl)methanesulfonamide  (130) 

 

A 0°C, du chlorure de mésyle  (10 µl, 0.12 mmol), du N,N-diisopropyléthylamine (30 

µl, 0.24 mmol) et de la DMAP (2 mg, 0.012 mmol) ont été ajoutée successivement à 

une solution du composé 12 dans du CH2Cl2 (1ml). Le milieu réactionnel a été agité à 

0°C pour 15min puis à température ambiante pour 48h. La reaction a été quenchée 

avec une solution saturée de NH4Cl et la phase aqueuse a été extraite avec de l’éther. 

La phase organique a été séchée sur MgSO4 et concentrée à sec. La trituation avec de 

l’éther a donné le produit 6 sous forme d’un précipité blanc qui a été filtré puis séché 

sous vide, avec 29% de rendement (18mg). 

 

RMN 1H (CDCl3, 400 MHz) δ 7.24 (d, 2H, J = 8.9 Hz, CHar), 7.12 -7.07 (m, 3H, CHar), 

7.02 - 7.00 (m, 2H, CHar), 6.74 (d, 2H, J = 8.9 Hz, CHar), 6.26 (d, 1H, J = 2.0 Hz, CHar), 

6.09 (d, 1H, J = 1.9 Hz, CHar), 5.63 (t, 1H, J = 7.5 Hz, CH), 3.82 (s, 3H, OCH3), 3.76 (s, 3H, 

OCH3), 3.70 (s, 3H, OCH3), 3.67 (m, 1H, CH), 3.38 (s, 3H, OCH3), 2.89 (m, 2H, CH2) 

ppm ;  

 

RMN 13C (CDCl3, 400 MHz) δ 165.6, 160.0, 159.6, 157.7, 136.1, 128.7, 128.6, 

128.1(2C), 128.0 (2C), 127.1, 124.1, 114.4, 114.3 (2C), 101.7, 93.1, 89.6, 78.6, 72.2, 

55.9, 55.8, 55.3, 50.7, 39.4, 36.5 ppm. 

HR-MS : masse calculée pour C27H29NO7S : 511.1675, trouvée : 512.1747 (M + H)+. 
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5.5. Procédure pour le chapître 3.5 

 

 

 

2,5-Bis(4-chlorophényl)-4,5-dihydrothiazole 

Une solution aqueuse du Na2CO3 (2 M, 4 ml) a été ajouté à une solution de 

2,5-dibromo-4,5-dihydrothiazole (0.25 g, 1.03 mmol) dans un mélange de solvant 

(EtOH/PhMe = 4/1, 10ml), suivi par l’addition de KCl (0.223 g, 3 mmol) et du 

4-chloro-phénylboronic acide (0.362 g, 2.31 mmol). De l’argon a été barboté dans le 

milieu pour 3 min. Du Pd(PPh3)4 (0.116 mg, 10mol%) a été ajouté et le milieu 

réactionnel a été chauffé à 100 °C pour 4h. Après refroidi à température ambiante, il 

a été filtré sur célite, rincé par du CH2Cl2, et le filtrat a été évaporé à sec. La 

chromatographie sur silice a donné le produit  avec 53% de rendement (166 mg).  

RMN 1H (CDCl3, 400 MHz) δ 7.99 (s, 1H, CH), 7.90 (d, 2H, J = 8.0 Hz, CHar), 7.53 (d, 2H, 

J = 8.1 Hz, CHar), 7.41 (m, 4H, CHar) ppm ; 

RMN 13C (CDCl3, 400 MHz) δ 166.1, 139.6, 138.4, 136.1, 134.3, 132.0, 129.7, 129.4, 

129.3, 127.8, 127.6 ppm. 
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2,5-Bis(4-chlorophényl)-4,4,5-trifluoro-4,5-dihydrothiazole (fluorizoline) 

Le Selectfluor (0.465 g, 0.52 mmol) a été ajouté sous argon à une solution du 

2,5-Bis(4-chlorophényl)-4,5-dihydrothiazole (0.16 g, 0.52 mmol) dans de l’acétonitrile 

(18 ml). Le milieu réactionnel a été chauffé à reflux pour 6h puis quenché avec une 

solution saturée de bicarbonate, extrait à de l’éther. La phase organique a été séchée 

sur MgSO4, filtrée et concentrée. La chromatographie sur silice a donné le fluorizoline 

avec 10% de rendement (18 mg). 

RMN 1H (CDCl3, 400 MHz) δ 7.93 (d, 2H, J = 8.5 Hz, CHar), 7.64 (d, 2H, J = 8.0 Hz, CHar), 

7.55 (d, 2H, J = 8.1 Hz, CHar), 7.45 (d, 2H, J = 8.5 Hz, CHar) ppm ; 

RMN 19F (CDCl3, 400 MHz) δ -79.3 (dd, J = 218 Hz et 10.3 Hz), - 103.3 (dd, J = 218.6 Hz 

et 8.0 Hz), - 130.9 (dd, J = 9.7 Hz et 8.6 Hz) ppm. 

BR- MS : masse calculée pour C15H8Cl2F3NS : 360.9, trouvée : 361.9 (M+H)+. 
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Natural products have historically been a mainstay source of anticancer drugs, but in
the 90’s they fell out of favor in pharmaceutical companies with the emergence of
targeted therapies, which rely on antibodies or small synthetic molecules identified by
high throughput screening. Although targeted therapies greatly improved the treatment
of a few cancers, the benefit has remained disappointing for many solid tumors, which
revitalized the interest in natural products. With the approval of rapamycin in 2007, 12 novel
natural product derivatives have been brought to market. The present review describes the
discovery and development of these new anticancer drugs and highlights the peculiarities
of natural product and new trends in this exciting field of drug discovery.
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INTRODUCTION
Recent analyses of tooth plaques showed that ∼50,000 years ago
Neanderthals already used medicinal plants to treat their ailments
(Hardy et al., 2012). Currently, more than half of humanity does
not have access to modern medicine and relies on traditional
treatments (Cordell and Colvard, 2012). A recent analysis of the
strategies used in the discovery of new medicines showed that
36% of the first-in-class small-molecules approved by U.S. Food
and Drug Administration (FDA) between 1999 and 2008 were
natural products or natural products derivatives (Swinney and
Anthony, 2011).

Natural products are small-molecule secondary metabolites
that contribute to organism survival. These substances display
considerable structural diversity and “privileged scaffolds,” i.e.,
molecular architectures that are tailored to protein binding, as
first coined by Evans in the late 1980s (Evans et al., 1988). Indeed
natural products have evolved to bind biological targets and elicit
biological effects as chemical weapons or to convey information
from one organism to another. Steroid derivatives are often not
considered as natural products because their design is not based
on a research in pharmacognosy, however we subjectively decided
to include them here due to their importance in drug discovery.

The synthesis of aspirin by Charles Gerhard at Strasbourg
faculty of pharmacy in 1853 paved the road for the medici-
nal chemistry of natural products (Gerhardt, 1853). In 1964,
actinomycin became the first natural product approved for an
indication in oncology. Other natural products based medicines
such as anthracyclines, vinca alkaloids, epipodophyllotoxin lig-
nans, camptothecin derivatives, and taxoids that were launched
before 1997, are still an essential part of the armament for treating
cancers.

From 1997 to 2007 no new natural product was approved
for the treatment of cancer (Bailly, 2009). With the imminent
achievement of the genome project, the head of a pharmaceuti-
cal company declared that natural products were outdated. Their
development was greatly reduced and many big pharmaceutical
companies closed their departments of natural product chem-
istry (Bailly, 2009). The future was targeted therapies, which
uses fully synthetic molecules or antibodies to target specific
proteins in tumor growth and progression. In some forms of
leukemia, gastrointestinal, prostate or breast cancers, targeted
therapies greatly delayed tumor progression, and/or improved the
life expectancy of the patients. Some tumors with specific onco-
genic addictions (for example fusion proteins leading to ALK
expression in lung cancer or Bcr-Abl in chronic myeloid leukemia,
KIT expression or mutations in GIST or EGFR mutation in lung
cancer, HER2 amplification in breast cancer or MET overex-
pression in liver tumors) greatly benefited from targeted agents.
However, the vast majority of common tumors were found to
be not dependent of a single “targetable” oncogenic activation.
For instance altogether ALK activations and EGFR mutations
account for less than 10% of lung adenocarcinoma and while
those targeted agents are more efficient than chemotherapy in
oncogenic tumors, antitumor effects are limited to few months.
Importantly, most tumors were shown to activate multiple signal-
ing pathway redundancies and adaptive mechanisms that either
render tumors primarily resistant to targeted drugs or facili-
tate acquired resistance to cell signaling inhibition after only few
months of treatments. As a result, the expected progression-free
survival benefit from targeted therapy is often less than 6-months.
For those later forming complex but rather frequent tumors,
chemotherapy alone remains the cornerstone of treatment with
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some limited add-on benefits by use of monoclonal antibodies in
a limited proportion of patients. Combinations of several targeted
agents have also been proposed to counteract potential adaptive
mechanisms although one should notice that combining targeted
agent together was more often associated with unacceptable tox-
icity than great clinical synergy. Then there is the additional
influence of cost-to-benefit concerns. The financial cost of such
targeted therapies, to patients or health insurance entities, can
be considered enormous, e.g., thousands to tens of thousands of
euros per day of extended life. However, the net financial benefit
to pharmaceutical companies of those agents that are given only
for few months (or years) in only a small proportion of patients
in niche indications may lead to restricted investment by pharma-
ceutical industries; blockbuster indications usually provide higher
revenues.

These drawbacks are at the origin of the re-emergence of
natural products in oncology. Since 2007, with the approval of
rapamycin and derivatives of it, 12 natural product derivatives
have been approved for the treatment of cancers (Table 1).

Recently Stuart Schreiber, Paul Clemons and coworkers at the
Broad Institute in Boston performed a bioinformatics analysis of
natural product targets and demonstrated that natural products
statically tend to target proteins with a high number of protein–
protein interactions that are particularly essential to an organism
(Dančík et al., 2010). This observation is consistent with the com-
mon role played by natural products as chemical weapons against
predators or competitors.

Henkel et al. at Bayer AG in Germany offered a statistical
analysis of the structural differences between natural products
and fully synthetic drugs (Henkel et al., 1999). Compared with
fully synthetic drugs, natural product tend to have more chi-
ral centers, more oxygen atoms, less nitrogen atoms, and more
varied ring systems. Complementary analyses of structural fea-
tures of natural products have been reviewed (Lee and Schneider,
2001; Ortholand and Ganesan, 2004; Ganesan, 2008; Grabowski
et al., 2008). A consequence of this structural complexity is that
natural products tend to be more selective toward their tar-
gets than fully synthetic drugs, and consequently rarely display
off-target—induced iatrogenicity.

Moreover, complex natural products tend to act through only
one class of molecular target, even though there are some excep-
tions. Indeed, taxanes are known to target β-tubulin and interfere
with microtubule dynamics; however they also bind to Bcl-2 to
block its anti-apoptotic activity. Both β-tubulin and Bcl-2 interact
with the orphan nuclear receptor Nur77 (NGFI-B, TR3, NR4A1).
Ferlini et al. showed that in fact taxanes mimic the domain
of Nur77 involved in the interaction with β-tubulin and Bcl-
2 (Ferlini et al., 2009). Another example concerns flavaglines,
an emerging family of natural compounds found in medicinal
plants of South-East Asia, which display potent anticancer effects
through their direct effects on the scaffold proteins prohibitins
and the initiation factor of translation eIF4a (Basmadjian et al.,
2013; Thuaud et al., 2013).

Modifying the structure of a drug may change the nature
of its molecular target. A striking example concerns the not
so rational development of the anticancer medicines etoposide
and teniposide (Figure 1). Considering that cardiac glycosides

display enhanced pharmacological properties compared to the
cognate aglycone, Sandoz scientists hypothesized that conjugat-
ing podophyllotoxin to a glucose moiety could improve the
activity of this cytotoxic agent that binds tubulin and inhibits
assembly of the mitotic spindle. Fortunately, this glycoconju-
gate named etoposide displayed a promising anticancer activity
with reduced adverse effects compared with podophyllotoxin.
Surprisingly, etoposide did not affect tubulin polymerization but
inhibited another very important target in oncology: DNA topoi-
somerase II. This story illustrates well the importance in drug
discovery of serendipity, which was likened to “looking for a
needle in a haystack and discovering the farmer’s daughter” by
Professor Pierre Potier, inventor of the anticancer drug taxotere
(Zard, 2012).

Another non-rational issue regarding the SAR of derivatives of
natural compounds concerns the relationship between the chem-
ical structure of a drug and its therapeutic indication. Indeed,
transforming the structure of a drug may modify the nature of
the targeted cancer. This is well established for vinca alkaloids for
instance (Table 2). If we could understand the influence of the
molecular structure of a drug with its optimal therapeutic indi-
cation, then we might be able to adapt known medicines to treat
cancers that are reluctant to current therapies.

In spite of the major achievements in systems biology and
translational medicine over the last decade, there is still, at best,
a presumptive relationship between the efficacy of a drug in
preclinical assays and the likelihood of its value in clinic.

RAPALOGUES: TEMSIROLIMUS® AND EVEROLIMUS®

In 1975, researchers at Ayerst Laboratories (Canada) reported the
isolation of rapamycin as a secondary metabolite from a strain of
Streptomyces hygroscopicus based on its antifungal activity (Sehgal
et al., 1975; Vezina et al., 1975). Its name comes from Rapa
Nui (Easter Island) where its producer strain had been collected
from a soil sample. Its richly adorned macrocyclic structure was
fully elucidated a few years later (Swindells et al., 1978; Findlay
and Radics, 1980; McAlpine et al., 1991). Rapamycin did not
attract so much attention until the discovery in 1987 of the struc-
turally related immunosuppressant FK506 (Kino et al., 1987a,b).
Rapamycin was eventually developed without further structural
modifications as the oral immunosuppressant drug sirolimus. It
was approved for prevention of rejection in organ transplantation
in 1999 (Calne et al., 1989; Kahan et al., 1991; Watson et al., 1999;
Calne, 2003).

Determining the mode of action of rapamycin unraveled one
of the most important signaling pathways in cell biology, which
illustrates another important aspect of the pharmacology of nat-
ural products. Indeed a common caveat of developing an original
natural product toward clinical application is the requirement to
identify its molecular target and understand its mode of action
(Krysiak and Breinbauer, 2012). However, when the target is
identified, it may lead to major breakthroughs in cell biology
(Pucheault, 2008). Gratefully, current technologies render this
task increasingly easier (Ares et al., 2013).

In 1991, Michael Hall et al. identified the molecular target
of rapamycin in a gene complementation assay in yeast and
named it TOR for “Target Of Rapamycin” (Hietman et al., 1991).
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Table 1 | Novel anticancer medicines based on natural products.

Name (trade name), structure Year of approval, company Therapeutic indication, mode of action

Temsirolimus (Torisel®): R=R1

Everolimus (Afinitor®), R=R2
2007, Wyeth Treatment of renal cell carcinoma (RCC), inhibition of mTOR

2009, Novartis Treatment of advanced kidney cancer, inhibition of mTOR

Ixabepilone (Ixempra®) 2007, Bristol-Myers Squibb Treatment of aggressive metastatic or locally advanced breast cancer no
longer responding to currently available chemotherapies, stabilization of
microtubules

Vinflunine (Javlor®) 2009, Pierre Fabre Treatment of bladder cancer, inhibition of tubulin polymerization

Romidepsin (Istodax®) 2009, Celgene Treatment of cutaneous T-cell lymphoma (CTCL), inhibition of the
isoforms 1 and 2 of histone deacetylases

Trabectedin = ecteinascidin 743 (Yondelis®) 2009, Zeltia and Johnson
and Johnson

Treatment of advanced soft tissue sarcoma and ovarian cancer, induction
of DNA damage

(Continued)
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Table 1 | Continued

Name (trade name), structure Year of approval, company Therapeutic indication, mode of action

Cabazitaxel (Jevtana®) 2010, Sanofi-Aventis Treatment of hormone-refractory metastatic prostate cancer,
microtubule stabilization

Abiraterone acetate (Zytiga®) 2011, Janssen Treatment of castration-resistant prostate cancer, inhibition of 17
α-hydroxylase/C17, 20 lyase (CYP17A1)

Eribulin mesylate (Halaven®) 2011, Eisai Co. Treatment of metastatic breast cancer, inhibition of microtubule
dynamics

Homoharringtonine, Omacetaxine
mepesuccinate (Synribo®)

2012, Teva Chronic myelogenous leukemia (CML), inhibition of protein synthesis

Carfilzomib (Kyprolis®) 2012, Onyx Treatment of multiple myeloma, inhibition of proteasome

Ingenol mebutate (Picato®) 2012, LEO Pharma Actinic keratosis, activation of PKCδ
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Three years later, Stuart Shreiber et al. identified its mammalian
homolog referred to today as the kinase mTOR (mammalian
TOR) (Brown et al., 1994). The mode of action of rapamycin is
unique: it binds to two proteins at the same time, mTOR and
the immunophilin FKBP-12, to form a ternary complex devoid
of any kinase activity. mTOR plays a central role integrating
signals from growth factors, nutrients, stress, and hormones to
regulate metabolism, proliferation, cell growth, and apoptosis.
However, the exact mechanisms of action of rapamycin deriva-
tives, called rapalogues, remain only moderately understood.
Some recent evidence indicates that rapalogues may primarily
display their anticancer effects through an inhibition of angio-
genesis in patients (Faivre and Raymond, 2008). This hypothesis
would explain why rapologues are particularly effective in hyper-
vascularized tumors.

Currently, two rapalogues, temsirolimus, and everolimus, have
been developed for the treatment of renal, breast, and pancreas
cancers, astrocytoma, and mantle cell lymphoma. These drugs

FIGURE 1 | Structures of podophyllotoxin, etoposide, and teniposide.

differ in their formulation, application, and dosing schemes,
thereby yielding varying bioavailabilities. They are all prepared by
semi-synthesis.

IXABEPILONE (IXEMPRA®)
Drugs that target microtubules, such as taxoids and vinca alka-
loids, continue to represent an important class of chemotherapeu-
tic agents (Jordan and Wilson, 2004). Over the last two decades
other classes of naturally occurring nontaxoid compounds, the
epothilones (Gerth et al., 1996; Höfle et al., 1996), discoder-
molides (Gunasekera et al., 1990), eleutherobins (Lindel et al.,
1997), and laulimalides (Mooberry et al., 1999) that stabilize
microtubule assemblies similarly to taxol, have been identified
(Figure 2). Based upon extensive structure-activity data, a com-
mon pharmacophore for these different classes of compounds has
been proposed (Ojima et al., 1999).

Not only is epothilone B more cytotoxic than taxol, but
it is also much less sensitive toward the development of
multidrug-resistance, a major concern in the clinic (Horwitz,
1994; Bollag et al., 1995; Kirikae et al., 1996). This impres-
sive pharmacological profile coupled with the challenge of its
total synthesis has attracted the attention of some of the most
well-known organic chemists in the world, including Samuel
Danishefsky (Balog et al., 1996; Su et al., 1997), followed by
Nicolaou (Nicolaou et al., 1997; Yang et al., 1997), Schinzer
(Schinzer et al., 1997), Mulzer (Mulzer et al., 2000) and Carreira
(Bode and Carreira, 2001).

Early investigations indicated that natural epothilones dis-
play poor metabolic stability and unfavorable pharmacokinetic
properties (Lee et al., 2000). Several synthetic and semi-synthetic
analogs were then examined and evaluated in preclinical stud-
ies. Eventually, isosteric replacement of the lactone by a lac-
tam afforded ixabepilone (also known as azaepothilone B) (Lee
et al., 2008). Not only is this drug not susceptible to hydroly-
sis by esterases, conferring metabolic stability, but it also displays
improved water solubility, which greatly alleviate galenic prob-
lems associated with hypersensitivity reaction in patients.

Table 2 | Structures and therapeutic indications of vinca alkaloids.

Name n Q R1 R2 R3 R4 R5 Therapeutic indication

Vinblastine 2 OH H Et OAc Me OMe Lymphomas, germ cell tumors, breast, head and neck cancer and testicular
cancers

Vinorelbine 1 Q=R1=∅ (alkene) Et OAc Me OMe Osteosarcoma, breast, and non-small cell lung cancers

Vincristine 2 OH H Et OAc CHO OMe Acute lymphoblastic leukemia, rhabdomyosarcoma, neuroblastoma,
lymphomas, and nephroblastoma

Vindesine 2 OH H Et OH Me NH2 Melanoma, lung, breast and uterine cancers, leukemia and lymphoma

Vinflunine 1 H H CF2Me OAc Me OMe Bladder cancer
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FIGURE 2 | Chemical structures of representative natural compounds that stabilize microtubule assemblies.

In 2007, the FDA (but not its European equivalent, European
Medicines Agency or EMA) approved ixabepilone for the treat-
ment of aggressive metastatic or locally advanced breast cancer
no longer responding to currently available chemotherapies.

VINFLUNINE (JAVLOR®)
Vinca alkaloids were the first chemotherapeutic agents that tar-
get microtubules. The first member of this class, vinblastine, was
isolated in 1958 (Noble et al., 1959). Latter, some derivatives, vin-
cristine, vinorelbine, and finally avelbine, were developed to treat
hematological and solid malignancies in both adult and pediatric
patients (Table 1). Vinca alkaloids block the polymerization of
tubulin molecules into microtubules to prevent the formation of
the mitotic spindle.

In the course of their study on the reactivity of functionalized
molecules in superacid media, Jacquesy and collaborators found
that the treatment of vinorelbine with a combination of HF and
SbF5 gave a difluoro analog, later called vinflunine (Scheme 1)
(Fahy et al., 1997). Importantly, this new compound displayed
an enhanced bioavailability compared to other vinca alka-
loids. Indeed, its terminal half-life was calculated to be about
40 h and the terminal half-life for its active metabolite (4-O-
deacetylvinflunine) was reported to be 4–6 days in several phase I
trials (Bennouna et al., 2003, 2005; Johnson et al., 2006).

Resistance to vinflunine develops more slowly than with other
vinca alkaloids. In addition, vinflunine in vitro neurotoxicity is
lower than that of vincristine or vinorelbine (Etiévant et al., 1998,
2001; Estève et al., 2006). Further development by Pierre Fabre
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SCHEME 1 | Synthesis of vinflunine from vinorelbine (Fahy et al., 1997).

and Bristol Myers Squibb laboratories ended with the approval of
vinflunine for the treatment of bladder cancer by the European
Medicines Agency (EMA) in 2009.

ROMIDEPSIN (ISTODAX®)
The cyclic depsi-pentapeptide romidepsin, also called FR901228,
FK228, or NSC 630176, was isolated and identified by Ueda and
colleagues at Fujisawa Pharmaceutical in Japan through a screen-
ing program of fermentation products able to revert the trans-
formed morphology of a Ha-ras NIH3T3 cells to normal (Ueda
et al., 1994). Indeed Ha-ras is an oncogene involved in tumorigen-
esis and consequently represents an important target in oncology.
Importantly, romidespsin displayed potent antitumor activities
against A549 and MCF-7 tumors in xenografted mice. These
results attracted the attention of NCI scientists who continued
to explore its anticancer properties under a Cooperative Research
and Development Agreement with Fujisawa Corporation (now
Astellas).

When romidepsin was discovered, histone deacetylases
(HDAC) were emerging as important targets for the treatment
of cancer (Thaler and Mercurio, 2014). Screening of micro-
bial metabolites for their effects on transcription showed that
romidepsin behaves similarly to trichostatin A, a known HDAC
inhibitor (Nakajima et al., 1998). Romidepsin acts as a prodrug,
which is reduced in cells to its active form by glutathione, yield-
ing a monocyclic dithiol that preferentially inhibits the isoforms
HDAC1 and HDAC2 (Furumai et al., 2002).

In 2002, when it became established that romidepsin
holds a promising therapeutic potential, Fujisawa Corporation
began clinical trials. Romidepsin was licensed to Gloucester
Pharmaceuticals in 2004 (latter acquired by Celgene Co)

and was approved by the FDA in 2009 for the treat-
ment of cutaneous T-cell lymphoma. The preclinical and clin-
ical development has been described in an excellent review
(Vandermolen et al., 2011).

ECTEINASCIDIN 743 = TRABECTEDIN (YONDELIS®)
In 1969, unidentified alkaloids from the Caribbean tunicate
Ecteinascidia turbinate were shown to display some anticancer
activities, but the structure of these complex alkaloids could not
be determined because of their natural scarcity and the limita-
tion of analytical chemistry at that time (Sigel et al., 1970). In
1990, Rinehart et al. from the University of Illinois at Urbana-
Champaign elucidated the structure and reported the cytotoxi-
city of these tetrahydroisoquinoline alkaloids, the ecteinascidins
(Rinehart et al., 1990). These compounds displayed greater in
vitro and in vivo antitumor activity than those reported for
the structurally related microbial metabolites saframycins and
safracins.

Ecteinascidin 743, also called trabectedin and ET-743, was
then selected for preclinical development based on its exceptional
in vitro cytotoxicity. Pommier et al. at NCI demonstrated that this
drug binds in the minor groove of DNA and alkylates the exo-
cyclic amino group at position 2 of guanine in GC-rich regions
(Scheme 2) (Pommier et al., 1996).

Ecteinascidin 743 was shown to block the DNA excision repair
system (Takebayashi et al., 2001; Zewail-Foote et al., 2001), to
cross-link DNA with topoisomerase I (Martinez et al., 1999;
Takebayashi et al., 1999; Zewail-Foote and Hurley, 1999), and
also to inhibit the binding of DNA to some transcription fac-
tors (Bonfanti et al., 1999; Jin et al., 2000; Minuzzo et al.,
2000). However, the cascade of events that links DNA damage
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SCHEME 2 | DNA Alkylation by ecteinascidin 743.

to the resulting antitumor activity is far from being understood
(D’Incalci and Galmarini, 2010).

When ecteinascidin 743 was licensed to PharmaMar; this com-
pany launched a very challenging program of aquaculture to
produce sufficient quantities of tunicate biomass to feed clinical
trials program. After several years of intensive development, the
cumulative total biomass reached some 250 metric tons. However,
isolation of ecteinascidin 743 required complex and costly steps
of purification with final yields less than 1 g/ton (Cuevas and
Francesch, 2009). Several total syntheses have been reported, but
they cannot be translated into industrial production (Corey et al.,
1996; Endo et al., 2002; Chen et al., 2006; Zheng et al., 2006;
Fishlock and Williams, 2008; Imai et al., 2012; Kawagishi et al.,
2013). Eventually, this supply problem was solved by use of a
complex semi-synthesis from cyanosafracin B, which is avail-
able in kilogram quantities by fermentation (Cuevas et al., 2000;
Menchaca et al., 2003).

Preclinical studies did not reveal that soft tissue sarcoma is
more sensitive to ecteinascidin 743 than other solid tumors.
This response was unveiled first during phase I clinical trials
and confirmed in phase II (Taamma et al., 2001; Villalona-
Calero et al., 2002; D’Incalci and Jimeno, 2003). This drug was
approved under the name of Yondelis in 2007 in the European
Union for the treatment of patients with advanced soft tis-
sue sarcoma. This compound was the first anticancer medicine
of marine origin to be approved. It was followed by eribu-
lin (vide infra), validating the concept that marine natural
products should be considered important contenders in drug
discovery.

CABAZITAXEL (JEVTANA®)
The taxane anticancer drug cabazitaxel is a semi-synthetic deriva-
tive of the natural taxoid 10-deacetylbaccatin III. It was approved
in 2010 by the FDA, in combination with prednisone, for
the treatment of patients with hormone-refractory metastatic
prostate cancer who had already been administered a treatment
containing the taxane docetaxel (Galsky et al., 2010). In 2013,
Vrignaud et al. showed that in vitro, cabazitaxel stabilized micro-
tubules as effectively as docetaxel but was also 10 times more
potent than docetaxel in chemotherapy-resistant tumor cells.
They also noted that cabazitaxel was active in docetaxal-resistant

tumors (Vrignaud et al., 2013). In addition, cabazitaxel pene-
trates the blood-brain barrier. Cabazitaxel was approved 20 years
after taxol, illustrating that there is still room to improve well
established anticancer medicines.

ABIRATERONE ACETATE (ZYTIGA®)
Abiraterone acetate is an oral inhibitor of androgen synthesis used
since 2011 for the treatment of castration-resistant prostate can-
cer. Previous treatments of prostatic cancers prevented androgen
production by the testes, but not by the adrenals. Abiraterone
acetate is rapidly hydrolyzed in vivo to abiraterone, which is a
selective, irreversible inhibitor of cytochrome P450 17α (CYP17),
an enzyme that catalyzes the conversion of pregnenolone and
progesterone into DHEA or androstenedione, two precursors of
testosterone. This drug was originally designed and synthesized
by Jarman et al. at the Institute of Cancer Research in Sutton (UK)
based on the hypothesis that the nitrogen lone pair of a pyridyl
moiety linked to the steroid skeleton would coordinate with the
iron atom of the heme cofactor in the active site of CYP17 (Potter
et al., 1995; Jarman et al., 1998).

The inhibition of CYP17 by abiraterone acetate blocks andro-
gen biosynthesis and significantly improves the therapy of
castration-resistant prostate cancer, which remains a challenge to
treat (Rehman and Rosenberg, 2012). Unfortunately, this CYP17
inhibition also decreases glucocorticoid and increases mineralo-
corticoid production, which results in the main source of adverse
effects.

Since the invention of abiraterone, different steroids bear-
ing a heteroaromatic substituent on the D ring continued to be
developed as CYP17 inhibitors. Among those, galeterone (TOK-
001 or VN/124-1) recently entered clinical trials for the treat-
ment of chemotherapy-naive, castration-resistant prostate cancer
(Figure 3) (Vasaitis and Njar, 2010). Interestingly, this drug not
only inhibits CYP17, but is also an androgen receptor antagonist
(Handratta et al., 2005).

ERIBULIN MESYLATE (HALAVEN®)
In 1985, Uemura et al. isolated and identified norhalichon-
drin A from the marine sponge Halichondria okadai based
on its potent in vitro toxicity (Uemura et al., 1985). Related
polyether macrolides, including halichondrin B (Hirata and
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FIGURE 3 | Structure of galeterone.

Uemura, 1986) were identified in the following years (Qi and
Ma, 2011). Tests with NCI’s 60-cell line screen suggested that
halichondrin B affects tubulin polymerization. Further studies
showed that this drug displays subtle differences in mechanism of
action from those of other known antimitotics targeting tubulin.
Although halichondrin B displayed promising activity, its preclin-
ical investigation has been hampered by its scarcity from natural
sources.

Due to its complexity, the total synthesis of halichondrin
B was considered as an attractive objective by Kishi et al. at
Harvard University. This team achieved this formidable chal-
lenge in 1992 (Aicher et al., 1992). Further collaborative studies
from this group and Eisai Co. ultimately led to the develop-
ment of the simplified and pharmaceutically improved analog
eribulin (Jackson et al., 2009). Although it is less complex than
natural halichondrins, eribulin contains 19 stereogenic centers,
two exocyclic olefins, seven polyoxygenated pyrans and tetrahy-
drofurans, a 22-membered macrolactone ring, and a 36 carbon
backbone. With its 35 steps, eribulin synthesis extended the
limit of feasibility for industrial production. Indeed, eribulin is
the single most complex molecule synthesized at an industrial
scale and represents an awe-inspiring testimony to the current
power of organic synthesis. Eribulin was approved by FDA in
2010 to treat patients with metastatic breast cancer who have
received at least two prior chemotherapy regimens for late-stage
disease.

HOMOHARRINGTONINE = OMACETAXINE MEPESUCCINATE
(CEFLATONIN®)
Toxic seeds of the conifer Cephalotaxus harringtonia K. Koch
varharringtonia belong to the traditional Chinese pharmacopeia.
In observance with Mao Tse-tung’s judgment that Chinese
medicine and pharmacology represent a national treasure that
needs to be valorized, Chinese investigators established that the
total alkaloids from Cephalotaxus fortunei Hook.f possesses anti-
tumor activity in preliminary clinical trials (Group, 1976). In the
same period, National Cancer Institute (NCI) scientists found
that Cephalotaxus harringtonia seed extracts displayed signifi-
cant in vivo activity against L-1210 and P-388 leukemia tumors
in mice. Powell et al. from the U.S. Department of Agriculture
isolated and identified the structure of cytotoxic Cephalotaxus
alkaloids: harringtonine, isoharringtonine, homoharringtonine,
and deoxyharringtonine (Powell et al., 1970) (Figure 4). These
compounds are esters of cephalotaxine, an inactive alkaloid first
isolated by Paudler et al. in 1963 at Ohio University (Paudler et al.,
1963). Homoharringtonine was found to be the most effective in

FIGURE 4 | Structures of cytotoxic Cephalotaxus alkaloids.

prolonging survival of P388 leukemic mice (Powell et al., 1972).
Clinical trials performed in China demonstrated the efficacy of
this agent against acute myeloid leukemia (AML), myelodys-
plastic syndrome (MDS), acute promyelocytic leukemia (APL),
polycythemia vera, and central nervous system (CNS) leukemia
(Kantarjian et al., 2013).

Homoharringtonine inhibits protein synthesis (Huang, 1975).
More specifically, it blocks the aminoacyl-tRNA binding to free
ribosomes and monosomes, but not to polyribosomes (Fresno
et al., 1977). Tang et al. demonstrated that decreased expression
of the antiapoptotic factor myeloid cell leukemia-1 (Mcl-1) is a
key event in this antileukemic mechanism of action (Tang et al.,
2006).

In 1998, a Texan biotech company developed the semisynthetic
form of homoharringtonine, designated “omacetaxine mepesuc-
cinate” (Synribo®), and provided a reliable source supply for
clinical investigations by ChemGenex and the M.D. Anderson
Cancer Center (Robin et al., 1999).

This preparation of homoharringtonine [Omacetaxine mepe-
succinate (Synribo®)] has been granted orphan drug status in
Europe and the U.S. to treat chronic myelogenous leukemia
(CML). It was approved by the US FDA in October 2012 for
the treatment of adult patients with CML after failure of two
or more tyrosine kinase inhibitors (for a review on its clini-
cal development, see Kantarjian et al., 2013). It is interesting
to note that these approvals occurred more than 40 years after
the initial discovery of this compound. Even though omacetax-
ine has a narrow indication in the U.S. and Europe, it has
been part of standard acute myeloid leukemia (AML) ther-
apy in China, which begs for extending its use for additional
indications.

CARFILZOMIB (KYPROLIS®)
In 1992, Bristol-Myers Squibb scientists from Tokyo reported the
structure of epoxomicin, a microbial tetrapeptide appended with
an electrophilic epoxy ketone group. This compound displayed
potent in vivo antitumor activity against murine B16 melanoma
tumors. However, because the mechanism of action could not
be established, its investigation was abandoned, thereby lead-
ing to the publication of the initial discovery. Eventually, BMS
closed the research center in Tokyo. It was a common practice
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during that period for big pharmaceutical companies to close
their departments of natural product chemistry.

In 1999, the potent anticancer activity of epoxomicin attracted
the attention of Craig Crews at Yale University, who designed
the first synthesis of epoxomicin. In the course of this endeavor,
he established the absolute configuration of the epoxide stere-
ocenter and synthesized also a biotinylated probe, which was
used to identify the proteasome as the molecular target of epox-
omicin. The proteasome is a multiprotein complex that degrades
unneeded or damaged proteins by proteolysis. Importantly,
epoxomicin does not display any cross-inhibition with pro-
teases, which is a major problem encountered with other anti-
cancer proteasome inhibitors, such as bortezomib (Velcade®).
The source of this selectivity was elucidated by a crystallo-
graphic approach (Groll et al., 2000). The crystal structure
of the proteasome bound to epoxomicin revealed the for-
mation of a morpholino ring between the amino terminal
threonine of the proteasome and the electrophilic moiety of
epoxomicin, probably through the mechanism displayed in
Scheme 3.

The specificity of epoxomicin toward proteasome prompted
Crews to associate with Caltech professor Raymond Deshaies to
establish a start-up company, Proteolix, dedicated to the develop-
ment of a clinical candidate. During this process, they identified
YU-101, which had better inhibitory activity than bortezomib
(Figure 5). Addition of a morpholine moiety to YU-101 improved
its solubility, thereby creating carfilzomib, which rapidly entered
Phase I and II clinical trials. Importantly, the peripheral neu-
ropathy that was observed with bortezomib did not occur with
carfilzomib. In 2009, Onyx Pharmaceuticals acquired Proteolix
and this compound was approved for the treatment of multiple
myeloma in 2012.

INGENOL MEBUTATE (PICATO®)
Phorbol diesters, such as 12-O-tetradecanoylphorbol-13-acetate
(TPA), rank among the most potent tumor promoters iden-
tified so far (Figure 6) (Nishizuka, 1984). These compounds
induce tumor formation by activating protein kinase C (PKC).
Interestingly, a natural compound extracted from Euphorbia
peplus plants, Ingenol mebutate, also activates PKC but with a dif-
ferent pharmacological profile. Indeed, this compound induces
the death of precancerous skin lesions induced by sunlight, called
actinic keratosis.

The sap of Euphorbia peplus (known commonly as petty
spurge) is commonly used as an alternative therapy for skin

diseases in Australia (Weedon and Chick, 1976). In 1998, its effi-
cacy was established for the self-treatment of skin cancers and
actinic keratosis (Green and Beardmore, 1988).

Ingenol mebutate was first identified in 1980 by Evans et al.
from the National Research Center in Cairo (Egypt) (Sayed et al.,
1980). These authors demonstrated also that this compound
is cytotoxic to cancer cells. For more than 20 years, ingenol
mebutate remained poorly investigated, until 2004, when the
lab of Peter Blumberg at NCI showed that it activates PKC iso-
forms, but with a different pharmacological profile than that
of TPA. Importantly, the activation of protein kinase C delta
(PKCδ) was shown to promote the production and release of
inflammatory cytokines contributing to the elimination of actinic
keratosis.

At the same time, Eric Raymond in Clichy (France) showed
that ingenol mebutate-induced activation of PKCδ and reduced
expression of PKCα lead to an activation of Ras/Raf/MAPK, an
inhibition of the phosphatidylinositol 3-kinase/AKT signaling
pathways, and ultimately to apoptosis of cancer cells (Benhadji
et al., 2008; Serova et al., 2008; Ghoul et al., 2009).

After few years of preclinical investigations, ingenol mebu-
tate entered clinical trials (Siller et al., 2009) and was eventually
approved by FDA and EMA in 2012 for the topical treatment of
actinic keratosis. This compound is produced by extraction from
the petty spurge plant in low yield (1 g of pure compound/800 kg
of plant). To improve the production of this molecule, Jakob
Felding of LEO pharma associated with Phil Baran from Scripps
Institute to develop an elegant synthesis of ingenol in only 14
steps from inexpensive (+)-3-carene (Jørgensen et al., 2013). This
synthesis has been rapidly scaled-up to kilogram levels (Ritter,
2013).

CONJUGATION OF NATURAL PRODUCTS TO ANTIBODIES OR
FOLIC ACID TO TARGET TUMORS
At the end of 19th century, Paul Ehrlich already considered
the conjugation of a toxin to a compound that selectively tar-
gets a disease-causing organism to generate a “magic bullet”
(“magische kugel”) that would destroy the origin of the disease
without toxicity to healthy tissues in the body (Ehrlich, 1897).
About 60 years later, Mathé et al. conjugated anti-tumor anti-
bodies to the folic acid antagonist, methotrexate (Loc et al.,
1958). Although the experiments in mice were encouraging,
this approach did not attract interest in the scientific commu-
nity and returned to limbo for two decades, until 1975, when
Ghose et al. demonstrated the efficacy of an anticancer alkylating

SCHEME 3 | Proposed mechanism of alkylation of the proteasome by epoxomicin.
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FIGURE 5 | Structures of epoxomicin, YU-101, carfilzomib.

FIGURE 6 | Structures of 12-O-tetradecanoylphorbol-13-acetate and ingenol mebutate.

agent, chloranbucil, conjugated to an antibody against a mouse
lymphoma (Ghose et al., 1975). The advent of monoclonal anti-
bodies the same year definitely boosted this field of research
(Kohler and Milstein, 1975). Since then, almost every cyto-
toxic agent has been conjugated to antibodies following various
strategies.

After two decades of endeavor, low cytotoxicity, and lack of
specificity of antibodies for their targeted antigens, conjugate
instability, immunogenicity, and heterogeneous product charac-
teristics were identified as important sources of failure in the
clinic (Scott et al., 2012; Ho and Chien, 2014). However, a sig-
nificant step forward was made with the use of extremely highly
toxic agents such as calicheamicin, maytansine, or auristatin
(Figure 7). These drugs are so toxic that they cannot be used by
themselves without a targeting agent.

In 2000, four decades after Mathé’s pioneering work and one
century after Ehrlich’s dream, Wyeth received approval to com-
mercialize Gemtuzumab ozogamicin (Mylotarg®) which results
from the conjugation of a monoclonal antibody targeting CD33
with a calicheamicin derivative. This drug was used for 10
years against acute myelogenous leukemia, before being with-
drawn in 2010, when it was demonstrated that it does not
provide any significant benefit over conventional cancer ther-
apies. In 2011 and 2013, two other immunoconjugates were
marketed: brentuximab vedotin (Adcetris®) and trastuzumab
emtansine (Kadcyla®). The first one targets the protein CD30,
which is expressed in classical Hodgkin lymphoma and sys-
temic anaplastic large cell lymphoma. This antibody is conjugated
to a fully synthetic analog of the antimitotic agent dolastatin
(Figure 7).

Trastuzumab emtansine results of the conjugation of a mono-
clonal antibody targeting the receptor HER2 (a receptor tyrosine-
kinase erbB-2), which is overexpressed mainly in some forms of
breast and gastric cancers to the highly cytotoxic natural prod-
uct maytansine. The development of this class of agents requires
a careful optimization of the monoclonal antibody, the cytotoxic
payload, and the chemical linker (Ducry, 2012). The successful
introduction of immunoconjugates has validated this approach
to treat cancers, and currently as many as 415 antibody–drug
conjugates are under clinical evaluation.

In addition to antibodies, alternative tumor-selective ligands
have been conjugated to anticancer drugs. Based on observa-
tions that cells internalize vitamins, such as folate, by receptor-
mediated endocytosis, Leamon, and Low from Purdue University
demonstrated in 1991, that macromolecules conjugated to folic
acid could be delivered into living cells (Leamon and Low,
1991). Following this seminal observation, hundreds of publi-
cations have improved upon this approach, which is currently
being examined in clinical trials. The efficacy of this tech-
nology lies on the overexpression of the folate receptor in
tumors, while it is quasi-absent in normal tissues. Very impor-
tantly also, folic acid retains a high affinity to its receptor
when it is conjugated via its γ-carboxyl (Vlahov and Leamon,
2012).

Early attempts were limited by the release properties of the
conjugates. After two decades of intensive research, some guiding
rules were identified to lead compounds toward clinics:

1. anticancer agents must display a high cytotoxicity (similar to
immunoconjugates);
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FIGURE 7 | Structures of marketed immunoconjugates.

2. enhanced hydrophilicity, to prevent passive diffusion into nor-
mal tissue;

3. an efficient cleavable linker system that releases the anticancer
drug at a reliable rate once inside the targeted cell;

4. a low molecular weight, to optimize the penetration into solid
tumor tissue with concomitant rapid systemic clearance.

Following these guidelines, five folic acid conjugates have reached
clinical trials, including the most advanced one, vintafolide

(EC145), which is currently in a phase 3 trial in women with
cisplatin -resistant ovarian cancer.

In vintafolide, the highly cytotoxic vinblastine is con-
nected to the folate moiety trough a self-immolative linker
and a peptidic spacer (Figure 8). To provide the desired
hydrophilicity to the final drug-conjugate and prevent unspe-
cific internalization, acidic, and basic amino acids such as
aspartic acid and arginine were introduced in the peptide-based
unit.

Frontiers in Chemistry | Medicinal and Pharmaceutical Chemistry May 2014 | Volume 2 | Article 20 | 12

http://www.frontiersin.org/Medicinal_and_Pharmaceutical_Chemistry
http://www.frontiersin.org/Medicinal_and_Pharmaceutical_Chemistry
http://www.frontiersin.org/Medicinal_and_Pharmaceutical_Chemistry/archive


Basmadjian et al. Anticancer natural products

FIGURE 8 | Structure of vintafolide and mechanism of release of the payload in the endosome.

The self-destructive linker system is based on a 1,2-elimination
mechanism by reduction of the disulfide bond between the cys-
teine of the spacer and the linker, which occurs in the endosome
through a not fully understood mechanism (Figure 8) (Yang et al.,
2006).

TRADITIONAL HERBAL REMEDIES
In addition to purified molecules, traditional herbal remedies are
slowly emerging in modern Western medicine (Basu, 2004). An
injectible form of an extract of the Chinese medicinal plant Semen
coicis called Kanglaite® (Kang-Lai-Te) has been used in China as
a lipid emulsion since the end of the 90’s for the treatment of
non-small cell lung, liver, stomach, and breast cancers. It has been
marketed also in the Russian Federation since 2003 and is the
first traditional Chinese herbal remedy to enter into clinical tri-
als in the US. As with many other traditional Chinese medicines,
Kanglaite activity probably results from the combined actions of
multiple pharmacologically active ingredients that have not been
yet identified (Xu, 2011). Over the last decade, other botanical
drugs have entered clinical trials in the West to treat cancers or
other ailments.

NANOPARTICLE DELIVERY OF ANTICANCER DRUGS
Tumor growth requires angiogenesis, i.e., the formation of new
blood vessels. In contrast to normal angiogenesis, newly formed
vessels in tumors display many structural and functional defects,
which permit the leakage of macromolecules. This feature is
referred to as the “enhanced permeability and retention (EPR)
effect.” Recent advances in the application of nanotechnology to
medicine enabled the approval of five nanoparticle chemother-
apeutics for cancer (Wang et al., 2012). Four liposomal for-
mulations have been approved for clinical use in oncology:
pegylated liposomal doxorubicin (DOXIL®, Caelyx®), nonpegy-
lated liposomal doxorubicin (Myocet®), and liposomal cytarabine
(DepoCyte®) (Hofheinz et al., 2005). Nab-paclitaxel (Abraxane®)
is an albumin bound approved for the treatment of breast can-
cer and is undergoing clinical trials for other clinical indications.
And finally, Genexol-PM is a polymeric micelle formulation of

paclitaxel composed of block copolymers of PEG and poly-(D,L-
lactic acid) (Kim et al., 2004).

Although nanomedicine is a new discipline, its translation
into clinics has been rapid. A novel generation of nanoparticle
chemotherapeutics is under development and expected to greatly
improve cancer treatments. These new formulations may also
offer novel opportunities for established anticancer drugs (Wang
et al., 2012).

MISSED OPPORTUNITIES AND HOW TO RESCUE THEM
In 2010, Bristol-Myers Squibb stopped the phase III clinical trial
of Tanespimycin, an inhibitor of heat shock protein 90, for the
treatment of multiple myeloma, probably because of the expi-
ration of the patent in 2014. In addition to drug developments
that were terminated because of the shortness of patent life, there
are many interesting drugs that did not reach clinical trial or that
failed in clinical trial because the conceptual tools to correctly per-
form these assays were not available at that time. Indeed, “there
are no bad anticancer agents, only bad clinical trial designs” as
stated by Von Hoff (1998).

Flavaglines, such as rocaglamide, represent a striking example
of natural products that are enjoying reinvigorated investigation
after their original discovery by King et al. from the National
Defense Medical Center of Taiwan (King et al., 1985). The recent
identification of their molecular targets, the scaffold proteins pro-
hibitins and the initiation factor of translation eIF4A, coupled
with a description in Science about the origin of their selective
cytotoxicity in cancer cells should promote further investiga-
tions to unveil their therapeutic usefulness (Basmadjian et al.,
2013; Santagata et al., 2013). However, clinical trials with these
compounds are unlikely unless some structurally original and
patentable analogs are identified. Indeed, clinical trials of non-
patentable compounds are still scarce (Roin, 2009; Cvek, 2012).
For instance, a non-profit company, the Institute for OneWorld
Health, developed in 2007 paromomycin, which is not patentable,
as an effective treatment for visceral leishmaniasis. This was
accomplished with financial support from the Bill and Melinda
Gates Foundation, the Special Program for Research and Training
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SCHEME 4 | Combination of biotechnology and organic synthesis for the synthesis of ansamitocin derivatives (Taft et al., 2008).

in Tropical Diseases of the United Nations Development Program,
the World Bank, and the World Health Organization (Sundar
et al., 2007). GlobalCures is another example of a non-profit
medical research organization, which aims to develop novel and
cost-effective treatments for cancers (Cvek, 2012). State agen-
cies, such as the National Center for Advancing Translational
Sciences are also deeply involved in the development of non-
profitable drugs. Only a radical change in public or international
policy could support the further development of clinically useful
compounds that are currently fated to be traded as generics.

BIOTECHNOLOGY-BASED GENERATION OF NOVEL NATURAL
PRODUCTS
Since the seminal synthesis of aspirin by Gerhardt (1853), all
the natural product derivatives were prepared by total synthesis
or semi-synthesis. Alternate approaches are currently emerging
based on the progress in the deciphering of biosynthetic pathways
and advances in biotechnologies. Currently, only a tiny fraction
of microbes can be cultured with conventional approaches, yet
uncultivated microorganisms represent an attractive source of
novel natural products. It is now possible to isolate large frag-
ments of microbial DNA directly from environmental samples
and to express them in an easily cultured microorganism. This
approach provides access to secondary metabolites that were orig-
inally produced by inaccessible microorganisms. Additionally,
the manipulation of these biosynthetic pathways can lead to
novel natural product derivatives. Metabolic engineering and syn-
thetic biology are poised to revolutionize conventional chemical
and pharmaceutical manufacturing in the coming decade (Yadav
et al., 2012). Recently, methods and concepts of organic synthe-
sis have begun to be integrated to synthetic biology to generate
novel natural product derivatives. Such approaches that merge
biotechnology with organic synthesis are rapidly blooming and
are expected to efficiently generate novel natural product analogs
in the near future (Goss et al., 2012; Kirschning and Hahn, 2012).
A representative example of such an approach has been the use
of an Actinosynnema pretiosum mutant that accepts 3-amino-4-
bromobenzoic acid as a substrate to prepare pharmacologically
active ansamitocin derivatives, which can then be transformed by
classical organic reactions (Scheme 4; Taft et al., 2008).

CONCLUSION
The success of glivec and herceptin in the 90’s announced
the obsolescence of natural products in therapeutics. A decade

later, many cancer patients continue to die and pharmaceutical
companies have reconsidered their position on the potential of
natural products in oncology. Indeed, for too many solid tumors
of advanced grades, the only therapeutic options remain exclu-
sively palliative. There is therefore an urgent need to develop
original medicines.

Some of newly developed agents induce a strong cytotox-
icity targeting conventional targets, DNA (for trabectedin) or
microtubules (for ixabepilone, vinflunine, or eribulin), while
other target specific biochemical events such as steroid biosyn-
thesis (abiraterone acetate), histone remodeling (for romidepsin),
protein translation (homoharringtonine), or degradation (carfil-
zomib). The case of rapamycin derivatives is atypical. These drugs
are not cytotoxic, but can be considered as targeted therapy agents
due to their inhibition of mTOR signaling.

In contrast with targeted therapeutics, which are designed for
a specific type of cancer, the development of natural products
is often more erratic and heavily relies on the skill of pharma-
cologists to unravel their mechanism of action and clinicians to
identify the optimal indication in the clinic.

Over the last 15 years, natural products have been rehabil-
itated by pharmaceutical companies, even though some com-
plementary approaches, such as molecular modeling based drug
design are gaining in momentum. This latter methodology, which
was pioneered by 2013 Nobel laureates, has successfully led to
innovative medicines. When it is possible to predict the 3D
structure of proteins, then it will probably overshadow other
methods for identifying drug candidates. Until then, natural
products should continue to play a major role in drug dis-
covery, especially in the treatment of cancers and infectious
diseases.
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Abstract: Flavaglines constitute a distinctive family of plant
metabolites isolated from medicinal plants of the genus Aglaia.
These compounds exhibit a broad spectrum of distinctive phar-
macological properties, including anti-inflammatory, neuropro-
tective, cardioprotective, and anticancer activities. These natural
cyclopenta[b]benzofurans are characterized by densely func-
tionalized tricyclic frameworks, as exemplified by the structures

1. Introduction

In the post-genomics era, natural products continue to be a
major source of inspiration for the development of new medici-
nes, especially in oncology. Indeed, fourteen natural product
derivatives were approved for treatment of cancer between
2007 and 2013.[1] This context, coupled with major discoveries
in cell biology, explains the renewed interest in the pharmaco-
logical potential of flavaglines to treat cancer.[2] Flavaglines are
a unique class of natural compounds characterized by a cyclo-
penta[b]benzofuran scaffold. In nature they have so far exclu-
sively been found in plants of the genus Aglaia. These com-
pounds were first identified by King and colleagues in 1982.[3]

This Taiwanese group determined the structure of rocaglamide
(1, Figure 1) and demonstrated its antileukemic activity. It took
20 years to identify the molecular target. We now know that
flavaglines display their pharmacological effects due to their
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of rocaglamide or silvestrol, which makes them extremely at-
tractive targets for total synthesis, in addition to their therapeu-
tic potential. In this review we describe the various synthetic
approaches to the total synthesis of flavaglines, culminating in
a new generation of diastereo- and enantioselective total syn-
theses.

binding to prohibitins-1 and 2 (PHB1/2) and the translation initi-
ation factor eIF4A.[4] These discoveries greatly accelerated the

Figure 1. Selected examples of natural (1–5) and synthetic (6–8) flavaglines.
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pharmacological investigation of these drugs, principally for the
treatment of cancer, but also in the context of other ailments
including neurological, cardiac, and inflammatory diseases.
Their most striking feature is that they induce the death of can-
cer cells and promote the survival of non-cancer cells against
many stresses at nanomolar and subnanomolar concentra-
tions.[2] The reasons for this unusual pharmacological profile
remain enigmatic, but these compounds are attracting the at-
tention of a growing number of scientists.

Since the discovery of rocaglamide, more than one hundred
other natural flavaglines, such as rocaglaol (2), aglaiastatin (3),
cyclorocaglamide (4), and silvestrol (5), have been found (Fig-
ure 1). In addition, several synthetic, pharmacologically active
analogues have been developed. The most intensively studied
of these are rohinitib (6), FL3 (7), and IMD-026259 (8). Rohinitib
displays anticancer[5] and antiviral effects.[6] It also prevents hair
loss (alopecia) induced by chemotherapies.[7] FL3 exhibits po-
tent anticancer,[4b,8] cardioprotective,[9] anti-Parkinsonian,[10]

anti-inflammatory,[11] and antiviral properties.[12] It also protects
the heart[9] and neurons[10] against the adverse effects of cancer
chemotherapies. IMD-026259 (8, Figure 1) is a promising pre-
clinical candidate developed by the German biotech company
IMD Natural Solutions to treat Parkinson's disease.[13]

A histogram of publications on flavaglines reflects the grow-
ing interest in these compounds (Figure 2). The identification
of their molecular targets (the scaffold proteins “prohibitins”
and the protein synthesis initiation factor eIF4A), coupled with
several recent articles in Science[5b] and Nature[5a,8d] on their
extraordinary anticancer effects, have provided supporting evi-

Figure 3. Approaches to the total synthesis of flavaglines.
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dence of their therapeutic potential and stimulated an intense
effort to develop additional synthetic flavaglines.

Figure 2. Histogram of publications on flavaglines (Scifinder, CAPLUS data-
base).

With their high density of functionality, which includes the
two contiguous quaternary chiral centers C-3a and C-8b, the
total synthesis of flavaglines represents a challenge that has
attracted the attention of some of the most prominent chem-
ists. Over the last years, several reviews have described the
identification, synthesis, and pharmacological activities of
flavaglines.[2,14] The purpose of this article is to provide an up-
dated presentation of their total syntheses. Much effort has also
been spent on preparing analogues for medicinal chemistry
studies, but that is beyond the scope of this review. This report
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is organized according to synthetic strategies to create the
flavagline skeleton, as illustrated in Figure 3.

2. Trost's Enantioselective [3+2]
Cycloaddition Approach

With the synthesis of rocaglamide (1) in 1990, Trost et al. dis-
closed the first total synthesis of a flavagline.[15] Their strategy
was based on the enantioselective [3+2] cycloaddition between
10 and the chiral oxazepinedione 9 to give the cyclopentene
11 (Scheme 1). Cleavage of the chiral auxiliary and ozonolysis
gave the cyclopentanone 12, which was condensed with 3,5-
dimethoxyphenol to provide cyclopentene 13.

Monotransesterification with benzyl alcohol, followed by
oxidative ring-closure mediated by DDQ, gave rise to the inter-
mediate 14, which has the basic skeleton of the flavaglines, but
with the wrong relative configuration at C-3a and C-3. After
catalytic hydroxylation, Moffatt–Doering oxidation, silylation,
and decarbobenzyloxylation, the stereochemistry of protected
intermediate 16 was adjusted by its oxidation into enone 17,
followed by a catalytic hydrogenation. Subsequent deprotec-
tion and amidation under Weinreb's conditions efficiently com-
pleted the total synthesis of rocaglamide. This accomplishment
also established the absolute stereochemistry of this natural
compound.

3. Taylor and Dobler's Umpolung Approaches

One year after Trost's accomplishment, Taylor and co-workers
developed a shorter racemic synthesis of rocaglamide,[16] which
was later improved by the groups of Dobler and Qin.[17]

Taylor's synthesis commenced with a Hoesch reaction be-
tween cyanohydrin 19 and phloroglucinol 18 to prepare benzo-

Scheme 1. First (and enantioselective) total synthesis of a flavagline (rocaglamide), by Trost et al.[15]

Eur. J. Org. Chem. 2016, 5908–5916 www.eurjoc.org © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim5910

furanone 20 (Scheme 2).[16a] A Michael addition with trans-
cinnamaldehyde gave rise to the adduct 21. A straightforward
SmI2-mediated pinacolic coupling of this keto aldehyde gener-
ated, with good diastereoselectivity (6:1), epi-rocaglaol 22a and
its epimer 22b, which could be separated. Completion of the
synthesis was accomplished in six steps, including a Swern oxid-
ation, the generation of a ketene dithioacetal, its transformation
into an amide via an ester, and a diastereoselective
NMe4BH(OAc)3-mediated reduction.

Scheme 2. Taylor's synthesis of racemic rocaglamide (1).[16]
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This elegant and efficient strategy was later improved by
Dobler and colleagues, who replaced SmI2-induced cyclization
by an umpolung reaction with cyanohydrin 25 to generate the
cyclopentanone 26 (Scheme 3). The carboxyl moiety was then
straightforwardly introduced by use of the Stiles reagent, which
circumvented the ketene dithioacetal intermediate.

Scheme 3. Dobler's synthesis of racemic rocaglamide.[17a]

In 2008, Qin and his group further shortened the number of
steps by using the benzylidenemalonate 27 as a Michael ac-
ceptor to generate keto-diester 28, which was then able to un-
dergo an SmI2-induced cyclization (Scheme 4).[17b] Amidation
and reduction of the �-ketoamide furnished a diastereomeric
mixture of cyclopenta[b]benzofurans in only four steps from
benzofuranone 20.

Scheme 4. Qin's synthesis of racemic rocaglamide.[17b]
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4. Ragot's 5 endo-tet Cyclization Approach
In 2004, Ragot's group developed a strategy based on the intra-
molecular 5 endo-tet cyclization of a phenolic epoxide to gener-
ate the flavagline skeleton (Scheme 5).[18] Their synthesis began
with the condensation of bromoketone 31 and triphenylphos-
phorane 32 to provide cyclopentenone 33. After decarboxyl-
ation and bromination, α-bromoenone 34 was engaged in a
Suzuki reaction with boronate 35 to give rise to enone 36. Dia-
stereoselective reduction and epoxidation of 36 yielded key in-
termediate 37, which underwent spontaneous cyclization into
didemethoxyrocaglaol 38 triggered by phenol deprotection.

Scheme 5. Ragot's synthesis of the flavagline skeleton.[18]

We tried to use this approach to synthesize rocaglaol (2),
which bears the methoxy groups necessary for pharmacological
activity (Scheme 6).[19] Our synthesis of the cyclopentenone
core commenced with a Perkin reaction between carboxylic
acid 39 and benzaldehyde, followed by a Sonogashira coupling
to deliver ketone 40 solely as the E isomer. This was treated

Scheme 6. Désaubry's attempt to synthesize rocaglaol.[19]
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with lithiated trimethoxybenzene to provide carbinol 41, which
easily underwent an unprecedented annulation reaction in
acidic medium to give, in only one step, the adduct cyclopenta-
none 42 with a 44 % yield.[20] Finally, selective demethylation,
protection with a 2-naphthylmethyl (NAP) group (which can be
easily removed by hydrogenolysis), and ketone reduction af-
forded the intermediates 43 as a pair of atropoisomers. Exten-
sive trials directed towards transforming these compounds into
epirocaglaol 45 via epoxide 44 were unfruitful, suggesting that
the scope of Ragot's method is narrow. Indeed, their later article
and patent only report the use of SmI2-mediated pinacol cou-
pling to synthesize pharmacologically active flavaglines.[21]

Scheme 7. Porco's biomimetic synthesis of flavaglines.[22]

Scheme 8. Porco's enantioselective synthesis of flavaglines.[24a]
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5. Porco's [3+2] Photocycloaddition Approach

In 2004, Porco and co-workers disclosed a brilliant synthesis of
flavaglines inspired by the biosynthesis previously published by
Proksch (Scheme 7).[14f ] The key step of this approach was an
original photochemical [3+2] cycloaddition between 3-hydroxy-
flavone 46 and cinnamic ester 47, involving photoexcited trip-
let biradical 48, to furnish aglain 49.[22] This was treated with
sodium methoxide to provide flavagline 24 (Scheme 2) through
a �-acyloin rearrangement.

These authors later applied this elegant [3+2] photocyclo-
addition to a variety of dipolarophiles,[23] and made this trans-
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formation enantioselective by using TADDOL derivative 50
(Scheme 8).[24a] Another improvement to this reaction was dis-
closed by Tremblay and colleagues, who used flow chemistry
to produce ten grams of racemic photoadducts in only a few
hours.[25]

More recently, Porco and co-workers developed a kinetic res-
olution of the bridged ketone 49 utilizing an enantioselective
transfer hydrogenation catalyzed by the RhIII complex 51
(Scheme 9).[24b] This approach was efficiently applied to the
asymmetric synthesis of (+)-aglaiastatin and (–)-aglaroxin C.

Scheme 9. Porco's kinetic-resolution-based asymmetric synthesis of (+)-
aglaiatatin and (–)-aglaroxin C.[24b]

6. Frontier's and Magnus' Approaches Based
on a Nazarov Reaction

The approach of Frontier and co-workers to fashioning the
flavagline skeleton elegantly exploited an original Nazarov-type

Scheme 10. Frontier's synthesis of racemic rocaglamide based on a Nazarov reaction.[26]
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reaction designed for this purpose (Scheme 10).[26] Their syn-
thesis began with the homologation of benzofuranone 20 to
provide aldehyde 54 in three steps. Alkylation with phenylacet-
ylene and protection of the alcohol gave propargyl ether 55,
which was then deprotonated and quenched with nBu3SnCl to
give stannyl alkoxyallene 56. Epoxidation of this with m-CPBA
generated a transient epoxide that underwent further transfor-
mation to establish the flavagline skeleton through an atypical
Nazarov reaction. Deprotection, conversion into a triflate, and
Pd-mediated carbonylation yielded dehydroflavagline 61.
The strategy was completed in two more steps by Trost's ap-
proach.

Two other strategies based on a Nazarov reaction were de-
veloped by Magnus and co-workers.[27] In their first approach,
Magnus and co-workers developed a unique Nazarov cycliza-
tion that provides a straightforward means to generate the fla-
vagline skeleton (Scheme 11).[27a] This route began with the
Sonogashira cross-coupling of iodoarene 63 with 4-methoxy-
phenylacetylene. A palladium-catalyzed carbonylative annula-
tion of the obtained alkyne 64 provided benzofuran 65, which
was then converted into enone 66. Although treatment with
many Lewis acids resulted in the fragmentation of this com-
pound, Magnus and co-workers found that acetyl bromide effi-
ciently promotes the Nazarov cyclization with an 81 % yield,
probably through intermediates 67 and 68. Oxidation with ceric
ammonium nitrate (CAN) efficiently installed the tertiary
hydroxy group. Further redox manipulations provided dehydro-
flavagline 72, which was treated under the condition described
by Trost to afford methyl rocaglate 62 in two steps.

The second approach began with the conversion of alkyne
64 into benzofuranone 74 in three steps (Scheme 12).[27b] Con-
densation of the latter with benzyl methyl ketone, then O-silyla-
tion, provided 75, which was subjected to the Nazarov reaction
in the presence of SnCl4 to yield the cyclopentenone 76. Hydro-
silylation, palladium-mediated carboxymethylation, and hydrox-
ylation gave rise to the dehydrated flavagline 79.
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Scheme 11. Magnus' first synthesis of racemic flavaglines.[27a]

Scheme 12. Magnus' racemic synthesis of methyl rocaglate.[27b]

7. Tius' Enantioselective Intramolecular SNAr
Approach
In 2015, Tius and co-workers reported a new synthesis of flavag-
lines. It was also based on a Nazarov reaction, but their strategy

Eur. J. Org. Chem. 2016, 5908–5916 www.eurjoc.org © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim5914

used a different disconnection from that used by Frontier and
Magnus.[28] The preparation of dienone 82 employed a select-
ive deprotonation of 80 with TMPMgCl·LiCl (TMP = 2,2,6,6-tetra-
methylpiperidyl) and its condensation with acid chloride 81.
Subsequent removal of the 3,4-dimethoxybenzyl (DMB) pro-
tecting group, followed by an enantioselective Pd0-catalyzed
Nazarov-type cyclization, afforded the cyclic product 85 in 70 %
yield and 89:11 er. Then, an allyloxy group was stereoselectively
introduced under oxidative (PIFA) conditions to provide enol
ether 86 after an O-methylation step with Meerwein's salt. Con-
version of the ester into a dimethyl amide and alkylation with
lithiated 1-fluoro-3,5-dimethoxybenzene in the presence of
LaCl3·2 LiCl efficiently gave rise to tertiary alcohol 89 as a single
isomer. SeO2-mediated oxidative cleavage of the allyl protect-
ing group and a subsequent intramolecular SNAr efficiently gen-
erated the flavagline scaffold, which was further advanced to
rocaglamide in two steps (Scheme 13).

Scheme 13. Tius' enantioselective synthesis of rocaglamide.[28]

8. Porco's and Rizzacasa's Syntheses of
Silvestrol (5)
The enantioselective synthesis of silvestrol (5) was independ-
ently disclosed in the same issue of Angewandte Chemie by
Porco's and Rizzacasa's groups in 2007 (Scheme 14).[29] Both
teams relied on Porco's [3+2] photocycloaddition to prepare the
cyclopenta[b]benzofuran core. The main difference between
Porco's and Rizzacasa's strategies is in the preparation of the
pseudosugar moiety. Porco and co-workers started from D-di-
methyl tartrate to prepare the lactol 94 via the known diol
93,[30] whereas Rizzacasa and co-workers prepared a similar syn-
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thon through periodic cleavage of D-glucose derivative 96
(Scheme 14). These approaches were used to prepare several
pharmacologically active silvestrol analogues.[5c,26,29a,31]

Scheme 14. Porco's and Rizzacasa's syntheses of silvestrol (5).[29]

9. Concluding Remarks

In summary, the synthetic studies directed towards the creation
of flavaglines have been rich in intellectual excitement and
have not only stimulated the discovery of new reactions but
have also paved the way for SAR studies and subsequent prom-
ising preclinical investigations for the treatment of cancers and
of neurological, cardiac, and inflammatory diseases. In addition,
the recent demonstration that eIF4a and prohibitins are valid
targets for treatment of cancer is expected to foster this field
of research.
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The gold(I)-catalyzed intramolecular siloxycyclization developed by Rhee and collaborators was shown
to operate also on alkyl ethers to generate a highly substituted 2-cyclopentenone 8, extending the appli-
cation of this reaction. Conversion of 8 to known anticancer natural products following a reported strat-
egy was examined.

� 2014 Elsevier Ltd. All rights reserved.
Isolated from medicinal plants of the genus Aglaia, flavaglines
have attracted considerable attention due to their remarkable
structural complexity and unique biological activities, which
include a strong cytotoxicity that is specific to cancer cells.1–5 In
the course of our medicinal program aiming at developing flavag-
lines with enhanced pharmacological properties,5,6 we considered
to prepare novel flavaglines using a strategy developed by Ragot
and coll. at Bayer (Scheme 1).7 These authors achieved the synthe-
sis of the flavagline core 3 in three steps from cyclopentenone 1a,
using an intramolecular hydroxy epoxide opening in the key step.

Although the disclosed preparation of unsubstituted cyclo-
pentenone 1a could be achieved in 4 steps with an overall yield
of 14%, the introduction of substituents necessary for the antican-
cer activity (e.g., R = OMe) was not reported. In order to synthesize
pharmacologically active flavaglines, we considered to prepare 1b
by another approach. While symmetrical 3,4-diaryl-cyclopent-2-
enones can easily be obtained from a,b-diketones, the synthesis
of cyclopentenones substituted by different aryl moieties is more
tedious.

At the heart of our approach to prepare 1b is the Rautenstrauch
rearrangement, which is particularly efficient to prepare variously
substituted cyclopentenones.8 To test the viability of this strategy,
we first examined the reactivity of the Rautenstrauch’s substrate 7.

Our attempt of synthesis of ester 7 is depicted in Scheme 2. Per-
kin condensation of acid 4 and benzaldehyde followed by the
conversion to an acyl chloride and a Sonogashira coupling conve-
niently afforded ketone 5 as a sole E isomer. Condensation with
lithiated trimethoxybenzene gave adduct 6 in 71% yield.

With carbinol 6 in hand, we tested many esterification proto-
cols.9 However, all our attempts were unsuccessful due to lack of
reactivity or high instability of expected ester 7.

This failure led us to explore another strategy based on the
recently described gold(I)-catalyzed synthesis of highly substituted
cyclopentenones by an intramolecular siloxycyclization process
developed by Rhee and coll. (Scheme 3).10 The utility of this
approach was validated with the total synthesis of herbertene nat-
ural products.11 Although this reaction was described exclusively
with tertiary silyl ethers (R1 = SiEt3, R2 and R3 – H), we considered
that the phenyl and the trimethoxyphenyl groups of substrate 11
should sufficiently stabilize the carbocationic intermediate to
allow the reaction to proceed (Scheme 4). This hypothesis was sup-
ported by Toste’s report of a related Au(I)-catalyzed carboxyalk-
oxylation using benzylic ethers as substrates to synthesize
indenyl ethers.12 Thus, the silyl ether was replaced by an ethoxy
group due to its easier preparation.

Indeed, the direct molybdenum(VI)-catalyzed transposition and
etherification of allylic alcohol 6 at 50 �C afforded a 1:1 mixture of
ethers 9 and 10 in a 55% yield.13 Gratifyingly, increasing the tem-
perature to 65 �C improved the ratio to 1:3 in favor of the desired
ether 10 in a 85% yield. Increasing the temperature further pro-
moted the decomposition of this product. Desilylation provided
alkyne 11, which gratifyingly proved to be a good substrate for
the Rhee’s annulation reaction. The attempt to perform this reac-
tion on silylated alkyne 10 also afforded 8 (58%).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tetlet.2014.12.093&domain=pdf
http://dx.doi.org/10.1016/j.tetlet.2014.12.093
mailto:desaubry@unistra.fr
http://dx.doi.org/10.1016/j.tetlet.2014.12.093
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet
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tion developed by Rhee and coll.10
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Scheme 1. Bayer synthesis of the flavagline core (the synthesis of pharmacolog-
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The synthesis of two other cyclopentenones was next examined
(Scheme 5). The substrates of the Au-catalyzed cyclization were
prepared from acyl chloride 12 through Suzuki coupling, ethynyla-
tion, rearrangement and desilylation of the alkyne. Enyne 13
harboring an unsubstituted phenyl afforded the desired cyclo-
pentenone 15 in a satisfactory yield of 50%. Interestingly, introduc-
tion of a chlorine atom in the para position increased the yield to
75%, probably due to a higher stabilization of the carbocationic
intermediate.

Thanks to the assistance of ketone, 8 was selectively mono-
demethylated upon treatment with BBr3 in a 75% yield (Scheme 6).
Reduction of ketone 17 was not diastereoselective under various
conditions (L-selectride; Red-Al; NaBH4; NaBH4, CeCl3�7H2O). In
addition, the mixture of 18 and 19 significantly degraded during



Scheme 6. Synthesis of the allylic alcohols 18/19 and attempts to generate the flavagline scaffold.
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C. Basmadjian et al. / Tetrahedron Letters 56 (2015) 727–730 729
purification steps. After extensive work, we eventually were able to
quantitatively prepare a mixture of 18/19 in a 1/1 ratio using 4
equivalents of LiAlH4.

With 18 and 19 in hand, we tried to convert these reactive
allylic alcohols into the flavagline precursor 20 using many meth-
ods of activation of allylic alcohols (Pd[P(OC6H5)3]4, Na2SO4; PPh3-

AuCl, AgOTf, 4 Å MS; Bi(OTf)3, KPF6, CaSO4; Ar-B(OH)2; FeCl3;
MoO2(acac)2, NH4PF6; Re2O7).14–18 Unfortunately, all of these
assays only generated degradation products. Even though com-
pounds similar to 20 have been described,19–23 it is probable that
the inherent ring strain of this product and the kinetic lability of
the carbocationic intermediate prevent such a cyclization.
At this point, attempts at following Ragot’s strategy using a pro-
tected phenol were examined (Scheme 7). 2-Naphthylmethyl
(NAP) group was selected as the protecting group due to extremely
mild conditions involved in its removal by catalytic hydrogenoly-
sis.24 The adduct was obtained as a pair of atropoisomers 21 and
210. As far as we know atropoisomerism for 1,2-diaryl cyclopent-
enes has not been reported hitherto.

Diastereoselective reduction with L-selectride afforded alcohols
22 and 220 with 71% of conversion. Epoxidation of cyclopentenols
21/220 under various conditions (m-CPBA, NaHCO3; VO(acac)2,
t-BuO2H; H2O2, NaOH; 4-nitroperbenzoic acid, NaHCO3) provided
none of the desired product probably due to the low reactivity of
the sterically hindered alkene and instability of the product.
Under Sharpless type conditions (t-BuO2H, Ti(Oi-Pr)4, 4 Å MS),
formation of the ketone was predominant, probably due to ring
strain release.

The inability to obtain substrate 23 suggests that the method
reported by Bayer scientist is restricted to the synthesis of flavag-
lines that are not substituted by the functional groups necessary
for the pharmacological activity. Indeed, none of the required dec-
orations proposed in this Letter were described in Bayer patents.
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Flavaglines represent a class of potent anticancer agents. Herein, we demonstrated that a classical strat-
egy in pharmacomodulation, i.e. the isosteric replacement of an alcohol by an acylamino or a mesylamino
moiety leads to inactive compounds. In addition, the development of a convenient method to introduce
an azide on the cyclopenta[b]benzofuran skeleton of these compounds was achieved using a cyclic sulfite
intermediate.

� 2016 Elsevier Ltd. All rights reserved.
ines and
The resistance to treatments and the adverse effects, in partic-
ular cardiac ones, remain the two major obstacles to anticancer
treatments. Flavaglines, a class of natural compounds coming from
plants of the genus Aglaia used in traditional Chinese medicine,
may tackle both of these issues. Indeed, these cyclopenta[b]benzo-
furans induce apoptosis selectively in cancer cells at nanomolar
concentrations.1–6 In vivo, these compounds display spectacular
anticancer effects. As an example they are able to relieve the resis-
tance to B-Raf inhibitors in a mouse model of chemoresistant
metastatic melanoma.3 In addition, flavaglines may prevent the
adverse effects of cancer treatments. In particular, we demon-
strated that they may alleviate the cardiotoxicity of doxoru-
bicin,6–8 a widely used chemotherapeutic agent that induces
severe cardiac dysfunction. This remarkable profile of pharmaco-
logical activities comes from their unique mode of action:—they
directly modulate the activity of the scaffold proteins pro-
hibitins-1 and 2 and the translation initiation factor eIF4a. We pre-
viously clarified the structural requirements for both their
anticancer and cardioprotective activities.4,6 We demonstrated in
particular that the 1-hydroxy can be replaced by a formylamino
or a mesylamino moiety without modifying significantly the anti-
cancer and cardioprotective activities (Fig. 1).6 This observation
prompted us to examine whether the replacement of the 8b-
hydroxy by the same H bond donors was also tolerated.

Our approach to synthesize was based on Burns and Rizzacasa’s
observation that the hydrogenolysis of protected flavagline 7 gen-
urns and
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Scheme 2. Synthesis of isosteres 5 and 6.

2944 Q. Zhao et al. / Tetrahedron Letters 57 (2016) 2943–2944
erates methyl or ethyl ethers 9 via solvolysis of the intermediate
quinone methide 8 (Scheme 1).5 In addition, similar methyl and
ethyl ethers have been isolated from purification of Aglaia extracts,
suggesting that these compounds may have been generated during
the HPLC purification in the presence of an acid via a benzylic car-
bocationic intermediate.9,10 Thus, we envisioned synthesizing 5
and 7 from azide 10 prepared from the known carbinol 24

(Scheme 2).
Initial attempt to introduce the azide on diol 2 or carbonate 11

were unsuccessful. These substrates were unreactive. To increase
the reactivity of the substrate, we considered using the cyclic sul-
fate 14. Unfortunately, oxidation of the intermediate sulfite 13
afforded exclusively degradation products, due to the high reactiv-
ity of 14. This observation suggested that the introduction of the
azide could be achieved through the use of sulfite 13, which is
expected to have a reactivity intermediate between those of car-
bonate 11 and sulfate 14. This proved to be a key to success.

The azide 10 was remarkably unreactive toward triphenylphos-
phine, but the use of thiophenol and SnCl2 according to Fuch’s
method11 allowed us to prepare amine 12 (85%), which was readily
converted to formamide 5 and mesylamide 6.

The cytotoxicity of 5 and 6 was determined on human cancer
cell lines by the MTS assay after a 72 h treatment. Unfortunately,
both compounds did not display any significant cytotoxicity in
Hep3B and HuH7 cancer cell lines (Fig. S1).

Because of their promising anticancer properties, flavaglines
continue to attract much attention from medicinal chemists.
Herein, we demonstrated that a classical strategy in pharmaco-
modulation, i.e. the isosteric replacement of an alcohol by an acy-
lamino or a mesylamino moiety leads to inactive compounds.
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Abstract
Magnesium (Mg2+) is essential for enzymatic activity, brain function and muscle contraction.

Blood Mg2+ concentrations are tightly regulated between 0.7 and 1.1 mM by Mg2+ (re)ab-

sorption in kidney and intestine. The apical entry of Mg2+ in (re)absorbing epithelial cells is

mediated by the transient receptor potential melastatin type 6 (TRPM6) ion channel. Here,

flavaglines are described as a novel class of stimulatory compounds for TRPM6 activity.

Flavaglines are a group of natural and synthetic compounds that target the ubiquitously ex-

pressed prohibitins and thereby affect cellular signaling. By whole-cell patch clamp analy-

ses, it was demonstrated that nanomolar concentrations of flavaglines increases TRPM6

activity by*2 fold. The stimulatory effects were dependent on the presence of the alpha-ki-

nase domain of TRPM6, but did not require its phosphotransferase activity. Interestingly, it

was observed that two natural occurring TRPM6 mutants with impaired insulin-sensitivity,

TRPM6-p.Val1393Ile and TRPM6-p.Lys1584Glu, are not sensitive to flavagline stimulation.

In conclusion, we have identified flavaglines as potent activators of TRPM6 activity. Our re-

sults suggest that flavaglines stimulate TRPM6 via the insulin receptor signaling pathway.

Introduction
Magnesium (Mg2+) is an essential electrolyte for cell growth, protein synthesis and enzymatic
activity. Therefore, physiological mechanisms maintain blood Mg2+ concentrations within a
tightly regulated range (0.7–1.1 mM) [1,2]. The apically expressed Transient Receptor Potential
Melastatin type 6 (TRPM6) channels are the gatekeepers of epithelial Mg2+ transport in colon
and in the distal convoluted tubule segment (DCT) of the kidney nephron [3]. Loss-of-function
mutations of TRPM6 cause intestinal Mg2+ malabsorption and renal Mg2+ wasting, as evi-
denced in patients suffering from hypomagnesemia with secondary hypocalcemia (HSH,
OMIM #602014) [4,5].
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TRPM6 channels are thought to form tetramers of subunits comprising six transmembrane
segments, with a central divalent-selective pore (Ba2+>Ni2+>Mg2+>Ca2+) [3]. Functional chan-
nels are inhibited by intracellular Mg2+ [3,6] and consequently display a time-dependent increase
in currents upon dialysis of cells with a pipette solution containing a strongMg2+ chelator such
as ethylenediaminetetraacetic acid (EDTA). Like its close homolog TRPM7, TRPM6 channels
comprise an intrinsic intracellular Ser/Thr kinase domain, which has similarities to proteins of
the alpha-kinase family [7]. TRPM6 channels undergo autophosphorylation, but the role of the
alpha-kinase on channel function and cell physiology is still incompletely understood [6,8–11].

Over the last decade, the epidermal growth factor (EGF) and insulin were shown to stimulate
the activity and membrane expression of TRPM6 [12,13]. Two TRPM6 single nucleotide poly-
morphisms (SNPs: p.Val1393Ile and p.Lys1584Glu) were recently associated with an increased
risk of diabetes development in humans [13,14]. Subsequently, it was shown that these mutations
prevent a rapid insulin-evoked increase in channel plasma membrane expression [13].

By combined pull down and mass spectrometry studies of the TRPM6 alpha-kinase domain,
three interacting proteins have been identified: I)Methionine sulfoxide reductase B1 (MSRB1)
which reduces the sensitivity of TRPM6 to oxidative stress [15], II) Guanine nucleotide-binding
protein subunit beta-2-like 1 (GNB2L1/RACK1) which inhibits TRPM6 activity in a alpha-ki-
nase-dependent manner [16]. III) Prohibitin 2 or Repressor protein of Estrogen receptor Activity
(PHB2/REA) which inhibits TRPM6, an effect that is relieved by estrogens [17].

Prohibitins (PHB1 and PHB2) are ubiquitously expressed members of the family of stomatin/
prohibitin/flotillin and HflK/C (SPFH) domain containing proteins [18–20]. PHBs are found in
the nucleus, cytoplasm and plasma membrane, where they play an important role in cellular dif-
ferentiation, anti-proliferation and mitochondrial morphogenesis. PHBs modulate the cell cycle
progression, regulate transcription and facilitate cell surface signaling [18,19]. Recently, a family
of natural compounds named flavaglines was established as high affinity ligand of PHBs [21].

Flavaglines are a family of natural compounds characterized by a cyclopenta[b]benzofuran
structure [22]. Natural flavaglines and synthetic analogs have been intensively studied, owing
to their pleiotropic favorable properties (anti-inflammatory, anticancer, cardioprotective and
neuroprotective) [23]. Flavaglines bind PHB1 and PHB2 (with nM affinity) and prevent the
CRaf-mediated activation of oncogenic MAPK signaling [21]. Additionally and independently
from PHBs, flavaglines inhibit eukaryotic initiation factor-4A (eIF4A)-dependent oncogenic
protein synthesis [23]. In addition, the binding properties of flavaglines to PHB and/or eIF4A
lead to the induction of apoptosis in apoptosis inducing factor (AIF) and caspase-12-dependent
manners [23,24]. The mechanism of flavaglines neuro- and cardioprotection are likely mediat-
ed by their PHB-interacting properties, thereby reducing oxidative stress, deleterious growth
factor signaling and release of inflammatory mediators [23].

Given the previously described inhibitory interaction of PHB2 on TRPM6 and the high af-
finity binding of flavaglines to PHB1 and PHB2, this study aims to identify and characterize
the effect of flavaglines on TRPM6 activity.

Materials and Methods

Cell culture
Human embryonic kidney cells (HEK293) were grown at 37°C in DMEM (Biowhittaker Eu-
rope, Vervier, Belgium) supplemented with 10% (v/v) fetal calf serum (PAA Laboratories, Linz,
Austria), non-essential amino acids and 2 mM L-glutamine in a humidified 5% (v/v) CO2 at-
mosphere. Cells were seeded in 12-well plates and subsequently transfected with 1 μg of
human NH2-terminal HA-tagged TRPM6 or empty pCINeo IRES GFP vectors (mock) cDNA
using Lipofectamine 2000 (Invitrogen) at 1:3 DNA:Lipofectamine ratio. For patch clamp
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experiments, cells were seeded two days after transfection on glass coverslips coated with
50 μl/cm2 of 50 μg/ml fibronectin (Roche, Mannheim, Germany). Two hours later, cells were
placed in the recording chamber and selected based on the intensity of the fluorescent reporter.

Electrophysiology
All experiments were undertaken and analyzed using an EPC-9 amplifier and the Patchmaster
software (HEKA electronics, Lambrecht, Germany). The sampling interval was set to 200 ms
and data was low-pass filtered at 2.9 kHz. Patch clamp pipettes were pulled from thin-walled
borosilicate glass (Harvard Apparatus, March-Hugstetten, Germany) and had resistance be-
tween 1 and 3 MO when filled with the pipette solution. Series resistance compensation was set
to 75–95% in all experiments. Current densities were obtained by normalizing the current am-
plitude to the cell capacitance.

Compound synthesis and purity
FL2, FL3 and FL23 were synthesized as previously described [24,25]. Purity of the compounds
was>95%, as assessed by reversed-phase high performance liquid chromatography (HPLC)
analyses (Hypersil Gold column 30×1 mm, C18, Thermo Scientific) under the following condi-
tions: flow rate: 0.3 mL/min; buffer A: CH3CN, buffer B: 0.01% aqueous Trifluoroacetic Acid
(TFA); gradient: 98–10% (v/v) buffer B over 8 min (detection: λ = 220/254 nm).

Solutions and compound application
The extracellular solution contained (in mM): 150 NaCl, 1 CaCl2, 10 HEPES/NaOH pH 7.4.
The pipette solution was made of (in mM): 150 NaCl, 10 Na2EDTA, 10 HEPES/NaOH pH 7.2
[3]. Cells were pre-incubated 15 minutes at 37°C in bath solution containing the compound
of interest diluted from a 1000x stock solution or vehicle (0.1% v/v dimethyl sulfoxide
(DMSO)).

Immunoblotting
HEK293 cells were lysed for 1 hour at 4° C in TNE lysis buffer containing (in mM): 50 Tris/
HCl (pH 8.0), 150 NaCl, 5 EDTA, 1% (v/v) Triton X-100 and protease inhibitors (pepstatin
1 μg/ml, PMSF 1 mM, leupeptin 5 μg/ml and aproptin 5 μg/ml). Protein lysates were denatured
in Laemmli containing 100 mM dithiothreitol (DTT, 30 minutes, 37°C) and subsequently sub-
jected to SDS-PAGE. Immunoblots were incubated with mouse anti-HA (Roche, high affinity
3F10, 1:5,000), rabbit anti-Akt (Cell signaling, 1:1000) and rabbit anti-ERK1/2 (Cell signaling,
1:1,000) primary antibodies and peroxidase conjugated sheep anti-mouse secondary antibodies
(Jackson Immunoresearch, 1:10,000).

Statistical analysis
All results are depicted as mean ± standard error of the mean (SEM). Statistical analysis was
conducted by one-way Student’s t-test when comparing two treatment groups or experimental
conditions. Difference in means with P values<0.05 were considered statistically significant
and indicated by a star (�).

Curve fitting
Current time-development curves were fitted with a logistic equation: I = I0+((Imax-I0)/
(1+(t/t1/2)

-h)s), with I the current density, I0 the baseline current density, t the time, t1/2 the time
of half-maximal current density, h the slope and s a parameter. Half-maximal stimulatory
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concentration (EC50) was obtained by fitting a Hill equation to the data points: I = I0+(Imax—I0) �

(([FL23]n)/(IC50
n+[FL23]n)), with I the current density, I0 the baseline current density obtained in

control conditions, Imax the maximal current value and n the Hill equation.

Results

Synthetic flavaglines stimulate TRPM6 activity
HEK293 cells were transfected with the previously described pCINeo-TRPM6-HA-IRES-GFP
vector [3]. This construct allows the visual identification of cells expressing TRPM6. Cells were
then subjected to whole-cell patch clamp analysis, as previously described [3]. Briefly, currents
were elicited by a series of voltage ramps applied at 0.5 Hz from a holding voltage of 0 mV.
Due to the dialysis of the cytoplasm with a pipette solution containing EDTA, time-dependent
outwardly rectifying currents were observed in response to this ramp protocol (Fig. 1A). In
order to assess the effect of flavaglines on TRPM6, cells were first exposed to FL23 (50 nM)
[25], a potent analog of the established PHB2 ligand FL3 [21]. This protocol yielded a

Fig 1. Flavaglines stimulate TRPM6 at nanomolar concentration. a. TRPM6 currents were evoked by a
series of 500 ms voltage ramp from -100 to +100 mV applied every 2 s (0.5 Hz) from a holding potential of
0 mV (top left inset). A typical set of current-voltage curves obtained from a single cell is shown. b. Typical
current-voltage curves obtained 200 s after break-in from cells pre-incubated 15 minutes with vehicle or FL23
(50 nM). c. The average time-course of TRPM6 current development with (n = 19) or without (n = 19) FL23
pre-treatment are shown for current values measured at +80 mV. d. FL23 increases TRPM6 current density
in a concentration-dependent manner (n�3 per data points). Line represents the fit of data points with a Hill
equation (see Material and Methods). e. Incubation of TRPM6 expressing cells with FL3 (50 nM, n�10), FL23
(50 nM, n�22) or 17βE (50 nM, n�9) significantly increased the average current densities measured at
+80 mV 200 s after break-in. Mock-transfected cells showed a similar increase in current density (n�8).
TRPM6 currents were not sensitive to FL2 (n�10). Stars indicate statistically significant difference (P<0.05)
between vehicle- (white bar) and compound-treated cells (black bar). f. The chemical structures of FL2, FL3
and FL23 are shown. g. Cells were pre-incubated with vehicle, FL23 (50 nM) or 17βE (50 nM). Total lysate
were subjected to Western blot analysis using an anti-HA primary antibody. FL23 and estradiol (17βE) did not
significantly affect the expression of TRPM6. A representative blot of three separate experiments is shown.

doi:10.1371/journal.pone.0119028.g001
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significant increase in the current density without affecting the characteristic shape of the cur-
rent-voltage (IV) curve (Fig. 1B) or the current time-development characteristics (Fig. 1C). The
average time-development curves were fitted with a logistic equation (see Material andMethods).
This analysis revealed that the time of half-maximal activation (t1/2) was not changed between
control and FL23-treated cells (control: 48 ± 2 s, FL23: 43 ± 3 s). The rate of current development
(the slope h) was increased with FL23 treatment (control: 1.8 ± 0.1 pApF-1s-1, FL23: 3.0 ± 0.2
pApF-1s-1). Pre-incubation of the cells with concentrations of FL23 ranging from 0.01 to 50 nM
revealed a concentration-dependent stimulation of TRPM6 activity with an EC50 = 1.4 ± 0.2 nM
and Hill equation n = 1.5 ± 0.3 (see Material and Methods, Fig. 1D). A similar increase in TRPM6
activity was observed with FL3 (50 nM, Fig. 2A-B). Next, cells were pre-incubated with FL2
(50 nM, Fig. 1F), a flavagline that does not display significant cytotoxicity in cancer cells [24] nor
cytoprotection in cardiomyocytes [26]. In contrast to FL3 and FL23, this treatment did not signifi-
cantly alter the current density of TRPM6-expressing cells (Fig. 2C-D). As previously reported, es-
tradiol (17βE) significantly stimulated TRPM6 currents (Fig. 1E) [17]. On average, 17βE, FL3 and
FL23 stimulated TRPM6 activity by 1.5 to 2-fold (Fig. 1E). Interestingly, mock-transfected cells
demonstrated a similar*2-fold increase in current density upon FL23 treatment, indicating that
TRPM7 is also a likely target of flavaglines action (Fig. 1E). As expected from the short pre-incu-
bation period, the expression of TRPM6 was not influenced by FL23 or 17βE (Fig. 1G).

The stimulating effects of flavaglines require the intrinsic kinase domain
of TRPM6
To assess the involvement of the intrinsic alpha-kinase domain in the flavagline-mediated poten-
tiation of TRPM6 currents, cells were transfected with the previously described kinase-truncated

Fig 2. Analogs of FL23 show distinct effects on TRPM6 currents. a. Typical current-voltage curves
obtained 200 s after break-in are shown for vehicle and FL23 (50 nM) pre-incubated cells. b. The average
time-course of TRPM6 current development with (n = 8) or without (n = 11) FL23 (50 nM) is shown for current
values measured at +80 mV. c. The average time-course of TRPM6 current development with FL2 (50 nM,
n = 12), vehicle (n = 10) or FL23 (50 nM, n = 10) pre-treatment is shown for current values measured at
+80 mV. d. FL2 incubation did not significantly stimulate TRPM6 activity (n�10). Stars indicate statistically
significant difference (P<0.05) between vehicle and compound-treated cells.

doi:10.1371/journal.pone.0119028.g002
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(p.Leu1749�, Δkinase) or kinase-inactive (p.Lys1804Arg, KI) TRPM6 constructs [9]. While the
first construct produces mutant channels lacking the complete kinase domain, the KI construct
form channels without intrinsic alpha-kinase phosphotransferase activity. Both constructs pro-
duce functional proteins with apparently normal channel function in the absence of intracellular
Mg2+. Using an identical pre-incubation protocol, cells expressing the KI mutant demonstrated a
FL23-mediated increase in current densities similar to wild type (Fig. 3A and C). In contrast, the
Δkinase mutant failed to respond to this treatment (Fig. 3B-C).

Flavaglines act along a shared pathway with insulin
The intracellular amino acid residues p.Val1393 and p.Lys1584 have been shown to indepen-
dently confer sensitivity of TRPM6 channels to insulin stimulation, probably by altering the
phosphorylation of the neighboring p.Thr1391 and p.Ser1583 residues, respectively [13]. Phos-
phomimicking mutations of either p.Thr1391Asp or p.Ser1583Asp were shown to be permis-
sive in the insulin-mediated potentiation of TRPM6 [13]. To address whether flavaglines act
on TRPM6 in a similar way as insulin, cells expressing either of two naturally occurring insu-
lin-insensitive TRPM6 SNPs (p.Val1393Ile or p.Lys1584Glu) were pre-incubated with FL23
(50 nM). These mutants failed to respond to FL23 (Fig. 4A-B and E).

Following the activation of the insulin receptor, a complex multi-branched signaling cas-
cade is activated. One of these branches involves the activation of Phosphoinositide 3-kinase
(PI3K), Akt and Ras-related C3 botulinum toxin substrate 1 (Rac1) [27]. Co-expression of
TRPM6 together with the constitutively active (p.Gly12Val) or dominant-negative (p.Thr17Asn)

Fig 3. The presence of the intrinsic alpha-kinase domain of the channel but not its activity is required
for flavagline-mediated stimulation of TRPM6. a. The average time-course of current development of the
kinase-inactive channels (TRPM6K1804R) with (n = 7, full symbols) or without (n = 9, empty symbols) FL23
(50 nM) pre-incubation is shown for current values measured at +80 mV. b. The average time-course of
current development of TRPM6L1749X (Δkinase) with (n = 8, full symbols) or without (n = 9, empty symbols)
FL23 (50 nM) pre-incubation is shown for current values measured at +80 mV. c. Pre-incubation of cells with
FL23 (50 nM) stimulated wild type (n�22), K1804R (n�9), but not Δkinase (n�8, p>0.05) channel activity.
Right panel shows current values normalized to each control condition. Stars indicate statistically significant
difference (P<0.05) between vehicle- (white bar) and compound-treated cells (black bar).

doi:10.1371/journal.pone.0119028.g003
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mutants of Rac1 have been shown to respectively allow and prevent the increase of TRPM6
membrane expression by insulin [13]. Here, cells were co-transfected with TRPM6 and either
the p.Thr17Asn or p.Gly12Val Rac1 mutants. Both mutants prevented the stimulation of
TRPM6 by FL23 (Fig. 4C-D and F).

Flavaglines do not affect Akt phosphorylation
Given the previously described modulation of Akt by PHBs [28], the effects of flavaglines on
Akt phosphorylation were examined using the same experimental conditions as were used in
the patch clamp experiments. Following 15 minutes of incubation, phosphorylation of Akt was
not induced by FL2, FL3 and FL23 (50 nM, Fig. 5). It has been previously demonstrated that
flavaglines prevent ERK1/2 phosphorylation in a manner that depends on CRaf [21]. Here,

Fig 4. Flavaglines act upon a common pathway with insulin receptor signaling. a-d. The average time-
course of current development of cells pre-incubated with (full symbols) or without (empty symbols) FL23
(50 nM) for: (a) TRPM6V1393I (n�8), (b) TRPM6K1584E (n�7), (c) wild type TRPM6 together with Rac1T17N

(n�6) and (d) wild type TRPM6 together with Rac1G12V (n�11). e. FL23 pre-incubation failed to alter currents
in cells expressing TRPM6V1393I (n = 11), TRPM6K1584E (n�8) and cells co-expressing wild type TRPM6
together with Rac1T17N (n = 8) and TRPM6 together with Rac1G12V (n�14). Right panel shows current values
normalized to each control condition. Stars indicate statistically significant difference (P<0.05) between
vehicle- (white bar) and compound-treated cells (black bar).

doi:10.1371/journal.pone.0119028.g004
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basal ERK1/2 phosphorylation was not apparent in control condition and no additional phos-
phorylation was detected upon flavaglines stimulation (Fig. 5).

Discussion
The present study demonstrates that the activity of the Mg2+-permeant TRPM6 channel is
stimulated*2-fold by the flavaglines compounds FL3 and FL23. This is the first report of an
exogenous natural compound that stimulates TRPM6 activity.

The activity of TRPM6 and its plasma membrane expression have been shown to be in-
creased upon stimulation with insulin. This effect relied on the PI3K, Akt and Rac1 signaling
cascade (Fig. 6). Detailed electrophysiological and total internal reflection fluorescence (TIRF)

Fig 5. Cellular Akt and ERK signaling is unaffected by FL3. HEK293 cells were incubated with FL2
(50 nM), FL3 (50 nM), PMA (100 nM), insulin (10 nM) or 17βE (50 nM) for 15 minutes. Protein lysates were
immediately obtained and immunoblots were performed to detect pERK1/2 and pAkt. PMA and insulin served
as positive controls for ERK and Akt phosphorylation, respectively.

doi:10.1371/journal.pone.0119028.g005

Fig 6. Proposedmodel of flavaglines action. Flavaglines stimulate TRPM6 activity by acting on
downstream effector(s) of the insulin receptor. PHB2 and CDK5, proteins which are known to regulate
TRPM6 are localized in lipid rafts.

doi:10.1371/journal.pone.0119028.g006
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microscopy analyses have revealed a permissive role for TRPM6-p.Val1393 and TRPM6-p.
Lys1584 sites in insulin-evoked insertion of channels in the plasma membrane [13]. Here, it is
proposed that flavaglines stimulate TRPM6 by acting along the same pathway (Fig. 6). This hy-
pothesis is based on the following observations: (I) flavaglines increased TRPM6 activity
*1.5–2 fold, which is quantitatively similar to the previously described action of insulin on
TRPM6 activity [13]; (II) the insulin-insensitive (TRPM6-p.Val1393Ile and TRPM6-Lys1584-
Glu) TRPM6 mutants were not potentiated by flavaglines; (III) flavaglines-induced TRPM6
stimulation was absent when overexpressing TRPM6 together with Rac1 mutants; (IV) in con-
cordance with the mechanism of insulin action on TRPM6, flavaglines stimulated the kinase-
inactive (TRPM6-p.Lys1804Arg) mutant. Taken together, it is hypothesized that flavaglines act
by triggering or relieving a tonic inhibition on one (or more) of the molecular player(s) in-
volved in insulin signaling, effectively promoting the plasma membrane insertion of wild type
TRPM6 channels but not of TRPM6 channels containing insulin-insensitive SNP mutants.
Our data suggest that the effects of flavagline-stimulation take place downstream of Akt, since
no additional Akt phosphorylation was evident upon treatment with FL3. Further experiments
investigating the detailed molecular action of flavaglines on the localization and phosphoryla-
tion of the known kinases involved in growth-factor stimulation of TRPM6 (PI3K/Akt/Rac1/
Cdk5) will be necessary to elucidate the exact molecular targets.

Flavaglines have recently been identified as potent interactors of PHBs [18,19]. Interesting-
ly, PHB1 and PHB2 are enriched in detergent resistant (lipid rafts) fractions of the plasma
membrane [18]. Given the previously described action of PHBs as chaperone of Ras-dependent
CRaf activation in the plasma membrane [21], a general function of PHBs is to provide spatial
constraints necessary for the proper regulation of proteins in specialized regions (eg the lipid
rafts) of the plasma membrane. It can be hypothesized that TRPM6 channels transiently or
permanently localize together with PHB in the lipid raft fractions of the plasma/vesicular mem-
brane, where channels undergo regulatory phosphorylation. The following facts support this
hypothesis: (I) TRPM6 has been shown to establish a inhibitory interaction with PHB2 [17];
(II) TRPM6 requires CDK5 phosphorylation for proper insulin-mediated regulation, CDK5 lo-
calizing and being activated in the lipid raft fraction of plasma membrane [29]; (III) the close
homolog TRPM7 has been reported to localize in lipid rafts [30], (IV) TRPM6 requires PIP2
for proper function [31], a lipid that is enriched in lipid rafts. Therefore, it is tempting to specu-
late that PHBs binding to TRPM6 promotes the formation of a macromolecular regulatory
complex in the lipid rafts of the plasma membrane. In this perspective, it is interesting to note
that the insulin-induced signaling pathway becomes more active when the insulin receptor is
expressed in lipid rafts [32–34]. In addition to the inhibitory PHB2-TRPM6 interaction, other
TRP channels are modulated by members of the SPFH protein family [20]. Podocin, an SPFH
protein similar to prohibitin, regulates the insulin sensitive transient receptor potential canoni-
cal type 6 (TRPC6) ion channel in the kidney [35]. In line with the current hypothesis, it has
been proposed that podocin organize TRPC6-lipid complexes in the plasma membrane, there-
by modulating channel activity [36]. Altogether, these findings point towards a compartmen-
talized insulin signaling cascade on/near the lipid rafts in the vesicular/plasma membrane. In
this model, expression of TRPM6 and the insulin receptor in the lipid rafts allows for the rapid
local regulation of TRPM6 by insulin.

Comparison of structure-function activity between active (FL3, FL23) and inactive (FL2)
flavaglines analogs revealed a positive correlation between cytostatic/cytotoxic properties of fla-
vaglines in cancer cell lines and their action on TRPM6 [21,24,25]. While the effects of flava-
glines on cellular proliferation and growth factor signaling were evident starting from 2 hours
after compound application, the stimulatory effect shown here occurs within 15 minutes.
These results suggest that the short-term effects of flavaglines on TRPM6 take place
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independently from any translational effect (eg eIF4A-dependent). However, the concurrent
structure-function relationship of flavaglines in their TRPM6-stimulatory effects and in their
cytotoxic properties suggests that both mechanisms are PHB-dependent. It has previously been
shown that PHB2 interacts with TRPM6 and that 17βE reduces this inhibitory interaction [17].
However, the current results suggest that 17βE and FL23 only share a partially overlapping
mechanism of action. Exogenous PHB2 inhibits TRPM6 in an alpha-kinase phosphotransfer-
ase-dependent manner [17]. In contrast, flavaglines stimulated the kinase-inactive TRPM6-p.
Lys1804Arg mutant. Moreover, flavaglines induce an increase in endogenous TRPM7 currents,
while TRPM7 currents were insensitive to PHB2-mediated inhibition [17]. Further work iden-
tifying the major players that are part of the TRPM6-PHB macromolecular complex and its
regulation by flavaglines and 17βE are necessary to further understand the stimulatory but
slightly distinct effects of these compounds on the activity of TRPM6.

Evidences suggest that the stimulatory action of flavaglines is not restricted to TRPM6.
Here, a stimulatory effect of FL23 was also observed in mock-transfected cells. Given the exper-
imental conditions used in this study, a substantial part of the current in mock-transfected
HEK293 cells is carried by endogenous TRPM7 channels [3]. Further experiments investigat-
ing the action of flavaglines on other members of the SPFH protein and TRP channel (eg
TRPC6) families will be needed to understand the complex mechanism of action of flavaglines.

Reduced TRPM6 channel activity results in a clinically relevant hypomagnesemia due to
renal Mg2+ wasting. Because insulin and EGF stimulate TRPM6 function, patients with diabe-
tes mellitus type 2 or users of EGFR inhibitors are at risk to develop hypomagnesemia [12,13].
Given that FL3 and FL23 stimulate TRPM6 activity, flavaglines may provide an important
therapeutic potential for these patient groups. A preliminary experiment with FL3 (daily i.p. in-
jection 0.1 mg/kg, 7 days,) did not reveal changes in serum or urinary Mg2+ concentration in
mice (data not shown). In addition to the optimization of treatment duration, the actual dose
of FL3 reaching the DCT cells in the kidney where TRPM6 is located may be much lower and
challenging to assess. Future experiments assessing the bioavailability of flavaglines should be
performed to assess putative magnesiotropic effects in vivo. Additionally, given the physiologi-
cal mechanism of intestinal and/or renal compensation of Mg2+ transport, the effects of flava-
glines should be assessed in a murine model of hypomagnesemia.

In conclusion, the natural compounds flavaglines stimulate the activity of TRPM6 Mg2+

channels at nanomolar concentrations. The effect is rapid (within 15 minutes) and probably re-
lies on a near-plasma membrane mechanism that likely involves PHBs.
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Abstract

Aims

The clinical use of doxorubicin for the treatment of cancer is limited by its cardiotoxicity. Flava-

glines are natural products that have both potent anticancer and cardioprotective properties.

A synthetic analog of flavaglines, FL3, efficiently protects mice from the cardiotoxicity of doxo-

rubicin. The mechanism underlying this cardioprotective effect has yet to be elucidated.

Methods and Results

Here, we show that FL3 binds to the scaffold proteins prohibitins (PHBs) and thus promotes

their translocation to mitochondria in the H9c2 cardiomyocytes. FL3 induces heterodimeriza-

tion of PHB1 with STAT3, thereby ensuring cardioprotection from doxorubicin toxicity. This

interaction is associated with phosphorylation of STAT3. A JAK2 inhibitor, WP1066, sup-

presses both the phosphorylation of STAT3 and the protective effect of FL3 in cardiomyo-

cytes. The involvement of PHBs in the FL3-mediated cardioprotection was confirmed by

means of small interfering RNAs (siRNAs) targeting PHB1 and PHB2. The siRNA knockdown

of PHBs inhibits both phosphorylation of STAT3 and the cardioprotective effect of FL3.

Conclusion

Activation of mitochondrial STAT3/PHB1 complex by PHB ligands may be a new strategy

against doxorubicin-induced cardiotoxicity and possibly other cardiac problems.

Introduction
Anthracyclines (e.g., doxorubicin) remain a mainstay therapy for cancers such as leukemias,
lymphomas, and breast and gastric cancers, even though these compounds cause substantial
cardiotoxicity that can ultimately lead to congestive heart failure [1]. Therefore, approaches to
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alleviation of the cardiotoxic effects of doxorubicin are urgently needed in oncology. Dexrazox-
ane, which is the only clinically approved cardioprotectant against anthracycline cardiotoxicity,
had been shown to induce secondary tumors and was consequently removed from the Euro-
pean market [2]. Thus, there is a need for efficacious and safe drugs that can protect cancer
patients from the cardiotoxicity of anthracyclines.

Flavaglines are natural products isolated from Chinese medicinal plants that have potent
anticancer effects without toxicity to healthy tissues [3]. Not only are flavaglines specifically
toxic to cancer cells, but they also promote the survival of neurons, T lymphocytes, and cardi-
omyocytes under conditions of adverse effects of chemotherapeutic agents: cisplatin, etopo-
side, and doxorubicin respectively [4–6]. In particular, in a previous study, we found that a
synthetic flavagline, FL3, almost doubles the survival rate of mice (56% treated versus 31%
untreated) in an in vivo model of doxorubicin-induced acute cardiotoxicity [4]. Recently, we
also showed that flavaglines directly bind to prohibitins (PHBs) in cancer cells [7]. PHBs are
scaffold proteins that exist in two isoforms: PHB1 and PHB2 [8]. PHBs seem to perform a
function in cancer cells that is different from that in healthy cells: PHBs may be located in
several compartments, but they are mainly concentrated in mitochondria in healthy cells and
in the nucleus in cancer cells [8]. This divergence of cellular localization (and possibly func-
tion) may explain why flavaglines promote apoptosis in cancer cells and survival in healthy
cells.

PHB1 has been shown to prevent mitochondrial dysfunction via activating STAT3 in intes-
tinal epithelium (as reviewed elsewhere [9]), but whether this event occurs in cardiomyocytes
remains unreported. STAT3 phosphorylation [10] and overexpression [11] have been shown
to protect the heart from doxorubicin-induced cardiotoxicity. Moreover, cardiac-restricted
deletion of STAT3 increases the susceptibility to doxorubicin-induced heart failure [12, 13].

In this study our aim was to determine whether flavaglines exert their cardioprotective effect
by modulating PHB1 localization and activating STA3 signaling.

Methods

Cell culture
The H9c2 cardioblast cell line that was derived from an embryonic rat heart was obtained from
American Type Culture Collection (Manassas, VA, USA). The cells were grown in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum at 37°C in a
humidified atmosphere containing 5% CO2. The medium was changed every 2–3 days.

The in vitro cardiotoxicity assay
H9c2 cells were plated and grown for 24 h in 100-mm culture dishes at 7 × 103/cm2. Next, the
cells were washed and cultured for 12 h in a glucose-free medium (Gibco; DMEM with L-gluta-
mine, without D-glucose and sodium pyruvate) supplemented with only 1% fetal calf serum.
The cells were pretreated with FL3 (100 nM) under serum-free conditions for 10 h, and then
either doxorubicin (1 μM) or vehicle alone (DMSO) was added to the medium for additional
incubation for 14 h. The doxorubicin concentration and incubation time were chosen in accor-
dance with a known model of acute cardiotoxicity [14]. The H9c2 cardiomyocytes were prein-
cubated with WB1066 (1 μM) for 1 h before FL3 treatment. The cells were then washed, and
either terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or fluores-
cence-activated cell sorting (FACS) analysis was performed.
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Detection and quantification of apoptosis
Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays of fragmented
DNA was performed according to according to the manufacturer’s instructions (Millipore) [4].
Cells were fixed in 4% formaldehyde, permeabilized. The cells were incubated with TdT termi-
nal transferase and fluorescein-dUTP. Then, the cells were counterstained with 4’,6-diami-
dino-2-phenylindole (DAPI). The TUNEL labeling index was calculated as the percentage of
DAPI-stained TUNEL-positive cells among total DAPI-labeled cells by viewing each visual
field at 40× magnification. Generally, 10 different visual fields containing around 20 cells were
analyzed in each sample, and each experiment was repeated at least three times.

Apoptosis was also analyzed by FACS analysis (FACSCalibur, Becton-Dickinson Biosci-
ences, Le Pont De Claix, France). We harvested 7 × 103 cells and washed them with “annexin
binding buffer” (0.01 M HEPES, 0.14 M NaCl, 2.5 mM CaCl2) and labeled the cells with
annexin V (dilution 1:50) and Topo (6.7 μg/mL). All assays were performed at least in tripli-
cate, and the results were analyzed in the BD Cell Quest Pro software (Becton-Dickinson
Biosciences).

Pull-down assay
This assay was performed by means of FL3-Affigel as described previously [7]. One hundred
million H9c2 cells were washed in PBS and lysed in 2 mL of a lysis buffer consisting of 50 mM
Tris-HCl pH 8.0, 120 mMNaCl, 1% NP-40, 5 mM dithiothreitol (DTT), 200 μMNa3VO4,
25 mMNaF, and a protease inhibitor cocktail (Roche Diagnostics, Switzerland). Cellular debris
were removed by centrifugation at 10 000 × g for 30 min. Five hundred micrograms of total
protein extract was incubated for 12 h at 4°C with 40 μL of FL3-Affigel, negative control
(NC)-coupled beads, or uncoupled Affi-Gel beads. The beads were extensively washed with
the lysis buffer, and the bound proteins were eluted and reduced in a sample buffer consisting
of 63 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol, a trace of bromophenol blue (0.05%), and
200 mM DTT for 30 min at 65°C. After cooling on ice, each sample was alkylated with a final
concentration of 150 mM iodoacetamide for additional 30 min. The proteins were separated by
SDS-PAGE (10% gel; Bio-Rad Laboratories, USA) and western blot analyses were performed
using anti-PHB1 and anti-PHB2 antibodies.

Immunohistochemical analysis
H9c2 cells were plated and grown for 24 h in Labtek-8 dishes at the density 2 × 104/well in an
incubator with 5% CO2 at 37°C. The medium was changed to DMEM containing 2% fetal calf
serum for starvation of the cells for 24 h. After the starvation procedure, the cells were pre-
treated with MitoTracker Red CMXRos (Life Technologies) for 1 h, then treated with 0.1%
dimethyl sulfoxide (DMSO) as a vehicle or FL3 (100 nM) for 0, 5, 10, 15, 30, 45, or 60 min.
After that, the cells were fixed with 3.7% (v/v) formaldehyde for 15 min at room temperature
and incubated with a blocking solution consisting of 5% BSA (bovine serum albumin) and 1%
Triton X-100 in PBS at room temperature for 1 h. The cells were incubated with the anti-PHB1
antibody at 4°C overnight and then incubated for 1 h with an Alexa Fluor 488-conjugated anti-
rabbit IgG antibody (Life Technologies/Molecular Probes) [15]. The cells were mounted on
slides with the Vectashield Mounting Medium (Vector Labs) and DAPI for counterstaining of
the nucleus. The cell images were acquired using a Leica TCS SP5 Confocal Microscopy System
(Leica M, Germany) equipped with a 63×/1.40 NA oil-immersion objective lens. The images
were captured at the scanning speed of 400 Hz and image resolution 512 × 512 pixels and were
then analyzed using the Leica Application Suite, Advanced Fluorescence (LAS AF) software.
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Plasmid transfection
The PE935 (PHB1-Flag) and PE936 (PHB2-Flag) plasmids were transfected into H9c2 cells
using Jet Prime (POL114-07, PolyPlus Transfection). The cells at 60–80% confluence in a
60-cm2 culture plate were incubated with an antibiotic-free medium. Twelve micrograms of
plasmid DNA was used for the transfection. Forty-eight hours after the transfection, the
FLAG-PHB1 and FLAG-PHB2 proteins were purified from the transfectant H9c2 cells by
immunoprecipitation using an anti-FLAG antibody and FLAG-peptide elution.

Protein purification by immunoprecipitation
Immunoprecipitation of PHBs with the anti-FLAG antibody from the transfectant H9c2 cells
was performed as described previously [7]. The H9c2 cells were incubated for 0, 15, or 30 min
with FL3 (Enzo Life Sciences). Subsequently, the cells were washed in ice-cold PBS, lysed in the
IP buffer (20 mM Tris-HCl, 5 M NaCl, 2 mM EDTA, 1% Triton X-100, and protease inhibi-
tors) and centrifuged (10 000 × g, 20 min) to clear the lysates. Aliquots were taken for input
control, and the lysates were incubated with protein G Plus/A-agarose beads (#IP10, Calbio-
chem) for 30 min at 4°C, then overnight with an anti-FLAG antibody (anti-FLAGM2, Sigma-
Aldrich, St. Louis, MO, USA; cat. # F1804). After that, the immunoprecipitates were washed
with a lysis buffer (1% NP-40, 300 mMNaCl, 10% glycerin, 10 mM Tris-HCl pH 7.5), then a
buffer without salt (1% NP-40, 10% glycerin, 10 mM Tris pH 7.5), and centrifuged for 10 min
at 20 000 rpm and 4°C. Next, the samples were boiled in a denaturing sample buffer at 95°C for
5 min. The binding of STAT3 to the PHB1 proteins was detected by western blot analyses
using anti-STAT3 or anti-phospho-STAT3 antibodies (Cell Signaling).

Subcellular fraction of H9c2 cells and the STAT3 phosphorylation assay
via western blotting
H9c2 cells were plated and grown for 24 h. Next, the cells were washed and cultured for 12 h in
the above-mentioned glucose-free medium, supplemented with only 1% fetal calf serum. The
cells were then incubated with either FL3 or vehicle alone (0.1% DMSO) for 0, 5, 10, 15, or
30 min and harvested with a lysis buffer (50 mM Tris-HCl pH 7.0, 1 mM EDTA, 100mM
NaCl, 0.1% SDS, 1% NP-40, 1 mM Na3VO4, 1 mg/mL aprotinin, 1 mg/mL pepstatin, and
1 mg/mL leupeptin). The whole-cell lysates were centrifuged at 12 000 × g for 15 min at 4°C.
The cell debris was removed.

Cytoplasmic and mitochondrial fractions from cultured cells were prepared using Subcellular
Protein Fractionation Kit for Cultured Cells (Thermo Scientific) and nuclear isolation kit,
employing the nuclear protein extraction buffer (20 mM Tris–HCl, pH 7.6, 50 mMKCl, 400 mM
NaCl, 1 mM EDTA, 0.2 mM PMSF, 5 mM β-mercaptoethanol, aprotinin (1000 U/ml), 1% Triton
X-100, and 20% glycerol as described [16]. 30μg of total protein, 5μg or 10μg of cytosolic, mito-
chondrial proteins or nuclear protein were used for Western blot analyses. The proteins were
separated under denaturing conditions using SDS-PAGE (10% gel) and transferred to a polyvi-
nylidene difluoride (PVDF) membrane. The blots were incubated with a blocking solution con-
sisting of a 5% solution of a fat-free milk powder in PBS-T (PBS plus Tween 20, 0.1%) at room
temperature for 1 h. After three washes with PBS-T for 10 min, the blots were incubated over-
night at 4°C with gentle shaking with a primary antibody anti-phospho-STAT3 antibody Ser
(727) (Cell Signaling), (1:500 dilution in PBS-T containing 0.5% of the fat-free milk powder) or
PHB1 (Cell Signaling).

After three washes with PBS-T, the membrane was incubated for 1 h at room temperature
with gentle shaking with a horseradish peroxidase-conjugated goat anti-IgG antibody (1:1000
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dilution) in PBS-T containing 0.5% of the fat-free milk powder. The expected bands were visu-
alized after 5-min incubation to induce enzyme-linked chemiluminescence (GE HealthCare),
and then the blots were washed, stripped, and reprobed with a Total -STAT3 antibody (Cell
Signaling) or vinculin (Cell Signaling) or actin (Santa Cruz) as internal control, followed by
incubation with a suitable secondary antibody. The phospho-STAT3 or PHB1 signals were
quantified by scanning laser densitometry and normalize to total amounts of the correspond-
ing STAT3 or vinculine protein, respectively.

Transfection with small interfering RNA (siRNA)
A 50-nM solution of siRNA against rat PHB2 (Ambion; siRNA #258474) or a mixture (10 nM
each) of siRNAs against rat PHB2 and PHB1 (Ambion, USA; siRNA #199561) were used for
transfection of 90%- to 95%-confluent cells in a serum-free medium. Nonspecific siRNA
(Ambion) served as a negative control. The transfection was based on Lipofectamine 2000
(Invitrogen, USA), according to the manufacturer’s instructions. Forty-eight hours after the
transfection, the PHB1 levels were measured by quantitative PCR and western blot analysis.

Statistical analysis
All samples were prepared (and used in experiments) at least in triplicate. The results of the
quantitative experiments were expressed as mean ± SEM. Multigroup comparisons were per-
formed using one-way analysis of variance (ANOVA) with post hoc Bonferroni’s correction.
Comparisons between two groups were conducted using unpaired Student’s t test. In all analy-
ses, p< 0.05 was assumed to denote statistical significance. All calculations were performed in
the Prism software.

Results

FL3 binds to PHB1 and PHB2 in cardiomyocytes
To test whether FL3 binds to PHBs in cardiomyocytes, we performed a pull-down assay with
protein extracts of the H9c2 cardiomyocytes using a biologically active flavagline (FL3) conju-
gated to Affi-Gel beads [7,17]. Whole-cell extracts from H9c2 cells (input), the bound and
eluted proteins (Affi-Gel-FL3), and output proteins (output Affi-Gel-FL3) were subjected to
western blot analysis using antibodies against PHB1 and PHB2. Both PHB1 and PHB2 (Fig
1A) were retained by the affinity matrix. The blank beads did not pull down any PHB proteins
(lane 4 in Fig 1A). These data showed that PHB1 and PHB2 were the cellular targets of FL3 in
the H9c2 cardiomyocytes. Next, we examined whether doxorubicin and/or FL3 modify the
content of PHB1 in these cells (Fig 1B and 1C). FL3 treatment of the H9c2 cells for 10h (with
or without doxorubicin) greatly augmented PHB1 protein levels. Doxorubicin has no signifi-
cant effect on PHB1 levels (Fig 1B and 1C), but it induced its accumulation in the nucleus (Fig
1D, 1E and 1F). This translocation of PHB1 from cytoplasm to the nucleus was blocked by FL3
(Fig 1D, 1E and 1F). This data indicate that PHB1 levels and localization can be greatly modi-
fied by FL3 treatment.

FL3 promotes the localization of PHB1 to mitochondria
A large body of evidence suggests that the subcellular location of PHBs determines whether a
PHB protein promotes apoptosis or cytoprotection [8,18]. Accordingly, we examined the intra-
cellular localization of PHB1 after treatment with FL3 to gain some insight into FL3’s mecha-
nism of action. H9c2 cells were double-labeled with an anti-PHB1 antibody and the
mitochondrial dye Mitotracker Red. PHB1 was detected throughout the cytoplasm of the H9c2
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cardiomyocytes in the basal condition (Fig 2A). The staining pattern for PHB1 maximally
matched that of Mitotracker Red after 15-min incubation of the cells with FL3, indicating that
FL3 promoted PHB1 accumulation predominantly in mitochondria (Fig 2B). Mitochondrial
fraction of the FL3 treated H9c2 cells confirmed an amplification of PHB1 levels in mitochon-
dria after 15 min (Fig 2C and 2D). PHB1 accumulation in nucleus was elevated within 10 min
and was consequently reduced within 20 min upon FL3 treatment (Fig 2C and 2E). This data
clearly showed that FL3 promotes nuclear translocation of PHB1 to mitochondria.

FL3 promotes activation of STAT3 by PHB1
FL3 enhanced phosphorylation of STAT3 in mitochondria in time dependent manner (Fig 3A
and 3B) and correlated with PHB1 accumulation in the mitochondria and nucleus (Fig 3C and
3D), indicating that FL3 promotes nuclear translocation of PHB1 to mitochondria and conse-
quently STAT3 phosphorylation. Next we investigated whether PHB1 accumulation and

Fig 1. Synthetic flavagline (FL3) binds PHB1 and PHB2 and increases PHB1 leves in H9c2 cells. A.
Whole-cell extracts of the H9c2 line (input) were either incubated with the beads Affi-Gel 10 conjugated with
FL3 or blocked with ethanolamine (unconjugated Affi-Gel) [7,17]. The bound and eluted proteins (Affi-Gel-
FL3) and output proteins (output Affi-Gel-FL3) were analyzed by western blotting using antibodies against
PHB1 and PHB2 (n = 3). B and C. Representative western blot analyses and histogram based quantification
of total PHB1 levels in the cell lysates by. FL3 alone increased PHB1 protein levels within 10h as compare to
non-treated cells (NT). However PHB1 level was lower in the present of both FL3 and doxorubicin (n = 3). D
and E. Representative western blot analyses and histogram based quantification of nuclear PHB1 levels by.
Doxorubicin accumulates PHB1 in the nucleus but lowers in the cytoplasm that was reduced by
preconditioning with FL3. * Indicates p<0.05 as compare to control, ** indicates p<0.05 as compare to the
doxorubicin alone group.

doi:10.1371/journal.pone.0141826.g001
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STAT3 phosphorylation are also correlated upon doxorubicin treatment of the H9c2 cells.
Accordingly, phosphorylation of nuclear STAT3 is elevated by doxorubicin that was blocked
by FL3 preconditioning (Fig 3E and 3F).

Next, we addressed whether FL3 promotes interaction of PHB1 with STAT3 in H9c2 cells,
since PHB1 accumulation and STAT3 phosphorylation are correlated in mitochondria and
nucleus. Moreover, PHB1 has been shown to heterodimerize with STAT3 [8]. H9c2 cells that
were cotransfected with plasmids encoding FLAG-tagged PHB1 and PHB2 were incubated
with FL3 (100 nM) for immunoprecipitation of PHBs with an anti-FLAG antibody. The immu-
noprecipitated cell lysates (input) from the H9c2 cells that were transfected with PHB1 or
PHB2 (IP-α-Flag) were subjected to western blot analyses with anti-flag antibodies. Significant
coimmunoprecipitation of PHB1 with STAT3 was observed at the data point 15 min after FL3
treatment (Fig 4A, left panels), whereas interactions of PHBs with either AKT or ERK were not
detected. These results showed that FL3 induced heterodimerization of STAT3 with PHBs.
When the immunoprecipitated PHB1 proteins were visualized with an antibody recognizing
the phosphorylated form of STAT3, the phospho-STAT3 was significantly upregulated 15 min
after FL3 treatment (Fig 4A, right panels). Taken together, these data suggested that PHBs

Fig 2. The flavagline FL3 induces translocation of PHB1 to mitochondria in cardiomyocytes. A. H9c2
cells were incubated with FL3 (100 nM) and analyzed by confocal microscopy. The cells were co-labeled with
the anti-PHB1 antibody (green staining), mitotracker (red staining), and (DAPI; blue staining). The latter two
dyes stained mitochondria and the nucleus, respectively. Merged confocal images show that FL3 induced the
translocation of PHB1 to mitochondria (white arrows show PHB1 and mitotracker co-localization). B. The
histogram shows quantitative analyses of co-localization of PHB1 and Mito Tracker in each cell by confocal
analyses (n = 6). C. Representative illustration of PHB1 levels in mitochondrial and nuclear fractions upon
FL3 treatment. In the mitochondrial fraction PHB1 accumulation by FL3 occurred within 20 min. PHB1 was
initially increased in nucleus and rapidly reduced within 20 min.D and E. The histogram shows quantitative
analyses of mitochondrial and nuclear PHB1 levels upon treatment of H9c2 cells with FL3 (100 nM).
* Indicates p<0.05 as compare to vehicle (n = 3).

doi:10.1371/journal.pone.0141826.g002
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interacted with the STAT3 protein, and this interaction induced activation of STAT3 by
phosphorylation.

Next, we examined STAT3 activation by phosphorylation in H9c2 cells after FL3 treatment.
Using a specific anti-phospho-STAT3 antibody and western blot analysis, we found that FL3
(100 nM) rapidly promoted the phosphorylation of STAT3 in the H9c2 cardiomyocytes: the
phosphorylation reached a maximum within 15 min (Figs 4B and 3C). To gain further insight
into the activation of STAT3 by PHBs, we tested whether the STAT3 phosphorylation is inhib-
ited by WP1066 [19], an inhibitor of the JAK2 kinase (this reagent is commonly used to block
STAT3 activation). WP1066 at 100 nM significantly inhibited the FL3-induced STAT3 activa-
tion (Figs 4D and 3E).

Fig 3. Themitochondrial STAT-3 phosphorylation is correlated with PHB1 translocation to
mitochondria by FL3 in cardiomyocytes. A and B. Representative western blot analyses and histogram
based quantification of mitochondrial STAT3 activation by phosphorylation. STAT3 was phosphorylated by
FL3 in mitochondrial fraction. C and D. Representative western blot analyses and histogram based
quantification of nuclear STAT3 activation by phosphorylation. STAT3 activation was only detected in
nucleus after FL3 treatment. E and F. The western blot and histogram show quantitative analyses of nuclear
phosphorylated STAT3 levels upon treatment of H9c2 cells with control (DMSO), FL3 (100 nM), doxorubicin
(1μM), and FL3 + doxorubicin. Doxorubicin elevated phosphorylated STAT3 levels, which were reduced by
FL3 (n = 3; *p < 0.05, compared to vehicle; **p < 0.05, compared to doxorubicin treatment).

doi:10.1371/journal.pone.0141826.g003
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FL3 triggers cardioprotective signaling by targeting PHB1 and its
signaling
To confirm the involvement of PHBs in the mechanism of action of FL3, we tested whether a
knockdown of PHB1 in cardiomyocytes affects the cardioprotective effect of FL3. Accordingly,
we transfected the H9c2 cardiomyocytes with siRNAs against PHBs to downregulate PHBs
without altering cell survival. Of the two anti-PHB siRNA sequences tested, si-PHB1 at 50 nM
or si-PHB1 together with si-PHB2 (10 nM each) downregulated both PHB1 mRNA and pro-
tein: by 80% and 70%, respectively. The siRNA-mediated downregulation of PHB1 and PHB2
significantly reduced the cytoprotective effect of FL3 (Fig 5A), whereas transfection with con-
trol (nonspecific) siRNA did not. These data indicated that PHB1 and PHB2 were both
involved in the mechanism of action of FL3.

To determine whether the STAT3 phosphorylation in cardiomyocytes was indeed involved
the cardioprotective mechanism; we compared the apoptosis levels in TUNEL and FACS assays
when the H9c2 cardiomyocytes were pretreated with WP1066 or vehicle alone. The TUNEL

Fig 4. FL3 rapidly induces phosphorylation of STAT3. A. STAT3 coimmunoprecipitates (co-IP) with PHB1. An anti-FLAG antibody was incubated with
extracts of the H9c2 cardiomyocytes. Immunoprecipitates were resolved by means of SDS-PAGE and probed for STAT3 and the FLAG tag to detect both
PHB1 and PHB2. B. Representative western blots of protein lysates of H9c2 cells treated with FL3 (100 nM), by means of antibodies that recognize either
phosphorylated (Tyr705) or total STAT3 protein.C.Quantitative analysis of the western blots (percentage of phosphorylated STAT3 in total STAT3, n = 4;
*p < 0.05, compared to control; **p < 0.001, compared to control; ***p < 0.01, compared to control).D and E. Effects of the Janus kinase 2 (JAK2) inhibitor
WP1066 on STAT3 phosphorylation: Representative western blots and quantitative analysis (percentage of phosphorylated STAT3 in total STAT3, n = 4;
p < 0.05, compared to control; **p < 0.05, compared to FL3).

doi:10.1371/journal.pone.0141826.g004
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Fig 5. FL3 protects H9c2 cardiomyocytes by acting on PHBs and their signaling target STAT3. A. The
histogram shows the percentage of apoptotic cells induced by doxorubicin (1 μM) among H9c2 control cells
(transfected with nonspecific small interfering RNA [si-NT]) or the H9c2 cells where PHB1 or PHB2 were
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(Fig 5B) and FACS data (Fig 5C) revealed that WP1066 strongly attenuated the cardioprotec-
tive effect of FL3. Overall, these results supported the notion that phosphorylation of STAT3 is
a crucial step in the mechanism of cardioprotective action of FL3.

The PHB1/STAT3 complex is a key participant in the FL3-activated
STAT3 pathway
To confirm whether the PHB1/STAT3 complex is involved in the FL3-activated STAT3 path-
way, we transiently cotransfected the cells with either anti-PHB1 siRNAs or scrambled RNA as
a control, then incubated the cells with FL3, and tested them for STAT3 phosphorylation. The
anti-PHB1 siRNA, but not scrambled RNA, strongly attenuated the FL3-induced STAT3 phos-
phorylation (Fig 6A and 6B). The levels of PHBs in siRNA-nontargeted and siRNA-PHBs

downregulated using specific small interfering RNA (siRNA). Knocking PHB1 or PHB2 down greatly
diminished the cardioprotective effect of FL3 (100 nM; n = 4 to 5; *p < 0.05, compared to vehicle; **p < 0.05,
compared to doxorubicin (doxo).B. The TUNEL assay shows the percentage of apoptotic cells in the
4’,6-diamidino-2-phenylindole (DAPI)-positive total cell population.C. Fluorescence-activated cell sorting
(FACS) analysis shows the percentage of the maximum among annexin V-positive cells (n = 3; *p < 0.05,
compared to vehicle; **p < 0.05, compared to doxorubicin treatment).

doi:10.1371/journal.pone.0141826.g005

Fig 6. Small-interfering-RNA (siRNA)-mediated downregulation of PHB1 proteins attenuates FL3-induced cardioprotection from doxorubicin
toxicity. A. Representative western blots show induction of STAT3 phosphorylation by the synthetic flavagline (FL3) in H9c2 cells transfected with
nonspecific siRNA (left) or with anti-PHB1 siRNA (right).B.Quantification of phosphorylated STAT3, with normalization to actin (n = 3; *p < 0.05, compared
to vehicle). FL3-mediated STAT3 activation by phosphorylation was abolished when the expression of PHBs were reduced.C. This histogram shows
downregulation of PHB1 after transfection of H9c2 cells with anti-PHBs siRNA (n = 3; *p < 0.05, compared to vehicle).D. This histogram shows
downregulation of PHB2 after transfection of H9c2 cells with anti-PHBs siRNA (n = 3; *p < 0.05, compared to vehicle).

doi:10.1371/journal.pone.0141826.g006
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transfected cells are shown in (Fig 6C and 6D). These results showed that PHB1 was necessary
for the STAT3 activation by FL3, and that STAT3 was downstream of PHB1 in the FL3-me-
diated survival pathway.

Discussion
A study on the cardiac phosphoproteome has already shown PHB1 to be a prime target of
doxorubicin [20]. Nonetheless, how the PHB proteins participate in the survival mechanisms
against doxorubicin-mediated cardiotoxicity was not known. Here, we show for the first time
that FL3 binds to PHBs and translocated PHB1 to mitochondria. Accumulation of PHB1 in
mitochondria is associated with STAT3 phosphorylation. It seems that mitochondrial PHB1
accumulation stabilizes mitochondrial membrane, activates mitochondrial STAT3 activation
and initiates FL3-mediated cardioprotection. On the opposite, doxorubicin provokes the PHB1
accumulation and STAT3 phosphorylation in nucleus, leading to cardiomyocyte apoptosis
(Fig 7).

PHB1 has been reported to promote the survival of many noncancerous cell types, including
cardiomyocytes [8,21–26]. Overexpression of PHB1 inhibits the mitochondria-mediated apo-
ptosis pathway in H9c2 cells that is induced by hypoxia. Reduced levels of transcripts and mito-
chondrial PHB1 proteins were found in the left ventricle of spontaneously hypertensive rats.
Heart-specific PHB1-transgenic mice show low levels of apoptosis and mitochondrial fission in
the heart, and consequently, a smaller myocardial infarction size after an experimental infarc-
tion [20]. Proteomics studies have shown that PHB1 expression increases dramatically in

Fig 7. Proposedmechanism of FL3-induced cardioprotection from doxorubicin toxicity. Doxorubicin
induces the translocation of PHB1 and phosphorylated STAT3 in the nucleus of cardiomyocytes to induce
apoptosis. On the opposite, FL3 induces the translocation of these signaling proteins into mitochondria to
protect the cell against the adverse effects of doxorubicin.

doi:10.1371/journal.pone.0141826.g007
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cardiomyocytes mitochondria after chronic restraint stress [27]. H2O2-induced oxidative stress
increases also the mitochondrial content of PHB1 in cardiomyocytes to stabilize mitochondrial
membrane potential, inhibit the release of cytochrome c from mitochondria and maintain the
mitochondrial function assessed by the preservation of the H+-ATPase activity [28]. These
data indicate that, in mitochondria, PHB1 is a critical factor that protects cardiomyocytes from
oxidative stress.

We found here that in cardiomyocytes, FL3 promotes translocation of PHB1 to mitochon-
dria. This observation is in line with other studies showing that translocation of PHB1 from
the nucleus to mitochondria is necessary for cytoprotection in ovarian granulosa cells [23,24],
pancreatic β-cells [25], and the retinal epithelium [26]. Accumulation of PHB1 in the mito-
chondrial membrane can stabilize this membrane, blocking the apoptotic machinery.

Several studies indicate that during apoptosis induced by cytotoxic agents PHB1 migrates to
the nucleus where it co-localizes with p53 [29, 30]. Interestingly, we found that doxorubicin
does not alter total PHB1 levels in H9c2 cells, but promotes accumulation of PHB1 in the
nucleus. This effect was abolished by FL3 treatment, which induced the translocation of PHB1
to mitochondria. The total PHB1 levels in H9c2 cells were also significantly induced by FL3
treatment (for 10h) that was reduced by doxorubicin treatment. The increase of PHB1 expres-
sion levels could be due to the activation of STAT3 during the preconditioning by FL3. Indeed,
STAT3 is known to upregulate PHB1 during oxidative stress [31].

Theiss and collaborators demonstrated that PHB1 induces phosphorylation of STAT3,
thereby stimulating its interaction with PHB1 in mitochondria and ensuring consequent pro-
tection of intestinal epithelial cells from TNF-α-induced mitochondrial stress and apoptosis
[9]. Such a cytoprotective mechanism has not been reported yet in any other cell types. Consis-
tent with the above observations, our results show that in cardiomyocytes, FL3 induces rapid
translocation of PHB1 to mitochondria simultaneously with STAT3 phosphorylation.

STAT3 is a transcription factor that drives expression of antiapoptotic and antioxidant
genes [32,33]. STAT3 promotes cardiomyocytes survival through 2 types of actions: -in the
nucleus it acts as transcription factor to upregulates iNOS and COX-2 and stimulates the adap-
tation of the heart to ischemic stress [34]. In mitochondria, STAT3 prevents mitochondria-
mediated apoptosis, inhibits the opening of mitochondrial permeability transition pores
(MPTP) [32] and modulates the electron transport chain [35]. STAT3 phosphorylation [10]
and overexpression [11] have been shown to protect cardiomyocytes from apoptosis induced
by doxorubicin in heart tissues.

We demonstrated that inhibition of STAT3 activation by WP1066 blocks the cardioprotec-
tive effect of FL3, thus confirming that STAT3 activation is essential for prevention of cardio-
myocyte death. The mechanistic link between the activation of STAT3 and PHB1 is currently
not clear. Both proteins form a complex in cardiomyocytes 15 min after initiation of FL3 treat-
ment—when STAT3 is maximally phosphorylated—suggesting that both events are connected.
It is therefore tempting to hypothesize that STAT3 becomes phosphorylated when it interacts
with PHB1, especially because FL3 cannot induce STAT3 phosphorylation or protect cardio-
myocytes from doxorubicin toxicity in PHB1-deficient cells.

This study seems to provide the first evidence that targeting of PHB1 by small molecules
such as FL3 induces cytoprotection via activation of STAT3 signaling in mitochondria. This
strategy may turn out to be a valid therapeutic method for protection of the myocardium from
anthracycline-induced cardiotoxicity and ischemia/reperfusion-mediated damage. The benefi-
cial effects of mitochondrial STAT3 in the heart have now been demonstrated, but the cur-
rently used methods for activation of mitochondrial STAT3 signaling are not very convenient
in terms of clinical application, because of lack of specific activator. Indeed, G-CSF, EPO, and
IL-11 protect the heart from ischemic injury, doxorubicin cardiotoxicity, or cardiac fibrosis
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utilizing mitochondrial STAT3 signaling pathway, however they also activate other signaling
pathways that may induce adverse effects [36–38]. Nevertheless, as far as we know, small mole-
cules, such as FL3, have not been reported to activate STAT3 in the heart.

In summary, mitochondrial versus nuclear PHB/STAT3 complex is critical for the cardio-
protective effect of FL3 (Fig 7). Because of the importance of STAT3/PHB1 complex in mito-
chondria as a therapeutic target in heart failure, the effects of flavaglines need to be examined
in experimental models of this disease.
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Abstract As initiators of the carcinogenic process, can-
cer stem cells (CSCs) are considered as new targets for
anti-cancer therapies. However, these cells are hidden in
the cancer bulk and remain relatively insensitive to
chemotherapy, which targets their proliferative capaci-
ties. Alternatively, growing evidences have pointed out
that a differentiation therapy could adversely affect these
cells, which consequently should lose their self-renewal
properties and become less aggressive. In order to eval-
uate the differentiation potential of an emerging class of
anti-cancer drugs, we used the poorly differentiated
teratocarcinomal cell as a model of Oct4-expressing

CSC and determined the molecular mechanisms in-
duced by the highly active flavagline FL3. The drug,
administrated at sublethal concentration and for long
period, was able to downregulate the expression levels
of the stemness factors Oct4 and Nanog at both tran-
scriptional and translational levels, concomitantly with a
decrease of clonogenicity. The appearance of specific
neural markers further demonstrated the differentiation
properties of FL3. Interestingly, an expression of active
caspase-3 and an upregulation of the expression of the
germ cell nuclear factor were observed in treated cells;
this suggests that the suppression of Oct4 expression
required for the induction of differentiation involves
overlapping mechanisms of protein degradation and
gene repression. Finally, this study shows that FL3, like
all-trans retinoic acid (ATRA), acts as a differentiation
inducer of teratocarcinomal cells. Thus, FL3 offers an
alternative possibility for cancer treatment since it could
target the carcinogenic process by inducing the differ-
entiation of ATRA-resistant and Oct4-expressing CSCs,
without toxic side effects on normal cells.

Keywords Cancer stem cells . Differentiation .

Flavagline . Oct4 . Teratocarcinoma

Introduction

Cancer stem cells (CSCs) are responsible for tumour
initiation, invasion and metastasis and are consid-
ered to be the main contributors of therapy resis-
tance and cancer recurrence. CSCs might arise from
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normal stem cells (NSCs), which are exposed to
repetitive mutation-inducing stress injuries. Recent
studies suggest that CSCs could also arise from
closely related dedifferentiated descendants, which
possess, by definition, more restricted lineage-
specific competencies (Sharif et al. 2011a).

A growing number of reports show that chemo-
therapeutic agents are able, to a certain extent, to act
on both cancer cells and CSCs, by targeting similar
cell processes, including those leading to apoptotic
cell death (Ali Azouaou et al. 2015; Emhemmed
et al. 2014). This emerging concept of pluralist
therapeutic tools has been developed on the basis
of accumulating data obtained for several CSC
models. Indeed, identification of specific markers
has allowed to isolate and characterize CSCs of
various types of blood and solid cancers and, as a
consequence, has initiated prospective analyses of
putative chemotherapeutic drugs, which could effi-
ciently target them (Sharif et al. 2011a). From this
point of view, we and others have hypothesized that
the malignant counterparts of the embryonic stem
cell lines, namely the embryonal carcinoma stem
cell lines, could be suitable models of CSCs ex-
pressing key stemness factors (Sell, 2004; Sharif
et al. 2011b). These cell lines are poorly differenti-
ated pluripotent stem cells with a high degree of
malignancy and can be used as surrogate investiga-
tional tools for the evaluation of potential anti-
cancer agents, as we showed previously (Sharif
et al. 2011b).

It has been observed that the degree of aggres-
siveness of a CSC is proportional to its lineage-
specific competencies (Ben-Porath et al. 2008; Sha-
rif et al. 2013). Actually, several studies have re-
ported that the differentiation level of a CSC type is
inversely correlated with its resistance capacity to
radiotherapy and chemotherapy (Al-Hajj et al. 2004;
Sharif et al. 2011a). Disrupting the molecular path-
ways that control CSC self-renewal and differentia-
tion is therefore an attractive alternative to weaken
the aggressiveness and resistance phenotype of the
tumour bulk. By targeting these pathways, it is
assumed that the CSC can switch from an undiffer-
entiated, highly proliferative and invasive pheno-
type to a mature and harmless low-growing state
((Sharif et al. 2011a, 2013). The most exhaustively
studied differentiation-inducing compounds are reti-
noids, including vitamin A and its derivatives. As

an adjunct to clinical therapy, all-trans retinoic acid
(ATRA) treatment allows a long-lasting remission of
more than 90% of patients with acute promyelocytic
leukaemia (Grimwade et al. 2010). Recent studies
have also pointed out that ATRA could be an effi-
cient therapeutic tool on other acute myeloid leu-
kaemia subtypes and solid tumours but so far needs
to be administrated via specific formulations
(Chlapek et al. 2014; Wang et al. 2014). These
examples show the strongly positive impact of the
differentiation strategy, which is able to block the
tumour development and to prevent its recurrence.
However, several cancers remain refractory to
ATRA, and therefore, new therapeutic strategies
have to be developed to cure them (Freemantle
et al. 2003).

Flavaglines are a family of natural products with
a cyclopenta[b]benzofuran skeleton that are extract-
ed from plant of the genus Aglaia. Their leader
compound, rocaglamide, has been found to exhibit
strong anti-leukemic activity (King et al. 1982).
Other flavaglines, like rocaglaol or silvestrol, also
induce the death of cancer cells, without affecting
non-cancerous cells, by acting on two distinct tar-
gets, the scaffold proteins prohibitins and the eu-
ka r yo t i c t r a n s l a t i on in i t i a t i on f a c t o r 4A
(Basmadjian et al. 2013). Interestingly, we identified
a synthetic flavagline, FL3, which displays en-
hanced cytotoxicity on both blood and solid cancer
cells, when compared to natural flavaglines (Thuaud
et al. 2009). Moreover, we recently showed that this
compound kills, at submicromolar concentrations,
poorly differentiated and highly aggressive cancer
stem-like cells but has only little effect on normal
stem-like cells. We further demonstrated that this
effect was mediated by a p53/p73-independent p38
MAPK-dependent caspase-3-dependent pro-
apoptotic mechanism (Emhemmed et al. 2014).

A growing number of in vitro and in vivo studies
have shown that several plant-derived compounds
are potentially anti-cancer agents since they are able
to specifically target the self-renewal properties of
CSCs (Pistollato et al. 2015). Moreover, prosurvival
and self-renewal signalling pathways share several
common molecular components, pointing out the
fine-tuned balance which controls CSC growth
(Konopleva and Jordan 2011). As a consequence, it
is not surprising that some phytochemicals with
known anti-survival/anti-proliferative activity could
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also target specific nodal points of the self-renewal
machinery and its associated differentiation process
(Moselhy et al. 2015; Sarkar et al. 2009). In this
point of view, it has been observed that the natural
anti-cancer compound rocaglamide induces the dif-
ferentiation of HL-60 promyelocytic cells, in corre-
lation with an arrest of proliferation (Basmadjian
et al. 2013; Mata-Greenwood et al. 2001), suggest-
ing that other members of the flavagline family
could have a similar dual activity.

The aim of our work was to evaluate the in vitro
pro-differentiating properties of the flavagline FL3
on human embryonal teratocarcinoma stem cells
NT2/D1 (also known as NTERA-2 cl.D1). This cell
line is described as highly pluripotent and undiffer-
entiated, a property associated to a strong expression
of the stemness regulator Oct4. Indeed, this tran-
scription factor is essential for self-renewal and
maintenance of unrestricted pluripotency (Kuntz
et al. 2008). As such, Oct4 binds at the regulatory
regions and/or promoters of numerous target genes,
which are associated with proliferation, survival and
differentiation processes (Jerabek et al. 2014; Sharif
et al. 2011a). To gain greater specificity, Oct4 may
form protein complexes with two other transcrip-
tional regulators, i.e. the homeobox protein Nanog
and the SRY-related HMG-box protein Sox2 (Boyer
et al. 2005). It is now accepted that Oct4 is detect-
ab le in CSCs from diverse tumour or ig in
(Prud’homme 2012) and its presence, as part of the
molecular signature of unrestricted pluripotency, has
been observed in poorly differentiated and highly
proliferative and invasive cancers (Ben-Porath
et al. 2008; Sharif et al. 2011a, 2011b).

Here, we show that FL3 selectively induces dif-
ferentiation of pluripotent cancer stem-like cells at
sublethal nanomolar concentrations. This effect in-
volves a downregulation of the major guardian of a
highly pluripotent cell state, namely Oct4, by
targeting its degradation and its transcription. As a
consequence, cells undergo differentiation in the
neural pathway, with the appearance of specific
markers, like βIII-tubulin (a microtubule element
expressed in neurons) and glial fibrillary acidic pro-
tein (GFAP) (an intermediate filament expressed in
astrocytes) (Kim et al. 2011). Our study therefore
highlights the pro-differentiation properties of
flavaglines. Since they act through a mechanism
independent of retinoic acid receptor activity, they

could be promising alternative chemotherapeutic
drugs in ATRA-resistant and Oct4-expressing
cancers.

Materials and methods

Cell lines and culture conditions

NT2/D1 (CRL-1973) cell line, purchased from
ATCC (LGC Standards, Molsheim, France), was
cultivated in DMEM-based media (Sigma-Aldrich,
Saint-Quentin-Fallavier, France), supplemented with
10% (v/v) foetal bovine serum (BioWhittaker,
Verviers, Belgium), 50 μg/ml streptomycin, 50 U/
ml penicillin and 2 mM glutamine (Sigma-Aldrich).
Cells were grown in Petri dishes to 30% confluency
prior to treatment. All plates were incubated in hu-
midified atmosphere with 5% CO2 at 37 °C.

Cell treatment

FL3, synthesized as previously described (Thuaud
et al. 2009), and ATRA (Sigma-Aldrich) were dilut-
ed at 10 mM in dimethyl sulfoxide (DMSO). For our
purpose, the cells were treated with either 10 nM of
FL3 or 1 µM ATRA mixed with the cell culture
medium. At that concentration, we previously re-
ported that FL3 has no significant toxic effects on
cancer cells after 24 h of treatment (Emhemmed
et al. 2014). Treatment was carried out till 12 days,
and FL3- or ATRA-supplemented medium was
changed every 2 days.

Clonogenic assay

Individual spheroids were generated by seeding
200 μl/well of a cell suspension at a density of
1.5 × 104 cells/ml in ultra-low-attachment 96-well
plates (Sigma-Aldrich). After 4-day incubation, each
spheroid was exposed to either vehicle (DMSO) or
FL3 for different times. Image analysis of tumour
spheroids and determination of their diameter were
carried out by using a Celigo cytometer (Cyntellect
Inc., San Diego, CA, USA), as previously described
(Vinci et al. 2012).
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Immunocytochemistry analysis

Cells at a density of 4 × 104 were seeded in imaging
μ-Dishes (Ibidi, Martinsried, Germany) and incubat-
ed for 24 h. The cells were then fixed with 4%
paraformaldehyde for 15 min, permeabilized with
0.3% Triton X-100 in phosphate-buffered saline
(PBS) for 15 min and blocked in 2% normal goat
serum for 30 min at room temperature. After rinsing,
the cells were incubated with either a rabbit poly-
clonal anti-Oct4 or anti-Nanog antibody (GeneTex,
Irvine, CA, USA), a rabbit polyclonal anti-GFAP
antibody (Abgent, San Diego, CA, USA) or a mouse
monoclonal anti-βIII-tubulin antibody (Abnova, Tai-
pei City, Taiwan). All the primary antibodies were
diluted at 1:200–1:400 in 2% normal goat serum.
After 2 h of incubation at room temperature, the cells
were washed with PBS and exposed for an additional
half hour to either a mouse or a rabbit Alexa Fluor
488-conjugated secondary antibody (Life Technolo-
gies, Saint Aubin, France), diluted at 1:2000 in 2%
normal goat serum. After rinsing, the cells were
stained with Hoechst 33342 (Life Technologies), di-
luted at 1:10,000 for 5 min. Images were captured
using a Leica TCS SP2 laser scanning confocal mi-
croscope (Leica Microsystems, Nanterre, France).

Western blot analysis

Exponentially growing cells were treated with the
vehicle or FL3 and incubated at different times. The
cells were harvested and centrifuged at 200g for
10 min at room temperature, and the pellets were
resuspended in RIPA buffer (25 mM Tris pH 7.6,
150 mM NaCl, 1% NP-40, 0.1% SDS, 1% sodium
deoxycholate) containing protease inhibitors (Sig-
ma-Aldrich). Proteins of cell lysates were then ex-
tracted, separated on 8–15% SDS-polyacrylamide
gels and transferred to membranes. Immunoblotting
was performed as previously described (Sharif et al.
2012), by using either a rabbit polyclonal anti-Oct4,
anti-Nanog or anti-Sox2 antibody (GeneTex); a rab-
bit polyclonal anti-GFAP antibody (Abgent); a
mouse monoclonal anti-βIII-tubulin antibody
(Abnova); a rabbit monoclonal anti-STAT3
(phospho Y705) antibody (Abcam, Paris, France);
a rabbit polyclonal anti-cleaved caspase-3 antibody
(Cell Signaling Technology, Danvers, MA, USA); or
a rabbit polyclonal germ cell nuclear factor (GCNF)

antibody (Abcam). Membranes were subsequently
reprobed with a mouse polyclonal anti-beta tubulin
antibody (Abcam), a rabbit polyclonal anti-beta ac-
tin antibody (Abcam) or a rabbit polyclonal anti-
g lycera ldehyde-3-phosphate dehydrogenase
(GAPDH) antibody (Abcam).

Quantitative RT/PCR analysis

Total RNA from untreated and treated cells was extracted
using the EZ-10 DNAaway RNA Mini-prep kit (Bio
Basic Inc., Toronto, Canada) following the manufac-
turer’s instructions. PCR reaction was then carried out
with 10 ng RNA and 200 nM of specific primers
(QuantiTect primers QT00210840, QT01025850,
QT00079247 for Oct4, Nanog and GAPDH, respective-
ly; Qiagen, Courtaboeuf, France), using the KAPA
SYBR Fast One-Step qRT-PCR kit (Kapa Biosystems
Ltd., London, UK), according to themanufacturer’s spec-
ifications. Amplification was performed on an iCycler
MyiQ system (Bio-Rad, Marnes-la-Coquette, France).

Statistical analysis

Data were presented in a bar graph form and expressed
as means ± SEM of at least three independent experi-
ments. Statistical evaluation was performed with the
one-way ANOVA test, followed by Tukey’s post hoc
analysis or Student’s t test using the GraphPad Prism
software (GraphPad Software Inc., CA, USA); a p value
less than 0.05 was considered as significant.

Results

FL3 treatment is able to induce the disappearance
of stemness factors and the appearance of neural
markers in teratocarcinomal cells

Differentiation involves a steady reduction and, fi-
nally, the disappearance of the stemness factors in
poor ly d i f f e r en t i a ted CSCs . Accord ing ly,
teratocarcinomal cells treated for 12 days with
10 nM of FL3 showed morphological changes
(Supplement Fig. 1), concomitantly with an absence
of Oct4 and Nanog, in contrast to untreated cells,
which exhibit strong nuclear labelling of both pro-
t e i n s ( F i g . 1 a ) . Mo r e o v e r , FL3 - t r e a t e d
te ra toca rc inomal ce l l s exh ib i t ed a s t rong
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cytoplasmic labelling of GFAP and βIII-tubulin,
which are two main markers of neural differentiation
(Kim et al. 2011) (Fig. 1b). These results therefore
suggest that FL3 is able to repress the stemness
maintenance and to induce a neuro-ectodermic dif-
ferentiation of embryonal carcinoma cells.

Long-lasting treatment with FL3 at low concentration
induces a gradual downregulation of the stemness
factors in teratocarcinomal cells

The expression levels of the stemness factor Oct4 and
its interactive partners Nanog and Sox2 were moni-
tored during the 12 days of treatment with 10 nM of
FL3. As shown in Fig. 2a, b, a progressive, but sig-
nificant decrease of the expression rates of these tran-
scription factors was observed. At day 8 of treatment,
only faint bands were visualized by immunoblotting,

suggesting that the embryonal cells have definitively
lost their highly pluripotent state. Surprisingly, a de-
tailed analysis of Fig. 2b showed a transitory and
reproducible upregulation of Oct4 at day 2 of treat-
ment. It should be noted that such transient upregula-
tion is also observed in mouse P19 teratocarcinomal
stem-like cells, when treated with ATRA (Fuhrmann
et al. 2001). The molecular mechanisms behind this
phenomenon remain to be determined.

The expression patterns of Oct4 are delayed
during long-lasting treatment of teratocarcinomal cells
with FL3 and ATRA

ATRA is a known differentiation factor of
teratocarcinomal cells, which acts as a gene repres-
sor of the stemness factor Oct4. We therefore inves-
tigated the behaviour of this transcription factor, by

Oct4DAPI Merged DAPI Oct4 Merged

MergedNanogDAPI DAPI Nanog Merged

DAPI GFAP Merged DAPI GFAP Merged

DAPI III-tubulin Merged DAPI III-tubulinβ Merged

FL3Vehiclea

b FL3Vehicle

Fig. 1 FL3 treatment induces the disappearance of stemness
factors and the appearance of neural markers in NT2/D1 cells.
Cells were exposed to either 10 nM of FL3 (right panels) or to
vehicle (left panels). In a, the nuclear labelling, in relation with an
expression of either Oct4 or Nanog, is not observed in cells treated

with FL3 for 12 days, in contrast to untreated cells. In b, a high
cytoplasmic labelling, in relation with an expression of either
GFAP or βIII-tubulin, is observed in cells treated with FL3 for
12 days, in contrast to untreated cells. Nuclei were stained with
DAPI. Scale bar 10 μm
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monitoring its expression pattern during a long-
lasting treatment with either FL3 (10 nM) or ATRA
(1 μM). As shown in Fig. 2c, d, a similar time-
dependent decrease of Oct4 expression levels was
observed with the two treatments in the cancer
stem-like cells. It should be noted, however, that
ATRA seemed to act earlier than FL3; indeed, a
reduction of Oct4 expression levels of over 50%
was detected by day 4 in ATRA-treated cells,
whereas, at that time, Oct4 content remained un-
changed in FL3-treated cells.

Long-lasting treatment with FL3 at low concentration
induces a gradual upregulation of neural markers
in teratocarcinomal cells

The expression levels of several neural factors,
namely βIII-tubulin (neuronal marker) and GFAP
(astrocyte marker) (Kim et al. 2011), were moni-
tored during the 12 days of treatment with FL3
(10 nM). As shown in Fig. 3a, b, a progressive,
but significant increase of the expression rates of
these neural factors was observed. From day 8 of
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Fig. 2 Time-dependent effects of FL3 or ATRA on the expression
levels of stemness factors in NT2/D1 cells. Cells were exposed to
10 nMof FL3 or 1μMATRA and incubated at the indicated times.
Immunoblotting analyses were performed as described in
BMaterials and methods^ section with the corresponding antibodies.
Specific bands were detected with their expected apparent molecular
weight. a, c Representative immunoblotting results. The sequential

panels in b, d show densitometry results of the expression of the
indicated stemness factors, normalized to β-tubulin expression and
given as ratios relative to the value obtained for the untreated
sample. Values are means ± SEM of at least three independent
experiments; statistically significant: *p < 0.05; **p < 0.01;
***p < 0.001 (versus untreated group)
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treatment, strong bands were visualized by immuno-
blotting, suggesting that the embryonal cells have
definitively switched from a highly undifferentiated
state to a neural phenotype. Accordingly, we also
observed enhanced levels of phospho-STAT3 Y-705,
which are crucial for astrocyte commitment (Cheng
et al. 2011; Nagao et al. 2007). These results clearly
demonstrated that FL3-treated teratocarcinomal cells
have acquired a neural phenotype, with a production
of both neurons and astrocytes.

Long-lasting treatment with FL3 at low concentration
induces a gradual downregulation of the transcript levels
of the stemness factors in teratocarcinomal cells

The expression levels of Oct4 and Nanog mRNAs
were monitored during the 12 days of treatment with
10 nM of FL3. As shown in Fig. 3c, a progressive,
but significant decrease of the expression rates of
both transcripts was observed. These results were in
agreement with those obtained at the protein level,
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Fig. 3 Time-dependent effects of FL3 on the expression levels of
neural markers andmRNA expression levels of stemness factors in
NT2/D1 cells. Cells were exposed to 10 nM of FL3 and incubated
at the indicated times. Immunoblotting analyses and RT/PCRwere
performed as described in BMaterials and methods^ section with
the corresponding antibodies or primer pairs, respectively. a Rep-
resentative immunoblotting results with specific bands detected at
their expected apparent molecular weight. The three sequential
panels in b show densitometry results of GFAP, βIII-tubulin and

phospho-STAT3 expressions normalized toβ-actin expression and
given as ratios relative to the value obtained for the untreated
sample. c Results obtained for the expression levels of Oct4 and
Nanog transcripts, normalized to the expression levels of GAPDH
mRNA and given as ratios relative to the value obtained for the
untreated sample. Values are means ± SEM of four independent
experiments; statistically significant: *p < 0.05; **p < 0.01;
***p < 0.001 (versus untreated group)
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suggesting that the drug could target the regulatory
mechanisms involved in both the neosynthesis and
the degradation of the two stemness factors.

Long-lasting treatment with FL3 at low concentration
inhibits the formation of embryoid bodies
from teratocarcinomal cells

The growth of embryonal stem cell-derived spheres was
monitored during the 12 days of treatment with 10 nM
of FL3. As shown in Fig. 4, the drug significantly
repressed the formation of embryoid bodies. At day 12
of the treatment, their diameter was roughly half of that
observed for either the vehicle or the control. Thus,
these results suggest that FL3 is able to interfere with
the self-renewal capacities of the cancer stem-like cells
and, as a consequence, to induce differentiation.

Long-lasting treatment with FL3 at low concentration
induces a transient expression of cleaved caspase-3
and a gradual upregulation of GCNF
in teratocarcinomal cells

The expression levels of active caspase-3 were moni-
tored during the 12 days of treatment with 10 nM of
FL3. As shown in Fig. 5a, b, a transient appearance of
the main effector of apoptosis could be visualized by
immunoblotting, with a peak of expression at days 2 and
4 of the treatment. Furthermore, a gradual, but signifi-
cant increase of the expression rates of a repressor of
Oct4 gene expression, namely GCNF, was observed.
These results suggest therefore that the drug targets
two different regulatory mechanisms of the Oct4-ome:
the first one involves a caspase-3-dependent degrada-
tion of Oct4, as we described previously (Emhemmed
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et al. 2014). The second one implicates the transcription
factor GCNF that acts as the initial repressor of Oct4
gene activity and which expression is known to be
upregulated when teratocarcinomal cells are differenti-
ating, for instance, after ATRA treatment (Fuhrmann
et al. 2001).

Discussion

Bymeans of different experimental approaches, we dem-
onstrate that the flavagline FL3 has a strong potential to
erase the molecular signature of stemness in embryonal
cells and to induce their neural differentiation. In a pre-
vious work, we reported that FL3 triggers apoptosis in
these cancer stem-like cells, with little effect on normal
stem-like cells; this specific effect involves an activation
of p38 MAPK and consequently of caspase-3

(Emhemmed et al. 2014). Since flavagline derivatives
are acting as multi-target drugs (Basmadjian et al. 2013;
Mata-Greenwood et al. 2001), it is expected that they
could also modulate the activity of particular components
involved in the control of the self-renewal and its associ-
ated differentiation process, depending on their concen-
tration and their incubation time. Accordingly, it has been
recently demonstrated that anti-cancer drugs, alone or in
combination, can recruit different signalling pathways,
depending on the order and duration of their delivery
(Lee et al. 2012). All this explains why a specific phar-
macological agent can lead to a different cellular re-
sponse, i.e. apoptosis or differentiation.

In the present study, FL3 is administrated at sublethal
concentration and for long period; in these conditions,
we observed that the drug had no significant effect on
the apoptosis rate of both teratocarcinomal cancer stem-
like cells and fibroblast normal stem-like cells which, de
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facto, do not display an activation of p38 MAPK (data
not shown). In contrast, FL3, at that concentration
(10 nM), is able to repress in embryonal cancer stem-
like cells, the expression of stemness factors at both the
transcriptional and translational levels. As a conse-
quence, cells lose their capability to self-renew and to
form embryoid bodies. In that point of view, FL3 acts
like ATRA, which has been described as a strong re-
pressor of embryonic sphere formation in vitro (Huang
et al. 2013). This repression involves an upregulation of
p21, which leads to cell cycle arrest in both FL3-treated
(data not shown) or ATRA-treated embryonal cells
(Malik et al. 2013). Moreover, the subsequent blockage
of the self-renewal process has a direct impact on either
normal or pathological stem cells, by triggering their
differentiation. Accordingly, we observed that long-
lasting treated teratocarcinomal cells with FL3 direct
their specification towards neural cells, as demonstrated
by the appearance of specific markers of either the
neuronal or glial specification. Interestingly, similar ob-
servations have been reported for ATRA, which prefer-
entially induces a neuroectodermic differentiation of
both embryonic and embryonal stem cells (Rohwedel
et al. 1999; Xia et al. 2007).

As mentioned previously, cell self-renewal is con-
trolled by specific proteins, which are also expected to
be involved in cell survival (Sharif et al. 2011a, b).
Indeed, Oct4, as a marker of stemness and unrestricted
pluripotency, also plays a central role in the survival of
poorly differentiated CSCs (Ben-Porath et al. 2008;
Sharif et al. 2011b, 2013). In fact, at the top of the
pluripotency regulatory network, Oct4, Nanog and
Sox2 work cooperatively to activate or repress numer-
ous target genes devoted to different cell processes like
proliferation, survival or differentiation. Downregula-
tion of the expression levels of these transcription fac-
tors therefore induces a loss of the self-renewal capacity
and promotes either cell death or differentiation (Jerabek
et al. 2014; Sharif et al. 2011a).

The molecular determinants of the cell reactivity to a
long-lasting treatment of low concentration of FL3 seem
to be similar as those described for ATRA. Accordingly,
it has been previously observed that a transient/
moderate activity of caspase-3 can mediate the differen-
tiation of embryonic stem cells without inducing apo-
ptosis, suggesting that the major component of the pro-
grammed cell death pathway could also be involved in
the regulation of stem cell development (Abdul-Ghani
and Megeney 2008; Fujita et al. 2008). More recently, it

has been reported that drug-induced differentiation of
embryonal CSCs involves the degradation of stem cell-
specific proteins by caspases (Musch et al. 2010). Oct4
and Nanog, as targets of caspase-3 (Emhemmed et al.
2014), are therefore concerned by this degradation-
inducing differentiation process. On the other hand, we
observed a progressive increase of the expression levels
of GCNF in FL3-treated cancer stem-like cells. This
orphan nuclear receptor is known to repress Oct4 gene
activity by binding specifically within the proximal
promoter, and its upregulation in teratocarcinomal cells
treated with ATRA initiates Oct4 transcript and protein
downregulation during cell differentiation (Fuhrmann
et al. 2001). Taken as a whole, long-lasting treatment
with low-concentration FL3 activates two different reg-
ulatory mechanisms that lead to the loss of pluripotency.
The first one involves a caspase-3-dependent degrada-
tion of the stemness factors Oct4 and Nanog, and the
second one likely involves a GCNF-dependent gene
repression of these factors. Further investigations are
now necessary in order to validate an attempt to link
the two different processes recruited during FL3-
associated cell reactivity and Oct4 repression.

Finally, our previous and present findings show that
the flavagline FL3 has the potential to induce a down-
regulation of Oct4 in teratocarcinomal cells, either after
a short-term treatment with high concentration
(Emhemmed et al. 2014) or a long-lasting treatment
with low concentration. However, depending on the
treatment conditions, FL3 has either a pro-apoptotic or
pro-differentiating effect. In this point of view, the drug
could be a novel differentiation factor of other Oct4-
expressing CSCs, as FL3 acts on Oct4 network through
a mechanism independent of retinoic acid receptor ac-
tivity, it might become an alternative chemotherapeutic
compound in ATRA-resistant blood and solid cancers,
which are expressing Oct4.
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ORIGINAL ARTICLE

Flavaglines Ameliorate Experimental Colitis and Protect Against
Intestinal Epithelial Cell Apoptosis and Mitochondrial Dysfunction
Jie Han, MS,* Qian Zhao, MS, Christine Basmadjian, PhD,† Laurent Désaubry, PhD,†

and Arianne L. Theiss, PhD*

Background: Flavaglines are a family of natural compounds shown to have anti-inflammatory and cytoprotective effects in neurons and
cardiomyocytes. Flavaglines target prohibitins as ligands, which are scaffold proteins that regulate mitochondrial function, cell survival, and
transcription. This study tested the therapeutic potential of flavaglines to promote intestinal epithelial cell homeostasis and to protect against a model of
experimental colitis in which inflammation is driven by epithelial ulceration.

Methods: Survival and homeostasis of Caco2-BBE and IEC-6 intestinal epithelial cell lines were measured during treatment with the flavaglines FL3 or FL37
alone and in combination with the proinflammatory cytokines tumor necrosis factor (TNF) a and interferon g. Wild-type mice were intraperitoneally injected
with 0.1 mg/kg FL3 or vehicle once daily for 4 days during dextran sodium sulfate–induced colitis to test the in vivo anti-inflammatory effect of FL3.

Results: FL3 and FL37 increased basal Caco2-BBE and IEC-6 cell viability, decreased apoptosis, and decreased epithelial monolayer permeability. FL3
and FL37 inhibited TNFa- and interferon g–induced nuclear factor kappa B and Cox2 expression, apoptosis, and increased permeability in Caco2-BBE
cells. FL3 and FL37 protected against TNFa-induced mitochondrial superoxide generation by preserving respiratory chain complex I activity and
prohibitin expression. p38-MAPK activation was essential for the protective effect of FL3 and FL37 on barrier permeability and mitochondrial-derived
reactive oxygen species production during TNFa treatment. Mice administered FL3 during dextran sodium sulfate colitis exhibited increased colonic
prohibitin expression and p38-MAPK activation, preserved barrier function, and less inflammation.

Conclusions: These results suggest that flavaglines exhibit therapeutic potential against colitis and preserve intestinal epithelial cell survival,
mitochondrial function, and barrier integrity.

(Inflamm Bowel Dis 2016;22:55–67)

Key Words: barrier function, prohibitin, intestinal epithelium, TNFa, colitis

I nflammatory bowel diseases (IBD), the most common forms
being Crohn’s disease and ulcerative colitis, are associated with

disturbed intestinal epithelial cell (IEC) homeostasis. IECs structur-
ally provide host defense by forming a single-cell barrier between
luminal contents and the underlying intestinal tissue. Epithelial bar-
rier dysfunction is an early event in the pathogenesis of IBD, result-
ing in increased exposure of intraluminal contents to the mucosal

immune system, thereby aggravating the inflammatory condition.1

Disruption of the epithelial barrier can be manifested by increased
epithelial cell apoptosis not equal to epithelial proliferation (ulcera-
tion) and/or by alteration of permeability at the tight junctions that
establish a semipermeable barrier between epithelial cells, restricting
passage of large molecules.2 Restoring and maintaining the epithe-
lial barrier are critical to limit mucosal inflammation and promote
healing.1 Identification of agents that act to promote epithelial cell
homeostasis and barrier integrity in the context of tissue injury or
IBD is critical for the development of therapeutic or preventative
strategies to promote or maintain mucosal healing.

Flavaglines comprise a family of compounds found in
medicinal plants of Southeast Asia that have shown anticancer,
anti-inflammatory, and cytoprotective activities.3 Flavaglines have
been reported to reduce neurotoxicity in a mouse model of Parkin-
son’s disease4 and protect cardiomyocytes from doxorubicin-
induced cardiac toxicity.5 In addition, at nanomolar concentrations,
flavaglines inhibit the production of interferon (IFN) g, TNFa,
interleukin 2, and interleukin 4 by T lymphocytes and proinflam-
matory mediators from microglia and endothelial cells.4,6 It is well
established that flavaglines target prohibitins (PHBs) as their
molecular ligands.3 PHB (B-cell receptor–associated protein 32)
and PHB2 (repressor of estrogen receptor activity, B-cell
receptor–associated protein 37) are highly conserved proteins
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with diverse functions, including regulation of cell cycle progres-
sion, apoptosis, and transcription, depending on their posttransla-
tional modifications and subcellular localization.7 The best
characterized function of PHB and PHB2 is their role in main-
taining the structure and function of mitochondria, including res-
piration and protein metabolism, while residing in the inner
mitochondrial membrane as heterodimers.8–10 In IECs, PHB is
predominantly localized in the mitochondria, where it has been
shown to be required for optimal activity of complexes I and IV of
the electron transport chain (ETC).11–14 During IBD, expression of
PHB is decreased in uninvolved and inflamed epithelium.12,14

Epithelial PHB is protective against intestinal inflammation as
evidenced by less severe experimental colitis in transgenic mice
with IEC-specific PHB overexpression.15,16 Gene silencing of
PHB in cultured IECs induces mitochondrial membrane depolar-
ization and cellular stress pathways, including intracellular reac-
tive oxygen species (ROS) generation and apoptosis.17

Furthermore, cultured IECs overexpressing PHB exhibit less
intracellular ROS and apoptosis,17 suggesting that relative levels
of PHB modulate epithelial cell homeostasis.

In this study, we investigated the anti-inflammatory activity
of the flavaglines FL3 and FL37, which are among the most
potent of flavaglines tested in a wide variety of pharmacological
assays,18 in cultured IECs and the dextran sodium sulfate (DSS)
model of colitis. We also elucidated the mechanism of FL3 and
FL37 protection in IECs.

MATERIALS AND METHODS

Cell Culture
Flavaglines FL3 and FL37 were synthesized in our labora-

tory as previously described.19,20 The Caco2-BBE human colonic
adenocarcinoma epithelial cell line and the nontransformed IEC-6
rat small IEC line were used as in vitro models of polarized intes-
tinal epithelium. Both cell lines were obtained from the American
Type Culture Collection (ATCC, Manassas, VA). Cells were
grown in Dulbecco’s modified Eagle’s medium (Caco2-BBE) sup-
plemented with penicillin (40 mg/L), streptomycin (90 mg/L), and
10% fetal bovine serum. Caco2-BBE cells and IEC-6 cells were
plated on permeable supports (pore size, 0.4 mm; transwell-clear
polyester membranes; Corning, Tewksbury, MA) and cultured for 8
days to allow the cells to polarize. All experiments performed on
Caco2-BBE cells were between passages 32 and 45 and IEC-6 cells
were between passages 10 and 18. FL3 and FL37 were adminis-
tered at 1, 10, and 50 nM because previous studies showed that
flavaglines exhibit cardioprotective and neuroprotective effects at 1
to 10 nM.18 Caco2-BBE or IEC-6 cells were treated with 10 ng/mL
recombinant human or rat TNFa or 50 ng/mL recombinant human
or rat IFNg, respectively (R&D Systems, Minneapolis, MN).

PHB Knockdown
To achieve PHB knockdown, Caco2-BBE cells were

transiently transfected with Stealth RNAi against PHB1

(50-CAGAAUGUCAACAUCACACUGCGCA-30) or Stealth
RNAi Negative Control Med GC (Life Technologies, Carlsbad,
CA) at 20 mm concentration using Amaxa electroporation with
Nucleofector kit T (Lonza, Basel, Switzerland).

Induction of Colitis in Mice
Eight-week-old wild-type (C57BL/6) male and female mice

were administered orally DSS (molecular weight, 50,000; MP
Biomedicals, Solon, OH) at 2.5% (wt/vol) in tap water ad libitum
for 6 days. Controls were administered normal tap water throughout
the treatment period. Mice were intraperitoneally injected with
0.1 mg/kg FL3 or vehicle (veh) once daily on days 0 to 4. We
chose this dose because it proved to be adequate in our previous
assays of cardioprotection in mice.5 Mean DSS water consumption,
body weight, and clinical signs of inflammation were assessed daily
during the treatment period. All mice were group housed in stan-
dard cages under a controlled temperature (258C) and photoperiod
(12-hour light/dark cycle) and were allowed standard chow and tap
water ad libitum. All experiments were approved by the Baylor
Research Institute Institutional Animal Care and Use Committee.

Sodium Dodecyl Sulfate Polyacrylamide Gel
Electrophoresis and Western
Immunoblot Analysis

Total protein was isolated from cultured cells or distal colon
mucosa from wild-type mice. The samples were separated by
sodium dodecyl sulfate polyacrylamide gel electrophoresis using
Laemmli’s 2· sodium dodecyl sulfate sample buffer and AnyKD
gradient polyacrylamide gels (Bio-Rad, Hercules, CA) followed
by electrotransfer to nitrocellulose membranes (Bio-Rad). Mem-
branes were incubated with primary antibodies at 48C overnight
and subsequently incubated with corresponding peroxidase-
conjugated secondary antibodies. Membranes were washed and
immunoreactive proteins were detected using Amersham ECL
Plus reagent (GE Healthcare, Piscataway, NJ). PHB antibody
was purchased from Thermo Fisher (Waltham, MA); PHB2,
Stat3, and ERK1/2 from Santa Cruz Biotechnology (Santa Cruz,
CA); phospho-p38-MAPK, p38-MAPK, pERK1/2, pS727-Stat3,
pY705-Stat3, pSAPK/JNK, SAPK/JNK, pAKT, AKT, and
cleaved caspase 3 from Cell Signaling Technology (Danvers,
MA); proliferating cell nuclear antigen (PCNA) from Abcam
(Cambridge, MA); p65 from BD Biosciences (San Jose, CA);
and Cox2 from Cayman Chemicals (Ann Arbor, MI). Blots were
reprobed with b-tubulin or b-actin (Sigma-Aldrich Corp.,
St. Louis, MO) antibody as a loading control.

Measuring Mitochondrial ROS
Cells were incubated with Hank’s balanced salt solution

with 5 mM MitoSOX Red Mitochondrial Superioxide Indicator
dye (Life Technologies) for 10 minutes at 378C. Cells were
washed twice with warm Hank’s balanced salt solution, and fluo-
rescent intensity was measured at 510 nm excitation/580 nm
emission. For experiments using complex I or III inhibitors, 15 mi-
nutes before collection, cells were treated with 5 mM rotenone
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(Sigma-Aldrich), a complex I inhibitor, or 1 mM antimycin A
(Sigma-Aldrich), a complex III inhibitor. For experiments using
p38-MAPK inhibitor, cells were incubated with 20 mM p38-
MAPK inhibitor SB203580 (Sigma-Aldrich) for 1 hour before
treatment with FL3, FL37, and TNFa.

Measuring ATP Concentration
The concentration of ATP was determined using the

Enlighten ATP Assay Bioluminescence Detection kit (Promega,
Madison, WI) according to the manufacturer’s protocol.

Detection of Mitochondrial Complex I Activity
The activity of complex I was measured using the Complex

I Dipstick Assay kit (Abcam) according to the manufacturer’s
protocol using 20 mg of protein.

Cytotoxicity Test
Lactate dehydrogenase cytotoxicity detection kit (Clontech,

Mountain View, CA) was used to measure cell viability. An
aliquot of 100 mL of culture media was added to 100 mL of lactate
dehydrogenase reagent, and percent cytotoxicity and percent via-
ble cells were measured according to the manufacturer’s protocol.

Measuring Cell Apoptosis
Percentage of apoptotic cells was measured using the Cell

Death Detection ELISA Plus kit (Roche, Indianapolis, IN) as
described by the manufacturer. As a second measure of apoptosis,
cells or colon sections were stained for terminal deoxynucleotidyl
transferase–mediated deoxyuridine triphosphate nick-end labeling
(TUNEL) as described by the manufacturer’s protocol (Roche).
The nuclei of cells were stained with 4’,6-diamidino-2-phenylindole
(Life Technologies). The number of TUNEL-positive cells were
quantitated using a fluorescent microscope across 20 fields per
treatment for in vitro experiments or across 20 well-oriented crypts
per animal for in vivo experiments.

Colonic epithelial cells were isolated from mice as pre-
viously described.21 Total protein was extracted and analyzed by
Western blotting for cleaved caspase 3.

Measurement of Transepithelial Electrical
Resistance and Macromolecular Permeability
In Vitro

Transepithelial electrical resistance was measured with an
epithelial voltohmmeter (Millicell-ers; Millipore, Billerica, MA).
For permeability assays, cells were incubated in Hank’s balanced
salt solution. Fluorescein isothiocyanate (FITC)-dextran (10 mg/
mL) (molecular weight 4 kDa; Sigma-Aldrich) was added to the
apical chamber. The apical and basolateral chambers were sam-
pled at 30 minutes, 1 hour, and 2 hours after the addition of
FITC-dextran to the apical chamber. FITC-dextran concentration
was quantified through spectrofluorimetry (excitation, 492 nm,
emission, 510 nm). Values are shown as rate (nanograms per
milliliter per minute) of FITC-dextran translocation to the baso-
lateral reservoir.

Clinical Score Assessment
A clinical activity score was generated using body weight

loss, stool consistency, and the presence of occult blood by
a guaiac test (Hemoccult Sense; Beckman Coulter, Fullerton, CA)
as described previously.16 The scores for each parameter were
added to get a clinical activity score with 12 being the maximal
score.

Histological Damage Score
Distal colon was fixed in formalin and stained with

hemotoxylin and eosin for histology. Sections were coded for
blind microscopic assessment of inflammation. Histological
scoring was performed on the basis of 3 parameters: the severity
of inflammation, crypt damage, and ulceration as described
previously.16 These values were added to give a maximal histo-
logical score of 11.

Myeloperoxidase Activity
Neutrophil infiltration into the distal colon was quantified

by measuring myeloperoxidase activity. Briefly, a portion of
colon or cecum was homogenized in 1:20 (wt/vol) 50 mmol/L
phosphate buffer (pH 6.0) containing 0.5% hexadecyltrimethyl
ammonium bromide on ice by using a Polytron homogenizer. The
homogenate was sonicated for 10 seconds, freeze thawed 3 times,
and centrifuged at 14,000 rpm for 15 minutes. Supernatant was
added to 1 mg/mL of o-dianisidine hydrochloride and 5 · 1024%
hydrogen peroxide, and the change in absorbance at 460 nm was
measured. One unit of myeloperoxidase activity was defined as
the amount that degraded 1 mmol of peroxidase per minute at
258C.

In Vivo Permeability Assay
Barrier function was assessed using an FITC-labeled

dextran method. Briefly, on day 6 of DSS administration, mice
were gavaged with permeability tracer (60 mg/100 g body weight
of FITC-labeled dextran, FD-4, Mr 4000; Sigma-Aldrich). Serum
was collected retro-orbitally 4 hours after FD-4 gavage, and fluo-
rescence intensity of each sample was measured (excitation, 492
nm; emission, 525 nm). FITC-dextran concentrations were deter-
mined from standard curves generated by serial dilution of FITC-
dextran and normalized to total protein.

Measuring In Vivo Oxidative Damage
Five-micrometer paraffin-embedded sections of colon were

analyzed for 4-hydroxynoneal (4-HNE) staining as a marker of
lipid peroxidation. Sections were deparaffinized in xylene, rehy-
drated in ethyl alcohol gradient, incubated in 0.3% H2O2 for 30 mi-
nutes, and treated with 10 mM sodium citrate buffer (pH 6.0) at
1108C for 20 minutes in a pressure cooker. Sections were blocked
with 5% normal goat serum and incubated with 4-HNE antibody
(Abcam) overnight at 48C. After washing with phosphate-buffered
saline, sections were incubated with biotinylated secondary anti-
bodies for 30 minutes at room temperature, and color development
was performed using the Vectastain ABC kit (Vector Laboratories)
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and 3,3’-Diaminobenzidine (Dako, Carpinteria, CA). Sections were
counterstained with hematoxylin.

The oxidative damage to proteins was assessed using
a protein carbonyl assay kit (Cayman Chemicals) according to
the manufacturer’s protocol.

Statistical Analyses
Values are expressed as mean 6 SEM. Comparisons

between FL3 or FL37 treatment versus vehicle control were ana-
lyzed by unpaired Student’s t test. Comparisons between FL3 or
FL37 combined with TNFa or IFNg treatment were analyzed by
2-way analysis of variance, and subsequent pairwise comparisons
used Bonferroni post hoc tests to test for significant differences
between 2 particular groups. P value ,0.05 was considered sta-
tistically significant in all analyses.

RESULTS

FL3 and FL37 Decrease IEC Apoptosis
An intact intestinal epithelial barrier that prevents the

translocation of intraluminal contents and subsequent immune cell
activation is an initial event in suppressing inflammation deeper in
the bowel wall.1 Disruption of the epithelial barrier can be man-
ifested by increased epithelial cell apoptosis not balanced with

epithelial proliferation. To determine whether very low (nanomolar)
doses of FL3 or FL37 affect IEC viability, polarized Caco2-BBE or
IEC-6 cell monolayers were treated with increasing concentrations
of FL3 or FL37 for 16 hours and markers of cell proliferation or
apoptosis were measured. Ten and 50 nanomolar of FL3 or FL37
enhanced cell viability in Caco2-BBE cells as measured by lactate
dehydrogenase release (Fig. 1A). IEC-6 nontransformed cells were
used as a second in vitro model of IECs. FL3 and FL37 increased
viability of IEC-6 cells at the higher doses tested (see Fig. A,
Supplemental Digital Content 1, http://links.lww.com/IBD/B116).
To determine whether increased cell viability was associated with
changes in cell proliferation, PCNA protein expression was mea-
sured. FL3 and FL37 did not affect PCNA protein expression in
Caco2-BBE cells, suggesting that FL3 and FL37 do not increase
cell proliferation (Fig. 1B). FL3 and FL37 decreased Caco2-BBE
cell apoptosis measured by enzyme-linked immunosorbent assay
(Fig. 1C) and TUNEL staining (Fig. 1D). The number of apoptotic
cells was decreased to approximately 5% during treatment with
FL3 or FL37 compared with 10% in vehicle-treated cells (Fig. 1D).

FL3 and FL37 Increase Protein Expression of
Known Flavagline Targets PHB and PHB2
in IECs

To determine whether FL3 or FL37 alters IEC expression
of PHB or PHB2, which are established flavagline targets,3

FIGURE 1. FL3 and FL37 decrease apoptosis in Caco2-BBE cells. Cells were treated with increasing concentrations of FL3 or FL37 for 16 hours A,
Cell viability using lactate dehydrogenase assay; *P , 0.05 versus vehicle; n ¼ 8 per treatment across 2 separate experiments. B, Representative
Western blots of PCNA protein expression, a marker of cell proliferation. C, Apoptosis measured by enzyme-linked immunosorbent assay; *P ,
0.05 versus vehicle; n ¼ 4 per treatment. D, TUNEL-positive cells were quantified across 20 fields; *P , 0.05 versus vehicle.
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Caco2-BBE cells were treated with increasing doses of FL3 or
FL37. Treatment with FL3 or FL37 at very low (nanomolar)
concentrations increased PHB and PHB2 protein levels in Ca-
co2-BBE (Fig. 2A). FL3 and FL37 increased PHB protein expres-
sion rapidly, as early as 15 minutes, with peak induction for FL3
between 1 and 2 hours and for FL37 between 15 minutes and 1
hour (Fig. 2B). The induction of PHB2 by FL3 and FL37 showed
an identical pattern as PHB. FL3- and FL37-induced PHB and
PHB2 protein expression was associated with p38-MAPK activa-
tion (Fig. 2B), but not activation of Stat3, SAPK/JNK, ERK, or
AKT (see Fig., Supplemental Digital Content 2, http://links.lww.
com/IBD/B117). FL3 and FL37 induced PHB and PHB2 protein
expression and activation of p38-MAPK in IEC-6 cells in a similar
pattern as induction in Caco2-BBE cells (see Fig. B, Supplemen-
tal Digital Content 1, http://links.lww.com/IBD/B116).

Pretreatment with FL3 or FL37 Decreases
TNFa- or IFNg-induced Expression of Nuclear
Factor Kappa B p65 and Cox2 in IECs

To determine whether flavaglines exhibit anti-inflammatory
action in IECs, Caco2-BBE cells were pretreated with increasing
concentrations of FL3 or FL37 followed by treatment with tumor
necrosis factor (TNF) a or IFNg, 2 proinflammatory cytokines
upregulated during intestinal inflammation. Western blotting re-
vealed that FL3 and FL37 prevented TNFa- or IFNg-induced
nuclear factor kappa B p65 and Cox2 protein expression, which
are 2 key proinflammatory pathways in the intestine. This effect
of FL3 and FL37 was associated with sustained PHB expression,
which is decreased by TNFa or IFNg (Fig. 3A, B). Similar results
were evident in IEC-6 cells, in which 1 and 10 nM FL3 or FL37
pretreatment prevented TNFa-induced nuclear factor kappa B p65

FIGURE 3. Pretreatment with FL3 or FL37 decreases TNFa- or IFNg-induced
expression of nuclear factor kappa B (NFkB) p65 and Cox2 in Caco2-BBE
cells. Cells were pretreated with increasing concentrations of FL3 (A) or FL37
(B) for 1 hour, followed by treatment with 10 ng/mL TNFa or 50 ng/mL
IFNg for 16 hours. Total protein was isolated for Western blotting for
expression of NFkB p65, Cox2, PHB, and b-actin (loading control).

FIGURE 2. FL3 and FL37 increase protein expression of known flavagline targets PHB and PHB2 in IECs. A, Polarized Caco2-BBE cells were treated
with increasing concentrations of FL3 or FL37 for 2 hours. Representative Western blots are shown for PHB, PHB2, and b-actin (loading control). B,
Caco2-BBE cells were treated with 10 nM FL3 or FL37 for increasing time. Representative Western blots are shown for PHB, PHB2, phospho-p38-
MAPK, total p38-MAPK, and b-tubulin (loading control).
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and Cox2 induction (see Fig. A, Supplemental Digital Content 3,
http://links.lww.com/IBD/B118). All further experiments were
performed with FL3 or FL37 at a concentration of 10 nM because
this was the lowest most effective dose at preventing TNFa- or
IFNg-induced loss of PHB protein expression.

Pretreatment with FL3 or FL37 Prevented IEC
Apoptosis Induced by TNFa or IFNg

We next determined whether FL3 or FL37 affected
cytokine-induced proliferation and/or apoptosis in IECs. TNFa
or IFNg significantly decreased Caco2-BBE cell viability in
vehicle-treated cells, with TNFa reducing cell viability by 24%
and IFNg by 11% (Fig. 4A). Pretreatment with 10 nM FL3 or
FL37 prevented the reduction in cell viability by TNFa or IFNg
(Fig. 4A). Similar results were evident in IEC-6 cells, in which
pretreatment with 10 nM FL3 or FL37 increased cell viability
during TNFa or IFNg treatment (see Fig. B, Supplemental Digital
Content 3, http://links.lww.com/IBD/B118). Pretreatment with 10
nM FL3 or FL37 did not affect PCNA protein expression when
normalized to b-actin expression during TNFa or IFNg treatment
(Fig. 4B). These results suggest that the protection of cell viability
by FL3 and FL37 during TNFa or IFNg treatment is not

associated with increased cell proliferation. TUNEL staining re-
vealed that pretreatment with FL3 or FL37 prevented TNFa- or
IFNg-induced Caco2-BBE apoptosis (Fig. 4C).

Pretreatment with FL3 or FL37 Protects
Against Cytokine-induced Barrier Dysfunction
in Caco2-BBE Cell Monolayers

Ten nanomolar of FL3 or FL37 increased transepithelial
electrical resistance (Fig. 5A) and decreased translocation of FITC-
dextran between Caco2-BBE monolayers from the apical chamber
to the basolateral chamber (Fig. 5B). Pretreatment with 10 nM FL3
or FL37 prevented TNFa- or IFNg-induced reduction in transepi-
thelial electrical resistance (Fig. 5A) and increase in FITC-dextran
across Caco2-BBE cells (Fig. 5B). These results suggest that FL3
and FL37 enhance intestinal epithelial barrier function basally and
protect from barrier dysfunction induced by TNFa and IFNg.

FL3 and FL37 Preserve Mitochondrial
Function During TNFa Treatment

PHB and PHB2, known targets of flavaglines, are pre-
dominantly localized to the inner mitochondrial membrane of
IECs.14 Because treatment with FL3 or FL37 decreased basal and

FIGURE 4. Pretreatment with FL3 or FL37 prevented Caco2-BBE apoptosis induced by TNFa or IFNg. Cells were pretreated with 10 nM FL3 or FL37
for 1 hour, followed by treatment with 10 ng/mL TNFa or 50 ng/mL IFNg for 16 hours. A, Cell viability using lactate dehydrogenase assay; n ¼ 8 per
treatment across 2 separate experiments. B, Representative Western blots of PCNA protein expression, a marker of cell proliferation. C, TUNEL-
positive cells were quantified across 20 fields; *P , 0.05, **P , 0.01 versus no tx + vehicle; #P , 0.01 versus TNFa + vehicle; †P, 0.05 versus IFNg
+ vehicle. No tx, no treatment.
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TNFa- or IFNg-induced apoptosis, we next assessed mitochon-
drial function, which is known to be dysregulated during IBD and
in animal models of colitis22–28 and plays a central role in cell fate
decisions, especially apoptosis.29 Blockade of forward electron
flow through inhibition of ETC complexes leads to electrons
accumulating at upstream complexes, ROS generation, and
reduced ATP production.30 Ten nanomolar of FL3 or FL37
increased basal ATP levels, but this did not reach statistical signif-
icance (Fig. 6A). TNFa decreased ATP levels in vehicle control
cells as shown previously31–33; pretreatment with 10 nM FL3 or
FL37 prevented TNFa-induced decrease in ATP (Fig. 5A). IFNg
did not affect ATP production and pretreatment with FL3 or FL37
before IFNg treatment affected ATP levels similar to treatment with
the flavaglines alone (Fig. 5A). For this reason, remaining experi-
ments assessed the effect of FL3 or FL37 on changes to mitochon-
drial function induced by TNFa and not IFNg.

To determine mitochondrial ROS generation, we used the
mitochondrial superoxide detection dye MitoSox Red. Ten nano-
molar of FL3 or FL37 did not significantly affect basal
mitochondrial ROS production (Fig. 6B). TNFa significantly
increased mitoSOX fluorescence in Caco2-BBE cells, as shown
previously.32,33 Pretreatment with 10 nM FL3 or FL37 prevented
TNFa-induced mitochondrial ROS production.

Previous studies have shown that TNFa promotes cellular
injury predominantly through mitochondrial ROS production re-
sulting from decreased activity of ETC complex I.34 To determine
whether FL3 or FL37 suppresses ROS production induced by
complex I, mitoSOX fluorescence was measured in Caco2-BBE
cells pretreated with 10 nM FL3 or FL37 followed by TNFa
treatment and rotenone (5 mM; complex I inhibitor). The protec-
tive effect of FL3 or FL37 on TNFa-induced mitochondrial ROS
production was sustained during the addition of rotenone, sug-
gesting that complex I activity is resistant to rotenone inhibition in
FL3- or FL37-treated cells (Fig. 6C). FL3 or FL37 did not protect
against ROS production induced by the complex III inhibitor
antimycin A (1 mM) during TNFa treatment. These results sug-
gest that FL3 and FL37 preserve complex I activity, but not
complex III activity, during TNFa treatment. Complex I activity
was then measured by the Mitochondrial Dipstick Assay kit. FL3
or FL37 did not alter basal complex I activity in Caco2-BBE cells
compared with vehicle control cells (Fig. 6D). TNFa treatment
decreased complex I activity in vehicle-treated cells, whereas pre-
treatment with FL3 or FL37 prevented TNFa inhibition of com-
plex I (Fig. 6D).

Because FL3 or FL37 treatment increases expression of
PHB in Caco2-BBE cells (Fig. 2) and because PHB is crucial for
complex I assembly and function,11 we next determined whether
PHB was necessary for FL3 or FL37 protection against TNFa-
induced mitochondrial ROS production (Fig. 6E). During loss of
PHB expression by small interfering RNA transfection, FL3 or
FL37 did not protect against mitochondrial ROS production
induced by TNFa, suggesting that PHB is necessary for FL3
and FL37 protection against TNFa-induced mitochondrial
dysfunction.

p38-MAPK Activation Is Necessary for
Protective Effect of FL3 and FL37 on TNFa-
induced Mitochondrial-derived ROS and
Increased Permeability in Caco2-BBE Cells

Because FL3- and FL37-induced PHB and PHB2 protein
expression was associated with p38-MAPK activation (Fig. 2B),
but not activation of Stat3, SAPK/JNK, ERK, or AKT (see Fig.,
Supplemental Digital Content 2, http://links.lww.com/IBD/B117),
we next determined whether p38-MAPK activation was essential
for FL3 and FL37 protection against TNFa-induced epithelial
mitochondrial and barrier dysfunction. SB203580, a p38-MAPK
inhibitor, abolished the protective effect of FL3 or FL37 to inhibit
TNFa-induced mitochondrial-derived ROS (Fig. 7A) and
increased permeability in Caco2-BBE cells (Fig. 7B).
SB203580 alone had no effect on mitochondrial ROS production
or barrier function.

FL3 Protects Against DSS-induced Colitis
To determine the therapeutic potential of FL3 to reduce

acute colitis, wild-type mice were intraperitoneally injected with
0.1 mg/kg FL3 or vehicle once daily on days 0 to 4 and
administered DSS on days 0 to 6, which is a well-characterized

FIGURE 5. Pretreatment with FL3 or FL37 protects against cytokine-
induced permeability changes in IECs. Monolayers of polarized Caco2-
BBE cells were pretreated with 10 nM FL3 or FL37 for 1 hour, followed
by treatment with 10 ng/mL TNFa or 50 ng/mL IFNg for 16 hours. A,
Transepithelial electrical resistance. B, Macromolecular permeability as
measured by rate of 4 kDa FITC-dextran translocation from apical to
basolateral chamber (nanograms per milliliter per minute); *P , 0.05,
**P , 0.01 versus no tx + vehicle; #P , 0.01 versus TNFa + vehicle;
†P , 0.05 versus IFNg + vehicle.
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model of colonic epithelial ulceration.35 Mice given vehicle during
DSS administration showed significant weight loss starting on day
5 of DSS treatment (Fig. 8A). In contrast, FL3-treated mice main-
tained their body weight during the course of DSS treatment and
exhibited body weights similar to control mice given water. On day
6, the mice treated with DSS were assigned a clinical score con-
sisting of severity of body weight loss, stool consistency, and the
presence of gross bleeding or blood in the stool. FL3-treated mice
given DSS exhibited a significantly lower clinical score compared
with vehicle-treated mice given DSS (Fig. 8B).

DSS-induced colitis is histopathologically characterized
by infiltration of inflammatory cells into the mucosa and
submucosa, epithelial ulceration, and crypt damage, with the

distal colon the most severely affected. Hemotoxylin and eosin–
stained sections of distal colon of water control mice treated with
FL3 showed similar histology to mice given water and vehicle
(Fig. 8C). Distal colon sections of DSS-treated mice given vehi-
cle showed severe inflammatory infiltration, complete crypt loss
in focal areas, and increased ulceration. In contrast, mice treated
with FL3 during DSS showed moderate inflammatory infiltra-
tion, less crypt loss, and less ulceration compared with mice
given vehicle (Fig. 8C). Histological scoring of inflammation
revealed that FL3-treated mice given DSS exhibited a signifi-
cantly less damage (severity of inflammatory infiltration, ulcer-
ation, and crypt damage) compared with vehicle-treated mice
given DSS (Fig. 8B).

FIGURE 6. FL3 and FL37 preserve mitochondrial function during TNFa treatment. Caco2-BBE cells were pretreated with 10 nM FL3 or FL37 for 1
hour, followed by treatment with 10 ng/mL TNFa or 50 ng/mL IFNg for 16 hours. A, ATP concentration. B, Mitochondrial ROS levels were measured
using mitoSOX dye; n ¼ 8 per treatment across 2 separate experiments. C, 15 minutes before collection, cells were treated with 5 mM rotenone,
a complex I inhibitor, or 1 mM antimycin A, a complex III inhibitor. Mitochondrial ROS levels were measured using mitoSOX dye; n ¼ 8 per
treatment. D, Mitochondrial complex I activity was determined using the Mitochondrial Dipstick Assay kit. Activity of no tx + vehicle control cells
was set to 100%. E, Before pretreatment with FL3 or FL37, cells were transfected with siPHB or siNegative control (siNC) for 72 hours. Mitochondrial
ROS levels were measured using mitoSOX dye. Total protein was analyzed by Western blotting to ensure efficiency of PHB knockdown by siPHB;
*P , 0.05 versus no tx + vehicle; #P , 0.01 versus TNFa + vehicle; †P , 0.05 versus TNFa + vehicle + rotenone.
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A reduction in colon length is a gross indicator of disease
severity in the DSS model of colitis. All animals treated with DSS
showed reduced colon length compared with water controls;
however, shrinkage was less severe in FL3-treated mice compared
with vehicle controls (Fig. 8D). In addition, FL3 treatment signif-
icantly reduced myeloperoxidase activity, a marker of neutrophil
infiltration, in the distal colon during DSS colitis (Fig. 8E). Intes-
tinal permeability was measured using translocation of 4 kDa
FITC-dextran into serum in DSS-treated mice. Barrier dysfunc-
tion is one of the earliest events in DSS-induced colitis that pre-
cedes evident inflammation or mucosal damage. Therefore, we
measured intestinal permeability after 3 days of DSS treatment.
FL3-treated mice showed decreased FITC-dextran translocation
compared with vehicle-treated mice during DSS colitis (Fig. 8F).

To determine whether in vivo effects of FL3 corroborate
our in vitro results in cultured IECs, oxidative damage and colonic
epithelial apoptosis were measured. FL3 decreased 4-HNE staining
(Fig. 9A) and protein carbonyl content (Fig. 9B), markers of lipid
peroxidation and oxidative damage to protein, respectively, in the
colon of DSS-treated mice compared with vehicle. FL3 did not
affect 4-HNE staining or generation of protein carbonyls in
water-treated control mice. FL3 treatment abolished cleaved cas-
pase 3 protein expression during DSS colitis in isolated colonic
epithelial cells (Fig. 9C), suggesting that FL3 protects against
DSS-induced epithelial apoptosis. This was further supported by
TUNEL staining of distal colon, which demonstrated that FL3
treatment significantly decreased the number of TUNEL-positive
epithelial cells per crypt during DSS colitis (Fig. 9D, E). FL3 did
not significantly alter epithelial cleaved caspase 3 expression or the
number of TUNEL-positive cells in water-treated control mice.

To determine whether the protective effects of FL3
treatment on DSS-induced colitis were associated with increased
expression of PHB or p38-MAPK activation, total protein from
distal colon was isolated and assessed by Western blotting. DSS-
treated mice given FL3 exhibited increased PHB expression and
p38-MAPK activation (Fig. 9F), but not activation of Stat3,
SAPK/JNK, ERK, or AKT (see Fig., Supplemental Digital Con-
tent 4, http://links.lww.com/IBD/B119).

DISCUSSION
Our study is the first to characterize the therapeutic potential

of flavaglines in the intestinal epithelium during inflammation. We
show that the flavaglines FL3 and FL37 protect against apoptosis
and barrier dysfunction in cultured IECs basally and during
proinflammatory cytokine treatment. Protective effects of FL3 were
corroborated in vivo, with FL3 administration reducing the severity
of DSS-induced colitis and barrier permeability.

Since the first flavagline, rocaglamide, was first isolated in
1992, more than 60 natural flavaglines have been identified.20,36

Crude extracts from leaves and flowers of different Aglaia (family
Meliaceae) plants, from which flavaglines are extracted, are used
in several countries of southeast Asia as traditional medicine for
the treatment of inflammatory skin diseases and allergic inflam-
matory disorders, such as asthma.6 However, these plants contain
many classes of pharmacologically active agents, and the above-
cited activities may not involve flavaglines but other classes of
drugs. Interest in flavaglines as therapeutic compounds stems
from their anticancer, anti-inflammatory, and cytoprotective prop-
erties. At very low nanomolar concentrations, flavaglines enhance
survival of neurons and cardiomyocytes when challenged with
numerous stressors.3 In this study, we assessed the effect of
FL3 and FL37 in IECs because both compounds were shown to
display in vivo anticancer and cardioprotective effects. As an
in vitro model of inflammation, cultured IECs were challenged
with TNFa and IFNg, 2 proinflammatory cytokines involved
in IBD pathogenesis.37,38 Similar to results in neurons and
cardiomyocytes, FL3 and FL37 exhibited prosurvival and

FIGURE 7. p38-MAPK activation is necessary for protective effect of
FL3 and FL37 on TNFa-induced mitochondrial-derived ROS and
increased permeability. Caco2-BBE monolayers were pretreated with
20 mM p38-MAPK inhibitor SB203580 for 1 hour, then treated with 10
nM FL3 or FL37 for 1 hour, and finally treated with 10 ng/mL TNFa for
16 hours A, Mitochondrial ROS levels were measured using mitoSOX
dye; n ¼ 8 per treatment. B, Rate of 4 kDa FITC-dextran translocation
from apical to basolateral chamber (nanograms per milliliter
per minute); n $ 6 per treatment; *P , 0.05 versus no tx; #P , 0.05
versus TNFa.
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anti-inflammatory effects in IECs at nanomolar concentrations
during TNFa and IFNg treatment. FL3 and FL37 inhibited TNFa
and IFNg downstream proinflammatory signaling as evidenced by
reduced nuclear factor kappa B and Cox2 expression, maintained
cell viability, reduced TNFa- and IFNg-induced apoptosis, and
prevented TNFa- and IFNg-increased epithelial permeability. We
went on to demonstrate that mitochondrial dysfunction, as char-
acterized by increased mitochondrial-derived ROS, reduced activ-
ity of ETC complexes and ultimately decreased ATP production,
was induced by TNFa33 but not IFNg, and was prevented by FL3
or FL37. Importantly, multiple studies have reported mitochon-
drial dysfunction in the epithelium during IBD and experimental
models of colitis.12,25,27,28,39,40 Recent studies indicate that mito-
chondria integrate cellular homeostasis signaling and that

mitochondrial stress participates in the pathology of IBD.22,24,41

Our results suggest that FL3 and FL37 protection of mitochon-
drial function in IECs is associated with decreased apoptosis,
enhanced cell viability, and sustained epithelial barrier function
during TNFa-induced damage. FL3 and FL37 also protected
against IFNg-induced apoptosis and epithelial barrier dysfunction,
but unlike TNFa, these effects of IFNg were not associated with
altered mitochondrial function, suggesting that FL3 and FL37
cytoprotective effects against IFNg involve signaling pathways
beyond those regulating mitochondrial function.

FL3 and FL37 rapidly induced expression of PHB and
PHB2 in IECs, which are established flavagline targets.3 Our
study demonstrated that PHB expression was essential for FL3
or FL37 inhibition of TNFa-induced mitochondrial-derived ROS

FIGURE 8. FL3 protects against DSS-induced colitis. Mice were given 2.5% DSS for 6 days and intraperitoneally injected with 0.1 mg/kg FL3 or
vehicle (veh) once daily on days 0 to 4. Control mice were given regular drinking water throughout the protocol; n ¼ 6 per treatment group across
2 separate experiments with similar results. A, Percent change in body weight; *P , 0.05 versus DSS + FL3. B, Clinical and histological damage
score; *P, 0.05 versus DSS + vehicle. C, Representative photomicrographs of paraffin-embedded hemotoxylin and eosin–stained sections of distal
colon. Original magnification, ·20. D, Colon length measured on day 6 of DSS treatment. Photos of representative colons from DSS-treated mice;
*P, 0.05. E, Neutrophil infiltration into the colon, quantified by measuring myeloperoxidase activity; *P, 0.05. F, On day 3 of DSS treatment, mice
were gavaged with 4 kDa FITC-dextran. Translocation of fluorescent FITC-dextran across the intestinal epithelium was measured in serum col-
lected 4 hours after gavage; *P , 0.05.
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production in IECs. Furthermore, we show that FL3 and FL37
preserve ETC complex I activity during TNFa treatment. Com-
plex I of the ETC is a predominant site of PHB binding, resulting
in optimal activity of complex I and the respiratory chain.11,13

Previous studies have shown that TNFa reduces PHB expression
in IECs,32,42 which we also confirm in the current study (Fig. 3).
Therefore, our results suggest that FL3 and FL37 promote mito-
chondrial function in IECs during stress induced by TNFa by
sustaining PHB expression and ETC complex I activity, which
are targets of TNFa-induced damage.33,42

FL3 and FL37 rapidly induced activation of p38-MAPK in
IECs, but not activation of Stat3, SAPK/JNK, ERK, or AKT. The

pattern of p38-MAPK activation during a time course of FL3 or
FL37 treatment was similar to that of PHB and PHB2 induction.
Activation of p38-MAPK by flavaglines has been demonstrated in
lymphocytes, which causes immunosuppression through selective
inhibition of the transcription factor nuclear factor of activated T
cells (NFAT).6 NFAT is expressed in the intestinal epithelium where
it regulates differentiation, cell cycle, and apoptosis.43 It is not
known whether PHBs mediate activation of p38-MAPK or NFAT
by flavaglines.7 We show that p38-MAPK activation is essential for
the protective effects of FL3 and FL37 on IEC barrier permeability
and mitochondrial-derived ROS production during TNFa treatment.
Future studies will elucidate whether p38-MAPK activation by FL3

FIGURE 9. FL3 decreased colonic oxidative damage and epithelial apoptosis induced by DSS colitis, and these protective effects were associated
with increased PHB and phospho-p38 MAPK expression. A, Immunohistochemistry staining of 4-HNE. B, Protein carbonyl content in the distal
colon; *P , 0.05, n ¼ 6 per treatment. C, Representative Western blots showing total and cleaved caspase 3 levels in isolated colonic epithelial
cells. b-actin is included as a loading control. D, TUNEL staining (green) of colonic sections from mice treated with FL3 or vehicle (veh) during DSS
colitis or control (water). Sections were stained with 4’,6-diamidino-2-phenylindole to visualize nuclei (blue). E, Number of TUNEL-positive cells per
crypt in well-oriented crypts; *P , 0.05, **P , 0.01; n ¼ 5 per treatment with a minimum of 20 crypts counted per animal. F, Representative
Western blots showing PHB, phospho-p38-MAPK, p38-MAPK, and b-actin in total protein isolated from whole colon.
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or FL37 is downstream of PHBs and whether p38-MAPK activation
involves inhibition of NFAT in IECs.

The in vivo therapeutic effect of FL3 was demonstrated
using the DSS model of acute colitis in mice. This experimental
model of colitis has similarities to human ulcerative colitis,
including epithelial cell ulceration and loss of integrity of the
mucosal barrier triggering inflammation.35 Given our results show-
ing that FL3 and FL37 enhance cultured IEC survival and barrier
function, the DSS model was optimal to test whether FL3 elicited
similar protective effects in vivo. FL3 alone did not alter body
weight or induce signs of toxicity in mice, as shown in previous
in vivo studies.5,44 Additionally, colon histology of mice adminis-
tered FL3 alone was similar to vehicle control mice. Once-daily
injection of FL3 concurrent with DSS administration through day 4
prevented weight loss, colon shrinkage, neutrophil activation, his-
tological damage including crypt loss and ulceration, epithelial
apoptosis, ROS-induced damage, and epithelial barrier dysfunction.
Reduced severity of colitis by FL3 was associated with increased
colonic expression of PHB and activation of p38-MAPK, similar to
our findings in cultured IECs. Flavaglines are chemical compounds
that do not act as antioxidants through a chemical mechanism (as
a reductant or radical scavenger) but through their action on PHB
signaling. Not surprisingly, there has been considerable interest in
developing antioxidant-based therapeutic strategies for the treat-
ment of IBD. Commonly used drugs, in particular sulfasalazine
and its active moiety 5-aminosalicylic acid, are potent ROS scav-
engers. However, targeted antioxidant therapies have not reached
clinical efficacy perhaps because of limited cell permeability, short
circulating half-life, and/or immunogenicity and the need to be used
in large excess compared with the quantity of ROS. In contrast,
compounds that promote the resistance and the destruction of ROS
by activation of specific signaling pathways may be effective at low
concentrations. Our study suggests that flavaglines may provide
therapeutic potential against IBD by protecting the intestinal epi-
thelium and reducing oxidative stress. Future studies will determine
the bioavailability of flavaglines and their side effects.

Collectively, our in vitro and in vivo data demonstrate that
flavaglines exhibit anti-inflammatory effects during colitis and
promote IEC survival, mitochondrial function, and barrier
integrity. Further preclinical investigations elucidating flavagline
mechanism underlying protection against intestinal inflammation
and promotion of epithelial cell homeostasis are warranted.
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Abstract 

 

Activating mutations of the NRAS (neuroblastoma rat sarcoma viral oncogene) protein kinase, 

present in many cancers, induce a constitutive activation of both the RAS-RAF-MEK-ERK 

mitogen-activated protein kinase (MAPK) signal transduction pathway and the PI(3)K-AKT-

mTOR, pathway. This in turn regulates the formation of the eIF4F eukaryotic translation 

initiation complex, comprising the eIF4E cap-binding protein, the eIF4G scaffolding protein and 

the eIF4A RNA helicase, which binds to the 7-methylguanylate cap (m(7)G) at the 5' end of 

messenger RNAs. Small molecules targeting MEK (MEKi: MEK inhibitors) have demonstrated 

activity in NRAS-mutant cell lines and tumours, but resistance sets in most cases within months 

of treatment. Using proximity ligation assays, that allows visualization of the binding of eIF4E to 

the scaffold protein eIF4G, generating the active eIF4F complex, we have found that resistance 

to MEKi is associated with the persistent formation of the eIF4F complex in MEKi-treated 

NRAS-mutant cell lines. Furthermore, inhibiting the eIF4A component of the eIF4F complex, 

with a small molecule of the flavagline/rocaglate family, synergizes with inhibiting MEK to kill 

NRAS-mutant cancer cell lines. 
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Introduction 

 

Activating mutations of the NRAS (neuroblastoma rat sarcoma viral oncogene) protein kinase 

inducing a constitutive activation of the MAPK and PI3K/Akt/mTOR pathways1 are present in 

15-20% of melanomas and in a plethora of other cancers types such as leukemia, lung cancers 

and colorectal cancers.2,3  The NRAS Q61 mutation, in particular, seems to be associated with an 

aggressive clinical behaviour and a poor prognosis.4 NRAS inhibition thus appears as an 

interesting anticancer strategy, however, until now, no efficient anti-NRAS targeted therapy has 

been developed. One way to block the MAP-kinase activation cascade in the context of an 

activated NRAS protein is to inhibit MEK (Mitogen Activated Protein Kinase), downstream 

from RAS and RAF in the MAPK pathway. MEK inhibitors (MEKi: e.g. trametinib, 

cobimetinib) have demonstrated preclinical activity as well as clinical efficacy in patients with 

NRAS-mutant tumours.5 However, as it is the case with most targeted therapies, development of 

resistance usually occurs within months of treatment.  

Beside NRAS mutation which is found in 15% of melanomas, BRAF mutations are present in 40 

to 50% of the cases, also leading to a constitutive MAPkinase pathway activation. These two 

types of mutations are mutually exclusive. In  contrast to NRAS, BRAF protein can be 

specifically targeted by potent BRAF inhibitors (vemurafenib, dabrafenib) which significantly 

improve the clinical outcome of patients with BRAF mutant advanced melanoma.6,7 
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Combination of BRAF and MEK inhibitors are more effective than BRAF inhibitors to treat 

patients with BRAF mutant melanoma and are now currently used in the clinic. However, 

although resistances are delayed when using both drugs as compared to single agents, patients 

are still confronted to relapses after a median duration of response of about one year.  We 

recently reported that the formation of the eIF4F translation initiation complex was directly 

involved in the resistance to BRAFi used alone or in combination with MEKi in BRAF-mutant 

cell lines.8 Interestingly, all the various and diverse mechanisms underlying anti-BRAF 

resistance, that were found or known in the BRAF-mutated cell lines that were studied, 

converged and led to the persistence of the formation of the eIF4F complex. We here extend this 

study and investigate the potential role of the eIF4F complex in the context of resistance of 

NRAS-mutant cell lines to MEK inhibitors.  

  

RESULTS AND DISCUSSION 

 

We first investigated the effect of MEKi (trametinib and cobimetinib) on the formation of the 

eIF4F complex, in various contexts of sensitivity/resistance to MEKi. We thus selected a panel 

of human NRAS-mutant melanoma cell lines with different sensitivities to these compounds. 

One of the cell line, denominated IGRMel1, is a new cell line established from a patient seen at 

Gustave Roussy with a NRAS-mutant metastatic melanoma (see Methods section). All five 

tested cell lines (SKMel10, SKMel2, M311, M376 and IGRMel1) were verified for their NRAS 

mutational status and other melanoma’s hot spot mutations (see Methods section and Table S1). 

These cell lines are mutated in NRAS (Q61) and the M376 cell line is also mutated in BRAF 
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(V600). A short-term proliferation assay showed that the SKMel10 and M311 cell lines were 

relatively resistant to trametinib and cobimetinib compared to SKMel2, M376 and IGRMel1 cell 

lines (Fig. 1A). A long-term clonogenic assay confirmed that the SKMel10 cell line was resistant 

to the two MEKi compared to M376 and IGRMel1 (Fig. 1B). Of note, the SKMel2 cell line was 

more resistant to both MEKi than the M376 and IGRMel1 cell lines in this assay (Fig. 1B). This 

experiment could not be performed with the M311 cell lines since it did not form colonies.  

 

To  analyze the status of eIF4F complex formation in MEKi resistant/sensitive cell lines, we 

carried out a proximity ligation assay procedure that we developed previously to evaluate the 

interaction between eIF4E and eIF4G.8 We observed that the two MEKi tested induced a 

significant decrease in eIF4E-eIF4G interactions in the three MEKi-sensitive SKMel2, M376 and 

IGRMel1 cell lines (p1 indicates additive, antagonistic and synergistic effects, respectively. 

SKMel10 and M311 cells were treated for 48 h before the WST-1 assay with FL3 (4,1 nM) and 

variable doses of trametinib and cobimetinib ranging from 64 nM to 5000 nM. 

Isobolograms represent the correlation between the observed and the expected effects of the 

combination of 2 different drugs. The upper left region of the figure represents increasing 

degrees of synergy. 

 

Clonogenic assays 

For clonogenic assays, cells were plated at low density (1-4×103 cells per well in a 6-well tissue 

culture plates) in fresh media.  After 24 h, cells were treated with DMSO or drugs at the 
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indicated concentrations, in duplicates. After 7-14 days cells were stained with 0.5% (w/v) 

crystal violet in 70% ethanol. 

 

Proximity Ligation Assay 

Proximity ligation assays (PLA) were performed on fixed/permeabilized cells. The PLA protocol 

was followed according to the manufacturers’ instructions (Olink Bioscience, Uppsala,Sweden). 

After blocking, the antibodies were used at the following concentrations : for eIF4E (mouse, 

clone A-10, SC-271480, Santa Cruz 1:500); for eIF4G (rabbit, 2498; Cell Signaling 1:500). PLA 

minus and PLA plus probes (containing the secondary antibodies conjugated with 

oligonucleotides) were added and incubated for 1 h at 37°C. After hybridization, oligonucleotide 

ligation and a rolling circular amplification were performed. Then, cell nuclei were stained with 

Olink mounting media containing DAPI. The results were obtained with a scanner (Olympus 

VS120) and the number of PLA signals per cell was counted (>3 fields) by semi-automated 

image analysis (ImageJ and oLyvia).  
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FIGURE LEGENDS  

 

Figure 1. Sensitivity of melanoma cell lines to anti-MEK inhibitors. A. Short-term  growth-

inhibition assay of the indicated cell lines (SKMel10, M311, SKMel2, M376, IGRMEL1) treated 

with increasing concentrations of trametinib or cobimetinib. Cell viability was determined using 

the WST-1 cell proliferation assay. The data are presented as the mean +/- SEM (n=3). B. Long-

term colony formation assay of the indicated cell lines. Cells were grown in the absence or 

presence of trametinib or cobimetinib at the indicated concentrations for 7-14 days. For each cell 

line, all dishes were fixed at the same time, stained and photographed. 
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Figure 2. The formation of the eIF4F translation initiation complex is associated with 

resistance to MEK inhibitors. A. eIF4E–eIF4G interactions detected by proximity ligation 

assay (PLA) in trametinib/cobimetinib-treated or untreated cell lines. The interactions were 

visualized as red spots. B. PLA quantification showing the number of eIF4E-eIF4G interactions 

by cell. The data are presented as the mean s.d (n=4), and differences were assessed with 

Student’s t-test (* p < 0,05 ; ** p < 0,01 ; *** p < 0,001) 

 

Figure 3. Flavaglines sensitize NRAS-mutated resistant cell lines and synergize with MEK 

inhibitors. A. Short-term growth-inhibition assay of the indicated cell lines treated with 
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increasing concentrations of silvestrol or FL3. Cell viability was determined using the WST-1 

cell proliferation assay. The data are presented as the mean +/- SEM (n=3). B. Isobologram of 

the effect of the combination of trametinib or cobimetinib plus FL3 at fixed concentration (4,1 

nM) on SKMel10 and M311 cell lines. The Bliss index is shown in square brackets. 
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Targeting prohibitins with chemical ligands inhibits
KRAS-mediated lung tumours
H Yurugi1, F Marini2, C Weber3, K David3, Q Zhao4, H Binder2, L Désaubry4,5 and K Rajalingam1,6

KRAS is one of the most frequently mutated oncogenes in human non-small cell lung cancers (NSCLCs). RAS proteins trigger multiple
effector signalling pathways including the highly conserved RAF-MAPK pathway. CRAF, a direct RAS effector protein, is required for
KRAS-mediated tumourigenesis. Thus, the molecular mechanisms driving the activation of CRAF are intensively studied. Prohibitin 1
(PHB1) is an evolutionarily conserved adaptor protein and interaction of CRAF with PHB1 at the plasma membrane is essential for
CRAF activation. Here, we demonstrate that PHB1 is highly expressed in NSCLC patients and correlates with poor survival. Targeting of
PHB1 with two chemical ligands (rocaglamide and fluorizoline) inhibits epidermal growth factor (EGF)/RAS-induced CRAF activation.
Consistently, treatment with rocaglamide inhibited proliferation, migration and anchorage-independent growth of KRAS-mutated
lung carcinoma cell lines. Surprisingly, rocaglamide treatment inhibited Ras-GTP loading in KRAS-mutated cells as well as in
EGF-stimulated cells. Rocaglamide treatment further prevented the oncogenic growth of KRAS-driven lung cancer allografts and
xenografts in mouse models. Our results suggest rocaglamide as a RAS inhibitor and that targeting plasma membrane-associated
PHB1 with chemical ligands would be a viable therapeutic strategy to combat KRAS-mediated NSCLCs.

Oncogene advance online publication, 17 April 2017; doi:10.1038/onc.2017.93

INTRODUCTION
RAS GTPases are oncogenes mutated in nearly 30% of human
carcinomas. Among the three RAS isoforms (HRAS, NRAS and KRAS),
KRAS is the most frequently mutated member of the family.1,2 Upon
activation, RAS triggers multiple signalling pathways. These signalling
cascades rely on the activity of kinases that form the major
constituent of the ‘druggable genome’.3,4 Many of the RAS effector
signalling pathways form highly complex networks that control
almost all ‘hallmarks of cancer’.5 Several attempts to target RAS
itself have had limited success, though recent studies showed that
targeting mutated RAS isoforms in human cancers could still be an
effective strategy.2 RAF kinases are direct RAS effector proteins and
they are the founding members of the serine threonine kinase
family.6 Upon activation, RAF kinases phosphorylate and activate
MEK1/2, resulting in the activation of ERK1/2, which constitute a
three-tier mitogen-activation protein kinase (MAPK) cascade.7 This
pathway controls fundamental cellular processes like proliferation,
migration, differentiation and cell survival.7 Among the three RAF
isoforms, BRAF exhibits high basal kinase activity in comparison to
CRAF and ARAF.6,8 RAF kinases like many other kinases function as
dimers and interfering with RAF dimerization impairs RAS-mediated
MAPK activation.9 Several small molecule inhibitors targeting the
MAPK pathway components have been developed and many of
them are pursued in clinics.10 RAF kinases are also mutationally
activated in human cancers, and BRAF is one of the most frequently
mutated oncogene in thyroid, skin cutaneous melanoma, colorectal
cancers and multiple myelomas.8,11 Despite BRAF exhibiting high
basal kinase activity, CRAF is primarily required for KRAS-mediated

lung cancer.12 Depletion of endogenous CRAF also prevents NRAS-
mediated MAPK activation and proliferation in melanomas.13 In vitro,
RAS binds with high affinity to the Ras-binding domain (RBD) of
CRAF, yet the activation of CRAF by RAS in cells is a multistep
process, which involves the interaction of CRAF with prohibitin 1
(PHB1) at the plasma membrane.14 Previous studies have shown
that this interaction is required for the displacement of 14-3-3 from
serine 259, thus facilitating the stable association of CRAF to
the plasma membrane for full activation.15 Consistently, augmented
expression of PHB1 contributes to increased CRAF activation in
cervical carcinoma cells and associated with enhanced migration and
metastases in animal models.16

PHB1 is the flagship member of the ‘PHB domain’-carrying
integral membrane proteins and its present in a complex with
PHB2.17 Prohibitins (PHB1/2) are stable as heteromers, and they
are responsible for cristae morphogenesis and proper functioning
of the mitochondria.18,19 Since prohibitins have essential functions
in mitochondria, a blockade of protein expression through small
molecules is limited. However, recent studies revealed that
flavaglines, which are natural anti-tumour drugs, directly target
the PHB1-CRAF interaction leading to CRAF inactivation, thus
opening a novel avenue of targeting CRAF kinase outside the
kinase domain.20 As the structure of the kinase domains is similar,
small molecule kinase inhibitors often lead to undesired side
effects. Further, cancer patients frequently develop resistances to
kinase inhibitors.21 Thus, targeting oncogenic kinase outside the
kinase domain or a protein–protein interaction domain will be an
attractive strategy to combat human cancers.
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In this study, we demonstrate that PHB1 is highly expressed in
human lung cancers, which correlates with poor patient survival.
Targeting prohibitins with two different chemical ligands led to
inhibition of epidermal growth factor (EGF)/RAS-mediated activa-
tion of CRAF kinase. Rocaglamide treatment directly inhibited RAS
activation. Furthermore, rocaglamide inhibited the growth of
KRAS-mutated lung cancer cells both in vitro and in vivo. These
results suggest that targeting PHB1-CRAF interface could be a
possible strategy in treating KRAS-mutated non-small cell lung
cancer (NSCLC) cancers.

RESULTS
NSCLC account for 480% of lung cancers. According to the world
cancer report of the World Health Organization, lung cancers
contribute to about 20% of total cancer deaths. KRAS is mutated in
nearly 17% of lung cancers and most of the KRAS-mutated lung
cancers are adenocarcinomas.2 Previous studies have shown that
CRAF, but not BRAF or ARAF, is required for the onset of
tumourigenesis in a mouse model of KRAS-driven NSCLCs.12 Kinase
inhibitors that target CRAF-mediated MEK1 activation exhibited
pronounced anti-tumour effects in KRAS-mutated tumours.22 As
PHB1 is critically required for the activation of CRAF by RAS, PHB1
expression was investigated in adenocarcinoma and squamous
cell carcinoma of the lung. Analysis of The Cancer Genome Atlas
(TCGA) data set revealed a high PHB1 RNA expression in human
adenocarcinoma and squamous cell carcinoma of the lung
(Figures 1a and b). Patients were stratified based on the KRAS and
EGFR mutation status. PHB1 was highly expressed in lung cancers
regardless of the KRAS or EGFR mutation status (Figures 1c and d,
Supplementary Table 1). We also checked the correlation between
PHB1 messenger RNA expression and poor prognosis of lung cancer
patients. As expected, overexpression of PHB1 was associated with
poor patient survival (Figure 1e).
To analyse PHB1 expression in adenocarcinoma and squamous

cell carcinoma of human lung as well as in tumour-adjacent normal
lung tissue, immunohistochemical analysis of a NSCLC tissue
microarray was performed (Figure 2). On the subcellular level, a
cytoplasmic as well as membranous staining was observed in
tumour cells of both lung cancer subtypes. The staining intensity
was mainly weak to moderate for both cytoplasmic and membra-
nous staining within the tumour area, whereby most tumour cells
exhibited a cytoplasmic staining. Therewith, H-scores between 10
and 190, as well as 5 and 90 were determined for cytoplasmic and
membranous anti-PHB1 staining of tumour cells of squamous cell
carcinoma. For adenocarcinoma lung tissues, H-scores of 40–175 as
well as 0–100 were determined for cytoplasmic and membranous
staining. If present, the anti-PHB1 staining was only weakly seen
within the cytoplasm of non-malignant epithelial cells within
tumour-adjacent normal lung tissue. By H-score classification, all
but three (two squamous cell carcinoma cases and one adenocarci-
noma case) cases were classified as PHB1-positive (H-score 450),
whereby the majority was classified as moderately positive for
cytoplasmic PHB1 and weakly positive for membranous PHB1.
Tumour-adjacent normal lung tissues were predominantly classified
as PHB1-negative (H-score ⩽50).
We then investigated if the PHB1/2 complex could be targeted by

chemical ligands such as rocaglamide and fluorizoline, which were
previously described among others as PHB1/2 ligands (reviewed in
Luan et al.23). First cell culture experiments using HeLa cells were
carried out (Figure 3a). The working concentration of rocaglamide
was determined by an MTT assay (Supplementary Figure S1A). We
first tested if treatment of cells with rocaglamide or fluorizoline
inhibits EGF-mediated CRAF activation as measured by the
phosphorylation of MEK1/2. HeLa cells were treated with rocagla-
mide or fluorizoline for 4 h and then stimulated with EGF for different
time points as indicated in the figure. As expected, fluorizoline and
rocaglamide treatment prevented the activation of MEK1/2 by EGF

(Figure 3b, Supplementary Figure S1B). As localization to the plasma
membrane is critical for the activation of CRAF kinase, we performed
cell fractionation studies with rocaglamide- or fluorizoline-treated
cells after stimulation with EGF. Treatment with rocaglamide reduced
plasma membrane-associated fraction of CRAF despite EGF stimula-
tion (Figure 3c). However, fluorizoline treatment failed to prevent this
translocation. Consistent with the previous studies, rocaglamide
treatment led to disruption of PHB1-CRAF interaction (Figure 3d). As
activated RAS induces BRAF-CRAF heteromerization, we tested if
treatment with rocaglamide disrupts this interaction. Interestingly,
rocaglamide treatment strongly prevented BRAF-CRAF interaction in
response to EGF in cells (Figure 3e). As rocaglamide prevented RAF
dimerization in response to EGF stimulation, we checked if RAS is
indeed activated in rocaglamide- and fluorizoline-treated cells.
Rocaglamide but not fluorizoline treatment led to a decrease in
active GTP-bound RAS in response to EGF in HeLa cells (Figure 3f,
Supplementary Figure S1C). While rocaglamide treatment led to a
decrease in active RAS levels, fluorizoline treatment led to disruption
of active RAS-CRAF interaction in response to EGF (Supplementary
Figure S1C). We then tested if rocaglamide treatment could inhibit
KRAS-GTP in cells carrying mutated KRAS. Interestingly, treatment of
NCI-H226 cells with rocaglamide led to inhibition of KRAS-GTP
loading in these cells in a concentration-dependent manner
(Figure 4a). We then checked if rocaglamide treatment directly
disrupts the GTP loading of KRAS by employing purified proteins.
Presence of rocaglamide in fivefolds excess than the concentrations
employed in cells failed to prevent GTP loading of KRAS directly
(Figure 4b). These results suggested that rocaglamide is an inhibitor
of RAS in cells, and that fluorizoline could disrupt the interaction
between CRAF and active RAS in cells.
We then tested if rocaglamide treatment inhibited MEK1/2

activation in immortalized human lung epithelial cells (SALEB).
Rocaglamide treatment failed to prevent the basal MEK1/2
activation in this cell type (Figure 4c). We then analysed if
rocaglamide inhibits MEK1/2 in SALEB cells transformed with the
oncogenic KRAS G12V mutant. Treatment with rocaglamide
prevented KRAS-mediated MEK1/2 activation in SALEB-KRAS cells
(Figure 4c). Consistent with these observations, rocaglamide
treatment strongly inhibited basal MEK1 activation in several cell
lines derived from mouse and human lung NSCLC tumours (368T1,
482T1, NCI-H226, Calu-6, Calu-1 and A549) (Figure 4c and
Supplementary Figure S2). Consistent with these observations,
rocaglamide treatment led to significant inhibition of cell
proliferation (Figures 5a and b). In particular, rocaglamide
treatment led to a block in neo DNA synthesis, and reduction in
the levels of cyclin B1 and D1 (Figure 5c and Supplementary
Figure S3A). However, rocaglamide treatment did not lead to cell
death in these cell types at least in the time frame of the
experiment (Supplementary Figure S3B). As PHB1 is required for
cell adhesion and cell migration, we tested if rocaglamide
treatment interfered with the adhesion and migration of KRAS-
mutated cell lines. Rocaglamide reduced the adhesion of 368T1
and 482T1 cells to extracellular matrix components (Figures 6a
and b). Similar results were also obtained in HeLa cells and
HCT-116 cells (Supplementary Figure S4A). Depletion of PHB1 was
shown to induce intercellular adhesion leading to the formation of
cell clumps in in vitro cell culture models.14,23 Rocaglamide
treatment led to a similar morphology in the above-mentioned
cell lines with reduced actin-rich protrusions (Figure 6c). Con-
sistently, rocaglamide treatment inhibited the migration of both
368T1 and 482T1 cells in two-dimensional matrices (Figures 6d–g).
We then tested if rocaglamide prevents KRAS-mediated oncogen-
esis. Soft agar colony formation assays with KRAS-mutated NSCLC
cell lines revealed that rocaglamide treatment almost completely
abrogated the anoikis resistance in these cells (Figures 7a–c).
Rocaglamide also prevented the soft agar growth of HeLa cells
and HCT-116 cells (Supplementary Figure S4B). To finally confirm if
the rocaglamide-mediated effects are specific for CRAF but not
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BRAF, we conducted experiments in cell lines carrying BRAF
V600E. A375, MEL-HO, HT29 and Colo829 cells that endogenously
express BRAF V600E were treated with rocaglamide. As expected,

rocaglamide treatment did not inhibit MEK1/2 activation in these
cell types (Supplementary Figure S5A). Moreover, overexpression
of BRAF V600E in HeLa cells reverted MEK1/2 activation and
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Figure 1. PHB1 is highly expressed in human lung cancers. (a–d) Expression analyses of PHB1 mRNA in the TCGA lung adenocarcinoma (LUAD) and
lung squamous cell carcinoma (LUSC) patient data set, compared to normal samples. Patients were stratified according to the KRAS and EGFR
mutation status, as described in Materials and Methods. Box plots represent PHBmRNA expression levels as determined in the RNA-seq experiments.
P-values were determined by the two-sided Welch’s t-tests that account for unequal variances in the two populations. The number of patients in
each group is indicated by n. (e) PHB1 expression is correlated with poor prognosis of lung cancer patients. Kaplan–Meier curves were obtained from
Genomics analysis and visualization platform (http://r2.amc.nl), and cutoff value was shown in the figure. mRNA, messenger RNA.
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proliferation in rocaglamide-treated cells (Supplementary Figures
S5B and C). Consistently, the migratory, elongated morphology is
retained in BRAF V600E cells despite the treatment with
rocaglamide (Supplementary Figure S5D and Supplementary
Movies 1–4). To further evaluate the effect of rocaglamide on
the oncogenic growth of KRAS-mutated NSCLC cell lines,
experiments were carried out using animal models. To this end,
we established allografts in B6129 SF1/J mice with 482T1 cells and
injected rocaglamide (2.5 mg/kg) into the allografted mice as
mentioned in the Materials and Methods section. Over time,
we detected that rocaglamide significantly inhibited the growth
of 482T1 allografts in this immunocompetent mouse model
(Figures 7d and e). We also checked the phosphorylation of CRAF
and MEK1/2 within the tumour tissue. The tumour tissues isolated

from rocaglamide-treated mice contained less phosphorylated
CRAF and MEK1/2 compared to DMSO-treated tumour tissues
(Supplementary Figure S6). Further xenograft experiments
of nonobese diabetic/severe combined immune deficiency
(NOD/SCID) mice were performed. Consistent with the soft agar
assays, rocaglamide injections prevented the growth of NCI-H226
xenografts as shown in Figures 7f–h. Taken together, these results
confirmed that targeting of PHB-CRAF with rocaglamide inhibited
oncogenicity in KRAS-mutated NSCLC cancers.

DISCUSSION
The high frequency of RAS mutations in human cancers aroused
an enormous interest to target RAS directly. Therefore, several
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Figure 2. Relatively high PHB1 protein levels are detected in human NSCLC patient tumour tissue. The expression level of PHB1 was
pathologically evaluated in the tumour tissue microarray (TMA) as mentioned in the Materials and Methods section. Compared to tumour-
adjacent normal lung tissue, anti-PHB1 staining was more intense in the tumour tissue showing a mainly cytoplasmic, but also membranous
staining pattern (a–d). H-scores ranged from 10 to 190 and from 40 to 175 for cytoplasmic staining, as well as from 5 to 90 and from 0 to 100
for membranous anti-PHB1 staining in squamous cell carcinoma and adenocarcinoma, respectively (a, c). All in all, cytoplasmic anti-PHB1
staining was predominant within tumour tissue (b, d). If present, membranous anti-PHB1 staining was slightly more intense within
adenocarcinoma compared to squamous cell carcinoma (a, c). Welch’s t-test was employed to test the significance (***Po0.001, **Po0.01).
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farnesyl transferase inhibitors have been developed.1 However,
farnesyl transferase inhibitors exhibited severe side effects and
thus the focus was turned to the downstream RAS effectors,
especially kinases. Given the clinical success of tyrosine kinase
inhibitors, several potent inhibitors were developed to target the
downstream serine threonine kinases like RAF. Soon after the
discovery that CRAF, the first known serine threonine kinase, binds
to RAS-GTP, MEK1 was identified as a substrate of CRAF.24 This led
to the identification of the mitogen-activated protein kinase
cascade CRAF-MEK1/2-ERK1/2 and established the paradigm of
MAPK signalling with RAS functioning as a molecular switch to
relay signals from the extracellular milieu to the nucleus through

the kinase cascades, which promote oncogenesis. Several RAS
effectors were identified subsequently, which together contribute
to various aspects of tumourigenesis, metastases and drug
resistance.25 Among the three RAF isoforms, BRAF has gained
special attention, as the BRAF V600E mutation is frequent in
melanomas. Vemurafenib (a kinase inhibitor that targets the BRAF
V600E mutated form) is a potent BRAF inhibitor and showed
enormous clinical success even so patients rapidly develop
resistance26 through CRAF overexpression or by gaining RAS
mutations. Furthermore, in patients with RAS mutations, RAF
inhibitors induced activation of MAPK paradoxically by promoting
the dimerization of RAF isoforms.10 Activated RAS triggered the
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formation of BRAF-CRAF heterodimers, which exhibit high kinase
activity.27,28 In many RAS-mutated cancer cases, CRAF serves as a
MAPK cascade driver. Therefore, intense efforts are made to
understand the biochemistry of CRAF activation. While active RAS
binds to CRAF with high affinity, stable association of CRAF in the
plasma membrane is required for the full activation of the
kinase.29 Plasma membrane-associated PHB1 functions as a
membrane anchor as loss of PHB1 or disruption of PHB1-CRAF
complex prevents CRAF activation. Previous studies have shown
that PHB1 can be phosphorylated in the lipid raft fractions
contributing to CRAF activation and cervical cancer metastases.17

Multiple agents leading to inactivation of CRAF kinase and the
MAPK cascade can target the CRAF-PHB1 interface. For instance,
bacterial and viral pathogens target surface-expressed PHB1 to
their benefit and the Vi polysaccharide of Salmonella typhi
interacts with the PHB1/2 complex leading to a block in ERK1/2
activation.30 Prohibitins were also found to be surface exposed in
T cells and recent studies identified Siglec-9 as a ligand of PHB1/2
complex.31 Interaction of Siglec-9 with the PHB1/2 complex
prevented RAF-MAPK activation in T cells leading to reduced IL-2
production.32 While PHB1 is shown to be possibly associated
with the plasma membrane through palmitoylation at C69, the
mechanisms driving the surface expression of PHB1 are unclear.33

PHB1 was also shown to be localized in mitochondria as well as
nuclei, and is thought to contribute to a variety of functions such
as cell cycle, metabolism and growth control. The discovery that
plasma membrane-associated prohibitin can be targeted by
rocaglamide opens a novel therapeutic avenue and the
results are already exploited in the treatment of tumours.23,34 In
this study, we demonstrated that PHB1 is highly expressed in
human lung cancer, which is one of the most common cancer
types and the leading cause of cancer-related morbidity
irrespective of sex or population. We demonstrated that
targeting the PHB1/2 complex with chemical ligands such as
rocaglamide prevents KRAS-mediated tumourigenesis both in vitro
and in vivo. A second PHB1 ligand, fluorizoline, prevented the
RAS-CRAF interaction in cells (Supplementary Figure S1C) and
prevented MEK1/2 activation in response to EGF (Figures 3b
and c).
Treatment with rocaglamide also inhibited RAS activation in

response to EGF and reduced GTP-loaded RAS in KRAS-mutated
cell lines. Though the mechanisms behind the rocaglamide-
mediated inhibition of RAS are unclear, it is possible that targeting
prohibitins could impair the plasma membrane microdomains
in which active RAS is located. Rocaglamide binding might
immobilize PHB1/2 complex in the plasma membrane, which may
have an effect on the stability of RAS-GTP in cells. One cannot rule

out the possibility that rocaglamide has yet another target(s) that
could impair RAS activation. As RAS has long been thought to be
undruggable, recent studies shed some light into this dogma.
Since rocaglamide treatment prevented RAS activation and
rocaglamide-mediated effects seem to be tumour cell-specific
and seem to protect non-malignant cells,35 further studies are
important. Taken together, these results open a novel avenue of
targeting CRAF kinase with PHB1 ligands and further unveil a RAS
inhibitor that could be further explored to combat RAS-mediated
tumours.

MATERIALS AND METHODS
Cell culture
368T1 and 482T1 cells were a kind gift from Tyler Jacks lab and cultured in
DMEM (10% heat inactivated foetal bovine serum (FBS)). NCI-H226
(CRL-5826, ATCC, Manassas, VA, USA) and A549 cells (a kind gift from
Susan Horwitz) were authenticated by Eurofin genomics (Ebersberg,
Germany, http://www.eurofinsgenomics.com/en/home.aspx). These cells
were cultured in RPMI-1640 (10% heat inactivated FBS). Calu-1 cell was
obtained from Sigma-Aldrich (St Louis, MO, USA) and cultured in MCcoy’s
5A medium (10% heat inactivated FBS). SALEB and SAKRAS (a kind gift
from Scott Randell) were cultured in serum-free CnT-BM1 medium with
CnT-17.S supplement pack (CELLnTEC, Bern, Switzerland). Calu-6 was
purchased from ATCC. HeLa (DSMZ) and HCT-116 (a gift from Ulf Rapp)
were authenticated by Eurofin genomics. Calu-6 and HeLa cells were
cultured in DMEM (10% heat inactivated FBS). A375, MEL-HO, HT29 and
Colo829 cells were used as BRAF V600E carrying cell lines, and RPMI-1650
(A375 and MEL-HO), MCcoy’s 5A medium (HT29) and DMEM (Colo829) with
10% FCS were used as a growth medium. For stimulation with EGF, HeLa
cells were cultured in a 12-well plate or a 10 cm dish. Once the cells reach
near confluence (70–80%), medium was exchanged to serum-free medium,
and rocaglamide (200 nM, Active Biochem, Kowloon, Hong Kong) and
fluorizoline (10 μM) were added to the medium. After 4 h of starvation in
the presence of PHB ligands, the cells were stimulated by EGF (40-217,
NatuTec, Frankfurt am Main, Germany) at 20 or 100 ng/ml of final
concentration for 5–30 min. Fluorizoline was synthesized as described in
Perez-Perarnau et al.36 For live/dead staining, 482T1 cell was treated in a
12-well plate and cultured with rocaglamide (50 and 200 nM) for 24 h,
and then treated with 5 μM Cell tracker CMFDA and 5 μg/ml of propidium
iodide (PI) for 30 min. The cells were observed under a fluorescent
microscope (DMi8, Leica, Wetzlar, Germany).

Antibodies
Anti-phospho CRAF antibody S338 (#9427), anti-phospho MEK1/2 (#9154),
anti-MEK1 antibody (#2352) and anti-PARP antibody (#9542) were
purchased from Cell Signalling Technology (Danvers, MA, USA). Anti-
BRAF antibody (sc-5284) and anti-CRAF antibody (sc-133) were purchased
from Santa Cruz (Dallas, TX, USA). Mouse anti-PHB1 antibody (MA5-12858)
and anti-sodium/potassium ATPase alpha antibody (MA3-928) were

Figure 3. Targeting PHB1 with two different ligands led to the inhibition of RAS-CRAF-MEK pathway. (a) The chemical structures of PHB1
ligands (rocaglamide and fluorizoline). (b) The effect of rocaglamide and fluorizoline treatment on RAS-MAPK activation. HeLa cells were
cultured in a serum-free medium with rocaglamide (200 nM) and fluorizoline (10 μM) for 4 h. After incubation, EGF (final concentration 20 ng/
ml) was added and the cells were collected after 0, 10, 30 min of stimulation. Immunoblot analyses were performed with the cell lysates to
detect the activation of CRAF and MEK1/2. The total levels of CRAF and MEK1 were monitored (described in Materials and Methods section).
Ponceau S staining of the entire membrane serves as a loading control. (c) HeLa cells were treated as mentioned earlier and stimulated with
EGF for 30 min. The cells were lysed, and the cytosol and plasma membrane fractions were prepared as mentioned in the Materials and
Methods section. The purity of the individual fractions was monitored by the presence of specific subcellular markers. Sodium potassium
ATPase (Na+/K+) was employed as a plasma membrane marker and M2PK was employed as a cytosolic marker. Ponceau S staining was
performed as a loading control. (d) Rocaglamide treatment inhibits CRAF-PHB1 interaction. HeLa cells were transiently transfected with FLAG-
tagged CRAF with polyethylenimine transfection reagent. After 48 h of transfection, the cells were lysed and the FLAG-tagged CRAF was
immunoprecipitated by employing FLAG beads. The co-precipitation of endogenous PHB1 was tested by immunoblots. The levels of CRAF,
pMEK1/2, MEK1 and PHB was monitored in the total cell lysates. Actin was used as a loading control. (e) Rocaglamide treatment disrupts
CRAF-BRAF heterodimer formation. HeLa cells were treated with rocaglamide (200 nM) as mentioned in b and stimulated with 100 ng/ml of
EGF for 5 min. The cells were lysed and the endogenous CRAF protein was immunoprecipitated as mentioned in the Materials and Methods
section. The complex formation between BRAF and CRAF was tested by immunoblots. (f) Rocaglamide treatment (200 nM) inhibits Ras
activation. After 30 min of stimulation with EGF (20, 100 ng/ml), HeLa cells were collected for active Ras pull-down assay as mentioned in the
Materials and Methods section. Total cell lysates and the precipitated proteins from a crypt pull-down assay employing GST-RAF-RBD were
used for immunoblot analysis.
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Figure 4. Treatment with rocaglamide prevents RAS activation. (a) NCI-H226 cells were incubated with indicated concentrations of
rocaglamide and the activation of RAS was monitored as mentioned in the Materials and Methods section. In the total cell lysates, the
phosphorylation status of MEK1 and CRAF were tested. The quantification of the blots is presented below. (b) Rocaglamide did not inhibit
direct GTP loading of KRAS in vitro. Recombinant KRAS was incubated with GTP/GDP in the presence of rocaglamide and the loading of
GTP-KRAS was monitored by a crypt pull-down assay employing RAF-RBD. (c) Rocaglamide treatment inhibits phosphorylation of MEK1/2 in
several cell types. Cells were treated with rocaglamide (Roc, 50 nM, 200 nM) for 24 h in complete cell culture medium. The cells were
subsequently lysed directly in SDS–PAGE sample buffer, and the activation status of MEK and CRAF was monitored by immunoblot
analysis. The control samples were treated with DMSO. The band intensity was calculated by Image J and the mean of relative intensity from
at least two independent experiments was shown below the blot. The result from DMSO-treated cells was taken as 1. The representative
image was shown in the figure.
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purchased from Thermo Fisher Scientific (Boston, MA, USA). Rabbit anti-
PHB1 antibody (GTX101105) and anti-cyclin B1 antibody (GTX100911) were
purchased from GENETEX (Hsinchu City, Taiwan). Anti-cyclin D1 antibody
(1677–1) was purchased from Epitomics (Burlingame, CA, USA). Anti-M2PK
antibody (S-1) was purchased from Schebo Biotech (Gießen, Germany).
Horseradish peroxidase (HRP)-conjugated antibodies for mouse and rabbit
IgG were obtained from Novex (Boston, MA, USA, A16066 and A16096,
respectively). HRP-conjugated anti-FLAG M2 antibody was purchased from
Sigma-Aldrich.

Immunohistochemistry
The staining and analysis of NSCLC tumour tissue were performed by
Indivumed GmbH using tissue microarrays of adenocarcinoma (N=39 spots)
and squamous cell carcinoma (N=37 spots), as well as matching tumour-
adjacent normal lung tissues (N=5 spots each). Indivumed GmbH (Hamburg,
Germany) duly obtained all ethical permissions for performing these studies.
Immunohistochemistry was implemented on the Discovery XT staining

platform (Roche Diagnostics, Mannheim, Germany/Ventana Medical Systems,
Tucson, AZ, USA), using the monoclonal anti-PHB1 antibody clone MA5-12858
(Thermo Fisher Scientific). Formalin-fixed paraffin embedded tissue microarrays
were sliced into 3–5 μm sections and mounted on SuperFrost Plus glass
slides (Roth, Karlsruhe, Germany). Haematoxylin and eosin-stained sections
were prepared according to Indivumed’s standard operating procedure. For
immunohistochemistry, slides were deparaffinized within the staining instru-
ment and immunostained using the Discovery ChromoMap DAB Kit (Roche
Diagnostics) as well as OmniMap anti-Mouse HRP secondary antibody. All
samples were blocked with 2% normal goat serum for 8 min prior to primary
antibody incubation, which was performed for 20 min at room temperature.
Semi-quantitative evaluation of the anti-PHB1 immunohistochemistry

staining was carried out by Indivumed’s pathologist. Therefore, membra-
nous as well as cytoplasmic anti-PHB1 staining of tumour cells within the
tumour area and non-malignant epithelial cells within the tumour-adjacent
normal lung tissue were analysed using the H-score classification.37

The percentages of weakly, moderately and strongly stained tumour/
epithelial cells were estimated, and the H-score was calculated as follows:
H-score= (weak)%+(moderate)%×2(strong)%×3. The table below shows
the H-score classification based on the resulting score ranges from 0 to 300.

Table H-score classification

H-score Classification

0–50 Negative
51–100 Weakly positive
101–200 Moderately positive
201–300 Strongly positive

Phalloidin staining
482T1 cells were seeded in six-well plates on coverslips. After 1 day,
rocaglamide was added to the well (200 nM) and cultured for 24 h. After
rocaglamide treatment, staining of cells with phalloidin was performed
using Oregon Green 488 Phalloidin (O7466, Molecular Probes, Boston, MA,
USA) following the manufacturer’s instructions.

Immunoblot analysis
All cells were cultured in 12-well plates for immunoblotting analysis.
At 50–80% confluence, rocaglamide (50 or 200 nM) was added and the
cells were cultured for 24 h. After washing with cold phosphate buffered
saline (− ), SDS–PAGE sample buffer (70 mM Tris–HCl pH 6.8, 40% glycerol,
0.3% SDS, 100 mM DTT and BPB) was added to the well. HeLa cells seeded
in 10 cm dishes were stimulated with EGF and the cells were collected.
Plasma membrane isolation was performed using plasma membrane

a

b

c

Figure 5. The effect of rocaglamide treatment on tumour cell proliferation. (a) Rocaglamide treatment inhibits the proliferation of KRAS-
mutated NSCLC tumour cell lines. 368T1 and 482T1 cells were cultured in a 96-well plate with DMSO or rocaglamide (25–200 nM) for 24 h and
48 h (upper panel). MTT assay was used to measure the rate of proliferation. The histograms show the quantification of the data presented in
the upper panel (n= 3). The relative decrease in the proliferation of rocaglamide-treated cells compared to DMSO-treated controls is
illustrated. Data represent mean± s.d. of three independent experiments (**Po0.01, *Po0.05). (b) Rocaglamide treatment inhibits cell
proliferation in several lung cancer cell lines. All cell lines unless otherwise mentioned were cultured for 24, 48, and 72 h (x axis) in the
presence of DMSO or rocaglamide (50, 200 nM). MTT assay was performed as mentioned in a. Shown are data from a single representative
experiment. (c) Rocaglamide treatment inhibits DNA synthesis. After treatment with rocaglamide for 24 h, EdU assay was performed to
evaluate the amount of newly synthesized DNA by flow cytometry analysis following the manufacturer’s instructions. The population of cells
with neo DNA was gated in every condition.
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protein extraction kit (ab65400, Abcam, Cambridge, UK) following the
manufacturer’s instructions. The sample was subjected to 10% SDS–PAGE
followed by immunoblotting analysis on nitrocellulose membrane

(GE Healthcare, Chalfont St Giles, UK). After transfer, membrane was
blocked with 3% BSA/TBST (20 mM Tris–HCl pH 7.5, 150 mM NaCl, 0.05%
Tween-20) at room temperature for nearly 1 h. After blocking, membrane
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Figure 6. Treatment with rocaglamide prevents cell adhesion and migration. (a, b) Treatment with rocaglamide inhibits tumour cell adhesion
to several components of extracellular matrix (ECM). Tumour cells were treated either with DMSO or rocaglamide (100 nM) for 24 h and were
detached from the cell culture plates using 2 mM EDTA/PBS. The cells were counted with a hemocytometer, and equal numbers of cells were
seeded onto 96-well plates coated with various ECM components. The floating cells were washed away with PBS, and the viable, attached cells
were measured with an MTT assay. One set of samples was used as a control where the cells were not washed away and the values obtained
with MTT assay was calculated as 100%. Data represent mean± s.d. of three independent experiments (**Po0.01, Po0.05).
(d–g) A rocaglamide treatment inhibits cell migration. Two-dimensional migration of tumour cells was monitored in DMSO or rocaglamide
(200 nM)-treated tumour cells for 20 h as mentioned in the Materials and Methods section. The quantification of the area covered was
presented. Shown are data representing mean± s.d. of three independent experiments (**Po0.01, *Po0.05). NS, not significant.

h

Figure 7. Rocaglamide treatment prevents NSCLC tumour growth both in vitro and in vivo. (a–c) Rocaglamide treatment inhibits colony
formation of NSCLC cancer cell lines. Soft agar colony formation assay was performed with DMSO or rocaglamide (Roc)-treated tumour cells
for 2 weeks and the number of colonies formed was quantified by Image J as mentioned in the Materials and Methods section. Data represent
mean± s.d. of three independent experiments and representative images were shown. **Po0.01, *Po0.05. (d–h) Rocaglamide treatment
inhibits tumour growth in vivo. 482T1 cells were subcutaneously injected to the immune competent mice and treated with rocaglamide (Roc,
2.5 mg/kg) after 10 days for 16 days. During the course of treatment, the tumour volume was measured with calipers and plotted. Data
indicate mean± s.d. (n= 7), *Po0.05 (d). After 16 days, mice were killed and the net wet weight of tumours was measured. Data indicate
mean± s.d. (n= 7), **Po0.01 (e). NCI-H226 cells were subcutaneously injected to the nonobese diabetic/severe combined immune deficiency
mice and treatment was started after 12 days of tumour incidence. Tumour volume was calculated as mentioned earlier. Data indicate
mean± s.e.m. (n= 5 mice for DMSO-treated condition and n= 4 mice from rocaglamide-treated condition), **Po0.01 (f). After 13 days, mice
were killed, and the wet weight of tumours was measured and the image was taken by a digital camera. Data indicate mean± s.e.m. (n= 5
mice for DMSO-treated condition and n= 4 mice from rocaglamide-treated condition). *Po0.05 (g, h).
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was incubated with primary antibody diluted in 1% BSA/TBST at 4 °C
overnight. After washing with TBST, membrane was incubated with HRP-
conjugated secondary antibody for an hour followed by enhanced
chemiluminescence (ECL)-based detection (WBKLS0500, Millipore, Billerica,
MA, USA).

Active Ras pull-down assay
Active Ras pull-down and detection kit (16117, Thermo Fisher Scientific) or
purified GST-tagged CRAF Ras-binding domain (CRAF-RBD) was employed
to detect GTP-bound Ras following the instructions of the manufacturer.
For the GST-CRAF pull-down assay, GST-CRAF RBD1-149 construct was
obtained from Prof. Channing Der (#13338, Addgene, Cambridge, MA,
USA) and the GST-tagged protein was purified following the standard
procedures. Rosette (DE) competent cell was used for the protein
expression and the protein expression was induced at around O.D. 0.6,
16 °C with 0.1 mM IPTG for overnight. The bacteria were washed with
phosphate buffered saline (PBS) once and lysed in 1% NP-40, 20 mM Tris–
HCl pH 8.0, 200 mM NaCl. Sonicated lysate was used for the GST
purification. After incubation, the beads were washed with 20 mM Tris–
HCl pH 8.0, 200 mM NaCl and used for the active Ras pull-down assay. After
incubation, the RAS bound to RBD-GST was washed, and the precipitated
sample was subjected to SDS–PAGE and immunoblotting analysis.
KRAS WT protein was used for the in vitro active KRAS pull-down assay.

The recombinant KRAS protein (1 μg protein) was incubated with GDP or
GTPγS in the presence of rocaglamide (250 nM, 1 μM) or DMSO. The active
RAS pull downs were performed by employing the RAS-GTP detection kit
following the manufacturer’s instructions.

Immunoprecipitation assays
HeLa cells were transfected with N-terminal FLAG CRAF plasmid for 48 h
with polyethylenimine solution. One microgram of plasmid and 5.4 μl of
10 mM polyethylenimine was mixed in 100 μl of PBS and incubated for
10 min at room temperature. After incubation, transfection reagent was
added dropwise to HeLa cells cultured in 12-well plates. After treatment
with rocaglamide (200 nM) or EGF stimulation (described above), cells were
lysed in the lysis buffer (25 mM Tris–HCl pH 7.2, 150 mM NaCl, 1% NP-40,
5% glycerol, 5 mM MgCl2, with EDTA-free proteinase inhibitor cocktail
(4693159001, Sigma-Aldrich)), and centrifuged at 4 °C and at 13 000 r.p.m.
for 15 min. Anti-FLAG M2 magnetic beads (M8823, Sigma-Aldrich) were
added to the supernatant and the sample was rotated at 4 °C for at least
2 h, The beads were washed with the lysis buffer and the precipitated
proteins were detected using the immunoblot analyses.
For detecting CRAF-BRAF heteromerization, HeLa cells were serum

starved and stimulated with EGF as mentioned above, and the cells were
lysed in lysis buffer (20 mM Tris–HCl pH 8.0, 137 mM NaCl, 1% NP-40, 10%
glycerol, with EDTA-free proteinase inhibitor cocktail (4693159001, Sigma-
Aldrich)) after washing once with ice-cold PBS. The samples were
incubated on ice for 30 min. The lysate was centrifuged at 13 000 r.p.m.
and 4 °C for 20 min. After centrifugation, 2 μg of anti-CRAF antibody (sc-
133, Santa Cruz) and 5 μl of protein A/G magnetic beads (B23201, http://
www.biotool.com) were added to the supernatant and rotated at 4 °C for
5 h. The beads were washed with the lysis buffer twice and SDS-sample
buffer (70 mM Tris–HCl pH 6.8, 40% glycerol, 0.3% SDS, 100 mM DTT and
BPB) was added to the beads. Total lysate and beads-bound protein were
loaded onto an SDS–PAGE gel and subjected to immunoblotting analyses.

Cell proliferation assay
Cell proliferation assay was performed by employing the Cell Proliferation
Kit I (Roche, Basel, Switzerland). Cells were seeded in a 96-well cell culture
plate with or without rocaglamide in 100 μl of complete growth medium.
After 24–48 h, 10 μl of MTT solution was added and incubated in CO2

incubator for 2–4 h. After incubation, 100 μl of solubilization buffer was
added to each well and incubated overnight in CO2 incubator. Absorbance
of the solubilized MTT was measured by absorbance plate reader
(O.D. 570).

EdU assay
368T1 and 482T1 cells were treated with rocaglamide (200 nM) in a 12-well
cell culture plate for 24 h. After the treatment, EdU DNA synthesis assay
was performed using Click-iT EdU pacific blue Imaging Kit (Thermo Fisher
Scientific). The cells were incubated EdU for 1 h and incorporated EdU was
stained with pacific blue ligand. All staining protocol was performed as

described in the manufacture’s instructions. After staining, the histogram
of pacific blue-positive cells was measured by flow cytometer.

Two-dimensional migration assay
One microlitre of 1.5% agarose was placed as a drop on a six-well plate,
and 368T1, 482T1 and NCI-H226 cells were seeded onto these plates.
Reaching confluence, rocaglamide was added to the plate (200 nM) and
cultured for 6 h. After 6 h, the agarose spot was removed by aspirator and
the cell migration was monitored by placing the entire plate under a DMi8
wide-field microscope system (Leica).

Soft agar colony formation assay
Agarose solution of 1.5% was mixed with 2× growth medium (20% FBS,
with or without 200 nM rocaglamide) and placed with 1.5 ml of 0.75% agarose/
1× growth medium in a six-well plate, and incubated at room temperature for
at least 10 min to solidify agarose. 368T1, 482T1 and NCI-H226 cells were
diluted in a 2× growth medium (20% FBS, with or without 200 nM rocaglamide)
and mixed with 0.9% agarose solution. Cell suspension of 1.5 ml in 0.45%
agarose in 1× growth medium was added to the bottom agarose layer. The
cells seeded in soft agar were cultured for 2–4 weeks followed by the staining
with crystal violet solution. The images were taken under a ChemiDoc Touch
(Bio-Rad, Hercules, CA, USA) equipment and the number of colonies was
counted by the Image J software (NIH, Bethesda, MA, USA).

Adhesion assay
Rat tail collagen I of 10 μg/ml (BD, San Diego, CA, USA) and 20 μg/ml of
human plasma fibronectin (FC010, Millipore) in 50 μl of PBS was added to a
96-well plate and incubated at 4 °C overnight. 368T1 and 482T1 cells were
cultured with or without 100 nM rocaglamide for 24 h and collected by
2 mM EDTA in PBS. Cell suspension (1 ×106 cells per ml, 100 μl in each well)
was added to the plate and incubated at 37 °C for 30 min. After incubation,
unattached cells were washed out with PBS and the amount of attached
cells was measured using the MTT assay (Cell Proliferation Kit I, Roche).

Tumour growth assay in vivo
B6129 SF1/J mice were purchased from Jackson (stock No.101043,
Bar Harbor, ME, USA). Nonobese diabetic/severe combined immune defici-
ency (NOD/SCID) mice were obtained from our own breeding unit at the
Translational Animal Research Center at the University of Mainz. A total of
5×104 cells (482T1) were subcutaneously injected to B6/129 F1 mouse and
1×106 cells (NCI-H226) were subcutaneously injected to nonobese diabetic/
severe combined immune deficiency mice into the back. After 10 days
(482T1) and 12 days (NCI-H226), rocaglamide (2.5 mg/kg, 1.25 mg/ml in 1%
DMSO/olive oil) was injected into the mice (intraperitoneal administration) for
16 days (482T1) and 13 days (NCI-H226). Tumour volume (L×W2/2) and the
weight were measured every day. All animals were handled according to the
ethical guidelines of the state of Rheinland Pfalz.

TCGA analysis
Gene expression data were downloaded from the TCGA GDAC Firehose
portal (Broad Institute TCGA Genome Data Analysis Center (2016): Firehose
stddata__2016_01_28 run. Broad Institute of MIT and Harvard, doi:10.7908/
C11G0KM9). For analysing PHB expression, the normalized RSEM counts
were used after log-2 transformation. Clinical information on the KRAS and
EGFR mutation status were retrieved from the UCSC Cancer Genomics
Browser (https://genome-cancer.ucsc.edu/). For computing statistical sig-
nificance of the differences in the mean expression values, two-sided
Welch t-tests were used, to account for unequal variances in the two
populations, with the R statistical software (version 3.3.0, Vienna, Austria,
https://www.r-project.org/).

Statistic analysis
P-values were obtained by Welch’s t-test in Excel and Po0.05 was
considered as a significant difference.

Significance
Lung cancers are a major causative of cancer deaths. Seventeen per cent of
lung cancers carry mutations in the KRAS oncogene. Targeting of PHB1
blocks CRAF kinase activation and KRAS-mediated tumourigenesis. PHB1 is
highly expressed in NSCLC patients and correlates with poor patient
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survival. These results open a novel avenue of targeting PHB1-CRAF
interface in treating lung cancers.
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Qian ZHAO 

 

Approche synthétique de produits naturels  
anticancéreux, les flavaglines 

Résumé 

Nous avons développé trois accès synthétiques performants à des cyclopentènones fonctionnalisées en 

exploitant des réactivités inattendues que nous avons découvertes. 

Nous avons aussi effectué la première synthèse d’isostères des flavaglines substitués par un groupement 

formylamino ou mésylamino en position 1b et ainsi démontré l’importance de l’hydroxyl en cette position 

pour la cytotoxicité de ces composés. 

De plus, nous avons aussi contribué à l’exploration du potentiel thérapeutique des flavaglines et d’un autre 

ligand des prohibitines, la fluorizoline, dans le traitement des cancers et de l’inflammation chronique des 

intestins,  ainsi que dans la prévention des effets adverses des chimiothérapies au niveau cardiaque. 

Mots-clés : flavaglines, cyclopentènones, cyclisation catalysée à l’or, réaction de Nazarov, eIF4A, prohibitines, 

cancer, chimiorésistance. 

 

Synthetic approaches of anticancer natural 
products, the flavaglines 

 

Abstract 

We have developed three novel synthetizes of functionalized cyclopentenones based on unexpected 

reactivities that we discovered. 

We also developed the first synthesis of flavaglines isostere substituted by a formylamino or mesylamino 

group on the position of 1b, and demonstrated the importance of a hydroxyl group on this position for 

cytotoxicity. 

Moreover, we contributed to the exploration of the therapeutic potential of flavaglines and another ligand of 

prohibitins, fluorizoline, in the treatment of cancers and intestinal chronic inflammation, and also in the 

prevention of the cardiac adverse effects in anticancer treatments.  

Key words: flavaglines, cyclopentenones, gold-catalyzed cyclization, Nazarov reaction, eIF4A,  prohibitins, 
cancer, chemoresistance. 
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