Strongly correlated systems of bosons and fermions : a diagrammatic, variational and path integral Monte Carlo study

par Adriano Angelone

Thèse de doctorat en Physique

Sous la direction de Guido Pupillo.

Le président du jury était Saverio Moroni.

Les rapporteurs étaient Lode Pollet, Patrizia Vignolo.

  • Titre traduit

    Systèmes fortement corrélés de bosons et fermions : une étude Monte Carlo diagrammatique, variationnelle et intégrale de Chemin


  • Résumé

    Mon travail de thèse se concentre sur l'étude, à l'aide de techniques numériques, de systèmes de fermions et bosons fortement corrélés. J'étudie Hamiltoniens de bosons sur réseau avec interactions à portée étendue, avant un intérêt pour expériences concernant atomes en états Rydberg-dressed, par moyen de simulations Path Integral Monte Carlo. Mon résultat principal est la démonstration d'un état de superverre en absence de sources de frustration dans le système.J'étudie également la modèle t-J fermionique avec deux trous par moyen de simulationsVariational Monte Carlo avec l’ansatz Entangled Plaquette States (EPS). Mon étude est fondamental en la perspective d'appliquer l'ansatz EPS à autres systèmes fermioniques, d’intérêt pour la supraconductivité à haute temperature, dont le comportement n'a pas encore été déterminé. Finalement, je présente mon travail sur une implémentation de l'algorithme Diagrammatic Monte Carlo.


  • Résumé

    The focus of my thesis is the investigation, via numerical approaches, of strongly correlated models of bosons and fermions. I study bosonic lattice Hamiltonians with extended--range interactions, of interest for experiments with cold Rydberg-dressed atoms, via Path Integral MonteCarlo simulations. My main result is the demonstration of a superglass in the absence of frustration sources in the system. I also study the fermionic $t-J$ model in the presence of two holes via Variational Monte Carlo with the Entangled Plaquette States Ansatz. My study is foundational to the extension of this approach to other fermionic systems, of interest for high temperature superconductivity, where the physical picture is still under debate (such as, e.g., the $t-J$ model in the case of finite hole concentration). Finally, I discuss my work on an implementation of the Diagrammatic Monte Carlo algorithm.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Strasbourg. Service commun de la documentation. Bibliothèque électronique 063.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.