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Et toute science, quand nous l’entendons non comme un instrument de pouvoir et de domination,
mais comme aventure de connaissance de notre espèce à travers les âges, n’est autre chose que cette

harmonie, plus ou moins vaste et plus ou moins riche d’une époque à l’autre, qui se déploie au
cours des générations et des siècles, par le délicat contrepoint de tous les thèmes apparus tour à

tour, comme appelés du néant, pour se joindre en elle et s’y entrelacer.
Alexandre Grothendieck.
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Résumé

De manière générale, on étudie dans cette thèse les cycles algébriques sur les variétés Jacobiennes
de courbes complexes projectives lisses qui admettent des automorphismes non triviaux. Il s’agit
plus précisément d’introduire et d’étudier de nouveaux anneaux tautologiques associés à des groupes
d’automorphismes de la courbe. On montre que ces Q-algèbres naturelles de cycles algébriques
sur les Jacobiennes se restreignent en des familles de cycles sur certaines sous-variétés spéciales
de la Jacobienne et que celles-ci méritent encore le nom d’anneaux tautologiques sur ces sous-
variétés. On étudie en détail le cas des courbes hyperelliptiques ; situation dans laquelle les algèbres
introduites admettent un nombre fini de générateurs, et en particulier sont de dimension finie. On
peut alors être très précis dans l’étude des relations entre ces générateurs. Enfin, on montre que
ces anneaux tautologiques apparaissent naturellement dans un autre contexte : celui des systèmes
linéaires complets sans point de base.

Mots clés : cycles algébriques, anneaux tautologiques, Jacobiennes, automorphismes, transformée
de Fourier, variétés de Prym généralisées.
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Notations

Ja, bK ensemble des entiers compris entre les réels a et b
#E cardinal d’un ensemble E
txu fonction partie entière de x
rxs fonction plafond de x
Φp p-ème polynôme cyclotomique rationnel
C courbe complexe complète et non-singulière
gpCq genre de C
KpCq corps des fonctions de C
AutpCq groupe d’automorphismes de C
Cpdq d-ème puissance symétrique de C
JpCq variété Jacobienne de C
fP plongement de C dans JpCq déterminé par un point rationnel P de C
Z ipXq ensemble des cycles algébriques de codimension i sur une variété X
ZipXq ensemble des cycles algébriques de dimension i sur une variété X
¨ produit d’intersection pour les cycles algébriques
˚ produit de Pontryagin pour les cycles algébriques
DivpXq groupe des diviseurs (de Weil) sur une variété X
CHpXq anneau de Chow d’une variété X
ApXq Q-algèbre des classes de cycles algébriques sur une variété X modulo équiva-

lence algébrique
PicpXq groupe de Picard de X
NSQpXq groupe de Néron-Severi rationnel d’une variété X
∆C cycle algébrique déterminé par la diagonale de C2

pX duale d’une variété abélienne X
pf homomorphisme dual d’un homomorphisme de variétés abéliennes
P
Xˆ pX

faisceau de Poincaré sur une variété abélienne X
l
Xˆ pX

classe de cycle algébrique dans A1pX ˆ pXq déterminée par P
Xˆ pX

FX transformée de Fourier pour les cycles algébriques sur une variété abélienne X
χ caractéristique d’Euler
VectKpIq K-espace vectoriel engendré par une famille de vecteurs I
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Introduction

L’objectif de cette thèse est d’étudier les cycles algébriques sur les variétés Jacobiennes de courbes
complexes projectives lisses qui admettent des automorphismes. Il s’agit plus précisément d’intro-
duire et d’étudier de nouveaux anneaux tautologiques associés à des groupes d’automorphismes de
la courbe.

Anneau tautologique

La notion d’anneau tautologique a été pour la première fois introduite et étudiée par Arnaud
Beauville dans [Bea04]. L’idée est la suivante. Soit C une courbe complexe projective lisse de genre
g “ gpCq ě 1. On note J “ JpCq sa variété Jacobienne et ApJq l’anneau des cycles algébriques sur
J modulo équivalence algébrique tensorisé par Q. Un point rationnel P étant fixé sur C, on dispose
d’un plongement fP : C ãÑ J . On obtient de cette manière un cycle exceptionnel et tout à fait
naturel dans Ag´1pJq : celui associé à la courbe image fP pCq Ă J . Pour alléger les notations, on
notera encore C cette classe de cycle qui, grâce à l’équivalence algébrique, est indépendante du choix
du point P . Pour plus de clarté introduisons déjà une notation.

Notation : Soit X une variété abélienne et J Ă ApXq une famille de cycles sur X. On note par
TautXpJ q l’anneau tautologique engendré par J , c’est-à-dire le plus petit Q-sous-espace vectoriel
de ApXq contenant J et fermé pour les opérations naturelles de ApXq ; à savoir les produits d’inter-
section et de Pontryagin, les pull-backs et push-forwards par les opérateurs k˚, k˚ induits pour tout
k P Z par les homothéties k “ kX : x ÞÑ kx de X.

Beauville a étudié l’anneau RpC; Jq :“ TautJptCuq grâce à un outil important : la transformée
de Fourier pour les cycles algébriques. La puissance de cet outil, pour ce qui nous intéresse, réside
entre autres dans la compatibilité de la transformée de Fourier avec les produits d’intersection et de
Pontryagin mais aussi compatibilité vis-à-vis des pull-backs et push-forwards des cycles. Beauville a
alors montré que cette Q-sous-algèbre de ApJq est engendrée

1. pour le produit de Pontryagin par les composantes homogènes Cpiq P Ag´1pJqpiq apparaissant
dans la décomposition de Beauville [Bea86] du cycle C,

2. pour le produit d’intersection par la transformée de Fourier des cycles Cpiq. Ces cycles seront
notés ´N i`1pwq pour des raisons qui apparaîtront plus clairement dans la suite.

Après avoir présenté de manière plus détaillée le cadre de travail de cette thèse au chapitre 1,
on s’attachera dès le chapitre 2 à étudier le comportement fonctoriel des anneaux RpC; Jq. Plus
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précisément, supposons que l’on ait un morphisme fini f : C Ñ C 1 entre courbes complexes pro-
jectives lisses. Celui-ci induit deux (homo)morphismes de variétés abéliennes f˚ : JpC 1q Ñ JpCq
et Nf : JpCq Ñ JpC 1q (morphisme d’Albanese). On étudiera l’action de ces morphismes par pull-
back et push-forward sur les cycles tautologiques associés à C et C 1. Le cas plus intéressant pour
nous est celui des revêtements Galoisiens cycliques f : C Ñ C 1 » C{xσy déterminés par un au-
tomorphisme σ P AutpCq d’ordre n P N˚. Dans ce cas, il apparaît naturellement dans ApJpCqq
des push-forwards de C par des polynômes en l’automorphisme σ (ou plus précisément polynômes
en l’automorphisme d’Albanese encore noté σ “ Nσ P AutpJpCqq). De ce point de vue, on sera
naturellement amené à étudier la plus petite extension de RpC; JpCqq stable par les pull-backs et
push-forwards par les polynômes en σ. On montrera que cette extension RσpC; JpCqq Ă ApJpCqq
mérite encore le nom d’anneau tautologique sur JpCq. Plus généralement, on introduira dans ce
chapitre 2 des anneaux tautologiques RGpC; JpCqq sur JpCq associés à n’importe quel groupe (fini)
d’automorphismes G Ă AutpCq. Ces anneaux tautologiques sont engendrés pour le produit d’inter-
section par les π˚N ipwq pour π P ZrGs.

En fait, l’étude de la fonctorialité de l’anneau RpC; JpCqq (mais aussi des RGpC; JpCqq) nous
amènera à considérer la sous-variété abélienne Y :“ Impf˚q Ă JpCq, sous-variété isogène à JpC 1q. On
considérera également une sous-variété abélienne Z complémentaire de Y dans JpCq. On montrera
que, sous-certaines hypothèses faibles sur G, les anneaux RGpC; JpCqq se restreignent en des familles
de cycles dans ApY q et ApZq qui méritent eux-aussi d’être qualifiées d’anneaux tautologiques sur
Y et Z. On vient ainsi généraliser un théorème de Maxim Arap [Ara12, Theorem 1] qui a mis en
évidence un anneau tautologique sur Z (analogue à l’anneau RpC; JpCqq sur les Jacobiennes) dans
le cas particulier où Z est une variété de Prym.

Dans le chapitre 3, on étudiera en détail ces anneaux tautologiques sur J et Z associés à un
automorphisme σ d’ordre p premier lorsque la courbe C est supposée hyperelliptique. Dans ce cas,
on montre que ces Q-algèbres sont engendrées par un nombre fini d’éléments. On présentera alors
dans ce chapitre une méthode pour étudier les relations entre ces générateurs ; obtenant ainsi la
structure d’algèbre complète (générateurs et relations) pour les anneaux tautologiques sur Z au
moins lorsque Z est de petite dimension.

Le dernier chapitre, le 4, montrera que ces anneaux tautologiques sur les variétés de Prym
généralisées Z apparaissent aussi dans un autre contexte. Il s’agira de généraliser des résultats de
Beauville [Bea82] et de Arap [Ara12] en montrant que tout système linéaire complet grd sans point
de base sur C 1 » C{xσy (avec σ d’ordre n quelconque sans point fixe) détermine des sous-variétés
spéciales sur Z dont les classes de cycles sont des cycles tautologiques sur Z. On donnera des formules
explicites pour décomposer ces classes en termes de générateurs de l’anneau tautologique sur Z.

Conventions

Les variétés considérées dans cette thèse sont des variétés complexes (bien que ce ne soit pas tou-
jours essentiel). Les courbes considérées seront systématiquement supposées complexes projectives et
lisses. Le terme de point désignera (sauf mention contraire) un point rationnel ou de manière équiva-
lente sur C, un point fermé. Lorsqu’on parlera de morphismes de variétés abéliennes, on sous-entendra
homomorphismes de variétés abéliennes. Un morphisme pi défini sur un produit de variétés désignera
classiquement la projection sur le i-ème facteur. Parfois, on notera aussi p “ p1 : X ˆ Y Ñ X et
q “ p2 : X ˆ Y Ñ Y .
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CHAPITRE 1

Cadre de travail et premières motivations

On précise dans ce chapitre le cadre de travail dans lequel ce texte s’inscrit. C’est l’occasion
d’introduire un certain nombre de notations, de rappeler les résultats connus et de commencer à
motiver l’étude à venir.

1.1 Cycles algébriques et relations d’équivalence

Pour plus de détails concernant cette section, une référence incontournable est [Ful98]. On pourra
toutefois s’intéresser dans un premier temps à [Mur14] pour obtenir une approche plus globale et
succincte des cycles algébriques et des relations d’équivalence.

1.1.1 Relations d’équivalence rationnelle, algébrique et homologique

Cycles algébriques : Soient X une variété complexe projective lisse de dimension g et i P J0, gK.
On note Z ipXq “ Zg´ipXq le groupe des cycles de codimension i (ou de manière équivalente de
dimension g´ i) sur X ; c’est-à-dire le Z-module libre engendré par les sous-variétés irréductibles de
X de codimension i.

Exemple 1.1.1 : Z1pXq “ DivpXq est le groupe des diviseurs (de Weil) sur X.

Étant donnée une sous-variété V de X, on notera (sauf mention explicite du contraire) rV s le
cycle algébrique déterminé par V . Plus généralement, si on considère un sous-schéma V dont les
composantes irréductibles sont V1, . . . , Vr, on note rV s “

řr
i“1mirVis où mi est la multiplicité de Vi

dans V ; à savoir la longueur de l’anneau OV,Vi .

Anneau de Chow : Soient p1, p2 les deux projections de X ˆ P1 sur X et P1 respectivement.
Étant donnée une sous-variété irréductible V de X ˆ P1 qui se projette de manière dominante sur
P1, on définit pour tout point t P P1 :

V ptq :“ p1

`

V ¨ pX ˆ ttuq
˘

.

Un cycle Z P Z ipXq est dit rationnellement équivalent à zéro, et on note Z P RatipXq, s’il existe
une correspondance γ P Z ipX ˆ P1q et deux points a, b P P1 tels que

Z “ γpbq ´ γpaq.

11
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On dit alors de deux cycles α, β P Z ipXq qu’ils sont rationnellement équivalents si leur différence est
rationnellement équivalente à zéro, c’est-à-dire α´ β P RatipXq. Ceci définit une relation d’équiva-
lence sur Z ipXq. Le quotient sera noté

CHg´ipXq “ CHipXq :“
Z ipXq

RatipXq
.

Le groupe de Chow de X est par définition

CHpXq :“
g
à

i“0

CHipXq.

On dispose d’un produit d’intersection bien défini sur CHpXq qui le munit d’une structure d’anneau
commutatif dont l’élément neutre est rXs. On parlera de l’anneau de Chow de X pour faire référence
à cette structure d’anneau pour le produit d’intersection pCHpXq,`, ¨q. Notons que la graduation
de l’anneau de Chow selon la codimension est compatible avec le produit d’intersection dans le sens
où

CHipXq ¨ CHjpXq Ă CHi`jpXq.

Équivalence algébrique : On définit de manière analogue une autre relation adéquate sur
Z ipXq : l’équivalence algébrique (voir par exemple [Mur14, Sous-section 1.3] ou encore [BL04, Re-
mark 16.1.1] pour une définition de relation adéquate). Pour cela, il suffit de reprendre la définition
d’équivalence rationnelle et de remplacer P1 par une courbe projective lisse C. On définit ainsi le
sous-groupe AlgipXq Ă Z ipXq des cycles algébriquement équivalents à zéro, puis

AipXq “ Ag´ipXq “
Z ipXq

AlgipXq
.

On peut donc considérer l’anneau des cycles algébriques modulo équivalence algébrique :

ApXq :“
g
à

i“0

AipXq.

En particulier, tout les points d’une courbe complexe projective lisse C sont algébriquement équiva-
lents entre eux de sorte que A1pCq » Z via l’application degré deg : A1pCq Ñ Z.

Équivalence homologique : On se fixe une cohomologie de Weil H¨pXq sur X ; c’est-à-dire une
cohomologie avec les bonnes propriétés usuelles (décomposition de Künneth, application classe de
cycles, etc. [Mur14, Sous-section 2.3]). Puisque l’on travaille sur C, pour nous ce sera la cohomolo-
gie singulière à coefficients entiers (ou rationnels) de X. Avec une cohomologie de Weil vient une
application classe de cycles

clX : Z ipXq Ñ H2ipXq.

On définit
HomipXq :“ Ker

`

clX : Z ipXq Ñ H2ipXq
˘

.

La relation d’équivalence rationnelle est la plus fine des relations adéquates. On a les inclusions
suivantes :

RatipXq Ă AlgipXq Ă HomipXq.

L’application clX passe donc au quotient à travers CHpXq et ApXq.
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1.1. Cycles algébriques et relations d’équivalence

Convention : Dans tout ce qui suit, on notera encore

CHpXq “ CHpXq bZ Q et ApXq “ ApXq bZ Q.

On travaillera donc avec des (classes de) cycles à coefficients rationnels.

1.1.2 Morphismes et théorie de l’intersection

Push-forward et pull-back : Si f : X Ñ Y est un morphisme propre entre variétés projectives
lisses, on dispose d’un morphisme de groupes

f˚ : ZipXq ÝÑ ZipY q.

défini de la manière suivante. Soit V une sous-variété irréductible de X,

f˚rV s “

#

degpf|V qrfpV qs si f|V : V Ñ fpV q est génériquement fini,
0 sinon.

Ce morphisme induit un morphisme de push-forward f˚ au niveau des anneaux de Chow mais aussi
au niveau des anneaux des cycles modulo équivalence algébrique.

Tout morphisme plat f : X Ñ Y induit un morphisme de groupes

f˚ : Z ipY q ÝÑ Z ipXq

déterminé par f˚rV s “ rf´1pV qs. Sans hypothèse de platitude sur f (grâce au lemme de déplacement
de Chow), on obtient même un morphisme d’anneaux au niveau des anneaux de Chow et modulo
équivalence algébrique.

Rappelons à présent deux résultats importants :

Proposition 1.1.2 (Formule de projection) - Soit f : X Ñ Y un morphisme propre entre variétés
projectives lisses. Alors pour tout x P CHpXq et y P CHpY q, on a

f˚px ¨ f
˚yq “ f˚x ¨ y.

Proposition 1.1.3 (Formule de changement de base) - Considérons un carré cartésien

X 1
g1 //

f 1

��

X

f
��

Y 1 g
// Y

entre variétés projectives lisses avec f propre et g plat. Alors pour tout cycle x P CHpXq, on a

f 1˚g
1˚x “ g˚f˚x.

Correspondances : Signalons enfin que tout correspondance (de codimension p) Z P CHppXˆY q
induit aussi un morphisme

Z˚ : CHipXq ÝÑ CHp´ipY q

défini par
@α P CHipXq, Z˚pαq :“ p2˚pZ ¨ p

˚
1αq.

13
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1.2 Cycles algébriques sur une variété abélienne

1.2.1 Produit de Pontryagin

On considère à présent une variété abélienne complexe X toujours de dimension g “ gpXq.
On note m : X ˆ X Ñ X sa loi de groupe et pX sa variété abélienne duale. En plus du produit
d’intersection sur CHpXq, on dispose d’un second produit : le produit de Pontryagin défini de la
manière suivante

@x, y P CHpXq, x ˚ y :“ m˚pp
˚
1x ¨ p

˚
2yq “ m˚pxˆ yq.

Intuitivement (et ensemblistement), considérer le produit de Pontryagin de deux cycles revient à
sommer (au sens loi de la variété abélienne) les points de ces deux cycles. Précisément, si V et W
sont deux sous-variétés irréductibles de X, alors

rV s ˚ rW s “ degpm|VˆW qrV `W s

si m|VˆW : V ˆW Ñ V `W est génériquement fini, sinon ce produit est nul. En particulier, le
produit de Pontryagin est homogène de degré ´g :

CHipXq ˚ CHjpXq Ă CHi`j´gpXq.

Ce produit de Pontryagin est lui aussi bien défini dans ApXq et on notera qu’il est compatible avec
les push-forwards de cycles par des homomorphismes de variétés abéliennes.

1.2.2 Transformée de Fourier

Un outil clé pour obtenir bon nombre de résultats présentés dans cette thèse est la transformée
de Fourier pour les cycles algébriques sur une variété abélienne X. On notera dans tout ce qui suit
l “ l

Xˆ pX
la classe du cycle du fibré de Poincaré P “ P

Xˆ pX
sur X ˆ pX. La transformée de Fourier

FX sur X est alors définie comme étant le morphisme induit par la correspondance

elXˆxX “

2g
ÿ

n“0

1

n!
ln
Xˆ pX

P CHpX ˆ pXq.

Plus explicitement, on a pour tout x P CHpXq,

FXpxq :“ p2˚pp
˚
1x ¨ e

l
XˆxX q.

Cette transformée de Fourier possède de nombreuses propriétés, notamment :

1. Identifiant canoniquement X avec la variété biduale x

xX (ce que l’on fera systématiquement),
on obtient une transformée de Fourier F

pX
: CHp pXq Ñ CHpXq sur pX. Elle vérifie l’importante

formule d’inversion de Fourier suivante :

F
pX
˝ FX “ p´1qgp´1Xq

˚.

2. Pour tous cycles x, y sur X, on a

FXpx ¨ yq “ p´1qgFXpxq ˚ FXpyq et FXpx ˚ yq “ FXpxq ¨ FXpyq.

On pourra se référer à [Bea83] pour obtenir bien d’autres propriétés sur cet outil.
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1.2. Cycles algébriques sur une variété abélienne

1.2.3 Décomposition de Beauville

La transformée de Fourier fournit par exemple une preuve élégante du théorème suivant démontré
en 1986 par Arnaud Beauville dans [Bea86]. Ce résultat affirme que les opérateurs k˚ et k˚ induits
sur CHpXq (mais aussi ApXq) par les homothéties k “ kX : X Ñ X pour k P Z se codiagonalisent.

Théorème 1.2.1 (Décomposition de Beauville) - Pour s P Z, on note CHppXqpsq le sous-espace de
CHppXq formé des classes x telles que k˚x “ k2p´sx pour tout k P Z (ou de manière équivalente
k˚x “ k2g´2p`sx). On a

CHppXq “
s“p
à

s“p´g

CHppXqpsq.

Esquisse de la preuve du théorème : Soit x P CHppXq un cycle de codimension pure p P J0, gK.
On souhaite décomposer x comme une somme de composantes homogènes x1 ` x2 ` . . . ` xk pour
certains cycles xq dans certains sous-espaces CHppXqpsq. Pour cela, on commence par appliquer FX
à x. Le cycle y :“ FXpxq se décompose sous la forme y “ y0` y1` . . .` yg où chaque yq P CHqp pXq.
Le premier argument clé consiste à vérifier que la composante yq appartient même à CHqp pXqp`q´g.
La seconde étape consiste à repasser à x grâce à la formule d’inversion de Fourier : les composantes
xq cherchées sont au signe près les transformées de Fourier F

pX
pyqq des yq. Ce sont encore des

cycles homogènes relativement à la bigraduation de Beauville puisque la transformée de Fourier est
compatible avec les sous-espaces CHppXqpsq :

FXpCHppXqpsqq “ CHg´p`sp pXqpsq.

Schématiquement, on peut visualiser la stratégie de la preuve sur le diagramme suivant :

x P CHppXq
FX //

?

y P
Àg

q“0 CHqp pXq

řg
q“0 xq P

Àg
q“0 CHppXqpp`q´gq

řg
q“0 yq P

Àg
q“0 CHqp pXqpp`q´gq

p´1qgp´1q˚F
xXoo

Remarque 1.2.2 : Ce résultat de décomposition a été par la suite généralisé par Deninger et Murre
[DM91] au cas des schémas abéliens.

On obtient ainsi une bigraduation de CHpXq qui se trouve être compatible avec les produits
d’intersection et de Pontryagin ainsi que vis-à-vis des pull-backs et push-forwards :

1. Si x P CHppXqpsq et y P CHqpXqptq, alors

x ¨ y P CHp`qpXqps`tq et x ˚ y P CHp`q´gpXqps`tq.

2. Si f : X Ñ Y est un homomorphisme de variétés abéliennes, alors

f˚CHppY qpsq Ă CHppXqpsq et f˚CHppXqpsq Ă CHp`dimpY q´dimpXqpY qpsq.

Beauville a conjecturé que seuls les indices psq avec s positifs interviennent :

Conjecture 1.2.3 (Beauville) : On a CHppXqpsq “ 0 pour s ă 0.

Cette conjecture est vraie pour p P t0, 1, g ´ 2, g ´ 1, gu.
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Remarque 1.2.4 : Le cas p “ 1 dans le théorème 1.2.1 est simplement la décomposition bien connue

PicQpXq “ Pic0
QpXq ‘ PicsQpXq “ CH1pXqp1q ‘ CH1pXqp0q

où PicsQpXq » NSQpXq est le sous-espace de PicQpXq formé par les diviseurs symétriques.

1.3 Variétés Jacobiennes

Pour plus de détails quant à cette partie, on pourra se référer (par exemple) à [Mil86].

1.3.1 Définition, autodualité et propriété d’Albanese

Définition : Étant donnée une courbe complexe projective lisse C, la composante neutre Pic0pCq
du schéma de Picard est munie d’une structure de schéma en groupe. C’est une variété abélienne
appelée la (variété) Jacobienne de la courbe C [Mil86, Theorem 1.1] et dont la dimension est égale
au genre g “ gpCq de C [Mil86, Proposition 2.1]. On la notera JpCq ou plus simplement J lorsqu’il
n’y a pas d’ambiguïté pour identifier la courbe. Autrement dit, la variété J vient paramétrer les
classes d’isomorphie de faisceaux inversibles de degré 0 sur C.

Appelons correspondance divisorielle entre deux schémas pointés pS, sq et pT, tq sur C un élément
L P PicpS ˆ T q dont les restrictions L|Sˆttu et L|tsuˆT le long de S ˆ ttu et tsu ˆ T sont triviales.
La Jacobienne de C vérifie alors la propriété universelle suivante [Mil86, Theorem 1.2] :

Soit P un point de C fixé. Il existe une correspondance divisorielle MP entre pC,P q et pJ, 0q
telle que pour toute correspondance divisorielle L entre pC,P q et un C-schéma pointé pT, tq, il existe
un unique morphisme ϕ : T Ñ J tel que ϕptq “ 0 et p1ˆ ϕq˚MP » L.

Par ailleurs, on fixera systématiquement un point P sur C. On disposera ainsi d’un plongement
naturel (aussi appelé application d’Abel) fP : C ãÑ J donné sur les points par

fP pQq :“ LCpQ´ P q

où l’on a noté LCpQ ´ P q la classe de faisceau inversible déterminée par le diviseur Q ´ P sur C.
Plus généralement, ce plongement induit pour tout entier d ě 1 un morphisme de la d-ème puissance
symétrique de la courbe à valeurs dans la Jacobienne :

ud : Cpdq ÝÑ JpCq.

Identifiant les points de Cpdq avec des diviseurs effectifs E de degré d sur C, le morphisme ud est
donné par udpEq :“ LCpE ´ dP q. En particulier, on a u1 “ fP . On montre enfin lorsque d ď gpCq
que l’application ud induit un morphisme birationnel sur son image [Mil86, Théorème 5.1.(a)]

Wd “W g´d :“ fP pCq ` . . .` fP pCq
loooooooooooomoooooooooooon

d fois

Ă J.

On notera dans ce qui suit wg´d P Ag´dpJq la classe de cycle déterminée par W g´d. Remarquez
que modulo équivalence algébrique, ces classes de cycle wg´d sont indépendantes du choix du point
rationnel P fixé puisqu’un choix différent n’a pour seul effet que de translater les variétés images
W g´d.
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1.3. Variétés Jacobiennes

Autodualité : De manière relativement classique et naturelle, la classe wg´1 déterminée par
fP pCq sera simplement notée C afin de ne pas alourdir le texte. Dans ce cas, on peut écrire

wg´k “
1

k!
C˚k “

1

k!
C ˚ C ˚ . . . ˚ C
loooooooomoooooooon

k fois

P Ag´kpJq.

La classe w1 “ θ est quant à elle celle d’un diviseur Theta de la Jacobienne : c’est la classe de cycle
d’une polarisation principale Θ sur J . Les variétés Jacobiennes sont donc autoduales. Précisément,
étant donné un diviseur D sur J , on définit le morphisme

ϕD : J ÝÑ pJ » Pic0pJq

donné sur les points par
ϕDpxq :“ t˚xLJpDq b LJpDq_

où LJpDq_ désigne le faisceau inversible dual de LJpDq (ou plus précisément sa classe dans Pic0pJq).
Le morphisme ϕD (qui est en fait un homomorphisme de variétés abéliennes de part le théorème
du carré) ne dépend que de la classe d’équivalence algébrique de D. Autrement dit, on dispose d’un
morphisme D ÞÑ HompJ, pJq du groupe de Néron-Severi NSpJq de J à valeur dans HompJ, pJq. Avec
ces notations, on montre [Mil86, Lemma 6.9] que ϕΘ est inversible et que son inverse n’est autre que
l’opposé du morphisme fP_ : pJ Ñ J induit sur les points par

fP˚ : Pic0pJq » pJpCq Ñ JpCq » Pic0pCq.

Citons encore les propriétés suivantes que l’on retrouvera dans [Mil86, Summary 6.11] :
1. Notons LP :“ Lp∆C´PˆC´CˆP q P PicpC2q où ∆C désigne la diagonale de C2. Le faisceau

inversible MP P PicpC ˆ Jq vérifie p1ˆ fP q˚MP » LP .
2. MP » pfP ˆ p´1qq˚p1ˆ ϕΘq

˚P
Jˆ pJ

» pfP ˆ p´1qq˚PJˆJ » pfP ˆ 1q˚P_JˆJ .
3. LP » pfP ˆ fP q˚P_JˆJ » pfP ˆ fP q˚pp˚1LJpΘq b p˚2LJpΘq bm˚LJpΘq_q.

On réutilisera ces formules par la suite.

Remarque 1.3.1 : Il existe une autre convention tout aussi répandue qui consiste à définir le
morphisme ϕD sur les points par ϕDpxq “ LJpDq b t˚xLJpDq_. Autrement dit, on considère ´ϕD
au lieu de ϕD. Un des avantages de cette autre convention réside essentiellement dans le fait que le
morphisme fP_ induit par fP˚ est alors directement l’inverse de ϕΘ (et non pas son opposé).

Propriété d’Albanese : La variété Jacobienne d’une courbe complexe projective lisse coïncide
avec sa variété d’Albanese caractérisée par la propriété universelle suivante [Mil86, Proposition 6.1] :

Soit P un point de C fixé. Pour toute application ϕ : C Ñ A de C dans une variété abélienne
envoyant P sur 0, il existe unique homomorphisme Nϕ : J Ñ A tel que ϕ “ Nϕ ˝ f

P .

En particulier, chaque automorphisme σ P AutpCq se prolonge en un élément Nσ P AutpJq que
l’on notera encore σ et faisant commuter le diagramme suivant :

C
σ //

fP

��

C
fσpP q // J.

J
Nσ

77

On vérifie aisément que ce prolongement est bien indépendant du point rationnel P fixé et que
l’application ainsi définie de AutpCq Ñ AutpJq est un morphisme de groupes.
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1.3.2 Anneau tautologique RpC; Jq de Beauville

Arnaud Beauville a étudié dans son article [Bea04] le plus petit Q-sous-espace vectoriel RpC; Jq
de ApJq contenant la classe de cycle C P Ag´1pJq et stable par les opérateurs naturels dont on dispose
sur ApJq ; à savoir le produit d’intersection, le produit de Pontryagin mais aussi tous les opérateurs
k˚ et k˚ induits par les homothéties de la Jacobienne pour tout k P Z. En ce sens, la Q-algèbre (pour
le produit d’intersection ou le produit de Pontryagin) RpC; Jq est qualifiée d’anneau tautologique
puisqu’il s’agit de déterminer quels sont les cycles de la Jacobienne naturellement engendrés par C.

Beauville a alors montré que RpC; Jq est engendré en tant que Q-sous-algèbre de ApJq

1. pour le produit d’intersection par w1, w2, . . . , wg,

2. pour le produit de Pontryagin par les composantes homogènes Cp0q, Cp1q, . . . , Cpg´1q apparais-
sant dans la décomposition de Beauville de la classe du cycle wg´1 “ C.

Il est par ailleurs intéressant de mettre en évidence un autre système de générateurs pour le
produit d’intersection. Il s’agit du système obtenu de la manière suivante. Considérons le polynôme
1
k!

řg
i“1X

k
i . C’est un polynôme symétrique en les indéterminées X1, . . . , Xg. Par suite, c’est un

polynôme Nk en les polynômes symétriques élémentaires usuels σ1, . . . , σg :

1

k!

g
ÿ

i“1

Xk
i “ Nk pσ1pX1, . . . , Xgq, . . . , σgpX1, . . . , Xgqq .

Si λi sont les racines formelles du polynôme

λg ´ w1λg´1 ` . . .` p´1qgwg “ 0,

les relations coefficients-racines montrent que σjpλ1, . . . , λgq “ wj et on définit alors

Nkpwq :“ Nkpw1, w2, . . . , wgq P AkpJq.

Formellement, on a donc défini

Nkpwq “
1

k!

g
ÿ

i“0

λki

On reconnaît là des sommes de Newton (à coefficient multiplicatif près) et les relations coefficients-
racines fournissent par exemple les égalités suivantes :

N1pwq “ w1 “ θ, 2N2pwq “ pw1q2 ´ 2w2, 6N3pwq “ pw1q3 ´ 3w2w1 ` 3w3.

Puisque l’on travaille en caractéristique 0, ces mêmes formules montrent que Nkpwq est un polynôme
en w1, . . . , wk et réciproquement. En particulier, on a Nkpwq P AkpJq et les classes de cycles Nkpwq
et wk engendrent la même Q-algèbre (pour le produit d’intersection). L’intérêt d’introduire ces cycles
Nkpwq est contenu dans l’égalité suivante [Bea04, Corollary 3.4] :

Nkpwq “ ´FJpCpk´1qq P AkpJqpk´1q

après identification de J et pJ via la polarisation principale ϕΘ.

Ceci étant dit, la première problématique étudiée dans cette thèse est la suivante. Considérons
une courbe C admettant un automorphisme σ (ou plusieurs). Celui-ci induit naturellement par
propriété d’Albanese de J un automorphisme σ P AutpJq.
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1.4. Variétés de Prym généralisées

Problématique 1 : Comment se comporte l’anneau tautologique RpC; Jq vis-à-vis de l’automor-
phisme σ P AutpJq ? Peut-on mettre en évidence un anneau tautologique dans ApJq naturellement
associé à un ou plusieurs automorphismes ? Plus généralement, quelle(s) conséquence(s) a l’existence
d’un ou plusieurs automorphismes de C sur l’anneau ApJq ?

Une première idée naturelle (mais qui s’avère très vite sans intérêt) est de faire agir le groupe
d’automorphismes engendré par σ par pull-back et push-forward sur l’anneau RpC; Jq. Or σ étant
induit par un automorphisme de la courbe C, il est immédiat qu’en tant que classe de cycles dans
ApJq on a pour tout entier k P Z,

σk˚C “ pσ´kq˚C “ C,

puis, par unicité de la décomposition de Beauville de C,

σk˚Cpiq “ pσ
´kq˚Cpiq “ Cpiq.

Les push-forwards induits par les puissances de σ étant compatibles avec le produit de Pontryagin,
les opérateurs σk˚ (et donc aussi σk˚) fixent point par point l’algèbre (pour le produit de Pontryagin)
engendrée par les Cpiq ; à savoir l’anneau tautologique RpC; Jq tout entier.

Cette approche est donc insuffisante. Pour combler cette lacune, l’idée sera de faire « agir » par
pull-back et push-forward non plus simplement le groupe d’automorphismes xσy Ă pAutpJq, ˝q sur
RpC; Jqmais le Z-module Zrxσys Ă pEndpJq,`, ˝q (qui n’est rien d’autre que l’anneau des polynômes
en σ lorsque σ est d’ordre fini ; hypothèse que l’on fera par la suite et qui est automatiquement vérifiée
lorsque g ě 2). La suite de cette thèse viendra appuyer encore davantage le caractère tout à fait
naturel de cette approche.

1.4 Variétés de Prym généralisées

1.4.1 Généralités

On considère à présent un morphisme fini f : C Ñ C 1 de degré n P N˚ entre courbes complexes
projectives lisses de genre respectif g “ gpCq ě 1 et g1 “ gpC 1q ě 0. On dispose donc de deux
anneaux tautologiques RpC; JpCqq et RpC 1; JpC 1qq dans ApJpCqq et ApJpC 1qq respectivement. On
notera de manière concise J “ JpCq et J 1 “ JpC 1q. Le morphisme f induit deux morphismes de
variétés abéliennes :

Nf : J Ñ J 1 : LC
´

ÿ

niPi

¯

ÞÑ LC1
´

ÿ

nifpPiq
¯

f :“ f˚ : J 1 Ñ J : L ÞÑ f˚L.

Problématique 2 : Quels liens existent-ils entre les anneaux tautologiques RpC; Jq et RpC 1; J 1q ?
Plus précisément, quelle est l’action par pull-back et push-forward des morphismes Nf et f sur les
cycles tautologiques associés à C et C 1 ?

Autrement dit, on se pose la question de la fonctorialité des anneaux tautologiques RpC; Jq.
L’intuition suggère que le lien entre RpC; Jq et RpC 1, J 1q se fait au niveau de la sous-variété abélienne
Y :“ Impfq Ă J . On s’intéressera également à une sous-variété abélienne Z, complémentaire de Y
dans J (voir Chapitre 2, Sous-section 2.3.1 pour plus de détails à ce sujet).

Lorsque f est un revêtement double étale ou ramifié en exactement deux points, la variété Z
n’est rien d’autre que la variété de Prym associée à f . En ce sens, on qualifiera les variétés Z de
variétés de Prym généralisées.
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1.4.2 Revêtements Galoisiens n-cycliques

Dans cette thèse, on s’intéresse en tout premier lieu aux courbes avec automorphismes. Ceci
justifie que l’on précise à présent le cas où le revêtement f : C Ñ C 1 est associé à un automorphisme
de la courbe C. Rappelons deux définitions.

Définition 1.4.1 Un revêtement Galoisien fini est un morphisme fini f : C Ñ C 1 entre courbes
complexes projectives lisses C et C 1 tel qu’il existe un isomorphisme C 1 » C{Autpfq où

Autpfq :“ tµ P AutpCq | f ˝ µ “ fu

désigne le groupe d’automorphismes du revêtement. Cela revient à dire que l’extension des corps de
fonctions KpCq{KpC 1q est Galoisienne.

Dans ce cas, le corps de fonctions KpC 1q de C 1 est donné par le sous-corps des invariants
KpCqAutpfq Ă KpCq pour le groupe de Galois GalpKpCq{KpC 1qq » Autpfq.

Définition 1.4.2 Soit f : C Ñ C 1 un revêtement Galoisien entre courbes. On dit que f est un
revêtement Galoisien n-cyclique si Autpfq » Z{nZ. Dans ce cas, on considérera systématiquement
un générateur σ P Autpfq de sorte que C 1 » C{xσy.

Remarque 1.4.3 : Soit C une courbe projective lisse munie d’un automorphisme σ P AutpCq.
Alors la courbe C{xσy est aussi lisse. En effet, il s’agit de vérifier que la courbe C{xσy est normale.
Puisque la lissité est une notion locale, on peut suppose que C “ SpecpAq est affine de sorte
que C 1 “ SpecpAxσyq. On vérifie alors facilement que Axσy est intégralement clos dans KpC 1q “
FracpAxσyq “ KpCqxσy en utilisant la lissité de C.

1.4.3 Anneau tautologique RpψZ˚C;Zq de Arap

Étant donné un revêtement Galoisien n-cyclique f : C Ñ C 1 » C{xσy, il se pose maintenant les
questions suivantes :

Problématique 3 : Que peut-on dire des restrictions à Y et Z de l’anneau tautologique RpC; Jq ?
des anneaux tautologiques sur J associées à un ou plusieurs automorphismes de C ? Ces restrictions
induisent-elles une notion raisonnable d’anneaux tautologiques (associés à un ou plusieurs automor-
phismes) sur Y et Z ?

Dans [Ara12, Theorem 1] Maxim Arap apporte un premier élément de réponse à cette probléma-
tique dans le cas particulier où Z est une variété de Prym. Il montre que l’on dispose d’un anneau
tautologique RpψZ˚C;Zq Ă ApZq engendré pour le produit de Pontryagin par les cycles ψZ˚Cpiq
(et pour le produit d’intersection par la transformée de Fourier de ces cycles). On généralisera de
plusieurs manières ce théorème de Arap. On obtiendra ainsi des anneaux tautologiques sur Z (et Y )
dont on connaîtra un système au plus dénombrable de générateurs.

Problématique 4 : Jusqu’où peut-on pousser l’étude des ces nouveaux anneaux tautologiques sur
Z associés à des automorphismes ? Peut-on étudier précisément les relations entre les générateurs de
ces Q-sous-algèbres de ApZq ?

On répondra de manière détaillée à cette problématique dans le cas où C est hyperelliptique et
l’automorphisme est d’ordre premier. Plus généralement, on accordera une importance toute particu-
lière à montrer que ces nouveaux anneaux tautologiques associés à des automorphismes apparaissent
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naturellement en géométrie algébrique. On verra notamment que les anneaux sur Z apparaissent dès
lors que l’on dispose d’un système linéaire complet sans point de base sur C 1.
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CHAPITRE 2

Tautological rings on Jacobian varieties of curves with automorphisms

Abstract 1 Let J be the Jacobian of a smooth projective complex curve C which admits non-
trivial automorphisms, and let ApJq be the ring of algebraic cycles on J with rational coefficients
modulo algebraic equivalence. We present new tautological rings in ApJq which extend in a natural
way the tautological ring studied by Beauville in [Bea04]. We then show there exist tautological
rings induced on special complementary abelian subvarieties of J .

Keywords Algebraic cycles ¨ Tautological rings ¨ Jacobians ¨ Automorphisms ¨ Fourier trans-
forms

Mathematics Subject Classification (2010) 14C15 ¨ 14C25 ¨ 14H37 ¨ 14H40

2.1 Introduction

In this paper we consider varieties over C. Let X be an abelian variety of dimension g ě 1. We
denote by m its group law and by pX the dual variety. We consider the ring A¨pXq of algebraic cycles
on X with rational coefficients modulo algebraic equivalence. Beauville showed in [Bea86] that there
exists a bigraduation on ApXq. Specifically, we have

AppXq “
p
à

s“p´g

AppXqpsq

where p refers to the codimension grading and s refers to eigenspaces of the operators k˚ and k˚

induced by the homotheties k “ kX on X for any k P Z. These eigenspaces are characterized by x P
AppXqpsq if and only if for all k P Z, k˚x “ k2p´sx (or equivalently k˚x “ k2g´2p`sx). Note that this
bigraduation is compatible with the intersection and Pontryagin products on X denoted respectively
by ¨ : AppXqpsq ˆ AqpXqptq Ñ Ap`qpXqps`tq and ˚ : AppXqpsq ˆ AqpXqptq Ñ Ap`q´gpXqps`tq. An
important tool to study this structure on ApXq which will play a major role in the sequel is the
Fourier transform FX : ApXq Ñ Ap pXq on X. This map is defined as follows. Consider the Poincaré
line bundle P

Xˆ pX
on X ˆ pX and its cycle class l

Xˆ pX
:“ c1pPXˆ pX

q in A1pX ˆ pXq. For any cycle
x P ApXq, we put FXpxq :“ p2˚pp

˚
1x ¨ e

l
XˆxX q where p1 and p2 are the natural projections of X ˆ pX

to X and pX respectively. Recall the following important facts (see [Bea83]) :

1. [Ric16]
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1. Identifying X with its bidual variety x

xX (as we will always do), we get a Fourier transform
F

pX
: Ap pXq Ñ ApXq on pX. It satisfies the relation

F
pX
˝ FX “ p´1qgp´1Xq

˚.

2. For all cycles x, y on X, we have

FXpx ¨ yq “ p´1qgFXpxq ˚ FXpyq and FXpx ˚ yq “ FXpxq ¨ FXpyq.

The reader should refer to [Bea83] for an overview of many other properties of the Fourier transform.
In §2.2 we present slight generalizations of these properties. This section will be used in §2.5 and
§2.6 when we will work with non principal polarizations.

In §2.3 we consider a smooth projective curve C of genus gpCq “ g ě 1 whose Jacobian will be
denoted by J “ JpCq. We fix a rational point P on C to embed the curve in its Jacobian via the
usual map fP : C ãÑ JpCq defined on points by Q ÞÑ LCpQ´P q. This map allows us to consider the
cycle class defined by C, and still denoted by C, in Ag´1pJq. Note that this class does not depend
on the choice of P since we are working modulo algebraic equivalence. Let us introduce the following
notation. Let J Ă ApXq be a family of cycles on X. We denote by TautXpJ q the tautological ring
generated by J , that is to say the smallest Q-vector subspace of ApXq containing J and closed
under natural operations on ApXq ; namely intersection and Pontryagin products, and operators
k˚, k

˚ for all k P Z.
In [Bea04] Beauville studied the tautological ring RpC; Jq :“ TautJptCuq. He proved that the

Q-algebra RpC; Jq is generated for the intersection product by the classes

wi “
1

pg ´ iq!
C˚pg´iq P AipJq, i P J0, gK

of the subvarieties Wg´i parametrizing effective divisors on C of degree g ´ i. Another system of
generators is given by Newton polynomials in the wi, denoted by N ipwq P AipJqpi´1q. When RpC; Jq
is endowed with its structure of algebra for the Pontryagin product, a set of generators is given by
the Fourier transforms of the N ipwq, which are (up to a sign) the components Cpiq P Ag´1pJqpiq
appearing in Beauville’s decomposition of C P Ag´1pJq. The aim of §2.3 is to clarify the functorial
behaviour of this tautological ring RpC; Jq. In Section 2.3 we consider a finite morphism of curves
f : C Ñ C 1 and we explain the action of the induced morphism f˚ : JpC 1q Ñ JpCq and the
Albanese morphism Nf : JpCq Ñ JpC 1q on RpC; JpCqq and RpC 1; JpC 1qq. For a morphism of curves
f , the abelian subvariety Y :“ Impf˚q of JpCq with canonical embedding ιY : Y ãÑ JpCq plays
a crucial role. Indeed Y is isogenous to JpC 1q via the corestriction map j “ f˚ : JpC 1q Ñ Y . We
will also associate to Y (as we will do for any abelian subvariety of JpCq) its norm-endomorphism
NY : JpCq Ñ JpCq and the map ψY P HompJpCq, Y q defined by NY “ ιY ˝ ψY (see [BL04, §5.3]).
When f : C Ñ C 1 » C{xσy is a cyclic Galois covering for some σ P AutpCq of finite order, one
highlights naturally in ApJpCqq some cycle classes of the form P pσq˚C where P pσq P Zrσs is a
polynomial in the automorphism σ or more accurately a polynomial in the Albanese morphism still
denoted by σ “ Nσ P AutpJpCqq.

This leads us to §2.4 where we consider a curve C with a finite automorphism group G Ă AutpCq.
We will prove the following main result :

Theorem 2.1.1. Let C be a smooth projective complex curve of genus g ě 1 and G a finite group
of automorphisms of C. Then the tautological ring

RGpC; Jq :“ TautJ

´

tπ˚C P ApJq | π P ZrGs Ă EndpJqu
¯

is generated as Q-subalgebra of ApJq
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1. for the intersection product by all π˚N ipwq,

2. for the Pontryagin product by all π˚Cpi´1q

with π P ZrGs and i P J1, g ´ 1K.

In case of a cyclic automorphism group G “ xσy, we will put RσpC; Jq :“ RxσypC; Jq. Further-
more, each subgroup K of G determines a subtautological ring RKpC; Jq Ă RGpC; Jq. For example,
with K “ tIdu we get RpC; Jq Ă RGpC; Jq. Actually, the tautological ring RGpC; Jq is the smallest
Q-algebra extension of RpC; Jq which is stable under intersection product, Pontryagin product and
pull-backs and push-forwards by elements in ZrGs Ă EndpJq. This is a very natural characterization
which may have been chosen at first to define these tautological rings :

Corollary 2.1.2. The tautological ring RGpC; Jq is the smallest Q-algebra extension of RpC; Jq
for the intersection product (resp. Pontryagin product) which is stable under pull-backs (resp. push-
forwards) by polynomials in ZrGs Ă EndpJq.

Now let us stress why the adjective tautological is still appropriate to such rings RGpC; Jq. If
one considers a curve without non-trivial automorphism, we are interested in the smallest Q-vector
subspace of ApJq which contains the cycle class C, and closed under both products, pull-backs
and push-forwards by scalars in Z Ă EndpJq (that is constant polynomials). This ring is precisely
Beauville’s tautological ring RpC; Jq. But if C has a non-trivial automorphism group G, the same
natural idea leads us to study the smallest Q-vector subspace of ApJq which contains the class
C, and closed under both products, pull-backs and push-forwards by elements in ZrGs ; that is
RGpC; Jq. Besides, having all these tautological and subtautological rings associated to groups and
subgroups of automorphisms strengthens the following idea : for a Jacobian variety with non-trivial
automorphisms, the ring ApJq carries a much richer structure than that of a generic Jacobian ; which
is already an interesting fact in itself.

In the next section, that is §2.5, we will explore the link between tautological rings of JpC{xσyq
and JpCq. These rings are closely related as pointed out in

Theorem 2.1.3. Let f : C Ñ C 1 » C{xσy be a n-cyclic Galois covering associated to an auto-
morphism σ P AutpCq of order n P N˚. We consider a finite group of automorphisms G Ă AutpCq
and we suppose that each g P G commutes with σ so that there is an automorphism rg P AutpC 1q
satisfying the relation f ˝ g “ rg ˝ f . We denote by rG Ă AutpC 1q the group of automorphisms induced
that way on C 1. Then the tautological ring

RGpψY ˚C;Y q :“ TautY

´

tπ˚ψY ˚C P ApY q | π P ZrGsu
¯

is generated as Q-subalgebra of ApY q

1. for the intersection product by all π˚ι˚YN
i`1pwq “ ι˚Y π

˚N i`1pwq,

2. for the Pontryagin product by all π˚ψY ˚Cpiq “ ψY ˚π˚Cpiq

with π P ZrGs and i P J0, gpC 1q ´ 1K. Therefore, the isogeny j “ f˚ : JpC 1q Ñ Y induces an
isomorphism (as Q-vector spaces)

R
rG
pC 1; JpC 1qq » j˚R

rG
pC 1; JpC 1qq “ TautY

´

j˚R
rG
pC 1; JpC 1qq

¯

“ ι˚YRGpC; JpCqq “ ψY ˚RGpC; JpCqq “ RGpψY ˚C;Y q.

The last part of this article, that is §2.6, is dedicated to tautological rings induced on the natural
abelian subvariety Z of JpCq, the complementary abelian variety to Y with respect to the Theta
polarization on JpCq (see [BL04, Section 5.3]). We will prove
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Theorem 2.1.4. Let f : C Ñ C 1 » C{xσy be a n-cyclic Galois covering associated to an automor-
phism σ P AutpCq of order n P N˚. We consider a finite group of automorphisms H Ă AutpCq and
we suppose that σ P H is central in H. Then the tautological ring

RσHpψZ˚C;Zq :“ TautZ

´

tπ˚ψZ˚C P ApZq | π P ZrHsu
¯

is generated as Q-subalgebra of ApZq

1. for the intersection product by all π˚ι˚ZN
ipwq “ ι˚Zπ

˚N ipwq,
2. for the Pontryagin product by all π˚ψZ˚Cpi´1q “ ψZ˚π˚Cpi´1q

with π P ZrHs and all i P J1,dimZ ´ 1K. In other words,

RσHpψZ˚C;Zq “ ι˚ZRHpC; JpCqq “ ψZ˚RHpC; JpCqq.

In particular, considering the case of a cyclic automorphism group H “ xσy leads to :

Theorem 2.1.5. Let f : C Ñ C 1 » C{xσy be a n-cyclic Galois covering associated to an automor-
phism σ P AutpCq of order n P N˚. Then the tautological ring

RσpψZ˚C;Zq :“ TautZ

´

tP pσq˚ψZ˚C P ApZq | P P ZrXsu
¯

is generated as Q-subalgebra of ApZq

1. for the intersection product by all P pσq˚ι˚ZN
ipwq “ ι˚ZP pσq

˚N ipwq,
2. for the Pontryagin product by all P pσq˚ψZ˚Cpi´1q “ ψZ˚P pσq˚Cpi´1q

with P P ZrXs and all i P J1, dimZ ´ 1K. In particular,

RσpψZ˚C;Zq “ ι˚ZRσpC; JpCqq “ ψZ˚RσpC; JpCqq.

This theorem 2.1.5 yields a generalization of a theorem proved by Arap [Ara12] who gave the
analogue in ApZq of Beauville’s tautological ring RpC; JpCqq in the special case where Z is a Prym
variety. That is essentially when f : C Ñ C 1 is of degree 2 and either étale or ramified in exactly
two points (see [BL04, Theorem 12.3.3]). We finish with a few examples which provide a full explicit
structure for the algebra RσpψZ˚C;Zq Ă ApZq when σ is of order 2 and C is a k-gonal curve with
k P t2, 3, 4, 5u.

2.2 Preliminaries

The Fourier transform on abelian varieties will be central in almost all following results. The-
refore we start with some properties of this map. The following proposition is a slight but useful
generalization of Beauville’s result ([Bea83, Proposition 3.(iii)] or [BL04, Proposition 16.3.4] ; see
also [MP10, Formula (3.7.1)]). It will help us to work with Fourier transform and pull-backs or
push-forwards by arbitrary morphisms of abelian varieties.

Remark 2.2.1. By definition a morphism of abelian varieties respects the group structure.

Proposition 2.2.2. Let X,Y be two abelian varieties and α : Y Ñ X a morphism of abelian
varieties. Then

FX ˝ α˚ “ pα˚ ˝ FY and FY ˝ α˚ “ p´1qdimX´dimY
pα˚ ˝ FX .

In particular, if α is an isogeny or if X “ Y , we have

FX ˝ α˚ “ pα˚ ˝ FY and FY ˝ α˚ “ pα˚ ˝ FX .
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Proof. We start with the proof of the first equality. The idea is to use the following universal property
of Poincaré line bundles :

pαˆ 1
pX
q˚P

Xˆ pX
» p1Y ˆ pαq˚P

YˆpY
.

Passing to cycle classes, we obtain

pαˆ 1
pX
q˚l

Xˆ pX
“ p1Y ˆ pαq˚l

YˆpY
.

Then passing to the exponential and using the fact that pull-backs are compatible with the inter-
section product, we get

pαˆ 1
pX
q˚elXˆxX “ p1Y ˆ pαq˚elYˆ pY P ApY ˆ pXq.

Moreover by definition of the Fourier transform on X, we have

FXα˚pyq :“ pelXˆxX q˚α˚pyq

where pelXˆxX q˚ : ApXq Ñ Ap pXq denotes the morphism induced by the correspondence elXˆxX from
X to pX (see [Ful98, Chapter 16] or [BL04, Section 16.2]). Then using Equation (16.4) of [BL04] p527
or [Ful98, Propositions 16.1.1 and 16.1.2], we have

FXα˚pyq “ pelXˆxX q˚α˚pyq

“

´

pαˆ 1
pX
q˚elXˆxX

¯

˚
pyq “

´

p1Y ˆ pαq˚elYˆ pY

¯

˚
pyq

“ pα˚pelYˆ pY q˚pyq “ pα˚FY pyq

which completes the proof of the first statement.
We then prove the second equality by applying the first one with pα : pX Ñ pY :

F
pY
pα˚ “ p

pα ˚F
pX
“ α˚F

pX

when identifying X and x

xX by biduality. The other main tool is to use inversion formulas for the
Fourier transforms on X and Y . Moreover, as α is a morphism of abelian varieties, we immediately
have f ˝ p´1Y q “ p´1Xq ˝ α. Now it remains to put together these arguments :

FY α˚ “ FY α˚p´1qdimXp´1Xq
˚F

pX
FX (inversion formula for FX)

“ p´1qdimXFY p´1Y q
˚α˚F

pX
FX (Q-linarity of FY and α˚ and α ˝ p´1Y q “ p´1Xq ˝ α)

“ p´1qdimXFY p´1Y q˚α
˚F

pX
FX (p´1Y q

˚ “ p´1Y q˚ because ´1Y is an involution)

“ p´1qdimXp´1
pY
q˚FY α˚F

pX
FX (applying first equality with ´1Y and z´1Y “ ´1

pY
)

“ p´1qdimXp´1
pY
q˚FY F

pY
pα˚FX (applying first equality with pα)

“ p´1qdimX´dimY p´1qdimY p´1
pY
q˚FY F

pY
pα˚FX

“ p´1qdimX´dimY
pα˚FX (inversion formula for FY ).

In particular, if α : Y Ñ X is an isogeny or if X “ Y , we have dimX “ dimY and we get the last
part of the proposition.

The different results presented in this paper involve polarized (but not necessarily principally
polarized) abelian varieties pX, ξq. For such a polarization, we consider the isogeny

ϕξ : X Ñ Pic0pXq » pX
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given on points by
ϕξpxq “ t˚xLXpξq b LXpξq_

where LXpξq_ denotes the (class) of the dual invertible sheaf associated to the (class) of the ample
divisor ξ. It is known that there exists an inverse isogeny up to scalar, denoted by ψξ P Homp pX,Xq.
These morphisms satisfy relations

ψξ ˝ ϕξ “ nX and ϕξ ˝ ψξ “ n
pX

for some n P N˚. Recall that the dual map of ϕξ satisfies xϕξ “ ϕξ ([BL04, Corollary 2.4.6]) and thus
xψξ “ ψξ too. Having said that, we will often consider the map ϕ˚ξFX : ApXq Ñ ApXq (or the map
ψξ˚FX : ApXq Ñ ApXq) instead of FX .

The following proposition give us some properties of the operator ϕ˚ξFX as in [Bea04, §2.4 - 2.7].
It allows us to link (more deeply) the Fourier transform on X and the Pontryagin product.

Proposition 2.2.3. Keeping above notations, we consider the operator F :“ ϕ˚ξFX . It satisfies the
following properties :

1. Inversion formula : F ˝ F “ degpϕξqp´1qdimXp´1Xq
˚.

2. We have for all x, y P ApXq,

Fpx ˚ yq “ Fpxq ¨ Fpyq and Fpx ¨ yq “ p´1qdimX

degpϕξq
Fpxq ˚ Fpyq.

3. FpAppXqpsqq “ AdimX´p`spXqpsq.
4. Let x P ApXq. We put x :“ p´1q˚x. Then

Fpxq “ e´ξ ¨ ppx ¨ e´ξq ˚ eξq P ApXq.

Proof.
1. It is known that F

pX
˝FX “ p´1qdimXp´1Xq

˚. Therefore, using that ϕξ˚ϕ˚ξ “ degpϕξq, xϕξ “ ϕξ
and the compatibility between FX and isogenies (Proposition 2.2.2), we get

F ˝ F “ ϕ˚ξFXϕ˚ξFX “ F
pX
ϕξ˚ϕ

˚
ξFX “ degpϕξqp´1qdimXp´1Xq

˚.

2. Since pull-backs commute with the intersection product, we immediately get

Fpx ˚ yq “ ϕ˚ξFXpx ˚ yq “ ϕ˚ξ pFXpxq ¨ FXpyqq “ pϕ˚ξFXpxqq ¨ pϕ˚ξFXpyqq “ Fpxq ¨ Fpyq.

We deduce the other equality from the inversion formula.
3. According to [Bea86, Proposition 2], we have

FpAppXqpsqq “ ϕ˚ξAg´p`sp pXqpsq Ă Ag´p`spXqpsq.

Once again, we obtain the result thanks to the first assertion.
4. Keeping the notation l

Xˆ pX
for the cycle class in A1pXˆ pXq of the Poincaré line bundle P

Xˆ pX

on X ˆ pX, we have according to [Mum08, p131]

p1ˆ ϕξq
˚l
Xˆ pX

“ m˚ξ ´ p˚ξ ´ q˚ξ

where p, q : X ˆX Ñ X denote natural projections. We then use the flat base change formula

Fpxq “ ϕ˚ξp2˚pp
˚
1x ¨ e

l
XˆxX q “ q˚p1ˆ ϕξq

˚pp˚1x ¨ e
l
XˆxX q
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where p1 : X ˆ pX Ñ X and p2 : X ˆ pX Ñ pX. Thus

Fpxq “ q˚

´

p1ˆ ϕξq
˚p˚1x ¨ e

p1ˆϕξq
˚l
XˆxX

¯

“ q˚pp
˚x ¨ em

˚ξ´p˚ξ´q˚ξq.

The next step consists in introducing the involution wpa, bq “ p´a, a ` bq on X ˆ X. We
immediately check the exactness of following relations

p ˝ w “ ´p, q ˝ w “ m, m ˝ w “ q.

Therefore,

Fpxq “ e´ξ ¨ pq˚w˚qw
˚pp˚px ¨ e´ξq ¨ em

˚ξq

“ e´ξ ¨m˚pp
˚p´1q˚px ¨ e´ξq ¨ eq

˚ξq

“ e´ξ ¨m˚pp
˚px ¨ e´ξq ¨ q˚eξq

because ξ P NSQpXq “ A1pXqp0q is symmetric (that is p´1q˚ξ “ ξ). This yields the result by
definition of the Pontryagin product.

We use this proposition to deduce the following corollary (inspired by [Bea83, Lemme 1] or
[Bea83, Proposition 5]). It will be used only once, to prove Proposition 2.2.5.

Corollary 2.2.4. Let ξ P A1pXqp0q be a polarization on an abelian variety X. Then

ϕ˚ξFXpeξq “ χpξqe´ξ

where χ denotes the Euler characteristic. Accordingly,

eξ “
p´1qdimX

χpξq
ϕ˚ξFXpe´ξq.

Proof. Thanks to Proposition 2.2.3 (4) and since p´1q˚ξ “ ξ, we have

ϕ˚ξFXpeξq “ e´ξ ¨ ppep´1q˚ξ ¨ e´ξq ˚ eξq “ e´ξ ¨ ppeξ ¨ e´ξq ˚ eξq “ e´ξ ¨ prXs ˚ eξq.

Thus, for codimension reasons and by using the Riemann-Roch theorem for abelian varieties (see
[Mum08, p150]), we obtain

ϕ˚ξFXpeξq “ e´ξ ¨

ˆ

rXs ˚
1

pdimXq!
ξdimX

˙

“ χpξqe´ξ ¨ prXs ˚ rosq

“ χpξqe´ξ ¨ rXs “ χpξqe´ξ,

where ros denotes the class of a point in X. Hence the first part of the corollary. Moreover, using
the inversion formula (see Proposition 2.2.3 (1)), we get

degpϕξqp´1qdimXp´1q˚eξ “ ϕ˚ξFXϕ˚ξFXpeξq “ χpξqϕ˚ξFXpe´ξq.

Since degpϕξq “ χpξq2 (see [Mum08, p150]) and p´1q˚eξ “ eξ (because ξ is symmetric), we obtain
the second part of this corollary.

Proposition 2.2.5. Let T be a bigraded Q-subalgebra (for the intersection product) of ApXq. We
suppose that T contains the class of the polarization ξ on X. The following statements are equivalent :

1. T ˚ T Ă T .
2. ϕ˚ξFXpT q Ă T .
3. ϕ˚ξFXϕ˚ξFXpT q Ă ϕ˚ξFXpT q.
4. ξ ¨ ϕ˚ξFXpT q Ă ϕ˚ξFXpT q.

Proof. Let us note F :“ ϕ˚ξFX : ApXq Ñ ApXq.
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p1q ñ p2q We assume that T is stable under Pontryagin product. Let x P T . According to Propo-
sition 2.2.3 (4), we have

Fpxq “ e´ξ ¨ ppx ¨ e´ξq ˚ eξq P T

because on the one hand x :“ p´1q˚x P T (since T is bigraded) and on the other both e´ξ and eξ

belong to T (since ξ P T by hypothesis and T is stable under intersection product).

p2q ñ p1q Let x, y P T . Thanks to Proposition 2.2.3 p1q and p2q, we have

x ˚ y “
p´1qdimX

degpϕξq
p´1q˚FFpx ˚ yq “ p´1qdimX

degpϕξq
p´1q˚FpFpxq ¨ Fpyqq

P FpFpT q ¨ FpT qq Ă FpT ¨ T q Ă FpT q

since by hypothesis FpT q Ă T and the algebras T and FpT q are bigraded.

p2q ñ p3q If FpT q Ă T , then we immediately get FFpT q Ă FpT q by applying F .

p3q ñ p2q We assume that FFpT q Ă FpT q. Since T is a bigraded Q-vector space, the inversion
formula for F shows that we actually have T Ă FpT q. Applying F to this inclusion, we get the
reversed one, that is statement p2q. In particular, we have p2q if and only if we have p3q if and only
if FpT q “ T .

p3q ñ p4q Now we assume that FFpT q Ă FpT q or equivalently FpT q “ T . Therefore, since ξ P T
and T is stable by intersection by hypothesis, we have assertion p4q as claimed.

p4q ñ p3q Assume that ξ ¨ FpT q Ă FpT q. We are going to show that FFpT q Ă FpT q. So let us
consider a cycle x P FpT q. The main idea is to use Proposition 2.2.3 (4). We first have x :“ p´1q˚x P
FpT q. Then

x ¨ e´ξ P e´ξ ¨ FpT q Ă FpT q.

Corollary 2.2.4 shows that eξ P FpT q. At this moment we have used one more time the hypothesis
that ξ P T (as it implies that e´ξ P T too). Consequently, we obtain

px ¨ e´ξq ˚ eξ P FpT q ˚ FpT q Ă FpT ¨ T q Ă FpT q.

And finally

Fpxq “ e´ξ ¨ ppx ¨ e´ξq ˚ eξq P e´ξ ¨ FpT q Ă FpT q

by using the hypothesis p4q. Hence the claimed inclusion FFpT q Ă FpT q ; which completes the proof
of this proposition.

Remark 2.2.6. Note that it is essential in this proof that the polarization ξ belongs to T .
The two next results will be used several times to exchange pull-backs and push-forwards by

isogenies. Indeed it will be very convenient to work with pull-backs (resp. push-forwards) when
subalgebras of ApXq are endowed with the intersection product (resp. Pontryagin product).

Lemma 2.2.7. Let α : X Ñ Y be an isogeny between two abelian varieties X and Y . There exists
an isogeny β : Y Ñ X and an integer n P N˚ such that α ˝ β “ nY and β ˝ α “ nX . Then for all
y P ApY q we have

β˚y “
1

degpαq
nX˚α

˚y.
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Therefore, if y P AipY qpsq for some indices i and s, then β˚y P AipXqpsq is proportional to α˚y (and
is nonzero if y ‰ 0).

Proof. Let y P ApY q. Since β ˝α “ nX and α is a finite flat morphism of degree degpαq ‰ 0, we have

nX˚α
˚y “ β˚α˚α

˚y “ β˚pdegpαqyq “ degpαqβ˚y,

which means that
β˚y “

1

degpαq
nX˚α

˚y.

Therefore if y P AipY qpsq it is known that α˚y P AipXqpsq is still homogeneous (because α commutes
with the multiplication by n on X and Y ) and so

β˚y “
n2 dimX´2i`s

degpαq
α˚y

is proportional to α˚y. Finally, as β˚ and α˚ are isomorphisms between ApXq et ApY q (because
α and β are isogenies and we work with algebraic cycles with rational coefficients), β˚y is nonzero
when y ‰ 0 (and vice versa).

Corollary 2.2.8. Let α : X Ñ Y be an isogeny between two abelian varieties X and Y . There exists
an isogeny β : Y Ñ X and an integer n P N˚ such that α ˝ β “ nY and β ˝ α “ nX . Let T (resp.
T 1) be a bigraded Q-vector subspace of A¨pY q (resp. of A¨pXq). Then

1. α˚T “ β˚T

2. β˚T 1 “ α˚T
1.

Proof. We only prove the first statement as the second one can be obtained in a similar way. By
hypothesis T is bigraded which means that every y P T can be (uniquely) written as y “

ř

i,s yi,s for
some yi,s P T ipsq :“ T XAipY qpsq. The result then follows on from Lemma 2.2.7 applied to each yi,s :

α˚y “
ÿ

i,s

α˚yi,s “
ÿ

i,s

λi,sβ˚yi,s “ β˚

˜

ÿ

i,s

λi,syi,s

¸

P β˚T

for some nonzero λi,s P Q (if yi,s “ 0 we can assume that λi,s “ 1). Note that we have used here
in an essential way that each component yi,s P AipY qpsq defines a class which already belongs to
T . So we have proven that α˚T Ă β˚T . The reverse inclusion can be obtained similarly because if
y “

ř

i,s yi,s P T for some yi,s P T ipsq, then we have

β˚y “
ÿ

i,s

1

λi,s
α˚yi,s “ α˚

˜

ÿ

i,s

1

λi,s
yi,s

¸

P α˚T.

This shows that α˚T “ β˚T .

Combining Proposition 2.2.5 and Corollary 2.2.8, we immediately get

Proposition 2.2.9. Let T be a bigraded Q-subalgebra (for the intersection product) of ApXq. We
suppose that T contains the class of the polarization ξ on X. The following statements are equivalent :

1. T ˚ T Ă T .

2. ψξ˚FXpT q Ă T .

3. ψξ˚FXψξ˚FXpT q Ă ψξ˚FXpT q.
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4. ξ ¨ ψξ˚FXpT q Ă ψξ˚FXpT q.

Proof. The equivalence with Proposition 2.2.5 follows from the equality

ϕ˚ξFXpT q “ ψξ˚FXpT q

which holds thanks to Corollary 2.2.8 applied to the bigraded Q-vector space FXpT q and isogenies
ϕξ and ψξ.

2.3 Functoriality of tautological rings RpC; Jq

2.3.1 Notations

In this subsection we present all notations and previous results useful for our work. A more
detailed approach of the following notions can be found in [BL04, Sections 5.3, 12.1, 12.3]. Let C
and C 1 be two smooth projective complex curves of genus g “ gpCq ě 1 and g1 “ gpC 1q ě 1. We put
as always J “ JpCq and J 1 “ JpC 1q for their Jacobians endowed with usual principal polarizations
Θ and Θ1. We avoid the case g1 “ 0 (that is C 1 » P1) to spare us some case distinctions when
ApJ 1q “ t0u. We suppose that we have a finite morphism f : C Ñ C 1 of degree n P N˚. This
morphism induces morphisms of abelian varieties :

Nf : J Ñ J 1 : LC
´

ÿ

niPi

¯

ÞÑ LC1
´

ÿ

nifpPiq
¯

f :“ f˚ : J 1 Ñ J : L ÞÑ f˚L.

Note that Nf : J Ñ J 1 is the Albanese morphism induced by f which makes commute the following
diagram :

C
f //� _

fP

��

C 1� _

fP
1

��
J

Nf
// J 1

(‹)

where P is any fixed rational point on C and P 1 :“ fpP q P C 1. In particular, as C and C 1 generate
J and J 1 respectively (as abelian varieties), the surjectivity of f implies the surjectivity of Nf .

Denote by Y :“ Impfq Ă J (see [BL04]). The map f factors through an isogeny j : J 1 Ñ Y
followed by the canonical embedding ιY : Y ãÑ J . Also consider the polarization ϕι˚Y Θ on Y (a priori
non principal) induced by Θ. Denote also by epY q the exponent of Y , that is the exponent of the
finite group Kerϕι˚Y Θ. It is known (see for example [BL04, Proposition 1.2.6]) that the map

ψι˚Y Θ :“ epY qϕ´1
ι˚Y Θ

: pY Ñ Y P HomppY , Y q bQ

is a morphism (that is it belongs to HomppY , Y q) and even an isogeny. Consider the following elements

NY :“ ιY ψι˚Y ΘxιY ϕΘ P EndpJq and εY :“ ιY ϕ
´1
ι˚Y Θ

xιY ϕΘ P End0pJq :“ EndpJq bQ.

By definition, we have
NY “ epY qεY .

Denote by R : End0pJq Ñ End0pJq the Rosati involution on J with respect to the Theta polariza-
tion :

Rpfq :“ ϕ´1
Θ ˝ pf ˝ ϕΘ.
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According to Lemma 5.3.1 of [BL04] we have

RpNY q “ NY and N2
Y “ epY qNY .

This implies immediately that RpεY q “ εY and ε2
Y “ εY . In other words, NY is symmetric and εY is

a symmetric idempotent element of End0pJq. Note that these morphisms are (in particular) linked
by the following facts :
(1) xNf “ f after identifying Jacobians and duals [BL04, Equation (2) p331],
(2) Nff “ n ¨ IdJ 1 by definition of Nf and f ,
(3) fNf “

n
epY qNY [BL04, Proposition 12.3.2] and in particular, since n

epY qNY “ nεY P EndpJq,
we deduce that epY q divides n thanks to [BL04, Proposition 12.1.1],

(4) NY |Y “ epY q ¨ IdY [BL04, p125],
(5) Y “ Impfq “ ImpfNf q “ ImpNY q is isogenous to J 1.

Besides, the map Y ÞÑ εY defines a bijection between the set of abelian subvarieties of J and
symmetric idempotents in End0pJq [BL04, Theorem 5.3.2]. This yields a natural subvariety of J ,
denoted by Z, which is complementary to Y (with respect to the Theta polarization on J). This
subvariety is associated to the symmetric idempotent element 1´ εY and satisfies

Z “ ImpNZq “ KerpNY q
0 “ KerpNf q

0 “ KerpxιY q » yJ{Y

where NZ is the norm-endomorphism of J associated to Z. It is defined similarly to NY .

Since pJ,Θq is principally polarized, the complementary subvarieties Y and Z have same exponent
[BL04, Corollary 12.1.2]. Finally, let us recall the following relations [BL04, p125]

NY |Z “ 0 and NYNZ “ 0 and NY `NZ “ epY q ¨ IdJ .

This provides an isogeny µ :“ ιY ` ιZ : Y ˆ Z Ñ J [BL04, Corollary 5.3.6].

At this point, it is useful to look at the commutative diagram

J 1
j //

n

~~
ϕ
f
˚

Θ

��

f

''
Y �
� ιY //

ϕ
ι˚
Y

Θ

��

epY q

��

J

ϕΘ

��

Nf

uu
J 1

ϕΘ1 ��

Y

pJ 1 pY
pj

oo
ψ
ι˚
Y

Θ

??

pJ.
xιY

oo

pf

gg

Note that commutativity is justified by the identities p1q´p5q recalled above and following relations :
(6) ϕι˚Y Θ “xιY ϕΘιY : this can be checked immediately on points since for an arbitrary point y P Y ,

we have

ϕι˚Y Θpyq :“ t˚yι
˚
Y LJpΘq b ι˚Y LJpΘq_ “ ι˚Y

´

t˚ιY pyqLJpΘq b LJpΘq_
¯

“: ι˚Y ϕΘpιY pyqq.

(7) In the same way, ϕ
f
˚

Θ
“

pfϕΘf .

(8) Lemma 12.3.1 of [BL04] states that

ϕ
f
˚

Θ
“ ϕnΘ1 “ nϕΘ1 .

We now have all necessary tools to study the functoriality of tautological rings RpC; Jq.
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2.3.2 Functoriality of tautological rings RpC; Jq

Let us start with a very simple proposition which is the key to all following results in this section.

Proposition 2.3.1. Let f : C Ñ C 1 be a finite morphism of degree n. We have

pNf q˚C “ nC 1 and f˚C
1 “

1

n

ˆ

n

epY q
NY

˙

˚

C “
1

n
εY ˚n˚C.

Proof. Considering the commutative diagram (‹), we have

pNf q˚C “ degpfqC 1 “ nC 1 P Ag1´1pJ 1q.

Then using relation (3), we get

nf˚C
1 “ f˚pNf q˚C “ pfNf q˚C “

ˆ

n

epY q
NY

˙

˚

C.

But n
epY qNY :“ n

epY qepY qεY “ nεY “ εY n.

This proposition immediately implies :

Corollary 2.3.2. Let f : C Ñ C 1 be a finite morphism of degree n. For all i P J0, g ´ 1K we have

pNf q˚Cpiq “ nC 1piq P Ag1´1pJ 1qpiq.

Furthermore put i0 :“ maxti | C 1
piq ‰ 0u. Then for all i0 ă i ď g, we have pNf q˚Cpiq “ 0. Also if

Cpiq “ 0 for some i, then C 1
piq “ 0.

Proof. Decomposing C “ Cp0q`. . .`Cpg´1q and C 1 “ C 1
p0q`. . .`C

1
pg1´1q, the equality pNf q˚C “ nC 1

gives
g´1
ÿ

i“0

pNf q˚Cpiq “

g1´1
ÿ

i“0

nC 1piq.

Since pNf q˚Cpiq P Ag1´1pJ 1qpiq [Bea86, Proposition 2.c], we have by uniqueness in Beauville’s decom-
position :

pNf q˚Cpiq “ nC 1piq P Ag1´1pJ 1qpiq.

The second part of this corollary follows easily from the first one.

Now we can easily deduce results concerning tautological rings since the cycles Cpiq and C 1piq are
generators of algebras RpC; Jq and RpC 1; J 1q for the Pontryagin product.

Corollary 2.3.3. Let f : C Ñ C 1 be a finite morphism. The map pNf q˚ induces a surjective
morphism

pNf q˚ : RpC; Jq Ý� RpC 1; J 1q.

In particular, RpC 1; J 1q is a quotient of RpC; Jq.

Proof. Since push-forwards are ring morphisms when we consider ApJq and ApJ 1q endowed with the
Pontryagin product, and since the C 1

piq P ImppNf q˚q generate RpC 1; J 1q as Q-subalgebra of ApJ 1q for
the Pontryagin product, we deduce from Corollary 2.3.2 the surjectivity of the morphism

pNf q˚ : RpC; Jq Ý� RpC 1; J 1q.
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Remark 2.3.4. pNf q˚ is a surjective morphism as Q-linear map and is also a morphism of Q-algebra
when we endow ApJq and ApJ 1q with the Pontryagin product. Similarly, the next corollary gives
a surjective morphism as Q-linear map and also as morphism of Q-algebra when we consider the
intersection product.

By Fourier duality we get the equivalent corollary :

Corollary 2.3.5. Let f : C Ñ C 1 be a finite morphism. The map f˚ induces a surjective morphism

f
˚

: RpC; Jq Ý� RpC 1; J 1q.

Proof. Let x P RpC; Jq. According to relation p1q, we have pf “ Nf (after identifying Jacobians with
their duals). Thus we deduce thanks to inversion formulas for the Fourier transforms on J and J 1

and thanks to Proposition 2.2.2 applied to the morphism f : J 1 Ñ J with X “ J and Y “ J 1 that

f
˚
x “ p´1qg

1

p´1J 1q
˚F

pJ 1
FJ 1f

˚
x “ p´1qg

1

p´1J 1q
˚F

pJ 1
p´1qg´g

1
pf˚FJpxq.

Then keeping the identifications of J 1 » pJ 1 and J » pJ , we get

f
˚
x “ p´1qgp´1J 1q

˚FJ 1pNf q˚FJpxq P RpC 1; J 1q

because on the one hand pNf q˚RpC; Jq Ă RpC 1; J 1q (Corollary 2.3.3) and on the other both RpC; Jq
and RpC 1; J 1q are Q-vector subspaces stable under Fourier transform and under operators k˚. This
proves the existence of

f
˚

: RpC; Jq ÝÑ RpC 1; J 1q.

The surjectivity of f˚ follows from the surjectivity of pNf q˚ (Corollary 2.3.3). Indeed if y P RpC 1; J 1q,
then there exists an z P RpC 1; J 1q such that y “ FJ 1pzq (by stability of RpC 1; J 1q under p´1q˚, FJ 1
and inversion formula). Consequently, for some x P RpC; Jq such that pNf q˚x “ z, we still have
thanks to Proposition 2.2.2

y “ FJ 1pzq “ FJ 1ppNf q˚xq “ xNf
˚
FJpxq “ f

˚FJpxq P f
˚
RpC; Jq

because RpC; Jq is stable under FJ .

Now we would like to consider, roughly, RpC 1; J 1q from the point of view of ApJq. That is we
are interested in the rings f˚RpC 1; J 1q Ă ApJq and pNf q

˚RpC 1; J 1q Ă ApJq. The intuition suggests
that cycles in f˚RpC

1; J 1q and pNf q
˚RpC 1; J 1q should be with support on Y (recall that Y is the

subvariety of J isogenous to J 1). The next two results explain this fact.

Proposition 2.3.6. Let f : C Ñ C 1 be a finite morphism. The isogeny j : J 1 Ñ Y , corestriction
map of f “ f˚, induces an isomorphism

j˚ : RpC 1; J 1q
»
ÝÑ j˚RpC

1; J 1q “ ι˚YRpC; Jq Ă ApY q.

Proof. The morphism j : J 1 Ñ Y is an isogeny (in particular, it is finite and flat). Therefore

j˚j
˚ “ degpjq ¨ IdApY q : ApY q Ñ ApY q.

So applying j˚ to the relation of the previous corollary, we deduce

j˚RpC
1; J 1q “ j˚f

˚
RpC; Jq “ j˚pιY ˝ jq

˚RpC; Jq “ j˚j
˚ι˚YRpC; Jq “ degpjqι˚YRpC; Jq “ ι˚YRpC; Jq.

Moreover, as j is an isogeny, there exists an isogeny h : Y Ñ J 1 such that h ˝ j “ dJ 1 and j ˝ h “
dY for some d P N˚. In particular, j˚

`

1
dh

˘

˚
“ IdApY q and

`

1
dh

˘

˚
j˚ “ IdApJ 1q, so that j˚ is an

isomorphism.
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Corollary 2.3.7. Let f : C Ñ C 1 be a finite morphism. The map f : J 1 Ñ J induces a surjective
morphism

f˚ : RpC 1; J 1q Ý� ιY ˚ι
˚
YRpC; Jq “ rY s ¨RpC; Jq Ă ApJq.

By Fourier duality we obtain similarly a surjective morphism

N˚f : RpC 1; J 1q Ý� ψ˚Y ψY ˚RpC; Jq “ ϕ˚ΘFJprY sq ˚RpC; Jq

with ψY :“ ψι˚Y Θ ˝xιY ˝ ϕΘ P HompJ, Y q.

Proof. The first assertion is a direct consequence of Proposition 2.3.6 because f˚ “ ιY ˚ ˝ j˚. See
also [Ful98, Example 8.1.1]. The second statement can be deduced from the first one by using
Proposition 2.2.2 and the fact that Fourier transforms on J and J 1 respectively induce automorphisms
of RpC; Jq and RpC 1; J 1q. Indeed, recall [Bea04] that ϕ˚Θ1FJ 1pRpC 1; J 1qq “ RpC 1; J 1q and similarly
ϕ˚ΘFJpRpC; Jqq “ RpC; Jq. Then, we have on the one hand

ϕ˚ΘFJpf˚RpC 1; J 1qq “ ϕ˚Θ
pf
˚

FJ 1pRpC 1; J 1qq “ ϕ˚Θ
pf
˚

ϕ´1˚
Θ1 ϕ

˚
Θ1FJ 1pRpC 1; J 1qq “ N˚fRpC

1; J 1q.

And on the other hand,

ϕ˚ΘFJpιY ˚ι˚YRpC; Jqq “ p´1qg´g
1

ϕ˚ΘxιY
˚
xιY ˚FJpRpC; Jqq “ ϕ˚ΘxιY

˚
xιY ˚ϕΘ˚ϕ

˚
ΘFJpRpC; Jqq

“ ϕ˚ΘxιY
˚
xιY ˚ϕΘ˚RpC; Jq.

Besides, we have

ϕι˚Y Θ˚ϕ
˚
ι˚Y ΘxιY ˚ϕΘ˚RpC; Jq “ degpϕι˚Y ΘqxιY ˚ϕΘ˚RpC; Jq “xιY ˚ϕΘ˚RpC; Jq

and using Corollary 2.2.8 twice, we get

ψ˚ι˚Y Θψι˚Y Θ˚xιY ˚ϕΘ˚RpC; Jq “xιY ˚ϕΘ˚RpC; Jq.

Therefore we obtain

N˚fRpC
1; J 1q “ ϕ˚ΘxιY

˚ψ˚ι˚Y Θψι˚Y Θ˚xιY ˚ϕΘ˚RpC; Jq “ ψ˚Y ψY ˚RpC; Jq.

Finally, the last assertion follows from the equalities (obtained thanks to Proposition 2.2.3)

ϕ˚ΘFJprY s ¨RpC; Jqq “ p´1qgϕ˚ΘFJprY sq ˚ ϕ˚ΘFJpRpC; Jqq “ ϕ˚ΘFJprY sq ˚RpC; Jq.

2.3.3 The special case of n-cyclic Galois coverings

In this section we get more explicit results when the covering f : C Ñ C 1 is associated to an
automorphism of the curve C. We start with definitions.

Definition 2.3.8. A finite Galois covering is a finite morphism f : C Ñ C 1 of smooth projective
complex curves C and C 1 such that there is an isomorphism C 1 » C{Autpfq where

Autpfq :“ tµ P AutpCq | f ˝ µ “ fu

denotes the automorphism group of the Galois covering. This amounts to say that the function field
extension KpCq{KpC 1q is Galois.
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The function field KpC 1q is then given by the subfield of invariants KpCqAutpfq Ă KpCq according
to the Galois group GalpKpCq{KpC 1qq » Autpfq.

Definition 2.3.9. Let f : C Ñ C 1 be a Galois covering of smooth projective complex curves. We
say that f is a n-cyclic Galois covering if Autpfq » Z{nZ. In that case, we will usually consider a
generator σ P Autpfq so that C 1 » C{xσy.

Remark 2.3.10. Let C be a smooth projective curve endowed with an automorphism σ P AutpCq.
Then the curve C{xσy is still smooth. Indeed we have to check that the curve C{xσy is normal.
Because normality is a local matter, we can assume that C “ SpecpAq is affine so that C 1 “
SpecpAxσyq. We then easily check that Axσy is integrally closed in KpC 1q “ FracpAxσyq “ KpCqxσy

using the fact that C is smooth.

We start with a lemma which specifies general facts concerning the subvariety Y and the auto-
morphism σ defining a cyclic Galois covering f : C Ñ C{xσy.

Lemma 2.3.11. Let f : C Ñ C 1 » C{xσy be an n-cyclic Galois covering associated to an automor-
phism σ P AutpCq of order n P N˚ (with possibly gpC 1q “ 0). Then

1. f : J 1 Ñ J induces an isogeny j : J 1 Ñ Y :“ Impfq Ă J of degree dividing n. Furthermore
this isogeny is an isomorphism if and only if f does not factorize via a cyclic étale covering
f 1 : C2 Ñ C 1 of degree ě 2.

2. fNf “ Φnpσq with ΦnpXq “ 1`X ` . . .`Xn´1. Therefore NY “
epY q
n Φnpσq.

3. Y “ Kerpσ ´ 1q0.

4. We have the equality epY q “ 1 if and only if Y “ JpCq or Y “ t0u if and only if n “ 1 or
C 1 » P1.

Proof.

1. According to [BL04, Proposition 11.4.3], j is an isomorphism (that is to say f is injective)
if and only if f does not factorize via a cyclic étale covering of degree ě 2. More precisely
(see [BL04, Corollary 11.4.4]), when f is non injective, f factorizes via a cyclic étale covering
fe : Ce Ñ C 1 of degree ě 2 and such that degpjq :“ # Kerpfq “ # Kerpf˚e q. Since fe is a cyclic
étale covering, we also have # Kerpf˚e q “ degpfeq, which divides n “ degpfq by multiplicativity
of the degree map.

2. Relation p3q of Section 2.3.1 states that

fNf “
n

epY q
NY .

But the fibres of f : C Ñ C 1 are cyclic orbits for the action of xσy on C (because f is Galois).
Then for every point z P J represented by LCp

ř

niPiq, we have

n

epY q
NY pzq “ fNf

´

LCp
ÿ

niPiq
¯

“ f
´

LC1p
ÿ

nifpPiqq
¯

“ LC
´

ÿ

nipPi ` σpPiq ` . . .` σ
n´1pPiqq

¯

“ z ` σpzq ` . . .` σn´1pzq “ Φnpσqpzq.

So n
epY qNY “ Φnpσq that is NY “

epY q
n Φnpσq.

3. We now have to justify the equality Y :“ Impf˚q “ Kerpσ ´ 1q0. In order to do this, let us
begin by noting that a point x P J (corresponding to a class of invertible sheaf L P Pic0pCq)
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belongs to Kerpσ ´ 1q if and only if σ˚L » L. Indeed, the Albanese morphism σ : J Ñ J is
the inverse map of σ˚ “ σ : Pic0pCq Ñ Pic0pCq (thanks to relation 2.3.1 (2)). Then we have

σpxq “ x ðñ σ´1pxq “ x ðñ σ˚L » L.

Moreover, f ˝ σ “ f (by definition of the quotient C{xσy). Then each element L :“ f˚M P

Impf˚q is invariant under σ˚. Indeed, one has

σ˚L » σ˚f˚M » f˚M » L.

Thus we have proven that Impf˚q Ă Kerpσ ´ 1q and by the connectedness of Impf˚q, we even
obtain Impf˚q Ă Kerpσ ´ 1q0. This leads us to following inclusions (using assertion (2))

Y Ă Kerpσ ´ 1q0 Ă KerpepY q ´NY q
0 “ KerpNZq

0.

But we know that Y “ KerpNZq
0, which can be proven by the following argument

dim KerpNZq
0 “ dim JpCq ´ dim ImpNZq “ dim JpCq ´ dimZ

“ gpCq ´ pdim JpCq ´ dimY q “ gpCq ´ gpCq ` dimY “ dimY.

Hence the previous inclusions are in fact equalities :

Y “ Kerpσ ´ 1q0 “ KerpepY q ´NY q
0 “ KerpNZq

0.

4. As pJ,Θq is a principally polarized abelian variety, Y and Z “ ImpepY q ´ NY q have same
exponent epY q “ epZq (see Subsection 2.3.1 or more directly [BL04, Corollary 12.1.2]. If this
exponent is equal to 1, then the polarizations induced by Θ on Y and Z, namely ϕι˚Y Θ and
ϕι˚ZΘ, are principal polarizations. So Lemma 12.1.6 of [BL04] implies that the isogeny

µ :“ ιY ` ιZ : pY ˆ Z, µ˚Θ “ p˚Y ι
˚
Y Θ` p˚Zι

˚
ZΘq Ñ pJ,Θq

which is of degree #pY X Zq “ # Kerpϕι˚Y Θq “ 1 is an isomorphism of principally polarized
abelian varieties. Since Θ is irreducible, we have Y “ t0u or Z “ t0u. The first case means
that C 1 » C{xσy » P1 because Y is isogenous to JpC{xσyq. The second case means that
J “ Y “ Kerpσ ´ 1q0 (according to assertion (3)) ; that is σ “ 1.

Remark 2.3.12. The dimension argument used to prove assertion (3) of this lemma can be replaced
by the construction of a section to the inclusion Y ãÑ Kerpσ ´ 1q0. This can be achieved thanks to
a descent lemma (see [DN89, Théorème 2.3]).

The next (easy) lemma will be widely used in the sequel.

Lemma 2.3.13. Let σ P AutpCq be an automorphism of C. As before, we denote by σ the Albanese
automorphism induced in EndpJq and R the Rosati involution on End0pJq (with respect to the Theta
polarization). Then Rpσq “ σ´1. Accordingly, we have for all P P QrXs

RpP pσqq “ P pσ´1q.

Proof. Consider a point x on J . Then by definition of the Rosati involution, we have

ϕΘ ˝Rpσqpxq “ pσ ˝ ϕΘpxq “ σ˚ pt˚xLJpΘq b LJpΘq_q
“ t˚σ´1pxqσ

˚LJpΘq b σ˚LJpΘq_ “ ϕσ˚Θpσ
´1pxqq “ ϕΘpσ

´1pxqq

because σ˚θ “ θ P A1pJq (since σ defines an automorphism of the curve). Thus we have Rpσqpxq “
σ´1pxq for all point x, which proves the first statement.

The last assertion follows immediately since the Rosati involution defines an anti-morphism of
the ring pEnd0pJq,`, ˝q.
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Proposition 2.3.14. Let f : C Ñ C 1 » C{xσy be an n-cyclic Galois covering associated to an
automorphism σ P AutpCq of order n P N˚. The map f induces a surjective morphism

f˚ : RpC 1; J 1q Ý� Φnpσq˚RpC; Jq.

More precisely, the following equality holds

f˚C
1 “

1

n
Φnpσq˚C.

Likewise, Nf induces a surjective morphism

N˚f : RpC 1; J 1q Ý� Φnpσq
˚RpC; Jq.

Proof. Recall that fNf “ Φnpσq by Lemma 2.3.11 (2). Consider a cycle y P RpC 1; J 1q. By Corollary
2.3.3 pNf q˚ : RpC; Jq Ñ RpC 1; J 1q is surjective so there exists x P RpC; Jq such that pNf q˚x “ y.
Hence

f˚y “ f˚pNf q˚x “ pfNf q˚x “ Φnpσq˚x P Φnpσq˚RpC; Jq.

Conversely, for all x P RpC; Jq,

Φnpσq˚x “ f˚pNf q˚x “ f˚y P f˚RpC; Jq

where y :“ pNf q˚x P RpC
1; J 1q. Using C 1 “ 1

npNf q˚C (Proposition 2.3.1), we obtain

f˚C
1 “

1

n
f˚pNf q˚C “

1

n
Φnpσq˚C.

Then note that Rosati involution fixes Φnpσq. Indeed, according to Lemma 2.3.13, we have

RpΦnpσqq “ Φnpσ
´1q “ Φnpσq P EndpJq.

To get the second statement about N˚f and thus conclude the proof, it remains to use this fact,
Proposition 2.2.2, assertion p1q of Subsection 2.3.1 and the fact that Fourier transforms on J and J 1

induce automorphisms of RpC; Jq and RpC 1; J 1q respectively.

Corollary 2.3.15. Let f : C Ñ C 1 » C{xσy be an n-cyclic Galois covering associated to an
automorphism σ P AutpCq of order n P N˚. For all indices i P J0, g1 ´ 1K, we have

f˚C
1
piq “

1

n
Φnpσq˚Cpiq P Ag´1pJqpiq.

Proof. With Proposition 2.3.14 we have

g1´1
ÿ

i“0

f˚C
1
piq “ f˚C

1 “
1

n
Φnpσq˚C “

g´1
ÿ

i“0

1

n
Φnpσq˚Cpiq.

By uniqueness of Beauville’s decomposition, we deduce the result since

Φnpσq˚Cpiq P Φnpσq˚A
g´1pJqpiq Ă Ag´1pJqpiq

(see [Bea86, Proposition 2.c]).

At this point, we would like to stress that push-forwards by polynomials in the automorphism
appear naturally when considering tautological rings associated to curves with automorphisms. This
may be the main idea to keep in mind about this whole section on Galois coverings. It raises the
question to get a better understanding of cycle classes of the form P pσq˚C and motivates the study
of the tautological ring containing all of them. This is the purpose of the rest of this paper.
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2.4 The tautological ring RGpC; Jq

Let C be a smooth projective complex curve of genus g ě 1. Until the end of this section we
assume that we have a finite automorphism group G Ă AutpCq. We use the same notation G for the
corresponding subgroup of AutpJq and we shall note by ZrGs the subring of pEndpJq,`, ˝q formed
by polynomials in elements of G, that is the image in EndpJq of the group ring ZrGs. Note that if G
is an abelian group generated by automorphisms σ1, . . . , σs of finite order, then ZrGs identifies with
Zrσ1, . . . , σss Ă EndpJq.

Remark 2.4.1. Recall that if g ě 2, then any σ P AutpCq is finite.

Now we want to prove Theorem 2.1.1 which provides a set of generators for the tautological ring

RGpC; Jq :“ TautJ

´

tπ˚C P ApJq | π P ZrGsu
¯

.

The main difficulty is to show that the algebra for the intersection product generated by cycles
of the form π˚N ipwq is stable under Pontryagin product too. Thus we first prove the following :

2.4.1 Key-theorem

Theorem 2.4.2. Let SG :“ SGpC; Jq Ă ApJq be the Q-subalgebra (for the intersection product)
generated by the π˚N ipwq for π P ZrGs and i P J1, g ´ 1K. Then SG is stable under the Pontryagin
product.

To prove this theorem we will use Beauville’s strategy [Bea04] which essentially consists in using
the Fourier transform on J and more specifically we will use implication p4q ñ p1q of Proposition
2.2.5. To be brief, we will denote by F the automorphism ϕ˚ΘFJ : ApJq Ñ ApJq. We always identify
J and pJ via the principal polarization ϕΘ. In particular, we will consider the Poincaré line bundle
on J ˆ J , namely :

PJˆJ :“ p1ˆ ϕΘq
˚P

Jˆ pJ

and its cycle class lJˆJ “ m˚θ ´ p˚θ ´ q˚θ P A1pJ ˆ Jq.

Remark 2.4.3. In his paper [Bea04] Beauville uses the relation lJˆJ “ p˚θ` q˚θ´m˚θ for the class
of the Poincaré line bundle on J ˆ J . This equality is given by a different choice for the principal
polarization of J . Namely, he uses the polarization ´ϕΘ to identify J and pJ . In this article, we have
chosen the principal polarization ϕΘ as Milne did in [Mil86]. As always we fix a rational point P on
C to embed the curve C in J “ JpCq. With our convention, we recall some relations whose proofs
can be found in [Mil86] (see Summary 6.11).

1. We put LP :“ Lp∆C ´ P ˆ C ´ C ˆ P q P PicpC2q.

2. There is an invertible sheaf MP P PicpC ˆ Jq such that p1ˆ fP q˚MP » LP .
3. MP » pfP ˆ p´1qq˚p1ˆ ϕΘq

˚P
Jˆ pJ

» pfP ˆ p´1qq˚PJˆJ » pfP ˆ 1q˚P_JˆJ .

4. LP » pfP ˆ fP q˚P_JˆJ » pfP ˆ fP q˚pp˚LJpΘq b q˚LJpΘq bm˚LJpΘq_q.

5. There is a map fP_ : pJ Ñ J such that pfP ˆ 1q˚P
Jˆ pJ

» p1 ˆ fP_q˚MP . On points, fP_ is
induced by fP˚ : PicpJq Ñ PicpCq.

6. fP_ “ ´ϕ´1
Θ .

Proof of Theorem 2.4.2. We decompose the proof of Theorem 2.4.2 in several steps.
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Step 1 By definition SG is generated as Q-algebra (for the intersection product) by classes π˚N ipwq
with i P J1, gK and π P ZrGs. Since π˚Ngpwq is a multiple of the class of a point and N1pwqg “ θg “
g! ¨ P , it suffices to consider indices i P J1, g ´ 1K.

Moreover, thanks to Proposition 2.2.2 applied with X “ Y “ J and α “ π, we have

Fpπ˚N ipwqq “ Rpπq˚FpN ipwqq “ p´1qg`iRpπq˚Cpi´1q.

Thus FpSGq is generated as Q-vector space by products of the form

pRpπ1q˚Cpi1´1qq ˚ pRpπ2q˚Cpi2´1qq ˚ . . . ˚ pRpπrq˚Cpir´1qq.

By Lemma 2.3.13, we get that each Rpπq P ZrGs. Precisely, if π is a finite sum π “
ř

gPG ag ˝ g with
coefficients ag P Z, then Rpπq “

ř

gPG ag ˝ g
´1. In other words, the Rosati involution induces an

involution of ZrGs. Consequently, FpSGq is generated as Q-vector space by products

pπ1˚Cpi1´1qq ˚ pπ2˚Cpi2´1qq ˚ . . . ˚ pπr˚Cpir´1qq

for πj P ZrGs and integers ij P J1, g´ 1K. The following lemma is inspired by Lemma 4.2 of [Bea04].

Lemma 2.4.4. FpSGq is generated as Q-vector space by the classes of the form

pk1˚π1˚Cq ˚ . . . ˚ pkr˚πr˚Cq

for all sequences pk1, . . . , krq P pN˚qr and all πj P ZrGs. Therefore it is generated as Q-vector space
by classes of the form

pπ1˚Cq ˚ . . . ˚ pπr˚Cq

for πj P ZrGs.

Proof of Lemma 2.4.4. This lemma depends in an essential way on the following equality

pk1˚π1˚Cq ˚ . . . ˚ pkr˚πr˚Cq

“ pk1 ¨ ¨ ¨ krq
2

ÿ

s1,...,sr

ks11 ¨ ¨ ¨ k
sr
r pπ1˚Cps1qq ˚ . . . ˚ pπr˚Cpsrqq P FpSGq.

We then have to choose some ki wisely (by considering an invertible Vandermonde matrix) in order
to invert some of these relations. The second statement is a direct consequence of the first one since
if πj has integer coefficients and kj P N˚, then kjπj has still integer coefficients.

This lemma proves exactly that FpSGq is generated as Q-vector space by the products

pπ1˚Cq ˚ pπ2˚Cq ˚ . . . ˚ pπr˚Cq

for the nonzero πj P ZrGs.

Step 2 According to Proposition 2.2.5 (that we can apply since θ “ N1pwq P SG), it remains
essentially to prove that θ ¨FpSGq Ă FpSGq. Actually we will show that for all nonzero π1, . . . , πr P
ZrGs the class

θ ¨ rpπ1˚Cq ˚ . . . ˚ pπr˚Cqs

belongs to FpSGq.
If r “ 0, we have θ “ N1pwq P RpC; Jq “ FpRpC; Jqq Ă FpSGq. Also note that if r “ 1,

θ ¨ π1˚C P AgpJq is a multiple of the class of a point. Therefore it is a multiple of FprJsq P FpSGq.
Thus we suppose from now on that r ě 2 in which case we consider the following map :

u : Cr
Φ
ÝÑ Jr

K
ÝÑ Jr

m
ÝÑ J

41



Chapitre 2. Tautological rings on Jacobian varieties of curves with automorphisms

with Φ :“ fP ˆ . . . ˆ fP (r times), K :“ π1 ˆ . . . ˆ πr and where m : Jr Ñ J is induced by the
multiplication on J . Then the cycle

θ ¨ rpπ1˚Cq ˚ . . . ˚ pπr˚Cqs

is a multiple of u˚u˚θ (by the projection formula). We now introduce projections pi : Jr Ñ J and
pij : Jr Ñ J2. In the same way we consider projections qi : Cr Ñ C and qij : Cr Ñ C2. As in
[Bea04] we have

m˚θ “
ÿ

i

p˚i θ `
ÿ

iăj

p˚ijlJˆJ .

Considering that
1. pi ˝K ˝ Φ “ πi ˝ pi ˝ Φ “ πi ˝ f

P ˝ qi,
2. pij ˝K ˝ Φ “ pπi ˆ πjq ˝ pij ˝ Φ “ pπi ˆ πjq ˝ pf

P ˆ fP q ˝ qij ,
we get

u˚θ “ Φ˚K˚m˚θ “ Φ˚K˚

˜

ÿ

i

p˚i θ `
ÿ

iăj

p˚ijlJˆJ

¸

“
ÿ

i

q˚i f
P˚π˚i θ `

ÿ

iăj

q˚ijpf
P ˆ fP q˚pπi ˆ πjq

˚lJˆJ .

It implies that u˚θ is a linear combination of classes of the form

q˚i f
P˚π˚i θ and q˚ijpf

P ˆ fP q˚pπi ˆ πjq
˚lJˆJ .

Thus u˚u˚θ is a linear combination of classes of the form

u˚q
˚
i f

P˚π˚i θ and u˚q
˚
ijpf

P ˆ fP q˚pπi ˆ πjq
˚lJˆJ .

Step 3 The class fP˚π˚i θ is a divisor class (modulo algebraic equivalence) on the curve C. Thus it
is a multiple of the class of a point. Therefore, q˚i f

P˚π˚i θ is a multiple of the class Cˆ . . .ˆCˆP ˆ
C ˆ . . .ˆ C (where the factor P is in ith place). So we obtain that u˚q˚i f

P˚π˚i θ is proportional to

pπ1˚Cq ˚ . . . ˚ ­pπi˚Cq ˚ . . . ˚ pπr˚Cq P FpSGq

where the qmeans that we omit the emphasized factor.

Step 4 The main part of this proof rests in the study of classes pfP ˆ fP q˚pπi ˆ πjq
˚lJˆJ . Put

M :“ pfP ˆ fP q˚pπi ˆ πjq
˚PJˆJ P PicpC ˆCq. In order to study this invertible sheaf, we are going

to study its fibres and then glue them.
Let M be a point on C. Define jM : N P C ÞÑ pN,Mq P C2 and similarly rjV : U P J ÞÑ pU, V q P

J2 where V is a given point on J . Then we easily check that

M|CˆM » j˚M pf
P ˆ fP q˚pπi ˆ πjq

˚PJˆJ
» fP˚π˚i rj

˚
πjfP pMq

pm˚LJpΘq b p˚LJpΘq_ b q˚LJpΘq_q

» fP˚π˚i

´

t˚πjfP pMqLJpΘq b LJpΘq_
¯

.

Therefore the isomorphism class of M|CˆM corresponds to the point

fP˚π˚i ϕΘpπjf
P pMqq P Pic0pCq.
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Then note that we have by definition of the Rosati involution R the equality

pπi ˝ ϕΘ “ ϕΘ ˝Rpπiq.

Thus we get
fP˚ϕΘpRpπiqπjf

P pMqq “ fP˚ϕΘpπf
P pMqq

where π :“ Rpπiq ˝ πj P ZrGs. Since π has integer coefficients and ϕΘ is a morphism of abelian
varieties, it suffices essentially to study the case where π is a monomial, that is π P G. Indeed, any
polynomial with integer coefficients is (by definition) a sum of monomials. Precisely, let us decompose
π as a finite sum

π “
l
ÿ

β“1

agβgβ

with coefficients agβ P Z non all zero and gβ P G. Moreover put N :“
ř

β |agβ | P N˚. Then, we can
consider the map

S :“ psgnpag1qg1, . . . , sgnpag1qg1
loooooooooooooooomoooooooooooooooon

|ag1 | times

, sgnpag2qg2, . . . , sgnpag2qg2
loooooooooooooooomoooooooooooooooon

|ag2 | times

, . . .q : J Ñ JN

where sgn : ZÑ t˘1u denotes the sign map. Note that with these notations, we have

π “ m ˝ S : J Ñ J

where m : JN Ñ J is still the map deduced from the multiplication map on J . We also have a map :

n : J1, NK Ñ J1, lK

defined in such a way that

@α P J1, NK, pα ˝ S “ sgnpagnpαqqgnpαq

where pα : JN Ñ J is here the αth projection.
Example 2.4.5. If s “ 2 and π “ 2´ σ1σ

2
2 ` 2σ2

1σ
2
2 for some automorphisms σ1, σ2, then

1. N “ 5, l “ 3,

2. gnp1q “ gnp2q “ 1, gnp3q “ σ1σ
2
2 and gnp4q “ gnp5q “ σ2

1σ
2
2,

3. S “ p1, 1,´σ1σ
2
2, σ

2
1σ

2
2, σ

2
1σ

2
2q.

Thus the following equality holds in Pic0pJq

ϕΘpπf
P pMqq “

N
ÿ

α“1

sgnpagnpαqqϕΘpgnpαqf
P pMqq.

Now recall that any g P G satisfies the following Albanese property :

g ˝ fP “ fgpP q ˝ g.

Consequently, we have

ϕΘpπf
P pMqq “

N
ÿ

α“1

sgnpagnpαqqϕΘpf
gnpαqpP qgnpαqpMqq.
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In order to have compact notations, we chose to denote from now on until the end of this proof by
ϕΘpUq the invertible sheaf t˚ULJpΘq bLJpΘq_ for an arbitrary point U P J (and not its class in the
Picard group). Therefore, considering the relation

fP “ tLCpgnpαqpP q´P q ˝ f
gnpαqpP q

where tLCpgnpαqpP q´P q : J Ñ J denotes the translation by the point of J corresponding to the
line bundle LCpgnpαqpP q ´ P q P Pic0pCq and since ϕΘpf

gnpαqpP qgnpαqpMqq P Pic0pJq is translation-
invariant (see [Mum08, II.8.i p74]), one obtains that

M|CˆM »

N
â

α“1

fP˚ϕΘpf
gnpαqpP qgnpαqpMqq

sgnpagnpαq q

»

N
â

α“1

fgnpαqpP q˚ϕΘpf
gnpαqpP qgnpαqpMqq

sgnpagnpαq q.

Moreover, we know from relations of Remark 2.4.3 that

pfP ˆ fP q˚PJˆJ » pLP q_ :“ LC2pP ˆ C ` C ˆ P ´∆Cq.

It is then straightforward to get that for all points U, V P C,
`

LU_
˘

|VˆC
»

`

LU_
˘

|CˆV
» fU˚ϕΘpf

U pV qq

(put πi “ πj “ 1, P “ U and M “ V in previous formulas). It follows that for all points M in C

M|CˆM »

N
â

α“1

´

LgnpαqpP q_
|CˆgnpαqpMq

¯sgnpagnpαq q
»

N
â

α“1

´

p1ˆ gnpαqq
˚LgnpαqpP q

¯´sgnpagnpαq q

|CˆM

because jgnpαqpMq “ p1 ˆ gnpαqq ˝ jM . According to the Seesaw principle [Mum08, Corollary 6 p54],
we deduce the existence of a line bundle N on C such that

M »

˜

N
â

α“1

p1ˆ gnpαqq
˚
`

LgnpαqpP q
˘´sgnpagnpαq q

¸

b q˚N

»

˜

N
â

α“1

p1ˆ gnpαqq
˚LC2

´

sgnpagnpαqqpgnpαqpP q ˆ C ` C ˆ gnpαqpP q ´∆Cq

¯

¸

b q˚N

where q : C ˆ C Ñ C denotes the second projection. Therefore, passing to algebraic cycle classes,
we get that pfP ˆ fP q˚pπi ˆ πjq˚lJˆJ is a linear combination of classes of the form

1. p1 ˆ gq˚pgpP q ˆ Cq “ P ˆ C (because all points on the curve C are algebraically equivalent
and each monomial g P G is still an automorphism),

2. p1ˆ gq˚pC ˆ gpP qq “ C ˆ P ,

3. p1ˆ gq˚∆C ,

4. q˚pdegpN q ¨ P q “ degpN qpC ˆ P q
for some automorphisms g P G.
Remark 2.4.6. Note that there appear naturally cycle classes of the form p1ˆ gq˚∆C , that is essen-
tially graphs of automorphisms.

Finally, q˚ijpf
P ˆ fP q˚pπi ˆ πjq

˚lJˆJ is a linear combination of

1. q˚ijpP ˆ Cq “ q˚i P ,
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2. q˚ijpC ˆ P q “ q˚j P ,
3. q˚ijp1ˆ gq

˚∆C

and so u˚q˚ijpf
P ˆ fP q˚pπi ˆ πjq

˚lJˆJ is a linear combination of the following classes

1. pπ1˚Cq ˚ . . . ˚ ­pπi˚Cq ˚ . . . ˚ pπr˚Cq P FpSGq,
2. pπ1˚Cq ˚ . . . ˚ ­pπj˚Cq ˚ . . . ˚ pπr˚Cq P FpSGq,

3. pπ1˚Cq ˚ . . . ˚ ­pπi˚Cq ˚ . . . ˚ ­pπj˚Cq ˚ . . . ˚ pπr˚Cq ˚ pπi ` πjg
´1

looooomooooon

“: πr`1

q˚C P FpSGq.

Conclusion So we proved that each cycle class

θ ¨ rpπ1˚Cq ˚ . . . ˚ pπr˚Cqs P FpSGq

defines an element in FpSGq as (rational) linear combination of classes all belonging to the Q-vector
space FpSGq. Thus FpSGq is stable under intersection with the (principal) polarization θ, so stable
under F . Therefore this fact also holds for SG, which we know now that is stable under Pontryagin
product. This completes the proof of this key-theorem.

2.4.2 Interpretation in terms of tautological rings

Theorem 2.4.2 yields all we need to prove Theorem 2.1.1. The hard part has already been done.
It is now easy to conclude.

Proof of Theorem 2.1.1. By definition, tautological ring RGpC; Jq is the smallest Q-vector subspace
of ApJq containing every π˚C where π P ZrGs and stable under intersection product, Pontryagin
product and operators k˚, k˚. Therefore it contains the Q-algebra (for the Pontryagin product)
generated by thes classes π˚C. According to Theorem 2.4.2 and Lemma 2.4.4 this Q-algebra is none
other than FpSGpC; Jqq, which equals SGpC; Jq thanks to Proposition 2.2.5. So we have

RGpC; Jq Ą SGpC; Jq.

Also since SGpC; Jq “ FpSGpC; Jqq contains each π˚C and is closed under intersection product,
Pontryagin product and also under the operators k˚ and k˚ (because SGpC; Jq is generated by
homogeneous classes π˚N ipwq in AipJqpi´1q), one has

RGpC; Jq Ă SGpC; Jq.

So we get the equality RGpC; Jq “ SGpC; Jq.

We now have a tautological ring on J associated to the group of automorphisms G Ă AutpCq.
This ring is all the more natural if one considers Corollary 2.1.2. Let us prove it now.

Proof of Corollary 2.1.2. Here again we decompose the proof in several steps.

Step 1 The algebra RpC; Jq introduced by Beauville is generated (for the intersection product)
by N1pwq “ θ, . . . , Ngpwq according to [Bea04] (and even by N1pwq, . . . , Ng´1pwq). So if S is an
arbitrary algebra extension of RpC; Jq stable under all pull-backs by polynomials in ZrGs, then
necessarily ZrGs˚RpC; Jq Ă S and in particular, S contains each π˚N ipwq for all π P ZrGs and
i P J1, gK. Thus, RGpC; Jq Ă S.

Step 2 Since RGpC; Jq contains each π˚N ipwq, it follows that RGpC; Jq contains each generator
N ipwq of the algebra RpC; Jq. That is why we trivially have the inclusion RpC; Jq Ă RGpC; Jq.
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Step 3 Now RGpC; Jq is generated as Q-vector space by classes of the form

π˚1N
i1pwq ¨ . . . ¨ π˚kN

ikpwq.

Moreover, if we pull-back each one of these cycles by elements in ZrGs, we still have a cycle in
RGpC; Jq of the same form. Indeed, for all π P ZrGs and all x, y P ApJq, we have

π˚px ¨ yq “ π˚x ¨ π˚y.

Therefore, RGpC; Jq is stable under all pull-backs by elements in ZrGs.

Conclusion In other words RGpC; Jq is an algebra extension of RpC; Jq (for the intersection
product) stable under all pull-backs by polynomials in ZrGs Ă EndpJq and contained in every
extension S of RpC; Jq with this property. Thus RGpC; Jq is the smallest Q-algebra extension of
RpC; Jq (for the intersection product) which is stable under pull-backs by polynomials in ZrGs.

Similarly we prove that the tautological ring RGpC; Jq is the smallest Q-algebra extension of
RpC; Jq (for the Pontryagin product) which is stable under push-forwards by polynomials in ZrGs.

This proves the following interpretation of the tautological ring RGpC; Jq. It is the smallest
Q-vector subspace of ApJq containing the cycle class C and closed under intersection product, Pon-
tryagin product, pull-backs and push-forwards by polynomials in ZrGs. Actually, since the generators
π˚N ipwq and π˚Cpi´1q are homogeneous with respect to Beauville’s decomposition, the tautological
ring RGpC; Jq is even closed under pull-backs and push-forwards by polynomials in QrGs Ă End0pJq.

2.4.3 Tautological divisors, Néron-Severi group and symmetric endomorphisms

Let σ P AutpCq and G “ xσy Ă AutpCq. It is well-known that the Theta polarization induces an
isomorphism between the rational Néron-Severi group of J and the set of symmetric endomorphisms
of J (see [Mum08, p190]) :

NSQpJq
»
ÝÑ EndpsqpJq “ tf P End0pJq | Rpfq “ fu

D ÞÑ ϕ´1
Θ ˝ ϕD.

Under this bijection, for any π P ZrGs the divisor class π˚N1pwq “ π˚θ P RσpC; Jq corresponds to
the symmetric endomorphism Rpπq ˝ π. Indeed, we easily check on points that ϕπ˚Θ “ pπ ˝ ϕΘ ˝ π.
In particular, if π is symmetric, then π˚θ corresponds to π2 P EndpsqpJq.

For example, for any integer i the divisor class

γi :“ pσi ` σ´iq˚θ

is associated to the endomorphism pσi ` σ´iq2 “ σ2i ` σ´2i ` 2. Also, let Γi P A1pJq be the divisor
class corresponding to σi ` σ´i P EndpsqpJq. We then have the relation

γi “ Γ2i ` 2θ P A1pJq XRσpC; Jq.

We leave it to the reader to verify that these cycle classes γi and Γi are both related to the graphs
Γσi and Γσ´i in A1pC2q of σi and σ´i. For example, we can obtain some relations of the form

f2˚Γi “ kpC ˆ P q ` kpP ˆ Cq ´ Γσi ´ Γσi P A1pC2q

for some integer k where f2 :“ m ˝ pfP ˆ fP q : C ˆ C Ñ J . This can be seen by using the proof of
Theorem 2.4.2, Step 4. More generally, any divisor class of the form π˚θ can be related to graphs of
elements in G. Here again, we see how natural this tautological ring RσpC; Jq is.

46



2.5. The tautological ring RGpψY ˚C;Y q

2.5 The tautological ring RGpψY ˚C;Y q

From now on and until the end of this paper we consider a n-cyclic Galois covering f : C Ñ C 1 »
C{xσy associated to an automorphism σ P AutpCq of finite order n P N˚. Moreover, we fix a finite
automorphism group G Ă AutpCq and we suppose that each g P G commutes with σ. Therefore,
each g P G determines an automorphism rg P AutpC 1q fitting into the following commutative diagram

C
f //

g

��

C 1

rg
��

C
f
// C 1.

Also, let us denote by rG the subgroup of AutpC 1q formed by all these automorphisms rg with g P G.
The covering f : C Ñ C 1 determines two complementary abelian subvarieties Y and Z of J “ JpCq
as in §2.3. We recall that we denote by η the polarization on Y induced by Θ and

ψY :“ ψη ˝xιY ˝ ϕΘ P HompJ, Y q

which is polynomial in σ (according to Lemma 2.3.11 (2)). In this section we study the tautological
ring induced on Y by RGpC; Jq. This is the aim of Theorem 2.1.3.

Proof of Theorem 2.1.3. In order to ease notations, put J 1 “ JpC 1q. Since j : J 1 Ñ Y is an iso-
geny, it induces an isomorphism (of Q-vector spaces) between R

rG
pC 1; J 1q Ă ApJ 1q and its image

j˚R
rG
pC 1; J 1q in ApY q. As push-forwards commute with Pontryagin products, j is even an isomor-

phism of Q-algebras when we consider R
rG
pC 1; J 1q endowed with the Pontryagin product. In particu-

lar, j˚R
rG
pC 1; J 1q is a Q-vector subspace of ApY q which is stable under Pontryagin product but also

under operators k˚ and k˚ (because R
rG
pC 1; J 1q has these properties and j is a morphism of abelian

varieties). Also, there exists an isogeny u : Y Ñ J 1 such that u ˝ j “ kJ 1 and j ˝ u “ kY for some
integer k P N˚. According to Corollary 2.2.8, we get

R
rG
pC 1; J 1q » j˚R

rG
pC 1; J 1q “ u˚R

rG
pC 1; J 1q.

It follows that j˚R
rG
pC 1; J 1q “ u˚R

rG
pC 1; J 1q is stable under intersection product too (because

R
rG
pC 1; J 1q has this property and pull-backs commute with intersection product). Up to now, we

have proven that

R
rG
pC 1; J 1q » j˚R

rG
pC 1; J 1q “ TautY

´

j˚R
rG
pC 1; J 1q

¯

.

According to Proposition 2.3.1, we have pNf q˚C “ nC 1. Thus, we get for all rπ P Zr rGs

rπ˚pNf q˚C “ nrπ˚C
1.

But we have for all g P G, f ˝g “ rg˝f so that more generally when considering Albanese morphisms,
we have for all π P ZrGs

Nf ˝ π “ rπ ˝Nf

where if π “
ř

gPG ag ˝ g, then rπ “
ř

gPG ag ˝ rg P Zr rGs with rg the automorphism induced on C{xσy
(or its Jacobian). Consequently, we obtain

pNf q˚π˚C “ nrπ˚C
1.

From this equality we deduce as in Corollary 2.3.2 that for each i,

pNf q˚π˚Cpiq “ nrπ˚C
1
piq.
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Then as in Corollary 2.3.3, we get a surjection

pNf q˚ : RGpC; Jq Ý� R
rG
pC 1; J 1q.

Similarly, we obtain by Fourier transform a surjective morphism (see Corollary 2.3.5)

f
˚

: RGpC; Jq Ý� R
rG
pC 1; J 1q.

We now repeat the argument used in Proposition 2.3.6 :

j˚R
rG
pC 1; J 1q “ j˚f

˚
RGpC; Jq “ j˚pιY ˝ jq

˚RGpC; Jq “ j˚j
˚ι˚YRGpC; Jq “ ι˚YRGpC; Jq

because j˚j˚ “ degpjq ¨ IdApY q. Accordingly,

R
rG
pC 1; J 1q » j˚R

rG
pC 1; J 1q “ ι˚YRGpC; Jq “ TautY

´

j˚R
rG
pC 1; J 1q

¯

.

It remains to show the following equalities :

TautY

´

j˚R
rG
pC 1; J 1q

¯

“ ψY ˚RGpC; Jq “ RGpψY ˚C;Y q.

As the bigraded Q-algebra
ι˚YRGpC; Jq “ j˚R

rG
pC 1; J 1q

contains the induced polarization η “ ι˚Y θ and is stable under both products, the assertions (2) and
(3) of Proposition 2.2.9 prove that

ι˚YRGpC; Jq “ ψη˚FY ψη˚FY
´

ι˚YRGpC; Jq
¯

“
Prop.2.2.9

ψη˚FY
´

ι˚YRGpC; Jq
¯

.

Let us get a more explicit description of the generators ψη˚FY
´

ι˚YRGpC; Jq
¯

. Using Proposition
2.2.2, Lemma 2.3.13 and the fact that ψY commute with any π P ZrGs, the following equalities are
satisfied :

ψη˚FY pι˚Y π˚N ipwqq

“ p´1qg´g
1

ψη˚xιY ˚pπ˚FJpN ipwqq

“ p´1qg`i`pg´g
1qψη˚xιY ˚pπ˚ϕΘ˚Cpi´1q

“ p´1qi´g
1

ψη˚xιY ˚ϕΘ˚ϕ
´1
Θ˚pπ˚ϕΘ˚Cpi´1q

“ p´1qi´g
1

ψη˚xιY ˚ϕΘ˚Rpπq˚Cpi´1q

“ p´1qi´g
1

pψηxιY ϕΘq˚Rpπq˚Cpi´1q

“ p´1qi´g
1

ψY ˚Rpπq˚Cpi´1q

“ p´1qi´g
1

Rpπq˚ψY ˚Cpi´1q

where we recall that the Rosati involution R induces a surjection R : ZrGs Ñ ZrGs (see the proof of
Theorem 2.4.2, Step 1). It follows that ψη˚FY

´

ι˚YRGpC; Jq
¯

is generated as Q-vector space by the
products of the form

pπ1˚ψY ˚Cpi1´1qq ˚ . . . ˚ pπr˚ψY ˚Cpir´1qq.

Actually, using the argument of the proof of Lemma 2.4.4, we get that ψη˚FY
´

ι˚YRGpC; Jq
¯

is the
algebra (for the Pontryagin product) generated by all π˚ψY ˚C for polynomials π P ZrGs. Since the
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Pontryagin product commutes with push-forwards and as we already noted that ψY ˚ (which is a
polynomial in σ) commutes with each π P ZrGs, we immediately get the equalities

TautY

´

j˚R
rG
pC 1; J 1q

¯

“ ι˚YRGpC; Jq “ ψη˚FY
´

ι˚YRGpC; Jq
¯

“ ψY ˚RGpC; Jq.

Moreover this shows not only that

TautY

´

j˚R
rG
pC 1; J 1q

¯

Ą TautY

´

tπ˚ψY ˚C P ApY q | π P ZrGsu
¯

“: RGpψY ˚C;Y q

but also the reverse inclusion. Indeed,

RGpψY ˚C;Y q :“ TautY

´

tπ˚ψY ˚C P ApY q | π P ZrGsu
¯

contains (by definition) the algebra for the Pontryagin product generated by all π˚ψY ˚C, which
equals TautY

´

j˚R
rG
pC 1; J 1q

¯

. This completes the proof of Theorem 2.1.3.

In fact, it is quite reasonable that we were able to deduce Theorem 2.1.3 from Theorem 2.1.1
since Y is closely related to the Jacobian JpC 1q » JpC{xσyq on which all technical issues have been
solved previously. Also note that if we denote by H Ă AutpCq the group generated by σ and G (in
such a way that σ is central in H), then we have

ι˚YRHpC; Jq “ ι˚YRGpC; Jq.

Indeed, we have as subrings of EndpY q

ZrHs “ ZrGs Ă EndpY q

since Y “ Kerpσ ´ 1q0 (according to Lemma 2.3.11). This remark is not true in general in the next
section in which we will work with cycles supported on Z “ KerpNY q

0. Thus we will need to consider
(in general) elements in ZrHs and not only in ZrGs.

2.6 The tautological ring Rσ
HpψZ˚C;Zq

We want to obtain a tautological ring in ApZq as we just did in ApY q. The basic strategy
remains identical to Theorem 2.4.2 except that we have to manage the fact that Z has no reason to
be (isogenous to) a Jacobian. Nevertheless, considering the induced polarization on Z, also denoted
by η :“ ι˚Zθ P A1pZq, and noting that this polarization is closely related to canonical principal
polarizations of J “ JpCq and J 1 “ JpC 1q » JpC{xσyq (associated to θ P A1pJq and θ1 P A1pJ 1q), we
can solve this problem. As in the previous section, put ψZ :“ ψη ˝ pιZ ˝ ϕΘ. We have NZ “ ιZ ˝ ψZ
and these morphisms are polynomials in σ. Also consider a finite automorphism group H Ă AutpCq
such that σ P H is central.

2.6.1 Key-theorem

Theorem 2.6.1. Let SσH “ SσHpψZ˚C;Zq be the Q-subalgebra of ApZq (for the intersection product)
generated by the π˚ι˚ZN

ipwq for π P ZrHs and i P J1,dimZ ´ 1K. Then SσH is stable under the
Pontryagin product.

Remark 2.6.2. Note here the particular role played by σ because Z depends on σ and, in general, σ
is non-trivial in AutpZq.

Proof. As for Theorem 2.4.2, we decompose the proof in several steps.
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Step 1 According to Theorem 2.1.1, the algebra SσH is none other than the restriction ι˚ZRHpC; Jq
of the corresponding tautological ring on J . The strategy of the proof is again to use implication
p4q ñ p1q of Proposition 2.2.9 (note that Proposition 2.2.9 applies because η :“ ι˚Zθ “ ι˚ZN

1pwq P
SσH). Thus we have to show that

η ¨ ψη˚FZpSσHq Ă ψη˚FZpSσHq.

Using the same arguments as in the proof of Theorem 2.1.3, we get

ψη˚FZpι˚Zπ˚N ipwqq “ p´1qi´dimZRpπq˚ψZ˚Cpi´1q.

It follows that ψη˚FZpSσHq is generated as Q-vector space by products of the form

pπ1˚ψZ˚Cpi1´1qq ˚ . . . ˚ pπr˚ψZ˚Cpir´1qq

hence by products of the form
pπ1˚ψZ˚Cq ˚ . . . ˚ pπr˚ψZ˚Cq

with nonzero πj P ZrHs.

Step 2 For any nonzero element πj P ZrHs we study the class of the cycle

η ¨ rpπ1˚ψZ˚Cq ˚ . . . ˚ pπr˚ψZ˚Cqs .

The same argument as in the proof of Theorem 2.4.2 shows that this cycle is a linear combination
of elements of the form

u˚q
˚
i f

P˚ψ˚Zπ
˚
i η and u˚q

˚
ijpf

P ˆ fP q˚pψZ ˆ ψZq
˚pπi ˆ πjq

˚lZˆZ

where

1. lZˆZ :“ p1ˆ ϕηq
˚l
Zˆ pZ

“ m˚η ´ p˚η ´ q˚η P A1pZ ˆ Zq

2. the map u : Cr Ñ Z is defined by the composition

u : Cr
Φ
ÝÑ Jr

Ψ
ÝÑ Zr

K
ÝÑ Zr

m
ÝÑ Z

with Φ :“ fPˆ. . .ˆfP (r times), Ψ :“ ψZˆ. . .ˆψZ ,K :“ π1ˆ. . .ˆπr and wherem : Zr Ñ Z
is induced by the multiplication on Z.

Step 3 The cycle fP˚ψ˚Zπ
˚
i η is a divisor class (modulo algebraic equivalence) on the curve C. Thus

it is a multiple of the class of a point. Therefore, fP˚ψ˚Zπ
˚η is a multiple of the cycle C ˆ . . .ˆC ˆ

P ˆ C ˆ . . .ˆ C (where the factor P is in ith position). So u˚q˚i f
P˚ψ˚Zπ

˚
i η is proportional to

pπ1˚ψZ˚Cq ˚ . . . ˚ ­pπi˚ψZ˚Cq ˚ . . . ˚ pπr˚ψZ˚Cq P ψη˚FZpSσHq.

Step 4 We now have to study the class

pfP ˆ fP q˚pψZ ˆ ψZq
˚pπi ˆ πjq

˚lZˆZ .

Since σ is central in H, we have

pπi ˆ πjq ˝ pψZ ˆ ψZq “ pψZ ˆ ψZq ˝ pπi ˆ πjq.
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Thus we obtain

pfP ˆ fP q˚pψZ ˆ ψZq
˚pπi ˆ πjq

˚lZˆZ “ pf
P ˆ fP q˚pπi ˆ πjq

˚pψZ ˆ ψZq
˚lZˆZ .

The key-argument is the following (see [BL04, Proposition 12.3.4]) :

epY q2θ “ epY q˚θ “ N˚Y θ `N
˚
Zθ

“

ˆ

epY q

n
fNf

˙˚

θ ` pιZψZq
˚θ

“
epY q2

n2
N˚f f

˚
θ ` ψ˚Zη

“
epY q2

n
N˚f θ

1 ` ψ˚Zη.

These different equalities are justified by facts recalled in Section 2.3.1 ; namely :

1. NY `NZ “ epY q ¨ IdJ ,

2. fNf “
n

epY qNY ,

3. f˚θ “ nθ1 P A1pJ 1q.

In other words, we have

ψ˚Zη “ epY q2θ ´
epY q2

n
N˚f θ

1.

Thus,

pfP ˆ fP q˚pπi ˆ πjq
˚pψZ ˆ ψZq

˚lZˆZ

“ epY q2pfP ˆ fP q˚pπi ˆ πjq
˚lJˆJ ´

epY q2

n
pfP ˆ fP q˚pπi ˆ πjq

˚pNf ˆNf q
˚lJ 1ˆJ 1 .

Step 5 The cycle class pfP ˆfP q˚pπiˆπjq˚lJˆJ has already been studied in the proof of Theorem
2.4.2. It is a linear combination of

P ˆ C, C ˆ P and p1ˆ hq˚∆C

for h P H. It follows that q˚ijpf
P ˆ fP q˚pπi ˆ πjq

˚lJˆJ is a linear combination of

1. q˚ijpP ˆ Cq “ q˚i P ,

2. q˚ijpC ˆ P q “ q˚j P ,

3. q˚ijp1ˆ hq
˚∆C .

So u˚q˚ijpf
P ˆ fP q˚pπi ˆ πjq

˚lJˆJ is as usual a linear combination of

1. pπ1˚ψZ˚Cq ˚ . . . ˚ ­pπi˚ψZ˚Cq ˚ . . . ˚ pπr˚ψZ˚Cq P ψη˚FZpSσHq,

2. pπ1˚ψZ˚Cq ˚ . . . ˚ ­pπj˚ψZ˚Cq ˚ . . . ˚ pπr˚ψZ˚Cq P ψη˚FZpSσHq,

3. pπ1˚ψZ˚Cq ˚ . . . ˚ ­pπi˚ψZ˚Cq ˚ . . . ˚ ­pπj˚ψZ˚Cq ˚ . . . ˚ pπr˚ψZ˚Cq ˚ pπi ` πjh
´1

looooomooooon

“: πr`1

q˚ψZ˚C

which also defines a cycle in ψη˚FZpSσHq.
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Step 6 We now study the class pfP ˆ fP q˚pπi ˆ πjq˚pNf ˆNf q
˚lJ 1ˆJ 1 . As in [Ara12], we use the

following equality :
Nf ˝ f

P “ ffpP q ˝ f.

Nevertheless, we first have to commute the map Nf with polynomials in ZrHs. To be more precise,
since by hypothesis σ is central in H, there exist for all h P H an automorphism rh P AutpC 1q such
that f ˝ h “ rh ˝ f . These automorphisms rh extend to automorphisms of JpC 1q which we still denote
by rh. We consider the group rH formed by these automorphisms.

Remark 2.6.3. Note that we have rσ “ 1JpC1q.

As in Section 2.5, each π P ZrHs induces an element rπ P Zr rHs and for all k, we have the relation

Nf ˝ πk “Ăπk ˝Nf .

Thus we have

pfP ˆ fP q˚pπi ˆ πjq
˚pNf ˆNf q

˚lJ 1ˆJ 1

“ pfP ˆ fP q˚pNf ˆNf q
˚prπi ˆ rπjq

˚lJ 1ˆJ 1

“ pf ˆ fq˚pffpP q ˆ ffpP qq˚prπi ˆ rπjq
˚lJ 1ˆJ 1 .

Now the same argument as in Step 5 shows that this cycle class is a linear combination of

1. pf ˆ fq˚pfpP q ˆ C 1q “ npP ˆ Cq (because all points on C are algebraically equivalent and
because f : C Ñ C 1 is of degree n),

2. pf ˆ fq˚pC 1 ˆ fpP qq “ npC ˆ P q for the same reason,

3. and finally, since each rh P rH Ă AutpC 1q is induced by some h P H Ă AutpCq, we also have
cycles of the form

pf ˆ fq˚p1ˆ rhq˚∆C1 “ p1ˆ hq
˚pf ˆ fq˚∆C1

“ p1ˆ hq˚p∆C ` p1ˆ σq
˚∆C ` . . .` p1ˆ σ

n´1q˚∆Cq

for some elements h P H.

So far, we proved that u˚q˚ijpf
P ˆ fP q˚pπi ˆ πjq

˚pNf ˆNf q
˚lJ 1ˆJ 1 is a linear combination of cycles

all in ψη˚FZpSσHq. To be precise, the classes we obtain are on the one hand of the form

pπ1˚ψZ˚Cq ˚ . . . ˚ ­pπi˚ψZ˚Cq ˚ . . . ˚ pπr˚ψZ˚Cq

and on the other, we get for k P J0, n´ 1K classes of the form :

pπ1˚ψZ˚Cq ˚ . . . ˚ ­pπi˚ψZ˚Cq ˚ . . . ˚ ­pπj˚ψZ˚Cq ˚ . . . ˚ pπr˚ψZ˚Cq ˚ pπi ` πjh
´1σ´kq˚ψZ˚C.

Conclusion All this implies that

η ¨ rpπ1˚ψZ˚Cq ˚ . . . ˚ pπr˚ψZ˚Cqs P ψη˚FZpSσHq

as (rational) linear combination of cycles which all belong to ψη˚FZpSσHq. In other words, ψη˚FZpSσHq
is stable by intersection with η so that Proposition 2.2.9 shows that SσH is stable under Pontryagin
product. This completes the proof.
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2.6. The tautological ring RσHpψZ˚C;Zq

2.6.2 Interpretation in terms of tautological rings

Theorem 2.6.1 immediately implies Theorem 2.1.4, just as we deduced Theorem 2.1.1 from Theo-
rem 2.4.2. At the same time, we obtain Theorem 2.1.5.

We now consider some special cases of Theorem 2.1.4. We first consider the case where σ is of
order 2. In that case

Z “ KerpNY q
0 “ KerpΦ2pσqq

0 “ Kerp1` σq0

and thus σ|Z “ ´1Z . This implies that the image of ZrHs in EndpZq does not depend on σ. Therefore,
as in Section 2.5, σ does not need to belong to H : we just have to assume that each automorphism
of H commutes with σ. That being said, Theorem 2.1.4 leads to

Theorem 2.6.4. Let f : C Ñ C 1 » C{xσy be a double covering. In particular, this implies that
Z “ Kerp1` σq0 and σ|Z “ ´1Z . We consider a finite group of automorphisms G Ă AutpCq and we
suppose that each g P G commutes with σ. Then the tautological ring RσGpψZ˚C;Zq is generated as
Q-subalgebra of ApZq

1. for the intersection product by all π˚ι˚ZN
ipwq “ ι˚Zπ

˚N ipwq,
2. for the Pontryagin product by all π˚ψZ˚Cpi´1q “ ψZ˚π˚Cpi´1q

with π P ZrGs and i P J1, dimZ ´ 1K odd. As a result, we get the tautological ring :

RσGpψZ˚C;Zq “ ι˚ZRGpC; Jq “ ψZ˚RGpC; Jq.

Note that in this theorem we can restrict to consider odd indices i because of

Lemma 2.6.5. With the above notations and assumptions of Theorem 2.6.4, the cycle class of
ψZ˚C P ApZq is symmetric. Therefore, each ψZ˚Cp2i`1q “ 0 in AdimZ´1pZqp2i`1q.

Proof. The following diagram is commutative

C
fP //

σ
��

J
ψZ //

σ
��

Z

´1
��

C
fσpP q

// J
ψZ
// Z.

Indeed commutativity of the left square follows from the definition of Albanese morphism. Whereas
commutativity of the right hand square is justified by σ|Z “ ´1Z (because Z “ Kerp1 ` σq0). A
diagram chase gives

p´1q˚ψZ˚f
P
˚ C “ ψZ˚f

σpP q
˚ σ˚C.

Since p´1q˚ “ p´1q˚ : ApZq Ñ ApZq and σ˚C “ C (because σ P AutpCq), we have

p´1q˚ψZ˚f
P
˚ C “ ψZ˚f

σpP q
˚ C.

But we are working modulo algebraic equivalence so that we can translate cycles without changing
the cycle class :

f
σpP q
˚ C “ fP˚ C P Ag´1pJpCqq.

Thus we have
p´1q˚ψZ˚f

P
˚ C “ ψZ˚f

P
˚ C

which means that ψZ˚fP˚ C (which we denoted by ψZ˚C) is symmetric. Therefore (see [Bea83,
Corollary 1])

ψZ˚f
P
˚ C P

à

i

AdimZ´1pZqp2iq

and we have proven our lemma.
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Also, if one only considers the automorphism σ of order 2 (that is if we are interested in the res-
triction of Beauville’s tautological ring RpC; Jq to the subvariety Z “ Kerp1`σq0), we immediately
deduce :

Corollary 2.6.6. Let f : C Ñ C 1 » C{xσy be a double covering. Then the tautological ring

RσpψZ˚C;Zq :“ TautZ

´

tP pσq˚ψZ˚C P ApZq | P P ZrXsu
¯

is generated as Q-subalgebra of ApZq

1. for the intersection product by all ι˚ZN
ipwq,

2. for the Pontryagin product by all ψZ˚Cpi´1q

for all odd indices i P J1, dimZ ´ 1K. Consequently, we get the tautological ring

RσpψZ˚C;Zq “ ι˚ZRpC; Jq “ ψZ˚RpC; Jq.

This corollary provides a generalization of Arap’s theorem [Ara12, Theorem 4]. His result deals
with double coverings which are étale or ramified in exactly two points so that Z is in fact a Prym
variety (and in particular principally polarized which simplifies the proofs of Propositions 2.2.5 and
2.2.9).

2.6.3 Some remarks about relations between generators in ApY q and ApZq

Until now we studied tautological rings on J , Y and Z. These rings on Y and Z are obtained
as restrictions of analogous tautological rings on J . In particular, we can deduce relations between
generators in ApY q or ApZq by projecting known relations in ApJq. By projecting we essentially
mean applying ι˚Y or ι˚Z (resp. ψY ˚ or ψZ˚) if one considers relations for the intersection product
(resp. Pontryagin product).

We recall a theorem of Colombo and van Geemen [CvG93] which states that if C is a k-gonal
curve, then Cpiq “ 0 for all i ě k ´ 1. By Fourier duality, this is equivalent to N ipwq “ 0 for all
i ě k. This means that in all previous results involving classes N ipwq we could restrict ourself to
indices i P J1, gonpCq ´ 1K where gonpCq is defined as the smallest positive integer d such that there
exists a finite morphism of degree d from C to P1.

Thus we can obtain two corollaries as in Beauville [Bea04] for tautological ring RpC; Jq for
hyperelliptic and trigonal curves. These corollaries describe the explicit Q-algebra structure (for the
intersection product) of tautological rings RσpψZ˚C;Zq Ă ApZq whence σ is of order 2 for k-gonal
curves with k P t2, 3, 4, 5u.

Corollary 2.6.7. Let f : C Ñ C 1 » C{xσy be a double covering. We suppose that C is hyperelliptic
or trigonal and we denote by η :“ ι˚Zθ the induced polarization on Z. Also put d :“ dimZ. Then

RσpψZ˚C;Zq “ Qrηs{pηd`1q.

Proof. If C is hyperelliptic, then the only nonzero N ipwq is N1pwq “ θ. Thus RσpψZ˚C;Zq is
generated by ι˚Zθ “ η. If C is trigonal, the only nonzero generators are N1pwq “ θ and N2pwq.
However, projections ι˚ZN

2ipwq of N2ipwq in ApZq are 0 in ApZq (because the projection ψZ˚C “
ψZ˚Cp0q ` ψZ˚Cp1q is symmetric according to Lemma 2.6.5).

Remark 2.6.8. Since on any curve of genus g there exists a g1
d with d ď t

g`3
2 u (see [ACGH85, Chapter

5, Theorem 1.1]), this corollary applies (in particular) to curves of genus ď 4.
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Corollary 2.6.9. Let f : C Ñ C 1 » C{xσy be a double covering. We suppose that C is 4-gonal
or 5-gonal. We put η :“ ι˚Zθ P A1pZqp0q and µ :“ ι˚ZN

3pwq P A3pZqp2q. We continue to write
d :“ dimZ. Then RσpψZ˚C;Zq Ă ApZq is the algebra generated by η and µ (for the intersection
product). Moreover, there exists a positive integer k ď d

5 such that

RσpψZ˚C;Zq “ Qrη, µs{pηd`1, ηd´4µ, . . . , ηd´5k`1µk, µk`1q.

Proof. The fact that RσpψZ˚C;Zq is generated by η and µ follows from previous theorems. We have
to find all the relations between these generators. Note that we have ηkµs P AppZqpsq if and only if
k ` 3s “ p. Consequently ηp´3sµs is the only one of these monomials in

Rp
psq :“ RσpψZ˚C;Zq XAppZqpsq.

We deduce that this monomial generates Rp
psq as Q-vector space and that the only possible relations

are also monomials. It remains to establish an exhaustive list of which monomials ηrµs are trivial. To
do so, we are going to use the Fourier transform on Z to juggle with generators for the intersection
product (the ι˚ZN

ipwq) and generators for the Pontryagin product (the ψZ˚Cpiq).
As Q-algebra for the Pontryagin product, RσpψZ˚C;Zq is generated by

ψη˚FZpηq “ p´1qg`1ψZ˚Cp0q and ψη˚FZpµq “ p´1qg`3ψZ˚Cp2q,

hence by ψZ˚Cp0q and ψZ˚Cp2q. It follows that R
p
psq is generated by a monomial of the form ψZ˚C

˚a
p0q˚

ψZ˚C
˚b
p2q. Precisely, since

ψη˚FZArpZqpsq “ Ad´r`spZqpsq

and since d´ r ` s “ p if and only if r “ d´ p` s, Rp
psq is generated by

ψη˚FZpηpd´p`sq´3s ¨ µs
loooooooomoooooooon

PRd´p`s
psq

q,

that is the cycle class ψZ˚C
˚pd´p´2sq
p0q ˚ ψZ˚C

˚s
p2q. In particular, Rp

psq is zero if p ` 2s ą d, which can
be rewritten as pp´ 3sq ` 5s ą d. It follows that ηrµs “ 0 P Rp

psq (r “ p´ 3s) if r ` 5s ą d.

Let us stress that ηrµs and ψZ˚C
˚pd´r´5sq
p0q ˚ ψZ˚C

˚s
p2q both generate Rr`3s

psq (as Q-vector space).
This implies that

ηrµs “ 0 ðñ ψZ˚C
˚pd´r´5sq
p0q ˚ ψZ˚C

˚s
p2q “ 0.

Consider the smallest positive integer k such that µk ‰ 0 and µk`1 “ 0. If 5k ą d, then
µk “ η0µk “ 0 according to this last inequality (0 ` 5k ą d). Therefore, we must have 5k ď d. It
remains to establish that ηrµs ‰ 0 for all positive integers r, s satisfying r ` 5s ď d and s ď k.
Suppose this is not true, that is to say suppose that ηrµs “ 0 for some integers r, s with r ` 5s ď d
and s ď k. Since ηrµs “ 0, the first part of the proof implies that Rr`3s

psq “ 0. So any generator of

this subspace is trivial too. In particular, it means that ψZ˚C
˚pd´r´5sq
p0q ˚ ψZ˚C

˚s
p2q “ 0. Taking the

Pontryagin product of ψZ˚C
˚pd´r´5sq
p0q ˚ ψZ˚C

˚s
p2q with ψZ˚C

˚r
p0q, we get ψZ˚C

˚pd´5sq
p0q ˚ ψZ˚C

˚s
p2q “ 0,

or in other words R3s
psq “ 0. As this space is generated (when adopting the point of view of the

intersection product) by η0µs “ µs, this implies that µs “ 0, which is in contradiction with the
minimality of k.

To conclude, the relations ηrµs “ 0 hold if and only if s ą k or r`5s ą d. This first case (s ą k)
provides the relation

µk`1 “ 0
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whereas the other relations have to be considered for r ě d´ 5s` 1 and s P t0, . . . , ku. These ones
are obtained from

ηd´5ˆ0`1µ0, ηd´5ˆ1`1µ1, . . . , ηd´5k`1µk,

that is to say ηd`1, ηd´4µ, . . . , ηd´5k`1µk.

Remark 2.6.10. This corollary applies (in particular) to curves of genus g ď 8 because such curves
are d-gonal with d ď t8`3

2 u “ 5.

2.6.4 Outlooks

In general, finding a (complete) system of non-trivial relations between the π˚N ipwq is a hard
task. Actually, it is already tough to study relations between the N ipwq (or the Cpiq) as shown by
papers by Polishchuk, Colombo and van Geemen, and Herbaut for example. Apart some special cases,
we do not know whether tautological rings defined in this article are of finite dimension over Q. Also
it would be interesting to lift these tautological rings modulo rational equivalence as it has been done
for RpC; Jq by Polishchuk. Furthermore, there is another important matter which would deserve to
be studied. We know that different automorphism groups may determine the same tautological ring
(e.g. on a hyperelliptic curve C endowed with its hyperelliptic involution ι, consider the trivial group
tIdu and G “ tId, ιu). However, we can wonder whether non-isomorphic group algebras ZrG1s and
ZrG2s (seen as subrings of EndpJq) always determine non-isomorphic tautological rings RG1pC; Jq
and RG2pC; Jq.
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CHAPITRE 3

Anneaux tautologiques sur les variétés de Prym généralisées associées aux
revêtements Galoisiens n-cycliques par une courbe hyperelliptique

3.1 Introduction

3.1.1 Généralités

Soit C une courbe complexe projective lisse de genre g “ gpCq ě 1 munie d’un automorphisme
σ P AutpCq d’ordre fini n P N˚. On rappelle (Théorème 2.1.1) que l’on dispose d’un anneau tauto-
logique

RσpC; Jq :“ TautJ

´

tP pσq˚C P ApJq | P pσq P Zrσsu
¯

engendré en tant que Q-sous-algèbre de ApJq pour le produit d’intersection (resp. produit de Pon-
tryagin) par les P pσq˚N ipwq (resp. par les P pσq˚Cpi´1q) avec P pσq P Zrσs et i P J1, g ´ 1K.

Par ailleurs, considérons un revêtement Galoisien n-cyclique f : C Ñ C 1 » C{xσy. Là encore, on
dispose d’un anneau tautologique RσpψZ˚C;Zq Ă ApZq sur Z où ψZ P HompJ, Zq est un morphisme
surjectif, polynomial en σ. La sous-variété abélienne ιZ : Z ãÑ J est d’exposant noté epZq “ epY q
divisant n (cf. Sous-section 2.3.1) et la dimension de Z est encore notée d :“ dimZ “ g ´ g1. On
considère tout particulièrement la polarisation induite η :“ ι˚Zθ P A1pZqp0q. On rappelle (Théorème
2.1.5) que l’anneau tautologique

RσpψZ˚C;Zq :“ TautZ

´

tP pσq˚ψZ˚C P ApZq | P pσq P Zrσsu
¯

est engendré en tant que Q-sous-algèbre de ApZq pour le produit d’intersection (resp. produit de Pon-
tryagin) par les P pσq˚ι˚ZN

ipwq “ ι˚ZP pσq
˚N ipwq (resp. par les P pσq˚ψZ˚Cpi´1q “ ψZ˚P pσq˚Cpi´1q)

avec P P ZrXs et i P J1, d´ 1K et qu’à ce titre, on a

RσpψZ˚C;Zq “ ι˚ZRσpC; Jq “ ψZ˚RσpC; Jq.

Dans ce chapitre, on étudie ces Q-algèbres lorsque C est hyperelliptique. Il s’agira de montrer
que ces anneaux tautologiques sont alors de dimension finie, puis on étudiera plus en profondeur les
relations entre les générateurs sur Z lorsque n “ p est un nombre premier. On terminera par des
exemples explicites quand la variété Z est de petite dimension.
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3.1.2 Exemples de courbes hyperelliptiques avec automorphismes

Signalons tout d’abord que les courbes hyperelliptiques avec automorphismes sont nombreuses.
Les résultats de structure présentés dans la suite pour l’anneau tautologique RσpψZ˚C;Zq s’ap-
pliquent donc à une multitude de courbes. Nous en donnons maintenant plusieurs exemples en nous
appuyant sur l’article [Sch71] qui classifie justement de telles courbes.

Les exemples qui suivent se concentrent sur les automorphismes d’ordre premier p ą 2. Remar-
quons que la dimension de Z, notée d “ g´ g1, dépend du genre de C et C{xσy mais peut aussi être
reliée au nombre ν P N de points fixes de σ. En effet, la formule de Hurwitz appliquée à la projection
naturelle C Ñ C{xσy fournit l’égalité

2g ´ 2 “ pp2g1 ´ 2q ` νpp´ 1q,

soit
d “ g ´ g1 “ pp´ 1q

´ν

2
´ 1` g1

¯

.

En particulier, ceci prouve déjà que p´ 1 divise 2d ou encore que p´1
2 divise d.

Courbes de la forme y2 “ xpxp ´ ap1qpx
p ´ ap2q ¨ ¨ ¨ px

p ´ ap2iq

Dans l’article [Sch71] de John Schiller, les courbes hyperelliptiques complexes C admettant une
équation de la forme y2 “ xpxp ´ ap1qpx

p ´ ap2q ¨ ¨ ¨ px
p ´ ap2iq sont référencées sous le cas 1.1. Ce sont

des courbes qui admettent un automorphisme σ d’ordre p donné par

σpx, yq “ pζpx,
a

ζpyq

où ζp est une racine primitive p-ième de l’unité dans C. On a dans ce cas g “ i ¨ p. On vérifie que la
courbe quotient C{xσy admet pour équation y2 “ xpx´ap1qpx´a

p
2q ¨ ¨ ¨ px´a

p
2iq et est donc de genre

g1 “ i. Ainsi, la variété de Prym généralisée Z déterminée par σ est de dimension d “ ipp´ 1q.

Courbes de la forme y2 “ xpxp ´ ap1qpx
p ´ ap2q ¨ ¨ ¨ px

p ´ ap2i`1q

Les courbes C admettant pour équation y2 “ xpxp´ap1qpx
p´ap2q ¨ ¨ ¨ px

p´ap2i`1q sont référencées
sous les cas 1.2 et 3.2 dans [Sch71]. Ces courbes admettent aussi l’automorphisme d’ordre p suivant :

σpx, yq “ pζpx,
a

ζpyq.

Une telle courbe C est alors de genre g “ i ¨ p` p´1
2 tandis que la courbe C{xσy dont l’équation est

y2 “ xpx´ ap1qpx´ a
p
2q ¨ ¨ ¨ px´ a

p
2i`1q est quant à elle de genre g1 “ i. Par suite, la variété abélienne

Z est de dimension d “
`

i` 1
2

˘

pp´ 1q.

Courbes de la forme y2 “ pxp ´ ap1qpx
p ´ ap2q ¨ ¨ ¨ px

p ´ ap2iq

La troisième et dernière famille de courbes hyperelliptiques que l’on présente ici correspond au
cas 3.1 de [Sch71]. Il s’agit des courbes qui peuvent être décrites par une équation de la forme
y2 “ pxp ´ ap1qpx

p ´ ap2q ¨ ¨ ¨ px
p ´ ap2iq. Celles-ci admettent l’automorphisme d’ordre p suivant :

σpx, yq “ pζpx, yq.

On montre alors que la courbe C{xσy a pour équation y2 “ px´ap1qpx´a
p
2q ¨ ¨ ¨ px´a

p
2iq. En conclusion,

on a g “ i ¨ p´ 1, g1 “ i´ 1 et donc d “ ipp´ 1q.
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3.2. Générateurs de RσpC; Jq et RσpψZ˚C;Zq

Le cas particulier C{xσy » P1

Terminons cette introduction en insistant sur les courbes hyperelliptiques C admettant un auto-
morphisme σ d’ordre p premier tel que C{xσy » P1. Pour de telles courbes, les revêtements Galoisiens
p-cycliques f : C Ñ C 1 » P1 sont nécessairement ramifiés (conséquence de la formule de Hurwitz).
Ce cas correspond à la situation Z “ J ou de manière équivalente

Φppσq “ 1` σ ` . . .` σp´1 “ 0J

dans EndpJq. On a alors d “ g, g1 “ 0, epY q “ epZq “ 1 et η “ θ.

Cette situation se produit pour les courbes de la forme y2 “ pxp ´ apqpxp ´ bpq [Sch71, Cas 3.1]
mais aussi y2 “ xpxp´apq [Sch71, Cas 3.2]. Notons enfin que la condition Φppσq “ 0J peut se vérifier
directement au niveau des différentielles. Détaillons cet argument pour une courbe C de la forme
y2 “ pxp ´ apqpxp ´ bpq. D’après [Koo91], une base des différentielles sur C est donnée par

dx

y
,

xdx

y
, . . . ,

xg´1dx

y
.

Ces différentielles sont des vecteurs propres pour σ˚ associés aux valeurs propres respectives ζ, ζ2, . . . ,
ζg “ ζp´1. En particulier, 1 n’est pas valeur propre et on a comme prévu la relation Φppσq “ 0.

3.2 Générateurs de RσpC; Jq et RσpψZ˚C;Zq

3.2.1 Réduction à un système fini de générateurs

Abordons à présent l’étude des générateurs des anneaux tautologiques RσpC; Jq et RσpψZ˚C;Zq,
un automorphisme σ P AutpCq d’ordre fini n P N˚ étant fixé. On commence par une généralisation
du corollaire 2 de [Mum08, p58-59].

Lemme 3.2.1 - Soient k ě 3 un entier, X une variété, Y une variété abélienne et f1, . . . , fk : X Ñ

Y des morphismes. Alors pour tout L P PicpY q, on a

pf1 ` . . .` fkq
˚L »

˜

â

1ďiăjďk

pfi ` fjq
˚L

¸

b

˜

â

1ďiďk

f˚i L´pk´2q

¸

.

Démonstration. Ce résultat se démontre facilement par récurrence sur k ě 3.

Remarque 3.2.2 : Lorsque k “ 1, 2, c’est-à-dire lorsque dans le formule pour k “ 3 un ou deux des
morphismes sont nuls, cette formule est triviale.

L’intérêt fondamental de ce lemme est de nous permettre de « casser » les polynômes (à coeffi-
cients entiers) en σ par lesquels on tire en arrière le cycle N1pwq “ θ. Ceci nous amène au résultat
suivant :

Proposition 3.2.3 - Soit C une courbe hyperelliptique admettant un automorphisme σ d’ordre n P
N˚. Alors l’anneau tautologique RσpC; Jq Ă ApJq est engendré en tant que Q-sous-algèbre de ApJq
pour le produit d’intersection par les classes de cycles suivantes :

1. si n est pair :

γi :“ p1` σ2iq˚θ “ pσi ` σ´iq˚θ et rγi :“ p1` σ2i`1q˚θ pour i P
r

0,
n

2
´ 1

z
,
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2. si n est impair :

γi :“ p1` σ2iq˚θ “ pσi ` σ´iq˚θ pour i P
s

0,
n´ 1

2

{
.

En particulier, RσpC; Jq est de dimension finie sur Q.

Démonstration. Puisque C est hyperelliptique (c’est-à-dire 2-gonale), on a C “ Cp0q P A1pJq de
sorte que d’après le théorème 2.1.1 rappelé en introduction RσpC; Jq est engendré par les classes de
cycles de la forme

pa0 ` a1σ ` . . .` an´1σ
n´1q˚θ, avec @i P J0, n´ 1K, ai P Z.

Le lemme 3.2.1 permet de casser ces cycles sous la forme d’une combinaison linéaire entière en les
classes de cycles

pσk ˘ σlq˚θ “ pσk ˝ p1˘ σl´kqq˚θ “ p1˘ σl´kq˚σk˚θ “ p1˘ σl´kq˚θ avec pk, lq P J0, n´ 1K2

car pour tout entier u P Z, σu˚θ “ θ. Par ailleurs, pour tout entier u, on a

θ “ p1` σu ´ σuq˚θ “ p1` σuq˚θ ` p1´ σuq˚θ ´ 3θ,

de sorte qu’on peut même ne considérer comme générateurs que les p1` σl´kq˚θ. Par suite, puisque
θ est symétrique, on a lorsque l ´ k “ 2i est pair

γi :“ p1` σ2iq˚θ “ pσi ˝ pσi ` σ´iqq˚θ “ pσi ` σ´iq˚σi˚θ “ pσi ` σ´iq˚θ.

Ceci prouve l’assertion lorsque n est pair. Lorsque n est impair, on peut pousser le raisonnement un
peu plus loin. En utilisant l’imparité de n et le fait que σn “ 1, on a

rγi :“ p1` σ2i`1q˚θ “ p1` σ2i`n`1q˚θ “ p1` σ2pi`n`1
2 qq˚θ

“ pσi`
n`1

2 ˝ pσi`
n`1

2 ` σ´pi`
n`1

2
qqq˚θ

“ pσi`
n`1

2 ` σ´pi`
n`1

2
qq˚σpi`

n`1
2
q˚θ “ γi`n`1

2
.

Comme pour tout entier j on a la symétrie γj “ γn´j “ γ´j , on obtient le résultat annoncé.

Remarque 3.2.4 :
1. Par dualité de Fourier, on en déduit classiquement un système fini de générateurs de la Q-

algèbre RσpC; Jq pour le produit de Pontryagin.
2. On a un résultat analogue pour les anneaux tautologiques RGpC; Jq où G est un groupe fini

d’automorphismes de C. Dans ce cas, on se ramène à un système fini de générateurs de la
forme p1` gq˚θ où g P G.

En restreignant à Z l’anneau tautologique RσpC; Jq Ă ApJq, on obtient instantanément un
résultat analogue pour l’anneau tautologique RσpψZ˚C;Zq Ă ApZq.

Corollaire 3.2.5 - Soit f : C Ñ C 1 » C{xσy un revêtement Galoisien n-cyclique. On suppose que C
est hyperelliptique. Alors l’anneau tautologique RσpψZ˚C;Zq est engendré en tant que Q-sous-algèbre
de ApZq pour le produit d’intersection par les classes de cycles suivantes :

1. si n est pair :
p1` σiq˚η pour i P J0, n´ 1K ,
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2. si n est impair :

p1` σ2iq˚η “ pσi ` σ´iq˚η pour i P
s

0,
n´ 1

2

{
.

En particulier, RσpψZ˚C;Zq est de dimension finie sur Q.

Démonstration. C’est une conséquence de la proposition 3.2.3 précédente : les générateurs (pour
le produit d’intersection par exemple) de RσpψZ˚C;Zq “ ι˚ZRσpC; Jq sont les restrictions à Z des
générateurs de l’anneau tautologique ambiant RσpC; Jq Ă ApJq.

3.2.2 Interprétation des cycles Γi et γi sur C2 et involution de Rosati

Soit σ P AutpCq un automorphisme d’ordre p premier (éventuellement égal à 2). On rappelle
que la polarisation (principale) θ P A1pJqp0q induit un isomorphisme entre le groupe de Néron-Severi
rationnel NSQpJq “ A1pJqp0q et l’ensemble des endomorphismes symétriques de J (pour l’involution
de Rosati sur J définie par Rpfq :“ ϕ´1

Θ ˝ pf ˝ ϕΘ) [Mum08, p190] :

NSQpJq
»
ÝÑ EndpsqpJq “ tf P End0pJq | Rpfq “ fu

D ÞÑ ϕ´1
Θ ˝ ϕD.

Suivant cette bijection, pour tout P pσq P Zrσs Ă EndpJq la classe du diviseur P pσq˚θ P RσpC; Jq
correspond à l’élément symétrique RpP pσqq ˝ P pσq. En effet, on vérifie sur les points que

ϕP pσq˚D “
zP pσq ˝ ϕΘ ˝ P pσq.

En particulier, si P pσq est symétrique, alors P pσq˚θ correspond à P pσq2 P EndpsqpJq.

On note Γi P NSQpJq la classe de diviseur correspondant à l’endomorphisme symétrique σi`σ´i

pour tout entier i. En particulier, on a Γn´i “ Γi et Γ0 “ 2θ. De plus, on a γi “ Γ2i ` Γ0 car

pσi ` σ´iq2 “ σ2i ` σ´2i ` 2J P EndpJq.

Montrons à présent que les cycles Γi (et donc indirectement les γi) qui sont apparus naturellement
à la section précédente sont tout aussi naturellement reliés aux graphes des automorphismes σi et
σ´i.

Interprétation géométrique des Γi et γi sur C2

D’après [Mil08, Corollary III.6.3 p104], on a un isomorphisme

EndpJq ÝÑ tclasses d’isomorphismes de correspondances divisorielles entre pC,P q et pC,P qu

ψ ÞÑ Lψ :“ p1ˆ pψ ˝ fP qq˚MP P PicpC ˆ Cq

entre l’ensemble des endomorphismes de J et l’ensemble des (classes d’équivalence linéaire de) fais-
ceaux inversibles L P PicpC ˆ Cq tels que L|CˆP » L|PˆC » OC ; un point rationnel P étant
toujours fixé sur C. De cette manière, l’endomorphisme symétrique σi ` σ´i P EndpsqpJq détermine
naturellement la correspondance

Lσi`σ´i :“ p1ˆ ppσi ` σ´iq ˝ fP qq˚MP P PicpC ˆ Cq.
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Notons PJˆJ :“ p1 ˆ ϕΘq
˚P

Jˆ pJ
le faisceau de Poincaré sur J ˆ J . On a (cf. preuve du théorème

2.4.2) les isomorphismes suivants :

Lσi`σ´i “ p1ˆ fP q˚p1ˆ pσi ` σ´iqq˚MP

» p1ˆ fP q˚p1ˆ pσi ` σ´iqq˚pfP ˆ 1q˚P_JˆJ
» pfP ˆ fP q˚p1ˆ pσi ` σ´iqq˚P_JˆJ
» p1ˆ σiq˚LσipP q b p1ˆ σ´iq˚Lσ´ipP q b q˚N

où q : C ˆ C Ñ C est la seconde projection, N P PicpCq et où pour tout point Q P C, on a posé
LQ :“ LCˆCp∆C ´ C ˆQ´Qˆ Cq.

Remarque 3.2.6 : Si σ admet un point fixe et si le point rationnel P fixé sur C est un tel point
fixe, alors le fibré N est trivial. En effet, on a alors

N » pq˚N q|PˆC »
`

Lσi`σ´i b p1ˆ σiq˚pLP q_ b p1ˆ σ´iq˚pLP q_
˘

|PˆC

» pLσi`σ´iq|PˆC b p1ˆ σ
iq˚pLP|PˆCq

_ b p1ˆ σ´iq˚pLP|PˆCq
_

» pLσi`σ´iq|PˆC » p1ˆ f
P q˚p1ˆ pσi ` σ´iqq˚

´

MP
|PˆJ

¯

» OC

car LP
|PˆC » OC et parce qu’on a aussi grâce à la remarque 2.4.3 :

MP
|PˆJ »

`

pfP ˆ 1q˚P_JˆJ
˘

|PˆJ
»

`

P_JˆJ
˘

|fP pP qˆJ
»

`

P_JˆJ
˘

|0ˆJ
» OJ .

En passant aux classes d’équivalence algébrique de diviseurs sur C2 et en notant Γσk les graphes
des σk, on obtient

lσi`σ´i “ Γ˚σi∆C ` Γ˚σ´i∆C ´ 2pP ˆ Cq ´ p2´ degN qpC ˆ P q
“ Γσi ` Γσ´i ´ 2pP ˆ Cq ´ p2´ degN qpC ˆ P q P NSQpC

2q

car tous les points de C sont algébriquement équivalents entre eux.

Par ailleurs, on dispose d’une application f2 : C2 Ñ J qui est donnée sur les points par

pM,Nq ÞÑ LCpM `N ´ 2P q.

Il s’agit à présent d’étudier le lien entre f2˚Γi et la correspondance divisorielle Lσi`σ´i . Essentielle-
ment une correspondance divisorielle est une correspondance que l’on a trivialisée le long des fibres
CˆP et PˆC (et en fait le long de n’importe quelle fibre CˆQ et QˆC puisqu’on travaille modulo
équivalence algébrique). Ainsi, on s’attend à ce que f2˚Γi soit égal à la correspondance divisorielle
associée aux σi ` σ´i, plus deux termes de bord (les parties à priori non triviales de f2˚Γi le long
C ˆ P et P ˆ C). On a en fait la propriété suivante :

Proposition 3.2.7 - Soit D P NSQpJq. On note g “ ϕ´1
Θ ˝ ϕD P EndpsqpJq l’élément de EndpsqpJq

associé à D. Alors
f2˚LJpDq » p˚fP˚LJpDq b q˚fP˚LJpDq b L_g

Démonstration. En utilisant les formules rappelées dans la remarque 2.4.3, on a les isomorphismes
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de faisceaux inversibles suivants :

f2˚LJpDq “ pm ˝ pfP ˆ fP qq˚LJpDq » pfP ˆ fP q˚m˚LJpDq

» pfP ˆ fP q˚
´

p˚LJpDq b q˚LJpDq b p1ˆ ϕDq˚PJˆ pJ

¯

» p˚fP˚LJpDq b q˚fP˚LJpDq b
”

p1ˆ pϕDf
P qq˚pfP ˆ 1q˚P_

Jˆ pJ

ı_

» p˚fP˚LJpDq b q˚fP˚LJpDq b
”

p1ˆ pϕDf
P qq˚pfP ˆ 1q˚p1ˆ p´1qq˚P

Jˆ pJ

ı_

» p˚fP˚LJpDq b q˚fP˚LJpDq b
”

p1ˆ pϕDf
P qq˚p1ˆ p´1qq˚pfP ˆ 1q˚P

Jˆ pJ

ı_

» p˚fP˚LJpDq b q˚fP˚LJpDq b
“

p1ˆ pϕDf
P qq˚p1ˆ p´1qq˚p1ˆ fP_q˚MP

‰_

» p˚fP˚LJpDq b q˚fP˚LJpDq b
“

p1ˆ pϕDf
P qq˚p1ˆ p´fP_qq˚MP

‰_

» p˚fP˚LJpDq b q˚fP˚LJpDq b
“

p1ˆ pϕ´1
Θ ϕDf

P qq˚MP
‰_

» p˚fP˚LJpDq b q˚fP˚LJpDq b L_g ;

ce qui est exactement le résultat annoncé.

Exemple 3.2.8 (f2˚Γi et f2˚γi) : Pour D “ Γi, on a dans A1pC ˆ Cq

f2˚Γi “ p˚fP˚Γi ` q
˚fP˚Γi ´ lσi`σ´i .

Notons aussi que p˚fP˚Γi est un multiple de P ˆ C (puisque fP˚Γi est une classe d’équivalence
algébrique de diviseurs sur la courbe C). De même q˚fP˚Γi est un multiple de CˆP . En conclusion,
les éléments Γi P NSQpJq déterminent des éléments de NSQpC

2q, combinaisons linéaires entières des
graphes Γσi et Γσ´i avec des composantes « de bord » C ˆ P et P ˆ C. Il en est donc de même de
γi “ Γ2i ` Γ0.

Plus généralement, toute classe de la forme P pσq˚θ peut être reliée de cette façon aux graphes
des σk apparaissant dans P pσq.

Interprétation cohomologique des Lσi`σ´i sur C2

Terminons en donnant une interprétation cohomologique de ces classes de diviseurs dans H2pC2,Qq.
La décomposition de Künneth de H2pC2,Qq est donnée par

H2pC ˆ C,Qq »
“

H2pC,Qq bH0pC,Qq
‰

‘
“

H1pC,Qq bH1pC,Qq
‰

‘
“

H0pC,Qq bH2pC,Qq
‰

“: Hp2,0qpC,Qq ‘Hp1,1qpC,Qq ‘Hp0,2qpC,Qq,

où l’on a noté Hpi,jqpC,Qq :“ HipC,QqbHjpC,Qq (à ne pas confondre avec une structure de Hodge).
Remarquons le fait suivant. Puisque C est une courbe lisse, H2pC,Qq » Q : tout élément est un

multiple de la classe d’un point rP s. En fait, on a déjà

CH1pCq{ „alg“ CH0pCq{ „alg» Z.

Par ailleurs, ce coefficient multiplicatif est égal au degré d’un représentant de la classe du diviseur sur
C considéré. Si on identifie maintenant Hp2,0qpC,Qq avec un sous-espace de H2pCˆC,Qq, la compo-
sante d’une classe de diviseurs rDs P H2pC ˆ C,Qq dans Hp2,0qpC,Qq est simplement la multiplicité
d’intersection D ¨ pC ˆ P q, ou encore degpD|CˆP q.

Mais alors si rDs “ rΓσis est la classe du graphe d’un automorphisme, cette multiplicité doit
être égale à 1 : l’intersection Γσi ¨ pC ˆ P q s’identifie au point schématique simple pσ´ipP q, P q
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(intersection simple car σi est un automorphisme). Autrement dit, la composante du graphe rΓσis
dans Hp2,0qpC,Qq est exactement P ˆ C, et de même celle dans Hp0,2qpC,Qq est juste C ˆ P .

Ce qui apparaît alors, c’est que la classe de cohomologie de la correspondance divisorielle rLσi`σ´is
dans H2pC2,Qq est exactement la composante principale des graphes rΓσis`rΓσ´is dans Hp1,1qpC,Qq.
Par conséquent, la composante principale de rf2˚Γis dans Hp1,1qpC,Qq est, au signe près, exactement
la composante principale des graphes rΓσis ` rΓσ´is.

Terminons cette partie par un fait général reliant l’involution de Rosati pour les endomorphismes
et l’involution usuelle dont on dispose au niveau des correspondances sur C2.

3.2.3 Action de l’involution de Rosati au niveau des correspondances sur C2

Une polarisation principale ϕΘ de J étant fixée, on dispose de l’involution de Rosati de EndpJq.
Par ailleurs, on dispose d’une bijection

g P EndpJq ÝÑ Lg P CorrdivpC
2q

qui envoie un endomorphisme g sur sa correspondance divisorielle associée. On dispose également
sur CorrdivpC

2q d’une involution naturelle donnée par

α P CorrdivpC
2q ÞÑ h˚α P CorrdivpC

2q

où h : px, yq P C2 ÞÑ py, xq P C2. La proposition suivante établit un lien entre ces deux involutions.

Proposition 3.2.9 - L’involution de Rosati de EndpJq et l’involution induite par h sur CorrdivpC
2q

sont compatibles avec la bijection g P EndpJq ÞÑ Lg P CorrdivpC
2q. Autrement dit, pour tout endo-

morphisme g P EndpJq, on a
LRpgq » h˚Lg.

Démonstration. On a

LRpgq :“ p1ˆ pϕ´1
Θ pgϕΘf

P qq˚MP

» p1ˆ fP q˚p1ˆ ϕΘq
˚p1ˆ pgq˚p1ˆ ϕ´1

Θ q˚MP

» p1ˆ fP q˚p1ˆ ϕΘq
˚p1ˆ pgq˚pfP ˆ p´1qq˚P

Jˆ pJ

car ϕ´1
Θ “ ´fP_ et p1ˆ ϕ´1

Θ q˚MP » p1ˆ p´fP_qq˚MP » pfP ˆ p´1qq˚P
Jˆ pJ

(cf. Section 1.3.1 ou
encore Remarque 2.4.3). Ainsi,

LRpgq » pfP ˆ fP q˚p1ˆ ϕΘq
˚p1ˆ pgq˚P_

Jˆ pJ
.

Comme p1ˆ pgq˚P
Jˆ pJ

» pg ˆ 1q˚P
Jˆ pJ

, on en déduit que

LRpgq » pfP ˆ fP q˚p1ˆ ϕΘq
˚pg ˆ 1q˚P_

Jˆ pJ

» ppgfP q ˆ fP q˚p1ˆ ϕΘq
˚P_

Jˆ pJ

» ppgfP q ˆ fP q˚P_JˆJ
» ppgfP q ˆ 1q˚p1ˆ fP q˚P_JˆJ

où P_JˆJ :“ p1ˆ ϕΘq
˚P_

Jˆ pJ
“ m˚LJpΘq_ b p˚LJpΘq b q˚LJpΘq. Enfin, de l’isomorphisme

MP » pfP ˆ p´1qq˚PJˆJ » pfP ˆ 1q˚P_JˆJ ,
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il vient
h˚MP » h˚pfP ˆ 1q˚P_JˆJ » p1ˆ fP q˚h˚P_JˆJ » p1ˆ fP q˚P_JˆJ

(car on a clairement h˚PJˆJ » PJˆJ de par la définition de PJˆJ). On conclut donc que

LRpgq » ppgfP q ˆ 1q˚h˚MP » h˚p1ˆ pgfP qq˚MP » h˚Lg,

ce qui démontre la proposition.

Corollaire 3.2.10 - Un endomorphisme g P EndpJq est symétrique si et seulement si la correspon-
dance divisorielle Lg P CorrdivpC

2q est invariante sous l’action de h˚.

Démonstration. Conséquence immédiate de la proposition précédente.

Conséquence 3.2.11 : On a vu dans la sous-partie précédente que

Lσi`σ´i » p1ˆ σiq˚Lσ
ipP q b p1ˆ σ´iq˚Lσ´ipP q b q˚N

où q : C ˆ C Ñ C est la seconde projection et N P PicpCq est un certain fibré sur C. Puisque
σi ` σ´i est symétrique, ce dernier corollaire montre qu’on a même N P Pic0pCq. En effet, on a

Lσi`σ´i “ LRpσi`σ´1q “ h˚Lσi`σ´i ,

ce qui signifie en termes de classes d’équivalence algébrique de diviseurs sur C2 :

Γσi ` Γσ´i ´ 2pP ˆ Cq ´ p2´ degN qpC ˆ P q
“ lσi`σ´i “ h˚lσi`σ´i

“ h˚Γσi ` h
˚Γσ´i ´ 2h˚pP ˆ Cq ´ p2´ degN qh˚pC ˆ P q

“ Γσ´i ` Γσi ´ 2pC ˆ P q ´ p2´ degN qpP ˆ Cq;

d’où l’on déduit que degN
`

CˆP ´P ˆC
˘

“ 0 P NSQpC
2q. Comme CˆP et P ˆC ne déterminent

pas la même classe modulo équivalence algébrique (car ce n’est déjà pas le cas modulo équivalence
homologique), on en déduit le résultat annoncé.

Maintenant que l’on comprend un peu mieux le caractère naturel de ces cycles Γi et γi sur J ,
abordons la partie centrale de ce chapitre. On étudie dans la suite les relations entre les générateurs
de RσpψZ˚C;Zq lorsque σ est un automorphisme d’ordre premier. Comme on va le voir, il est possible
d’être très précis dans l’étude de ces relations dans ApZq.

3.3 Générateurs et relations dans RσpψZ˚C;Zq lorsque σ est d’ordre
p est premier

On suppose dans toute cette partie que σ est d’ordre n “ p un nombre premier et on notera
dans tout ce qui suit d :“ dimZ “ g´ g1. L’objectif de cette longue partie est d’étudier les relations
entre les ι˚Zγi. On donnera régulièrement des applications numériques des résultats obtenus.

3.3.1 Premiers résultats : les cas p “ 2 et p “ 3

Le cas le plus simple : p “ 2

Le cas p “ 2 a déjà été traité (Corollary 2.6.7). Par esprit de synthèse, rappelons tout de même
brièvement ce résultat.
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Proposition 3.3.1 - Soit f : C Ñ C 1 » C{xσy un revêtement double. On suppose que C est
hyperelliptique ou trigonale et on note η :“ ι˚Zθ la polarisation induite sur Z. Notons aussi d :“
dimZ. Alors

RσpψZ˚C;Zq “ Qrηs{pηd`1q.

En particulier,
RσpψZ˚C;Zq “ ι˚ZRpC; Jq “ ψZ˚RpC; Jq.

Les classes de cycle Ωi et ωi : une relation linéaire

Maintenant que le cas p “ 2 est traité, on supposera dans tout ce qui suit que σ est un
automorphisme d’ordre p ě 3 premier. En particulier, p est impair. Comme avant, la polari-
sation η :“ ι˚Zθ P A1pZqp0q induit un isomorphisme entre le groupe de Néron-Severi rationnel
NSQpZq “ A1pZqp0q et l’ensemble des endomorphismes symétriques de Z (pour l’involution de Rosati
sur Z définie par Rpfq :“ ϕ´1

η ˝ pf ˝ ϕη [Mum08, p190] :

NSQpZq
»
ÝÑ EndpsqpZq “ tf P End0pZq | Rpfq “ fu

D ÞÑ ϕ´1
η ˝ ϕD.

Comme dans le cas des Jacobiennes, pour tout P pσq P Zrσs Ă EndpZq la classe du diviseur P pσq˚η P
RσpψZ˚C;Zq correspond à l’élément symétrique RpP pσqq ˝ P pσq ou plus simplement P pσq2 si P pσq
est symétrique.

Par analogie avec la section précédente, on note Ωi P NSQpZq la classe de diviseur correspondant
à l’endomorphisme symétrique σi`σ´i P EndpZq pour tout entier i. En particulier, on a Ωn´i “ Ωi

et Ω0 “ 2η.

Proposition 3.3.2 - Soit σ P AutpCq d’ordre p ą 2 premier. Alors on a la relation suivante dans
A1pZq

1

2
Ω0 ` Ω1 ` . . .` Ω p´1

2
“ 0,

ce qui s’écrit encore
Ω1 ` . . .` Ω p´1

2
“ ´η.

Démonstration. On commence par utiliser les faits rappelés dans la sous-section 2.3.1 ainsi que le
lemme 2.3.11 afin de justifier que Z “ KerpΦppσqq

0, c’est-à-dire qu’en tant qu’endomorphisme de Z
on a l’égalité

1` σ ` . . .` σp´1 “ 0Z P EndpZq.

Puisque p est premier, epY q est égal à 1 ou p (car epY q divise p). Le premier cas epY q “ 1 ne se
produit que lorsque Y “ Kerpσ ´ 1q0 “ J , ce qui est exclu car σ est d’ordre p ą 1 ; ou lorsque

Y “ ImpfNf q “ ImpΦppσqq “ t0u,

et alors Z “ J “ KerpΦppσqq
0. Le second cas epY q “ p implique directement NY “ fNf “ Φppσq et

là encore Z “ KerpNY q
0 “ KerpΦppσqq

0.
On obtient ensuite le résultat en rassemblant les endomorphismes symétriques σi`σp´i “ σi`σ´i

dans la relation polynomiale 1 ` σ ` . . . ` σp´1 “ 0Z et en suivant l’isomorphisme de groupes
NSQpZq » EndpsqpZq. A noter que l’on utilise ici que p est impair.

A présent, on pose ω0 “ η et pour i P J1, p´ 1K (c’est-à-dire pour p ne divisant pas i),

ωi “ pσ
i ` σ´iq˚η “ Ω2i ` Ω0 P NSQpZq

car pσi ` σ´iq˚η correspond à l’endomorphisme symétrique pσi ` σ´iq2 “ σ2i ` σ´2i ` 2Z .
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Remarque 3.3.3 :
1. Attention ici au changement de notation par rapport aux parties précédentes : on n’a pas défini
ω0 comme étant

pσ0 ` σ´0q˚η “ 2˚η “ 4η

pour éviter d’avoir un coefficient 4 dans les futures relations aux dénominateurs.
2. ω0 “

1
4 ι
˚
Zγ0 et pour i P J1, p´ 1K, ωi “ ι˚Zγi.

La relation entre les Ωi obtenue dans la proposition 3.3.2 se traduit immédiatement en termes
de ωi.

Lemme 3.3.4 - Soit σ P AutpCq d’ordre p ą 2 premier. Alors on a la relation suivante dans A1pZq

p2´ pqω0 `

p´1
2
ÿ

i“1

ωi “ 0.

Démonstration. Il s’agit d’une réécriture de la proposition 3.3.2 en termes de ωi :

1

2
Ω0 `

p´1
2
ÿ

i“1

Ωi “ 0

ðñ

ˆ

1

2
´
p´ 1

2

˙

Ω0 ` pΩ1 ` Ω0q ` pΩ2 ` Ω0q ` pΩ3 ` Ω0q ` pΩ4 ` Ω0q ` . . . “ 0

ðñ
2´ p

2
Ω0 ` pΩp´1 ` Ω0q ` ω1 ` pΩp´3 ` Ω0q ` ω2 ` . . . “ 0

ðñ p2´ pqω0 ` ω p´1
2
` ω1 ` ω p´3

2
` ω2 ` . . . “ 0

ðñ p2´ pqω0 `

p´1
2
ÿ

i“1

ωi “ 0.

Ce lemme nous permet ainsi de préciser le corollaire 3.2.5 en réduisant de un cycle le système de
générateurs connu jusque là pour l’anneau tautologique RσpψZ˚C;Zq :

Proposition 3.3.5 - Soient C hyperelliptique de genre g ě 1 et σ P AutpCq d’ordre p ą 2 premier.
L’anneau tautologique RσpψZ˚C;Zq Ă ApZq est engendré pour le produit d’intersection par les ωi
pour i P J0, p´3

2 K.

Démonstration. D’après le corollaire 3.2.5, RσpψZ˚C;Zq est engendré par ω0, ω1, . . . , ω p´1
2
. Le lemme

3.3.4 précédent montre que cette algèbre est déjà engendrée par ω0, ω1, . . . , ω p´3
2
.

Le cas p “ 3

Proposition 3.3.6 - Soit f : C Ñ C 1 » C{xσy un revêtement Galoisien cyclique de degré 3 avec C
hyperelliptique. On note η :“ ι˚Zθ P A1pZqp0q et d :“ dimZ. Alors

RσpψZ˚C;Zq “ Qrηs{pηd`1q.

En particulier,
RσpψZ˚C;Zq “ ι˚ZRpC; Jq “ ψZ˚RpC; Jq.
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Démonstration. Puisque p “ 3, la proposition précédente montre que RσpψZ˚C;Zq est engendré par
ω0 “ η. Le résultat est alors immédiat.

En d’autres mots, si f : C Ñ C 1 » C{xσy est un revêtement Galoisien double ou triple avec
C hyperelliptique, l’algèbre ι˚ZRpC; Jq est déjà stable par les pull-backs et push-forwards par Zrσs.
Ainsi, pour un automorphisme d’ordre 2 ou 3, on n’élargit pas l’anneau RσpψZ˚C;Zq “ ι˚ZRpC; Jq Ă
ApZq en faisant agir les polynômes en σ par pull-back et push-forward. La situation est beaucoup
plus complexe pour les p ą 3 premiers ; ce que l’on étudie dans la suite.

3.3.2 Transformée de Fourier des ωi dans ApZq

Avant d’étudier le cas des automorphismes d’ordre premier supérieur, faisons une parenthèse sur
la transformée de Fourier des ωi ; ceci afin de mieux comprendre ces classes de diviseurs.

Préliminaires techniques

On commence par quelques généralités concernant les bien connus polynômes de Tchebychev.

Définition 3.3.7 (Polynômes de Tchebychev) On définit les polynômes de Tchebychev de première
espèce pour n P N par récurrence :

T0pXq “ 1, T1pXq “ X, @n ě 2, Tn`2pXq “ 2XTn`1pXq ´ TnpXq.

On peut montrer que Tn P ZrXs est le polynôme de degré n vérifiant

@ϕ P R, Tnpcospϕqq “ cospnϕq.

Définition 3.3.8 On définit de la même manière pour tout n P N le polynôme

T 1npXq :“ 2Tn

ˆ

X

2

˙

.

Les polynômes T 1npXq vérifient la relation de récurrence

T 10pXq “ 2, T 11pXq “ X, @n ě 2, T 1n`2pXq “ XT 1n`1pXq ´ T
1
npXq.

et pour tout ϕ P R,
T 1np2 cosϕq “ 2Tnpcosϕq “ 2 cospnϕq.

Remarque 3.3.9 : On prendra garde à ne pas confondre les polynômes T 1n avec la dérivé formelle
des polynômes Tn.

Lemme 3.3.10 - Soit n P N. Alors T 12np0q “ 2p´1qn et T 12n`1p0q “ 0.

Démonstration. Les formules sont vraies pour T 10 et T 11. Le résultat découle alors de la formule de
récurrence : T 1n`2p0q “ ´T

1
np0q.

Corollaire 3.3.11 - Soit p ě 1 un entier impair.

1`

p´1
2
ÿ

i“1

T 1i p0q “

#

1 si p ” 1 mod 8 ou p ” 3 mod 8,
´1 si p ” ´1 mod 8 ou p ” ´3 mod 8.
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Démonstration. Si p ” 1 mod 8, p est de la forme 8k` 1 pour un certain entier k. Par conséquent,
p´1

2 “ 4k est divisible par 4 et alors

1`

p´1
2
ÿ

i“1

T 1i p0q “ 1`
4k
ÿ

i“1

T 1i p0q “ 1`
2k
ÿ

i“1

T 12ip0q “ 1` 2
2k
ÿ

i“1

p´1qi “ 1` 2ˆ 0 “ 1.

Les autres cas sont analogues.

Ceci nous amène au lemme suivant :

Lemme 3.3.12 - Soit σ P AutpCq d’ordre p ą 2 premier. Soit j P J1, p´1K. Alors σj`σ´j P AutpZq.
Plus précisément, il existe un polynôme Q P ZrXs à coefficients positifs, indépendant de j et que l’on
peut calculer explicitement tel que

pσj ` σ´jq´1 “ Qpσjq P AutpZq Ă EndpZq.

Démonstration. Si p est premier et p ne divise pas j, alors σj vérifie aussi la relation 1` σj ` . . .`
σjpp´1q “ 0Z dans EndpZq. Par suite, il suffit de montrer le résultat pour j “ 1 ; ce que l’on fait à
présent.

Puisque dans EndpZq, on a 1`σ` . . .`σp´1 “ 0, on peut identifier Qrζps » Qrσs Ă End0pZq (où
ζp “ e

2iπ
p ). Autrement dit, Qrσs est un corps. En particulier, σ ` σ´1 est inversible dans End0pZq :

c’est une isogénie et il s’agit de voir que pσ ` σ´1q´1 est déjà défini dans EndpZq. Dans la suite de
la démonstration, on fera indifféremment référence à σ ou ζp.

Remarquons que pσ`σ´1q´1 P End0pZq peut se calculer explicitement. L’idée est de déterminer
le polynôme minimal de σ ` σ´1 afin de pouvoir exprimer son inverse comme un polynôme en σ.

Notons ΦppXq “ 1`X `X2 ` . . .`Xp´1 le p-ième polynôme cyclotomique. C’est le polynôme
minimal de σ P End0pZq sur Q. De plus,

rQpζpq : Qs “ degpΦpq “ p´ 1 et rQpζpq : Qpζp ` ζ´1
p qs “ 2

de sorte que rQpζp ` ζ´1
p q : Qs “ p´1

2 . Dans ce cas, le polynôme minimal de ζp ` ζ´1
p (sur Q) est

de degré p´1
2 (à ce moment là on utilise l’hypothèse p ą 2). On constate par ailleurs que l’on peut

écrire

ΦppXq “ X
p´1

2 P

ˆ

X `
1

X

˙

,

où P P QrXs est un polynôme unitaire avec degpP q “ p´1
2 . Comme Φppζpq “ 0 et ζ

p´1
2

p ‰ 0, on en
déduit que P

`

X ` 1
X

˘

est annulateur de ζp, ou encore P est annulateur de ζp` ζ´1
p . Autrement dit,

P n’est rien d’autre que le polynôme minimal de ζp ` ζ´1
p (ou σ ` σ´1). Notons que ce polynôme

minimal est aussi celui de ζjp ` ζ´jp (ou encore celui de σj ` σ´j) : il ne dépend pas de j.
La relation précédente se réécrit,

P

ˆ

X `
1

X

˙

“
ΦppXq

X
p´1

2

“ 1`

p´1
2
ÿ

i“1

ˆ

Xi `
1

Xi

˙

.

Or pour n ě 1, Xn ` X´n est un polynôme à coefficients entiers en X ` 1
X . En effet, pour tout

ϕ P R, on a

einϕ `
1

einϕ
“ 2 cos pnϕq “ T 1n p2 cos pϕqq “ T 1n

ˆ

eiϕ `
1

eiϕ

˙

,
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de sorte que

Xn `
1

Xn
“ T 1n

ˆ

X `
1

X

˙

P Z
“

X `X´1
‰

.

Ainsi,

P

ˆ

X `
1

X

˙

“ 1`

p´1
2
ÿ

i“1

T 1i

ˆ

X `
1

X

˙

ou encore

P pXq “ 1`

p´1
2
ÿ

i“1

T 1i pXq P ZrXs.

Comme P p0q “ ˘1 d’après le corollaire 3.3.11, il s’ensuit qu’on peut toujours écrire

1

P p0q
P pXq “ 1´XQpXq,

avec Q P ZrXs non nul de degré degpQq “ degpP q ´ 1 “ p´3
2 . Finalement,

0Z “
1

P p0q
P pσ ` σ´1q “ 1Z ´ pσ ` σ

´1qQpσ ` σ´1q

et
pσ ` σ´1q´1 “ Qpσ ` σ´1q P EndpZq.

Puisque σ´1 “ σp´1, l’inverse de σ ` σ´1 dans EndpZq est donné par Q2pσq P Zrσs où

Q2pXq :“ QpX `Xp´1q P ZrXs.

On a également pour tout i P J0, p´ 1K,

´σi “ 1` σ ` . . .` σi´1 ` σi`1 ` . . .` σp´1 P EndpZq,

ce qui nous autorise à supposer que les coefficients de Q2 sont dans N. En effet, si un (ou plusieurs)
des coefficients de Q2, disons ai, est négatif, il suffit de changer Q2 en le polynôme

Q2pXq ´ aiΦppXq

ce qui revient à remplacer le terme aiXi de Q2pXq par ´aip1`X` . . .`Xi´1`Xi`1` . . .`Xp´1q et
permet de remplacer i-ième coefficient négatif de Q2 par 0 (le rendant donc positif) sans affecter ni
le signe des autres coefficients déjà positifs ni le fait que Q2pσq “ pσ`σ

´1q´1. Ce dernier polynôme
Q2 convient ; ce qui achève la preuve du lemme.

Remarque 3.3.13 : D’un point de vue purement calculatoire, le calcul explicite de l’inverse de
σi ` σ´i P EndpZq peut se faire à l’aide d’un logiciel. Par exemple avec Sage, le code suivant affiche
cet inverse (dans le cas p “ 5 et i “ 1) :

p = 5 # Ordre de l’automorphisme s
i = 1
Q.<x> = QQ[] # Anneaux Q[x]
Qp.<s> = Q.quo(cyclotomic_polynomial(p)) # Corps cyclotomique Q(s)
show((s^i + s^(-i))^(-1)) # Affichage de l’inverse de s^i + s^(-i)

La prochaine proposition précise quant à elle le degré de la polarisation η induite sur Z par θ.
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Proposition 3.3.14 - On considère toujours un revêtement Galoisien p-cyclique f : C Ñ C 1 »
C{xσy où σ P AutpCq est d’ordre p premier (éventuellement égal à 2) et on note χpηq la caractéris-
tique d’Euler de η. Alors

χpηq “

#

pg
1´1 si f est étale,

pg
1 sinon.

En particulier,

deg ηd “ d! ¨ χpηq “

#

d! ¨ pg
1´1 si f est étale,

d! ¨ pg
1 sinon.

Démonstration. En s’appuyant sur [Ort03, Proposition 2.1], le type de la polarisation η lorsque f
est étale est p 1, . . . , 1

loomoon

pp´2qpg1´1q

, p, . . . , p
loomoon

g1´1

q, auquel cas χpηq “ pg
1´1. Maintenant, supposons que f est ramifié.

Puisque f est de degré p premier, il ne se factorise pas à travers un revêtement étale cyclique non
trivial. D’après [BL04, Proposition 11.4.3], on en déduit que f :“ f˚ : J 1 Ñ J est injectif. Autrement
dit, f induit un isomorphisme de J 1 sur Y et la polarisation induite par θ sur Y est égale à p fois une
polarisation principale sur Y (car f˚θ “ pθ1). Finalement, ι˚Y θ est de type pp, p, . . . , p

loooomoooon

g1

q puis, grâce

au corollaire 12.1.5 de [BL04], η est de type p1, . . . , 1, p, . . . , p
loomoon

g1

q ; ce qui fournit le résultat concernant

χpηq. La seconde assertion est une conséquence immédiate du théorème de Riemann-Roch pour les
variétés abéliennes [Mum08, p150].

Après ces quelques préliminaires techniques passons à l’étude de la transformée de Fourier des
ωi.

Etude des Fpωiq

On note F : ψη˚FZ : ApZq Ñ ApZq la transformée de Fourier sur Z après identification ApZq »

Ap pZq via l’isogénie ψη :“ epZqϕ´1
η P Homp pZ,Zq.

Remarque 3.3.15 : On a epY q “ epZq “ 1 si Z “ t0u ou Z “ J . Sinon epY q “ epZq “ p.

On a par définition ω0 “ η. La transformée de Fourier de ω0 est donc bien connu :

Proposition 3.3.16 - On a les égalités

Fpω0q “ p´1qd`1ψZ˚Cp0q “ p´1qd`1 epZq
2

χpηq

ηd´1

pd´ 1q!
.

Démonstration. Grâce à la proposition 2.2.2, on obtient

Fpω0q “ ψη˚FZpι˚Zθq “ p´1qd´gψη˚ pιZ˚FJpθq “ p´1qd´gψη˚ pιZ˚ϕθ˚ϕ
˚
θFJpθq

“ p´1qd´g`g`1ψZ˚Cp0q “ p´1qd`1ψZ˚Cp0q.

D’un autre côté, en utilisant [Bea83, Proposition 5], on a

ψZ˚Cp0q “ p´1qd`1ψη˚FZpηq “ p´1qd`1ψη˚ϕη˚
p´1qd´1

χpηq

ηd´1

pd´ 1q!

“
1

χpηq
epZq˚

ηd´1

pd´ 1q!
“
epZq2

χpηq

ηd´1

pd´ 1q!
.
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D’où le résultat.

Il nous reste à déterminer Fpωiq pour i P J1, p´ 1K. Pour cela, on aura besoin des préliminaires
précédents.

Théorème 3.3.17 - On suppose que p ą 2 est premier. Alors pour tout entier i P J1, p´ 1K,

Fpωiq “ p´1qd`1pσi ` σ´iq˚ψZ˚Cp0q.

Par conséquent, χpηqpd ´ 1q!Fpωiq appartient au Z-module engendré par les produits d’intersection
de la forme

ωi1ωi2 ¨ ¨ ¨ωid´1
P Ad´1pZqp0q, 0 ď i1 ď i2 ď . . . ď id´1 ď

p´ 3

2
.

De plus, on peut exprimer explicitement les Fpωiq en fonction de ces produits en les ωj.

Démonstration. Pour tout entier i, l’endomorphisme σi`σ´i P EndpsqpZq est symétrique, c’est-à-dire

Rpσi ` σ´iq “ σ´i ` σi “ σi ` σ´i

où R : End0pZq Ñ End0pZq désigne l’involution de Rosati sur Z relativement à la polarisation η.
On vérifie en effet que Rpσq “ σ´1. Par conséquent, les mêmes arguments que pour la proposition
3.3.16 précédente montrent que

Fpωiq :“ Fppσi ` σ´iq˚ηq “ Rpσi ` σ´iq˚Fpηq “ pσi ` σ´iq˚Fpηq “ p´1qd`1pσi ` σ´iq˚ψZ˚Cp0q.

Comme ψZ˚Cp0q “
epZq2

χpηq
ηd´1

pd´1q! , on en déduit que

Fpωiq “ p´1qd`1 epZq
2

χpηq
pσi ` σ´iq˚

ηd´1

pd´ 1q!

Or d’après le lemme 3.3.12, il existe un polynômeQ P ZrXs à coefficients entiers positifs, indépendant
de i et que l’on peut calculer explicitement tel que

pσi ` σ´iq´1 “ Qpσiq P AutpZq.

On obtient dans ce cas

Fpωiq “ p´1qd`1 epZq
2

χpηq
Qpσiq˚

ηd´1

pd´ 1q!

et puisque les pull-backs commutent au produit d’intersection, il vient

Fpωiq “
p´1qd`1epZq2

χpηqpd´ 1q!

`

Qpσiq˚η
˘d´1

.

Or Qpσiq˚η P RσpψZ˚C;ZqXA1pZq, c’est donc une combinaison rationnelle et même entière (car Q
est à coefficients entiers) en ω0, . . . , ω p´3

2
d’après le corollaire 3.2.5 (2). Noter qu’une telle combinaison

s’obtient explicitement en utilisant le lemme 3.2.1 puisque Q est connu. Finalement, Fpωiq est un
polynôme homogène de degré d ´ 1 à coefficients entiers en les ω0, ω1, . . . , ω p´3

2
. Plus précisément,

χpηqpd´ 1q!Fpωiq appartient au Z-module engendré par les produits d’intersection de la forme

ωi1ωi2 ¨ ¨ ¨ωid´1
P Ad´1pZqp0q, 0 ď i1 ď i2 ď . . . ď id´1 ď

p´ 3

2
;

ce qu’il fallait démontrer.
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Exemples

Notons que si σ est un automorphisme d’ordre p premier vérifiant Φppσq “ 0 sur une variété
abélienne de dimension d, alors p´ 1 divise 2d (car rQpσq : Qs “ p´ 1) et en particulier p´ 1 ď 2d.
Ainsi, le cas p “ 3 est à étudier pour d ě 1, le cas p “ 5 est lui à étudier pour d ě 2, le cas p “ 7
est à étudier pour d ě 3, etc...

Exemple 3.3.18 (d ě 1 et p “ 3) : On suppose ici que d ě 1 et p “ 3. On a

1. Fpω0q “ p´1qd`1ψZ˚Cp0q “
p´1qd`1epZq2

χpηqpd´1q! ω
d´1
0 (Proposition 3.3.16),

2. Fpω1q “ Fpω0q “
p´1qd`1epZq2

χpηqpd´1q! ω
d´1
0 grâce au lemme 3.3.4.

Exemple 3.3.19 (d ě 2 et p “ 5) : On suppose ici que d ě 2 et p “ 5. Avec les notations introduites
dans la démonstration du lemme 3.3.12, on a

P pXq “ ´1`X `X2,

de sorte que QpXq “ 1`X et donc

pσ ` σ´1q´1 “ 1` σ ` σ´1 “ 1` σ ` σ4 “ ´σ2 ´ σ3 “ ´pσ2 ` σ´2q.

Dans ce cas :

1. Fpω0q “ p´1qd`1ψZ˚Cp0q “
p´1qd`1epZq2

χpηqpd´1q! ω
d´1
0 comme toujours.

2. De même,

Fpω1q “ Fppσ ` σ´1q˚ηq “ p´1qd`1pσ2 ` σ´2q˚p´1q˚ψZ˚Cp0q “ p´1qd`1pσ2 ` σ´2q˚ψZ˚Cp0q

“
p´1qd`1epZq2

χpηqpd´ 1q!
ppσ2 ` σ´2q˚ηqd´1 “

p´1qd`1epZq2

χpηqpd´ 1q!
ωd´1

2 .

3. Pour Fpω2q, le même raisonnement montre d’une part

Fpω2q “ p´1qd`1pσ2 ` σ´2q˚ψZ˚Cp0q “ p´1qd`1pσ ` σ´1q˚p´1q˚ψZ˚Cp0q

“ p´1qd`1pσ ` σ´1q˚ψZ˚Cp0q “
p´1qd`1epZq2

χpηqpd´ 1q!
ppσ ` σ´1q˚ηqd´1 “

p´1qd`1epZq2

χpηqpd´ 1q!
ωd´1

1

et d’autre part, par le lemme 3.3.4,

Fpω2q “ Fp3ω0 ´ ω1q “ 3Fpω0q ´ Fpω1q “
p´1qd`1epZq2

χpηqpd´ 1q!
p3ωd´1

0 ´ ωd´1
2 q.

La transformée de Fourier nous permet donc d’obtenir une relation non triviale en codimension
d´ 1 :

´3ωd´1
0 ` ωd´1

1 ` ωd´1
2 “ 0.

Par ailleurs, en réinjectant la formule ω2 “ 3ω0´ω1 dans celle-ci, on obtient une relation (non
triviale si d ą 2) entre ω0 et ω1 (cf. Exemple 3.3.22).

Exemple 3.3.20 (pd, pq “ p3, 7q) : On suppose ici que d “ 3 et p “ 7. L’inverse de σi ` σ´i est
´p1` σ3i ` σ4iq. Alors :

1. Fpω0q “ ψZ˚Cp0q “
epZq2

2χpηqω
2
0.
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2. Pour Fpω1q, on trouve en utilisant le lemme 3.2.1 ainsi que le fait que pour tout entier k,
σk˚η “ η :

2χpηq

epZq2
Fpω1q “ p1` σ

3 ` σ´3q˚η2 “
“

p1` σ3 ` σ´3q˚η
‰2

“
“

p1` σ3q˚η ` p1` σ´3q˚η ` pσ3 ` σ´3q˚η ´ 1˚η ´ σ3˚η ´ σ´3˚η
‰2

“
“

2p1` σ´3q˚η ` ω3 ´ 3ω0

‰2
“

“

2p1` σ4q˚η ` ω3 ´ 3ω0

‰2

“ p2ω2 ` ω3 ´ 3ω0q
2
“ p2ω0 ´ ω1 ` ω2q

2 par le lemme 3.3.4

“ 4ω2
0 ´ 4ω0ω1 ` 4ω0ω2 ` ω

2
1 ´ 2ω1ω2 ` ω

2
2,

de sorte que

Fpω1q “
epZq2

χpηq

ˆ

2ω2
0 ´ 2ω0ω1 ` 2ω0ω2 `

1

2
ω2

1 ´ ω1ω2 `
1

2
ω2

2

˙

.

3. Pour Fpω2q, on a de même :

2χpηq

epZq2
Fpω2q “ p1` σ ` σ

´1q˚η2 “
“

p1` σ ` σ´1q˚η
‰2

“ p2ω3 ` ω1 ´ 3ω2q
2
“ p7ω0 ´ ω1 ´ 2ω2q

2 par le lemme 3.3.4

“ 49ω2
0 ´ 14ω0ω1 ´ 28ω0ω2 ` ω

2
1 ` 4ω1ω2 ` 4ω2

2,

et dans ce cas

Fpω2q “
epZq2

χpηq

ˆ

49

2
ω2

0 ´ 7ω0ω1 ´ 14ω0ω2 `
1

2
ω2

1 ` 2ω1ω2 ` 2ω2
2

˙

.

4. Pour Fpω3q, on a de manière analogue :

2χpηq

epZq2
Fpω3q “ p1` σ

2 ` σ´2q˚η2 “
“

p1` σ2 ` σ´2q˚η
‰2

“ p´3ω0 ` 2ω1 ` ω2q
2

“ 9ω2
0 ´ 12ω0ω1 ´ 6ω0ω2 ` 4ω2

1 ` 4ω1ω2 ` ω
2
2,

et donc

Fpω3q “
epZq2

χpηq

ˆ

9

2
ω2

0 ´ 6ω0ω1 ´ 3ω0ω2 ` 2ω2
1 ` 2ω1ω2 `

1

2
ω2

2

˙

.

D’autre part, on a

2χpηq

epZq2
Fpω3q “

2χpηq

epZq2
pFp5ω0 ´ ω1 ´ ω2qq “

2χpηq

epZq2
p5Fpω0q ´ Fpω1q ´ Fpω2qq

“ 5ω2
0 ´

`

4ω2
0 ´ 4ω0ω1 ` 4ω0ω2 ` ω

2
1 ´ 2ω1ω2 ` ω

2
2

˘

´
`

49ω2
0 ´ 14ω0ω1 ´ 28ω0ω2 ` ω

2
1 ` 4ω1ω2 ` 4ω2

2

˘

“ ´ 48ω2
0 ` 18ω0ω1 ` 24ω0ω2 ´ 2ω2

1 ´ 2ω1ω2 ´ 5ω2
2.

Ainsi

9ω2
0 ´ 12ω0ω1 ´ 6ω0ω2 ` 4ω2

1 ` 4ω1ω2 ` ω
2
2 “ ´48ω2

0 ` 18ω0ω1 ` 24ω0ω2 ´ 2ω2
1 ´ 2ω1ω2 ´ 5ω2

2.
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Autrement dit, on obtient la relation non triviale suivante :

57ω2
0 ´ 30ω0ω1 ´ 30ω0ω2 ` 6ω2

1 ` 6ω1ω2 ` 6ω2
2 “ 0

ou plus simplement en divisant par 3 :

19ω2
0 ´ 10ω0ω1 ´ 10ω0ω2 ` 2ω2

1 ` 2ω1ω2 ` 2ω2
2 “ 0.

Il s’agit à présent d’étudier de manière plus générale les relations entre les cycles ωi. On va
montrer comment obtenir d’autres relations non triviales et, à terme, on donnera même une liste
complète de toutes les relations existantes entre les ωi en petite dimension d.

3.3.3 Méthodes générales pour étudier les relations entre les ωi

Dans cette partie, on présente quelques méthodes pour étudier les relations entre les ωi. Notez
qu’une relation en codimension k P J0,dimZK est déterminée par un polynôme homogène de degré
k en les ωi.

Les deux premières méthodes que l’on présente s’appuient sur le principe suivant :

Fait 3.3.21 : Soit T : RσpψZ˚C;Zq Ñ RσpψZ˚C;Zq un opérateur dont on sait exprimer l’image
de tout polynôme en les ωi sous la forme d’un polynôme en les ωi et tel que T p0q “ 0. On peut
appliquer T à une relation entre les ωi pour obtenir encore une relation (en générale nouvelle) entre
les ωi.

En utilisant la transformée de Fourier d’une relation

Comme on vient de le voir dans les exemples 3.3.19 et 3.3.20, on peut obtenir de nouvelles
relations en utilisant la transformée de Fourier. L’idée est la suivante.

Méthode : Soit Rk une relation entre les ωi P A1pZqp0q en codimension k P J0,dimZK. Supposons
que l’on sache exprimer Rd´k :“ FpRkq comme un polynôme homogène de degré d ´ k en les ωi.
Alors Rd´k est une relation (en général non triviale) en codimension d´ k entre les ωi.

Cette méthode s’applique en particulier à la relation R1 : p2´pqω0`ω1` . . .`ω p´1
2
“ 0 donnée

par le lemme 3.3.4 :

0 “ F
´

p2´ pqω0 ` ω1 ` . . .` ω p´1
2

¯

“ p2´ pqFpω0q ` Fpω1q ` . . .` Fpω p´1
2
q

“ polynôme nul ou homogène de degré d´ 1 en ω0, . . . , ω p´3
2

(par le théorème 3.3.17).

Exemple 3.3.22 (d ě 2 et p “ 5) : L’exemple 3.3.19 qui calculait les Fpωiq pour d ě 2 et p “ 5 a
fourni la relation suivante :

´3ωd´1
0 ` ωd´1

1 ` ωd´1
2 “ 0.

De sorte que pour pd, pq “ p2, 5q, la relation en codimension 2 ´ 1 “ 1 obtenue entre ω0, ω1, ω2 est
juste ´3ω0 ` ω1 ` ω2 (c’est le lemme 3.3.4) et le fait de substituer ω2 “ 3ω0 ´ ω1 nous donne bien
sûr la relation triviale entre ω0 et ω1. Ainsi pour pd, pq “ p2, 5q, cette méthode n’apporte rien de
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plus. En revanche pour pd, pq “ p4, 5q, on obtient une relation non triviale :

0 “ ´3ω3
0 ` ω

3
1 ` ω

3
2

“ ´3ω3
0 ` ω

3
1 ` p3ω0 ´ ω1q

3

“ ´3ω3
0 ` ω

3
1 ` 27ω3

0 ´ 27ω2
0ω1 ` 9ω0ω

2
1 ´ ω

3
1

“ 24ω3
0 ´ 27ω2

0ω1 ` 9ω0ω
2
1.

En simplifiant par 3, on a donc obtenu la relation non triviale

8ω3
0 ´ 9ω2

0ω1 ` 3ω0ω
2
1 “ 0.

Exemple 3.3.23 (pd, pq “ p3, 7q) : Dans l’exemple 3.3.20, on a déjà obtenu par cette méthode
(présentée très légèrement différemment) la relation

19ω2
0 ´ 10ω0ω1 ´ 10ω0ω2 ` 2ω2

1 ` 2ω1ω2 ` 2ω2
2 “ 0.

Bien qu’intéressante cette méthode reste tout de même limitée par les faits suivants :
1. il est nécessaire de connaître initialement une relation,
2. il faut pouvoir exprimer explicitement la transformée de Fourier de la relation de départ en

termes de produits d’intersection des ωi ; ce qui est généralement (très) difficile.
La méthode suivante est un peu plus performante et accessible. Elle propose notamment d’éli-

miner cette seconde contrainte.

En faisant agir les σi ` σ´i par pull-back sur une relation

Si C est une courbe admettant un automorphisme σ d’ordre p ą 2 premier, alors on peut en
particulier faire agir Zrσs Ă EndpZq sur ApZq par pull-back et puisque pZrσs, ˝q est commutatif,
cette action induite est même covariante.

La méthode présentée dans cette partie s’appuie sur le fait suivant que l’on a déjà utilisé pour
obtenir le corollaire 3.2.5 : pour tout générateur ωi de RσpψZ˚C;Zq et tout polynôme P P ZrXs, le
cycle P pσq˚ωi est une Z-combinaison linéaire en les ω0, ω1, . . . , ω p´3

2
. Par ailleurs, on peut calculer

explicitement ces combinaisons linéaires.

Méthode : Soit Rk une relation entre les ωi en codimension k P J0, dimZK. Alors pour tout
P pσq P Zrσs, P pσq˚Rk est encore une relation en codimension k entre les ωi ; relation que l’on peut
calculer explicitement comme on vient de le rappeler.

Remarque 3.3.24 : Le lemme 3.2.1 montre en fait que l’action par pull-back de EndpZq sur les
ωi est essentiellement connue dès lors que l’on connaît celle des σj ` σ´j avec j P J1, p´3

2 K sur ces
mêmes ωi.

Exemple 3.3.25 (p “ 5) : Si p “ 5, alors
1. pσ ` σ´1q˚ω0 “ ω1,
2. pσ` σ´1q˚ω1 “ ´4ω0 ` 4ω1 ` ω2 “ ´ω0 ` 3ω1. En effet, on a toujours grâce au lemme 3.2.1 :

pσ ` σ´1q˚ω1 “ p2` σ
2 ` σ´2q˚η

“ 2˚η ` 2p1` σ2q˚η ` 2p1` σ´2q˚η ` pσ2 ` σ´2q˚η ´ 8η

“ 2ω1 ` ω2 ` 2ω1 ´ 4ω0 “ ´4ω0 ` 4ω1 ` ω2

“ ´4ω0 ` 4ω1 ` p3ω0 ´ ω1q “ ´ω0 ` 3ω1.
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3. pσ ` σ´1q˚ω2 “ p´1q˚ω0 “ ω0.

Exemple 3.3.26 (p “ 7) : Si p “ 7, alors
1. pσ ` σ´1q˚ω0 “ ω1 et pσ2 ` σ´2q˚ω0 “ ω2,
2. pσ ` σ´1q˚ω1 “ ´4ω0 ` 4ω1 ` ω2,
3. pσ ` σ´1q˚ω2 “ pσ

2 ` σ´2q˚ω1 “ ´8ω0 ` 3ω1 ` 2ω2 ` ω3 “ ´3ω0 ` 2ω1 ` ω2. En effet,

pσ ` σ´1q˚ω2 “ pσ
3 ` σ´1 ` σ ` σ´3q˚η

“pσ3 ` σ´1q˚η ` pσ3 ` σq˚η ` pσ3 ` σ´3q˚η ` pσ ` σ´1q˚η ` pσ´1 ` σ´3q˚η ` pσ ` σ´3q˚η ´ 8η

“ω2 ` ω1 ` ω3 ` ω1 ` ω1 ` ω2 ´ 8ω0 “ ´8ω0 ` 3ω1 ` 2ω2 ` ω3

“ ´ 8ω0 ` 3ω1 ` 2ω2 ` p5ω0 ´ ω1 ´ ω2q “ ´3ω0 ` 2ω1 ` ω2.

4. pσ2 ` σ´2q˚ω2 “ ´4ω0 ` 4ω2 ` ω3 “ ω0 ´ ω1 ` 3ω2. En effet,

pσ2 ` σ´2q˚ω2 “ pσ
4 ` 2` σ´4q˚η

“ 2pσ4 ` 1q˚η ` pσ4 ` σ´4q˚η ` 2˚η ` 2p1` σ´4q˚η ´ 8η

“ 2ω2 ` ω3 ` 4ω0 ` 2ω2 ´ 8ω0 “ ´4ω0 ` 4ω2 ` ω3

“ ´4ω0 ` 4ω2 ` p5ω0 ´ ω1 ´ ω2q “ ω0 ´ ω1 ` 3ω2.

Maintenant si l’on souhaite mettre en pratique cette méthode pour obtenir de nouvelles relations,
il reste encore un problème auquel on se heurte (comme pour la transformée de Fourier) : cette
méthode requiert de connaître au préalable une relation sur laquelle faire agir les P pσq˚. Toutefois,
si une telle relation est donnée, les calculs se font alors relativement bien même s’ils peuvent devenir
assez lourds.

Traitons dans le détail les cas pd, pq “ p4, 5q et pd, pq “ p3, 7q.

Exemple 3.3.27 (pd, pq “ p4, 5q) : D’après l’exemple 3.3.22, la transformée de Fourier fournit une
première relation non triviale en codimension 3 :

8ω3
0 ´ 9ω2

0ω1 ` 3ω0ω
2
1 “ 0.

En faisant agir σ ` σ´1 sur cette relation, on obtient la relation

3ω2
0ω1 ´ 9ω0ω

2
1 ` 8ω3

1 “ 0.

En effet, en utilisant les formules de l’exemple 3.3.25 on a

pσ ` σ´1q˚p8ω3
0 ´ 9ω2

0ω1 ` 3ω0ω
2
1q “ 0

ðñ 8ppσ ` σ´1q˚ω0q
3 ´ 9ppσ ` σ´1q˚ω0q

2 ¨ ppσ ` σ´1q˚ω1q ` 3ppσ ` σ´1q˚ω0q ¨ ppσ ` σ
´1q˚ω1q

2 “ 0

ðñ 8ω3
1 ´ 9ω2

1p´ω0 ` 3ω1q ` 3ω1p´ω0 ` 3ω1q
2 “ 0

ðñ 8ω3
1 ` 9ω0ω

2
1 ´ 27ω3

1 ` 3ω1pω
2
0 ´ 6ω0ω1 ` 9ω1q “ 0

ðñ 3ω2
0ω1 ´ 9ω0ω

2
1 ` 8ω3

1 “ 0.

Notez que cette seconde relation est bien distincte de la première, c’est-à-dire linéairement indépen-
dante.

Exemple 3.3.28 (pd, pq “ p3, 7q) : Depuis l’exemple 3.3.20, on connaît la relation non triviale
suivante en codimension 2 :

19ω2
0 ´ 10ω0ω1 ´ 10ω0ω2 ` 2ω2

1 ` 2ω1ω2 ` 2ω2
2 “ 0.

En faisant agir σ ` σ´1 et σ2 ` σ´2 sur cette relation, on va en obtenir deux autres.
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1. En s’appuyant sur l’exemple 3.3.26, les calculs pour l’action de σ ` σ´1 sont les suivants :

pσ ` σ´1q˚p19ω2
0 ´ 10ω0ω1 ´ 10ω0ω2 ` 2ω2

1 ` 2ω1ω2 ` 2ω2
2q “ 0

ðñ 19ω2
1 ´ 10ω1p´4ω0 ` 4ω1 ` ω2q ´ 10ω1p´3ω0 ` 2ω1 ` ω2q ` 2p´4ω0 ` 4ω1 ` ω2q

2

` 2p´4ω0 ` 4ω1 ` ω2qp´3ω0 ` 2ω1 ` ω2q ` 2p´3ω0 ` 2ω1 ` ω2q
2 “ 0

ðñ 19ω2
1 ` 40ω0ω1 ´ 40ω2

1 ´ 10ω1ω2 ` 30ω0ω1 ´ 20ω2
1 ´ 10ω1ω2

` 2p16ω2
0 ` 16ω2

1 ` ω
2
2 ´ 32ω0ω1 ´ 8ω0ω2 ` 8ω1ω2q

` 2p12ω2
0 ´ 8ω0ω1 ´ 4ω0ω2 ´ 12ω0ω1 ` 8ω2

1 ` 4ω1ω2 ´ 3ω0ω2 ` 2ω1ω2 ` ω
2
2q

` 2p9ω2
0 ` 4ω2

1 ` ω
2
2 ´ 12ω0ω1 ´ 6ω0ω2 ` 4ω1ω2q “ 0

ðñ 74ω2
0 ´ 58ω0ω1 ´ 42ω0ω2 ` 15ω2

1 ` 16ω1ω2 ` 6ω2
2 “ 0.

2. En s’appuyant toujours sur l’exemple 3.3.26, les calculs pour l’action de σ2 ` σ´2 sont les
suivants :

pσ2 ` σ´2q˚p19ω2
0 ´ 10ω0ω1 ´ 10ω0ω2 ` 2ω2

1 ` 2ω1ω2 ` 2ω2
2q “ 0

ðñ 19ω2
2 ´ 10ω2p´3ω0 ` 2ω1 ` ω2q ´ 10ω2pω0 ´ ω1 ` 3ω2q ` 2p´3ω0 ` 2ω1 ` ω2q

2

` 2p´3ω0 ` 2ω1 ` ω2qpω0 ´ ω1 ` 3ω2q ` 2pω0 ´ ω1 ` 3ω2q
2 “ 0

ðñ 19ω2
2 ` 30ω0ω2 ´ 20ω1ω2 ´ 10ω2

2 ´ 10ω0ω2 ` 10ω1ω2 ´ 30ω2
2

` 2p9ω2
0 ` 4ω2

1 ` ω
2
2 ´ 12ω0ω1 ´ 6ω0ω2 ` 4ω1ω2q

` 2p´3ω2
0 ` 3ω0ω1 ´ 9ω0ω2 ` 2ω0ω1 ´ 2ω2

1 ` 6ω1ω2 ` ω0ω2 ´ ω1ω2 ` 3ω2
2q

` 2pω2
0 ` ω

2
1 ` 9ω2

2 ´ 2ω0ω1 ` 6ω0ω2 ´ 6ω1ω2q “ 0

ðñ 14ω2
0 ´ 18ω0ω1 ` 4ω0ω2 ` 6ω2

1 ´ 4ω1ω2 ` 5ω2
2 “ 0.

On vérifie alors immédiatement que ces trois relations en codimension 2 sont linéairement indépen-
dantes.

Signalons une autre limite concernant ces deux premières méthodes : il faut connaître suffisam-
ment de relations au départ afin de pouvoir espérer en déduire toutes les relations via ces méthodes.
Et quand bien même on obtiendrait plusieurs nouvelles relations, comment savoir si on les a toutes
obtenues ? La troisième méthode que l’on présente maintenant est plus complexe mais permettra
quant à elle de dépasser largement ces limites.

En connaissant les relations en codimension supérieure

Cette méthode que l’on introduit ici est basée sur la remarque suivante :

Fait 3.3.29 : Supposons qu’il existe une relation Rk entre les ωi. En intersectant cette relation avec
n’importe quel monôme de degré l en les ωi, on obtient une relation en codimension k` l. Autrement
dit, les relations en codimension k` l contiennent la composante pk` lq-codimensionnelle de l’idéal
engendré par la relation Rk.

On peut alors utiliser ce fait comme ceci :

Méthode : Supposons que l’on connaisse toutes les relations entre les ωi en codimension k P J1, dK
pour un certain k fixé. Alors on en déduit des conditions nécessaires pour l’existence de relations en
codimension ď k. Si ces contraintes sont trop importantes pour une certaine codimension l ď k, on
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peut en déduire la non existence de relation en codimension l. Dans le cas contraire, ces conditions
nécessaires limitent tout de même l’étude des relations à une famille de « possibles relations » qu’il
resterait encore à étudier.

La démarche présentée dans ce qui suit consiste plus particulièrement à déterminer toutes les relations
en codimension maximale d entre les ωi ; ce qui revient à calculer le degré des cycles qui s’expriment
comme monômes de degré d en les ωi. Cette méthode combinée avec un argument de dimension
permettra (au moins en général) d’obtenir toutes les relations entre les ωi et ceci en codimension
quelconque. Des calculs détaillés seront donnés pour d petit. On vient donc corriger avec cette
méthode les insuffisances des deux premières.

3.3.4 Relations en codimension maximale entre les ωi

La partie précédente a motivé l’étude des degrés des monômes de la forme ωd´
ř

αk
0 ωα1

1 ¨ ¨ ¨ω
αpp´3q{2

pp´3q{2 .
On propose maintenant un moyen de les calculer.

Relations Rqpα, ηq en codimension maximale

Idée de la méthode : L’idée utilisée dans cette partie repose sur le fait que les coefficients du
polynôme caractéristique Pα d’un endomorphisme α P EndpZq sont des polynômes en les Trpαkq. En
effet, ces coefficients sont des fonctions symétriques en les racines λi, qui elles-mêmes s’expriment en
caractéristique 0 via la identités de Newton comme un polynôme en les

ř

k λ
k
i “ Trpαkq. Ceci nous

amène à définir les éléments suivants :

Définition 3.3.30 (Polynômes Σkpαq) Soient α P EndpZq et k P J1, 2dK. Chaque polynôme symé-
trique élémentaire σk “

ř

1ďi1ă...ăikď2dXi1 ¨ ¨ ¨Xik P ZrX1, . . . , X2ds s’exprime comme un polynôme
Σk P QrY1, . . . , Yks en les sommes de Newton NkpX1, . . . , X2dq “

ř2d
i“1X

k
i . On définit alors

Σkpαq :“ ΣkpTrpαq,Trpα2q, . . . ,Trpαkqq P Q.

On convient aussi de poser Σ0pαq “ 1.

Remarque 3.3.31 : On a même k!Σk P ZrY1, . . . , Yks.

Les deux prochains lemmes vont nous permettre de calculer concrètement les coefficients Σkpαq,
notamment lorsque α est un polynôme en σ. Mais avant cela, rappelons la définition suivante :

Définition 3.3.32 (Coefficients multinomiaux) Soient m P N et n1, n2, . . . , nk P Z tels que n1 `

n2 ` . . .` nk “ m. On définit le coefficient multinomial suivant :

ˆ

m

n1, n2, . . . , nk

˙

:“

#

m!
n1!¨n2!¨¨¨nk! si tous les ni ě 0

0 sinon.

Si k “ 2, on retrouve le coefficient binomial habituel et on notera de manière classique
ˆ

m

n

˙

:“

ˆ

m

n,m´ n

˙

“
m!

n!pm´ nq!
.
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Lemme 3.3.33 - Soit α P EndpZq. Pour tout entier k P J1, 2dK, on a

Σkpαq “
1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣

Trpαq 1 0 ¨ ¨ ¨ 0

Trpα2q Trpαq 2
...

...
. . . . . . . . . 0

...
. . . . . . k ´ 1

Trpαkq Trpαk´1q ¨ ¨ ¨ Trpα2q Trpαq

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Démonstration. Il s’agit simplement de revenir à la définition 3.3.30 du coefficient Σkpαq et d’utiliser
[Mac95, p28] ; référence prouvant l’égalité suivante :

ΣkpY1, . . . , Ykq “
1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣

Y1 1 0 ¨ ¨ ¨ 0

Y2 Y1 2
...

...
. . . . . . . . . 0

...
. . . . . . k ´ 1

Yk Yk´1 ¨ ¨ ¨ Y2 Y1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Exemple 3.3.34 :

1. Σ1pαq “ Trpαq.

2. Σ2pαq “ 1
2pTrpαq2 ´ Trpα2qq.

3. Σ3pαq “ 1
6pTrpαq3 ´ 3 TrpαqTrpα2q ` 2 Trpα3qq.

4. Σ4pαq “ 1
24pTrpαq4 ´ 6 Trpαq2 Trpα2q ` 3 Trpα2q2 ` 8 TrpαqTrpα3q ´ 6 Trpα4qq.

Lemme 3.3.35 - Soit σ P AutpCq un automorphisme d’ordre p premier. Soit i P J0, p ´ 1K. Alors
p´ 1 divise 2d et

Trpσiq “

#

2d si i “ 0,

´ 2d
p´1 si 1 ď i ď p´ 1.

Démonstration. Si i “ 0, σi “ 1Z et Trp1Zq “ 2 dimZ “ 2d. Sinon p ne divise pas i et on a
l’isomorphisme

Qrσis » Qpζipq » Qpζpq

où ζp “ e
2iπ
p est une racine primitive p-ième de l’unité. En particulier, ΦppXq “ 1`X ` . . .`Xp´1

est le polynôme minimal (sur Q) de σi (et aussi celui de σ). Celui-ci est irréductible. Par conséquent,
le polynôme caractéristique Pσi “ Pσ de σi (ou σ) est une puissance de Φp et comme le degré du
polynôme caractéristique de σi est de degré 2d (puisqu’on travaille sur une variété abélienne de
dimension d), alors 2d est nécessairement un multiple de p´ 1, c’est-à-dire

2d

p´ 1
P N˚ et PσipXq “ PσpXq “ pΦppXqq

2d
p´1 .

Calculer la trace de σi revient donc à déterminer l’opposé du coefficient du terme de degré 2d ´ 1

du polynôme pΦppXqq
2d
p´1 . Une récurrence immédiate montre que pour tous entiers n ě 2 et k ě 1,

pXn `Xn´1 ` . . .`X ` 1qk “ Xkn ` kXkn´1 ` ptermes de degré ď kn´ 2q .
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Dans notre cas, n “ p´ 1 et k “ 2d
p´1 . Par suite, si 1 ď i ď p´ 1,

Trpσiq “ ´
2d

p´ 1
.

On en vient à présent aux résultats principaux de ce paragraphe.

Proposition 3.3.36 - Soient A une variété abélienne de dimension d sur un corps k (de carac-
téristique 0) et H P NSpAq la classe d’un diviseur ample. Pour tout endomorphisme α de A, on
note

DαpHq :“ pα` 1q˚H ´ α˚H ´H.

Alors pour tout entier q P J0, 2dK, on dispose de la relation Rqpα,Hq suivante :

Rqpα,Hq : Σ2d´qpαq “
1

degHd

t
q
2

u
ÿ

i“maxp0,q´dq

ˆ

d

i, q ´ 2i, i` d´ q

˙

deg
´

H i ¨DαpHq
q´2i ¨ α˚H i`d´q

¯

.

Démonstration. Soit α P EndpAq. On note Pα le polynôme caractéristique de α. Les relations
coefficients-racines et la définition même des Σkpαq donnent

Pαp´nq “
2d
ÿ

q“0

Σ2d´qpαq nq.

De plus, d’après [Mum08, Théorème 4 p180],

Pαp´nq “ degp´n´ αq “ degpα` nq “
1

degHd
deg ppα` nq˚Hqd .

Or le lemme 3.2.1 montre que

pα` nq˚H “ npα` 1q˚H `
npn´ 1q

2
p1` 1q˚H ´ pn´ 1qα˚H ´ npn´ 1q1˚H

“ npα` 1q˚H ` 2npn´ 1qH ´ pn´ 1qα˚H ´ npn´ 1qH

“ npα` 1q˚H ` npn´ 1qH ´ pn´ 1qα˚H

“ n2H ` nDαpHq ` α
˚H.

Il s’ensuit grâce à la formule du trinôme que

2d
ÿ

q“0

Σ2d´qpαq nq “ degpα` nq “
1

degHd
deg

`

n2H ` nDαpHq ` α
˚H

˘d

“
1

degHd

ÿ

i`j`k“d
i,j,kě0

ˆ

d

i, j, k

˙

deg
´

H i ¨DαpHq
j ¨ α˚Hk

¯

n2i`j .

En identifiant les coefficients d’ordre q P J0, 2dK, on obtient :

Σ2d´qpαq “
1

degHd

d
ÿ

i“0

ˆ

d

i, q ´ 2i, i` d´ q

˙

deg
´

H i ¨DαpHq
q´2i ¨ α˚H i`d´q

¯

.
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En effet, i étant fixé, la condition 2i` j “ q détermine complètement j “ q´2i, et alors la condition
i` j ` k “ d détermine complètement k “ d´ i´ j “ i` d´ q.

De plus, la nullité de certains coefficients multinomiaux (reliée à la nullité des puissances « trop
grandes » ou « trop petites » des diviseurs) impose les conditions

$

’

&

’

%

0 ď i ď d

0 ď q ´ 2i ď d

0 ď i` d´ q ď d

ðñ

$

’

&

’

%

0 ď i ď d
q´d

2 ď i ď q
2

q ´ d ď i ď q

ðñ 0 ď max

ˆ

0,
Qq ´ d

2

U

˙

ď max p0, q ´ dq ď i ď
Yq

2

]

ď d.

Ainsi on peut se restreindre à sommer sur les i entre max p0, q ´ dq et
Y

q
2

]

. Ceci démontre la première
égalité.

On peut également citer le cas particulier où q “ 2d´ 1. On retrouve le lemme 11.3 de [Mil08] :

Corollaire 3.3.37 - On reprend les hypothèses de la proposition 3.3.36. Alors

Trpαq “
d

degHd
deg

´

Hd´1 ¨DαpHq
¯

.

Démonstration. La proposition 3.3.36 utilisée avec q “ 2d´ 1 montre que

Trpαq “ Σ1pαq “
1

degHd

t
2d´1

2 u
ÿ

i“maxp0,p2d´1q´dq

ˆ

d

i, p2d´ 1q ´ 2i, i` d´ p2d´ 1q

˙

deg
`

Hi ¨DαpHq
q´2i ¨ α˚Hi`d´q

˘

.

Cette somme ne contient qu’un seul terme, celui d’indice i “ d´ 1. Il vient alors

Trpαq “
1

degHd

ˆ

d

d´ 1, 1, 0

˙

deg
´

Hd´1 ¨DαpHq
2d´1´2pd´1q ¨ α˚Hd´1`d´p2d´1q

¯

“
d

degHd
deg

´

Hd´1 ¨DαpHq
¯

.

Nous appliquons à présent la proposition 3.3.36 aux endomorphismes de Z qui sont au cœur de
notre étude, à savoir les polynômes en σ.

Théorème 3.3.38 - Soit C une courbe complexe projective lisse (pas nécessairement hyperelliptique)
munie d’un automorphisme σ P AutpCq d’ordre fini (premier ou non). On continue de noter pZ, η :“
ι˚Zθq la variété de Prym généralisée associée à σ et munie de sa polarisation naturelle. Soient d :“

dimZ et P pσ2q “
řk
i“0miσ

2i P EndpZq un polynôme en σ2 à coefficients entiers positifs non tous
nuls. Alors pour tout entier q P J0, 2dK, la relation RqpP pσ

2q, ηq s’écrit :

Σ2d´qpP pσ2qq ´
1

deg ηd

t
q
2

u
ÿ

i“maxp0,q´dq

ˆ

d

i, q ´ 2i, i` d´ q

˙

deg
´

ηi ¨DP pσ2qpηq
q´2i ¨

`

P pσ2q˚η
˘i`d´q

¯

“ 0,
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où les classes de diviseurs DP pσ2qpηq et P pσ2q˚η se calculent de la manière suivante :

DP pσ2qpηq “
k
ÿ

i“0

mipσ
i ` σ´iq˚η ´ 2

k
ÿ

i“0

miη,

et P pσ2q˚η “
k´1
ÿ

i“0

k
ÿ

j“i`1

mimjpσ
i´j ` σ´pi´jqq˚η `

˜

2
k
ÿ

i“0

m2
i ´

´

k
ÿ

i“0

mi

¯2
¸

η.

Démonstration. On applique la proposition 3.3.36 avec A “ Z et α “ P pσ2q. Il ne reste alors qu’à
donner une expression simple et explicite des classes de diviseurs DP pσ2qpηq et P pσ2q˚η ; ce que l’on
fait en s’appuyant sur le lemme 3.2.1.

Calcul de P pσ2q˚η :

P pσ2q˚η “
k
ÿ

i“0

pmi ´ 1qmi

2
pσ2i ` σ2iq˚η `

k´1
ÿ

i“0

k
ÿ

j“i`1

mimjpσ
2i ` σ2jq˚η ´

k
ÿ

i“0

mi

˜

k
ÿ

i“0

mi ´ 2

¸

η

“

k
ÿ

i“0

2mipmi ´ 1qη `
k´1
ÿ

i“0

k
ÿ

j“i`1

mimjpσ
i´j ` σ´pi´jqq˚η ´

k
ÿ

i“0

mi

˜

k
ÿ

i“0

mi ´ 2

¸

η

car pσ2i ` σ2iq˚η “ σ2i˚2˚η “ 22σ2i˚η “ 4η et

pσ2i ` σ2jq˚η “ pσi´j ` σj´iq˚σpi`jq˚η “ pσi´j ` σ´pi´jqq˚η.

D’où

P pσ2q˚η “
k´1
ÿ

i“0

k
ÿ

j“i`1

mimjpσ
i´j ` σ´pi´jqq˚η `

˜

2
k
ÿ

i“0

m2
i ´

´

k
ÿ

i“0

mi

¯2
¸

η.

Calcul de DP pσ2qpηq : Par définition de DP pσ2qpηq (cf. Proposition 3.3.36) et en utilisant les calculs
précédents, on obtient

DP pσ2qpηq :“

˜

1`
k
ÿ

i“0

miσ
2i

¸˚

η ´

˜

k
ÿ

i“0

miσ
2i

¸˚

η ´ η

“

k
ÿ

i“0

mip1` σ
2iq˚η ` 2

k
ÿ

i“0

mipmi ´ 1qη `
k´1
ÿ

i“0

k
ÿ

j“i`1

mimjpσ
i´j ` σ´pi´jqq˚η ´

˜

k
ÿ

i“0

mi ` 1

¸˜

k
ÿ

i“0

mi ´ 1

¸

η

´

˜

2
k
ÿ

i“0

mipmi ´ 1qη `
k´1
ÿ

i“0

k
ÿ

j“i`1

mimjpσ
i´j ` σ´pi´jqq˚η ´

k
ÿ

i“0

mi

˜

k
ÿ

i“0

mi ´ 2

¸

η

¸

´ η

“

k
ÿ

i“0

mip1` σ
2iq˚η ´ 2

k
ÿ

i“0

miη.

On conclut comme avant en remarquant que p1 ` σ2iq˚η “ pσi ` σ´iq˚η toujours parce que η est
invariant sous l’action de σ˚ (car θ l’est).

Remarquons que les formules obtenues dans ce théorème font apparaître des cycles de la forme
pσi ` σ´iq˚η (resp. pσi´j ` σ´pi´jqq˚η), c’est-à-dire 4ω0 si l’ordre de σ divise i (resp. si l’ordre de
σ divise i ´ j), ou sinon ωi (resp. ωi´j). En pratique, lorsque σ est d’ordre premier p ą 2, on se
ramènera encore à des ωk avec k P J0, p´3

2 K en utilisant l’égalité ωk “ ωp´k et le lemme 3.3.4.

Signalons enfin un aspect intéressant de ce théorème 3.3.38. Les formules obtenues sont totale-
ment explicite : on peut les programmer et ainsi automatiser le calcul des relationsRqpP pσ

2q, ηq pour
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des polynômes P arbitraires à coefficients entiers positifs. A ce sujet, on trouvera dans la sous-section
3.4.1 un code Sage effectuant ces calculs.

Exemples de relations RqpP pσ
2q, ηq

Nous allons à présent donner quelques applications numériques de ces relations selon différentes
valeurs de d et p. Les résultats obtenus nous serons utiles dans un second temps lorsqu’il s’agira
de calculer des degrés de cycles algébriques, puis dans un troisième temps de donner des structures
d’algèbres totalement explicites pour les anneaux tautologiques sur Z.

Notons aussi que les relations RqpP pσ
2q, ηq données par le théorème 3.3.38 traduisent des égalités

entre les degrés de classes de cycles algébriques de codimension maximale d “ dimZ. Or AdpZq » Q.
Autrement dit, les relations RqpP pσ

2q, ηq fournissent des relations linéaires entre des classes de cycles
qui s’expriment comme des monômes de degré d en les ωi.

Enfin, rappelons ce que nous avions déjà remarqué dans la sous-section 3.1.2 ou encore dans le
lemme 3.3.35. Si C est une courbe de genre g ě 1 admettant un automorphisme σ d’ordre p ą 2
premier, alors Z est une variété abélienne de dimension d telle que p´ 1 divise 2d. Par conséquent,

1. si d “ 2, alors p P t3, 5u,
2. si d “ 3, alors p P t3, 7u,
3. si d “ 4, alors p P t3, 5u.

Par ailleurs, le cas p “ 3 étant déjà traité, les exemples qui suivent seront détaillés uniquement pour
p ě 5.

Exemple 3.3.39 (pd, pq “ p2, 5q et P pσ2q “ σ2k) : Pour d “ 2 et p “ 5, on obtient les relations
suivantes
(i) R0pσ

2k, ηq : 0 “ 0,
(ii) R1pσ

2k, ηq : 3ω2
0 ´ 2ω0ωk “ 0,

(iii) R2pσ
2k, ηq : ´5ω2

0 ` 4ω0ωk ´ ω
2
k “ 0,

(iv) R3pσ
2k, ηq : 3ω2

0 ´ 2ω0ωk “ 0,
(v) R4pσ

2k, ηq : 0 “ 0.
Dans ce cas, la combinaison linéaire 2 ˆ piiq ` piiiq permet de (re)trouver la relation plus simple
ω2

0 ´ ω
2
k “ 0.

Exemple 3.3.40 (pd, pq “ p4, 5q et P pσ2q “ σ2k) : Si d “ 4 et p “ 5, on obtient :
(i) R0pσ

2k, ηq : 0 “ 0,
(ii) R1pσ

2k, ηq : 6ω4
0 ´ 4ω3

0ωk “ 0,
(iii) R2pσ

2k, ηq : ´25ω4
0 ` 24ω3

0ωk ´ 6ω2
1ω

2
k “ 0,

(iv) R3pσ
2k, ηq : 52ω4

0 ´ 60ω3
0ωk ` 24ω2

0ω
2
k ´ 4ω0ω

3
k “ 0,

(v) R4pσ
2k, ηq : ´65ω4

0 ` 80ω3
0ωk ´ 36ω2

0ω
2
k ` 8ω0ω

3
k ´ ω

4
k “ 0,

(vi) R5pσ
2k, ηq : 52ω4

0 ´ 60ω3
0ωk ` 24ω2

0ω
2
k ´ 4ω0ω

3
k “ 0,

(vii) R6pσ
2k, ηq : ´25ω4

0 ` 24ω3
0ωk ´ 6ω2

1ω
2
k “ 0,

(viii) R7pσ
2k, ηq : 6ω4

0 ´ 4ω3
0ωk “ 0,

(ix) R8pσ
2k, ηq : 0 “ 0.

Exemple 3.3.41 (pd, pq “ p3, 7q et P pσ2q “ σ2k) : En dimension 3 et avec un automorphisme
d’ordre 7, on a les relations
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(i) R0pσ
2k, ηq : 0 “ 0,

(ii) R1pσ
2k, ηq : 5ω3

0 ´ 3ω2
0ωk “ 0,

(iii) R2pσ
2k, ηq : ´14ω3

0 ` 12ω2
0ωk ´ 3ω0ω

2
k “ 0,

(iv) R3pσ
2k, ηq : 19ω3

0 ´ 18ω2
0ωk ` 6ω0ω

2
k ´ ω

3
k “ 0,

(v) R4pσ
2k, ηq : ´14ω3

0 ` 12ω2
0ωk ´ 3ω0ω

2
k “ 0,

(vi) R5pσ
2k, ηq : 5ω3

0 ´ 3ω2
0ωk “ 0,

(vii) R6pσ
2k, ηq : 0 “ 0.

On observe sur ces derniers exemples une symétrie entre les relations Rqpσ
2k, ηq et R2d´qpσ

2k, ηq.
Ceci est un fait général concernant les relationsRqpα,Hq lorsque α est un endomorphisme stabilisant
la polarisation H, c’est-à-dire tel que α˚H “ H (cf. Proposition 3.5.2). On apportera quelques
compléments concernant ces relations dans la sous-section 3.5.1.

Exemple 3.3.42 (pd, pq “ p3, 7q et P pσ2q “ σ2`σ4) : Dans le cas plus compliqué où P pσ2q “ σ2`σ4,
on obtient les relations suivantes :

(i) R0pσ
2 ` σ4, ηq : ω3

0 ´ ω
3
1 “ 0,

(ii) R1pσ
2 ` σ4, ηq : ´4ω3

0 ` 12ω0ω
2
1 ´ 3ω3

1 ´ 3ω2
1ω2 “ 0,

(iii) R2pσ
2 ` σ4, ηq : 9ω3

0 ´ 48ω2
0ω1 ` 21ω0ω

2
1 ` 24ω0ω1ω2 ´ 3ω3

1 ´ 6ω2
1ω2 ´ 3ω1ω

2
2 “ 0,

(iv) R3pσ
2`σ4, ηq : 56ω3

0´24ω2
0ω1´48ω2

0ω2`6ω0ω
2
1`12ω0ω

2
2`18ω0ω1ω2´ω

3
1´3ω2

1ω2´3ω1ω
2
2´ω

3
2 “ 0,

(v) R4pσ
2 ` σ4, ηq : ´44ω3

0 ` 21ω2
0ω1 ` 24ω2

0ω2 ´ 3ω0ω
2
1 ´ 6ω0ω1ω2 ´ 3ω0ω

2
2 “ 0,

(vi) R5pσ
2 ` σ4, ηq : 10ω3

0 ´ 3ω2
0ω1 ´ 3ω2

0ω2 “ 0,

(vii) R6pσ
2 ` σ4, ηq : 0 “ 0.

Application au calcul des degrés des ωd´
ř

αk
0 ωα1

1 ¨ ¨ ¨ω
αpp´3q{2

pp´3q{2

Nous allons à présent tirer profit des relations RqpP pσ
2q, ηq. En effet, et comme on l’a déjà

vu, celles-ci traduisent des relations linéaires entre les degrés de classes de cycles qui s’expriment
comme des monômes de degré d en les ωi. Se rappelant la proposition 3.3.14 et sous réserve de
considérer suffisamment de relations de la forme RqpP pσ

2q, ηq pour une famille suffisamment variée
de polynômes P pσ2q, une résolution élémentaire d’un système linéaire doit permettre de déterminer
de manière unique le degré de chaque cycle s’exprimant comme un monôme de degré d en les ωi.
C’est l’idée utilisée pour obtenir les exemples de ce paragraphe. Ici encore, ils sont obtenus à partir
de Sage grâce au programme de la sous-section 3.4.2. Nous reviendrons sur ces exemples dans la
sous-section 3.5.2 avec des formules plus générales.

Remarque 3.3.43 : L’existence d’une famille de polynômes en σ2 dont les relations RqpP pσ
2q, ηq

déterminent de manière unique le degré de tous les cycles qui s’expriment comme des monômes
de degré d en les ωi est une hypothèse tout à fait vraisemblable et confortée par les exemples à
venir. Cependant la complexité des relations RqpP pσ

2q, ηq rend très difficile de démontrer ce fait de
manière générale pour des couples pd, pq arbitraires. Nous donnerons toutefois des résultats précis
qui vont dans ce sens à la sous-section 3.5.2 avec notamment la proposition 3.5.10.

Les calculs de degrés qui suivent pour un automorphisme d’ordre 5 ont été faits en utilisant les
relations RqpP pσ

2q, ηq construites à partir du seul polynôme P pσ2q “ σ2.

Exemple 3.3.44 (pd, pq “ p2, 5q) :
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1. degω2
0 “ 2χpηq,

2. degω0ω1 “ 3χpηq,

3. degω2
1 “ 2χpηq.

Exemple 3.3.45 (pd, pq “ p4, 5q) :

1. degω4
0 “ 24χpηq,

2. degω3
0ω1 “ 36χpηq,

3. degω2
0ω

2
1 “ 44χpηq,

4. degω0ω
3
1 “ 36χpηq,

5. degω4
1 “ 24χpηq.

Exemple 3.3.46 (pd, pq “ p6, 5q) :

1. degω6
0 “ 720χpηq,

2. degω5
0ω1 “ 1080χpηq,

3. degω4
0ω

2
1 “ 1440χpηq,

4. degω3
0ω

3
1 “ 1620χpηq,

5. degω2
0ω

4
1 “ 1440χpηq,

6. degω0ω
5
1 “ 1080χpηq,

7. degω6
1 “ 720χpηq.

Ces premiers exemples mettent en évidence une nouvelle symétrie lorsque σ est d’ordre 5. Il
semblerait qu’on ait :

degωd´q0 ωq1 “ degωq0ω
d´q
1 .

C’est effectivement le cas, même en dimension supérieure. Nous y reviendrons dans la sous-section
3.5.2.

Dans le cas pd, pq “ p3, 7q, les seules relations de la forme Rqpσ
2k, ηq ne suffisent pas pour

déterminer tous les degrés, notamment le degré de ω0ω1ω2 ou encore les degrés de ω2
1ω2 et ω1ω

2
2.

En revanche, en considérant par exemple la famille de polynômes tσ2, σ4, σ2 ` σ4u, on aboutit au
résultat suivant :

Exemple 3.3.47 (pd, pq “ p3, 7q) :

1. degω3
0 “ 6χpηq,

2. degω2
0ω1 “ degω2

0ω2 “ 10χpηq,

3. degω0ω
2
1 “ degω0ω

2
2 “ 12χpηq,

4. degω0ω1ω2 “ 19χpηq.

5. degω3
1 “ 6χpηq,

6. degω2
1ω2 “ 34χpηq,

7. degω1ω
2
2 “ 20χpηq,

8. degω3
2 “ 6χpηq.

La méthode présentée jusqu’ici avec les polynômes caractéristiques doit donc permettre de déter-
miner toutes les relations en codimension maximale entre les générateurs ω0, . . . , ω p´3

2
de l’anneau
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tautologique RσpψZ˚C;Zq Ă ApZq dans le cas où C est hyperelliptique de genre g ě 1 et σ P AutpCq
est d’ordre p ą 2 premier. Par ailleurs, signalons que tout ce raisonnement peut s’adapter pour étu-
dier le degré de cycles sur d’autres variétés abéliennes que Z (par exemple les cycles γi sur les
Jacobiennes) à condition d’avoir un contrôle suffisamment bon de l’automorphisme sur la variété
abélienne en question ; suffisamment bon signifiant « être capable de calculer les Trpσkq ».

3.3.5 Relations en codimension quelconque entre les ωi

Maintenant qu’on dispose d’une méthode pour calculer les degrés des ωα0
0 ωα1

1 ¨ ¨ ¨ω
αpp´3q{2

pp´3q{2 où les
αi sont des entiers naturels vérifiant α0 ` α1 ` . . . ` α p´3

2
“ d, intéressons-nous aux conséquences

que cela a en codimension inférieure.

Recherche de relations monômiales

Commençons par un résultat très simple.

Proposition 3.3.48 - Soient 0 ď i0 ă i1 ă . . . ă ik ď
p´3

2 des entiers et α0, α1, . . . , αk P N tels que
řk
i“0 αi ď d. On suppose que ωα0

i0
ωα1
i1
¨ ¨ ¨ωαkik ‰ 0. Alors

@pβ0, β1, . . . , βkq P J0, α0Kˆ . . .ˆ J0, αkK, ωβ0
i0
ωβ1
i1
¨ ¨ ¨ωβkik ‰ 0 dans Aβ0`...`βkpZq.

Démonstration. Par l’absurde. Si pour certains entiers pβ0, β1, . . . , βkq P J0, α0K ˆ . . . ˆ J0, αkK, on
avait ωβ0

i0
ωβ1
i1
¨ ¨ ¨ωβkik , alors quitte à intersecter encore par ωα0´β0

i0
ωα1´β1
i1

¨ ¨ ¨ωαk´βkik
, on obtiendrait

ωα0
i0
ωα1
i1
¨ ¨ ¨ωαkik “ 0 ; ce qui contredirait l’hypothèse.

En particulier pour
ř

i αi “ d, ce lemme motive l’étude du degré des ωα0
i0
ωα1
i1
¨ ¨ ¨ωαkik réalisée

précédemment.

Corollaire 3.3.49 - Soient 0 ď i0 ă i1 ă . . . ă ik ď
p´3

2 des entiers. On suppose que pour
tous entiers naturels α0, α1, . . . , αk tels que

řk
i“0 αi “ d, on a ωα0

i0
ωα1
i1
¨ ¨ ¨ωαkik ‰ 0. Alors pour tout

pβ0, β1, . . . , βkq P J0, dKk`1 tel que
ř

i βi ď d, on a

ωβ0
i0
ωβ1
i1
¨ ¨ ¨ωβkik ‰ 0 dans Aβ0`...`βkpZq.

Autrement dit, les relations monômiales formées à partir de ω0, ω1, . . . , ω p´3
2

sont engendrées par les
relations

ωα0
0 ωα1

1 ¨ ¨ ¨ω
αpp´3q{2

pp´3q{2 “ 0 où les αi P J0, dK vérifient

p´3
2
ÿ

i“0

αi “ d` 1.

En d’autres mots, il n’existe pas de relation monômiale non triviale (c’est-à-dire en codimension
ď d).

Démonstration. C’est une conséquence immédiate de la proposition 3.3.48.

Exemple 3.3.50 : Le corollaire 3.3.49 s’applique par exemple

1. lorsque p “ 3 et d ě 1,

2. lorsque pd, pq P tp2, 5q, p3, 7q, p4, 5q, p6, 5qu d’après les exemples de la sous-section précédente.

Autrement dit, le corollaire 3.3.49 s’applique (au moins) dès que d “ 1, 2, 3 ou 4.
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Plus généralement, on peut formuler la conjecture suivante :

Conjecture 3.3.51 : Soit C une courbe de genre g ě 1 admettant un automorphisme σ d’ordre

p ą 2. Alors pour tous α0, α1, . . . , α p´3
2
P N tels que

ř

p´3
2

i“0 αi “ d, on a

ωα0
0 ωα1

1 ¨ ¨ ¨ω
αpp´3q{2

pp´3q{2 ‰ 0.

Plus précisément, les précédents exemples (mais aussi ceux à venir) suggèrent que

degωα0
0 ωα1

1 ¨ ¨ ¨ω
αpp´3q{2

pp´3q{2 ě degωd0 “ d! ¨ χpηq.

La suite de cette section vise à étudier le cas bien plus compliqué des relations non monômiales.

Dimension des Q-espaces vectoriels RσpψZ˚C;Zq XAqpZq

Soit C une courbe hyperelliptique de genre g ě 1 admettant un automorphisme σ d’ordre p ą 2
premier. D’après la proposition 3.3.5, l’anneau tautologique RσpψZ˚C;Zq Ă ApZq est engendré en
tant que Q-algèbre par les p´1

2 générateurs homogènes ω0, . . . , ω p´3
2
P A1pZqp0q. Une conséquence

directe de ceci est que l’algèbre RσpψZ˚C;Zq est bigraduée. Précisément, si l’on note

Rq :“ RσpψZ˚C;Zq XAqpZq et Rq
psq :“ RσpψZ˚C;Zq XAqpZqpsq Ă Rq,

alors pour tout q P J0, dK, on a la décomposition de Beauville (triviale) suivante

Rq “
q
à

s“q´d

R q
psq “ Rq

p0q.

Le lemme suivant est fondamental dans la suite de l’étude des relations en codimension quel-
conque.

Lemme 3.3.52 - Soit C une courbe hyperelliptique admettant un automorphisme σ P AutpCq d’ordre
p ą 2 premier. La transformée de Fourier F : ApZq Ñ ApZq induit un isomorphisme entre les Q-
espaces vectoriels Rq et Rd´q pour tout q P J0, dK. En particulier, dimQR

q “ dimQR
d´q.

Démonstration. L’anneau tautologique RσpψZ˚C;Zq est stable par transformée de Fourier : c’était
l’argument qui nous a permis de montrer que RσpψZ˚C;Zq est stable par produit de Pontryagin.
Ainsi, F se restreint en un isomorphisme de RσpψZ˚C;Zq. Par ailleurs, par propriétés de F , on a
pour tout q P J0, dK

FpRqq “ FpRq
p0qq “ Rd´q`0

p0q “ Rd´q.

D’où le lemme.

Remarque 3.3.53 : Le fait queRq “ Rq
p0q est tout à fait essentiel ici. C’est à ce moment qu’intervient

une fois de plus l’hyperellipticité de la courbe (dont on sait qu’elle implique la condition C “ Cp0q P
ApJqp0q).

Fixons à présent un entier q P J0, dK et intéressons-nous plus en détail à la structure de Q-espace
vectoriel de Rq. Celui-ci est engendré par les monômes de la forme

ωα0
0 ωα1

1 ¨ ¨ ¨ω
αpp´3q{2

pp´3q{2 P R
q où pour tout i, αi P N et

p´3
2
ÿ

i“0

αi “ q.
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Autrement dit,

dimQR
q ď

ˆp´1
2 ` q ´ 1

q

˙

.

En effet,
` p´1

2
`q´1
q

˘

est la dimension de l’espace vectoriel des polynômes homogènes de degré q en
p´1

2 indéterminées (les ωi). Une relation « générale » entre les ωi dépend donc d’au plus
` p´1

2
`q´1
q

˘

paramètres.
Cherchons maintenant à minorer la dimension de Rq, ce qui revient à majorer la dimension de

l’espace des relations en codimension q. Pour cela, on reprend la méthode expliquée précédemment
qui consiste à augmenter la codimension jusqu’à son maximum d. Notez que pour ce faire, on peut
intersecter avec

` p´1
2
`d´q´1

d´q

˘

monômes différents en les ωi : cet entier correspond à la dimension de
l’espace des polynômes homogènes de degré d´ q en p´1

2 indéterminées.
De manière plus détaillée, le processus est le suivant. On commence par fixer un ordre sur les

monômes ωα0
0 ωα1

1 ¨ ¨ ¨ω
αpp´3q{2

pp´3q{2 . Ensuite, connaissant les degrés de chaque monôme de codimension

maximale d en les ωi, chaque intersection de la relation générale avec l’un de ces
` p´1

2
`d´q´1

d´q

˘

monômes fournit une équation linéaire en les
` p´1

2
`q´1
q

˘

paramètres de la relation générale en codi-
mension q. Ceci définit donc pour chaque entier q un système linéaire pΣq

pd,pqq en les paramètres de
la relation générale de codimension q (les entiers d et p étant fixés).

Remarque 3.3.54 : Les systèmes pΣq
pd,pqq dépendent du choix de l’ordre fixé pour ordonner les

monômes ωα0
0 ωα1

1 ¨ ¨ ¨ω
αpp´3q{2

pp´3q{2 . Cependant un choix d’ordre différent fournit des systèmes équivalents.
Précisément un changement d’ordre a pour effet de multiplier à droite et à gauche les systèmes pΣq

pd,pqq

par des matrices de permutations. En particulier, les rangs de ces systèmes sont bien définis.

Ceci étant dit, les relations en codimension q forment un sous-espace d’une famille paramétrée
de « possibles » relations dont le nombre de paramètres est égal à la dimension du noyau du système
pΣq

d,pq :

dimQR
q “

ˆp´1
2 ` q ´ 1

q

˙

´ dimQ

!

espace des relations en codimension q entre ω0, . . . , ω p´3
2

)

ě

ˆp´1
2 ` q ´ 1

q

˙

´ dimQ

!

espace des « possibles » relations en codimension q entre ω0, . . . , ω p´3
2

)

“ rgpΣqd,pq.

On a donc obtenu la proposition qui suit.

Proposition 3.3.55 - Soit C une courbe hyperelliptique de genre g ě 1 admettant un automorphisme
σ d’ordre p ą 2 premier. Soit q P J0, d2K. Alors

rgpΣq
d,pq ď dimQR

q “ dimQR
d´q ď

ˆp´1
2 ` q ´ 1

q

˙

.

En particulier, puisque l’on travaille modulo équivalence algébrique, on retrouve le fait que

dimQR
0 “ dimQR

d “ 1.

89



Chapitre 3. Anneaux tautologiques sur les variétés de Prym généralisées associées
aux revêtements Galoisiens n-cycliques par une courbe hyperelliptique

Corollaire 3.3.56 - Soit C une courbe hyperelliptique de genre g ě 1 admettant un automorphisme
σ d’ordre p ą 2 premier. Soit q P J0, d2K. On suppose que le système pΣq

pd,pqq est de rang maximal.
Alors

dimQR
q “ dimQR

d´q “

ˆp´1
2 ` q ´ 1

q

˙

.

Démonstration. Notons que la fonction définie sur J0, dK par

fpd,pqpnq :“

ˆp´1
2 ` n´ 1

n

˙

´

ˆp´1
2 ` d´ n´ 1

d´ n

˙

vérifie fpd,pqpnq “ ´fpd,pqpd´nq). Par conséquent, elle s’annule en n “ d
2 (si d est pair). Dans tous les

cas, en revenant à l’interprétation de
` p´1

2
`n´1
n

˘

et
` p´1

2
`d´n´1

d´n

˘

en termes de dimension d’espaces
de polynômes homogènes, on constate que fpd,pq est négative sur

q
0, d2

y
et positive sur

q
d
2 , d

y
. Par

suite, l’hypothèse selon laquelle pΣq
pd,pqq est de rang maximal pour l’entier q P J0, d2K fixé signifie

simplement que

rgpΣq
pd,pqq “ min

˜

ˆp´1
2 ` q ´ 1

q

˙

,

ˆp´1
2 ` d´ q ´ 1

d´ q

˙

¸

“

ˆp´1
2 ` q ´ 1

q

˙

.

La proposition précédente se traduit donc par les inégalités
ˆp´1

2 ` q ´ 1

q

˙

ď dimQR
q ď

ˆp´1
2 ` q ´ 1

q

˙

auquel cas, on a exactement

dimQR
q “

ˆp´1
2 ` q ´ 1

q

˙

et puisque l’on a aussi dimQR
q “ dimQR

d´q d’après le lemme 3.3.52, on a le résultat.

Si les systèmes Σq
pd,pq sont de rang maximaux, la situation est donc totalement comprise. Comme

on le verra dans les exemples suivants, ce n’est toutefois pas toujours le cas lorsque d et p augmentent.
Cependant, même dans ces situations plus complexes, on pourra en déduire des informations inté-
ressantes quant à la structure de Q-algèbre de l’anneau tautologique RσpψZ˚C;Zq.

Application à l’étude des relations en codimension quelconque

C’est ce lien entre dimension de l’espace Rq, nombre de générateurs et dimension de l’espace des
relations qui va nous permettre de trouver toutes les relations en codimension q quelconque (toujours
sous réserve de savoir que le système pΣq

pd,pqq est de rang maximal). Mais avant d’énoncer le résultat,
mettons en évidence une dernière propriété des systèmes pΣq

pd,pqq.

Lemme 3.3.57 - Soit q P J0, dK. On fixe un ordre sur les monômes ωα0
0 ωα1

1 ¨ ¨ ¨ω
αpp´3q{2

pp´3q{2 (par exemple

l’ordre lexicographique). Alors les systèmes pΣq
pd,pqq et pΣ

d´q
pd,pqq sont transposés l’un de l’autre :

pΣd´q
pd,pqq “

tpΣq
pd,pqq.

En particulier, ils ont même rang.
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Démonstration. Ce lemme découle de la construction même des systèmes pΣq
pd,pqq. On considère

l’ordre lexicographique (par exemple) pour ordonner les monômes ωα0
0 ωα1

1 ¨ ¨ ¨ω
αpp´3q{2

pp´3q{2 . Supposons
sans restreindre la généralité que q ď d

2 . Les monômes en codimension q et d´ q forment donc deux
familles ordonnées que l’on peut noter respectivement

pαjq
1ďjďp

p´1
2 `q´1
q q

et pβiq
1ďiďp

p´1
2 `d´q´1

d´q
q
.

Le coefficient d’indice pi, jq P J1,
` p´1

2
`d´q´1

d´q

˘

Kˆ J1,
` p´1

2
`q´1
q

˘

K du système pΣq
pd,pqq n’est rien d’autre

que degαjβi. Ce coefficient est précisément le coefficient d’indice pj, iq du système pΣd´q
pd,pqq. Les

systèmes pΣq
pd,pqq et pΣ

d´q
pd,pqq sont donc bien transposés l’un de l’autre. En particulier, ils ont le même

rang.

Théorème 3.3.58 - Soit C une courbe hyperelliptique de genre g ě 1 admettant un automorphisme
σ d’ordre p ą 2 premier. Soit q P J0, d2K. On suppose que le système pΣq

pd,pqq est de rang maximal.
Alors il n’existe pas de relation non triviale en codimension q entre ω0, . . . , ω p´3

2
tandis que les

relations en codimension d´ q forment un Q-sous-espace vectoriel de Rd´q de dimension

rd´q :“

ˆp´1
2 ` d´ q ´ 1

d´ q

˙

´

ˆp´1
2 ` q ´ 1

q

˙

dont on peut déterminer une base explicite à partir du système pΣq
pd,pqq.

Démonstration. Si pΣq
pd,pqq est de rang maximal, c’est-à-dire de rang

` p´1
2
`q´1
q

˘

puisque q ď d
2 , alors

le corollaire 3.3.56 montre que

dimQR
q “

ˆp´1
2 ` q ´ 1

q

˙

.

Par suite, les
` p´1

2
`q´1
q

˘

générateurs correspondant aux
` p´1

2
`q´1
q

˘

monômes de degré q formés à
partir de ω0, . . . , ω p´3

2
sont linéairement indépendants et forment donc une base de Rq. Autrement

dit, il n’existe pas de relation (non triviale) en codimension q entre les ωi.
D’après ce même corollaire 3.3.56 ou plus directement d’après le lemme 3.3.52, on en déduit

également que

dimQR
d´q “ dimQR

q “

ˆp´1
2 ` q ´ 1

q

˙

.

Par ailleurs, on dispose d’une famille génératrice deRd´q. Cette famille est formée par les
` p´1

2
`d´q´1

d´q

˘

monômes de degrés d´ q en les ωi. Par conséquent, le Q-espace des relations en codimension d´ q
est de dimension

rd´q :“

ˆp´1
2 ` d´ q ´ 1

d´ q

˙

´

ˆp´1
2 ` q ´ 1

q

˙

.

D’autre part, pΣd´q
pd,pqq est un système formé par

` p´1
2
`q´1
q

˘

équations (chacune d’elles correspondant
aux formules obtenues en intersectant une combinaison linéaire générale de codimension d ´ q par
chacun des

` p´1
2
`q´1
q

˘

monômes de degré q) à
` p´1

2
`d´q´1

d´q

˘

inconnues (chacune d’elles correspondant
à un monôme générateur de Rd´q de degré d ´ q). Comme le système pΣq

pd,pqq est supposé de rang

maximal, le lemme 3.3.57 précédent montre qu’il en est de même du système pΣd´q
pd,pqq et donc que

rgpΣd´q
pd,pqq “ nombre de lignes de pΣd´q

pd,pqq “

ˆp´1
2 ` q ´ 1

q

˙

“ rgpΣq
pd,pqq.
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Dans ce cas, la méthode qui consiste à augmenter la codimension d ´ q d’une relation jusqu’à son
maximum d met en évidence que les relations en codimension d´ q forment un sous-espace vectoriel
d’une famille de « possibles » relations qui est elle de dimension

nombre de colonnes de pΣd´q
pd,pqq ´ rgpΣ

d´q
pd,pqq

“

ˆp´1
2 ` d´ q ´ 1

d´ q

˙

´

ˆp´1
2 ` q ´ 1

q

˙

“ rd´q.

Autrement dit, chaque combinaison linéaire dans cette famille de « possibles » relations est réellement
une relation dans Rd´q. On connaît donc toutes les relations en codimension d´ q et en déterminer
une base revient simplement à déterminer une base du noyau du système pΣd´q

pd,pqq. Ceci termine la
démonstration du résultat.

Ce résultat est donc relativement fort puisque, modulo l’hypothèse sur le rang des pΣq
pd,pqq,

il montre que pour d, p arbitrairement grands, le simple fait de connaître le degré des monômes
ω
d´

ř

αi
0 ωα1

1 ¨ ¨ ¨ω
αpp´3q{2

pp´3q{2 permet de connaître toutes les relations en codimensions q et d´ q P J0, dK.

Finalement, une conséquence du théorème 3.3.58 est la suivante :

Théorème 3.3.59 - Soit C une courbe hyperelliptique de genre g ě 1 admettant un automorphisme
σ d’ordre p ą 2 premier. On suppose que pour tout q P J0, d2K les systèmes pΣq

pd,pqq sont de rang

maximal
` p´1

2
`q´1
q

˘

. Alors l’anneau tautologique RσpψZ˚C;Zq est donné par

RσpψZ˚C;Zq “ Qrω0, ω1, . . . , ω p´3
2
s{Id,p

où Id,p est l’idéal des relations entre les ωi que l’on peut calculer explicitement à partir des systèmes
pΣq
pd,pqq. Par ailleurs, on obtient

1. pour q ď d
2 , dimQR

q “ dimQR
d´q “

` p´1
2
`q´1
q

˘

,
2. et par conséquent,

dimQRσpψZ˚C;Zq “

$

&

%

2
ř

d´1
2

q“0

` p´1
2
`q´1
q

˘

si d est impair,

2
ř

d
2
q“0

` p´1
2
`q´1
q

˘

´
`

p´1
2
` d

2
´1

d
2

˘

si d est pair.

“

$

&

%

4k`1
p´1

` p´1
2
`k

k`1

˘

si d “ 2k ` 1,

4k`1
p´1

` p´1
2
`k

k`1

˘

´
` p´3

2
`k

k

˘

si d “ 2k.

Démonstration. La première partie est une conséquence directe du théorème 3.3.58 puisque dans ce
cas le fait de supposer tous les systèmes pΣq

pd,pqq de rang maximaux implique que l’on connaît toutes
les relations entre les ωi en codimension quelconque. Le point p1q de la seconde assertion concernant
dimQR

q découle du corollaire 3.3.56. Il ne reste qu’à calculer la dimension de RσpψZ˚C;Zq. Puisque

RσpψZ˚C;Zq “
d
à

q“0

Rq,

la dimension de RσpψZ˚C;Zq en tant que Q-espace vectoriel est la somme des dimensions des sous-
espaces Rq qui le composent. Ceci fournit la dernière assertion en utilisant le point p1q et Sage pour
le calcul explicite de la somme.
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On notera en particulier que si les hypothèses de ce théorème 3.3.59 sont vérifiées pour un
certain automorphisme σ d’ordre p ą 2 premier, alors tout autre automorphisme de C du même
ordre détermine à isomorphisme d’algèbres près la même structure d’anneau tautologique sur Z. On
verra dans la sous-section suivante des situations où ceci ce produit, et plus tard, dans la sous-section
3.4.3, des situations où ce n’est pas le cas.

3.3.6 Applications : structure de Q-algèbre de RσpψZ˚C;Zq en petite dimension

Il s’agit de donner ici la structure complète de Q-algèbre de l’anneau tautologique RσpψZ˚C;Zq
lorsque Z est de petite dimension. Ces résultats sont présentés comme applications directes du
programme donné dans la sous-section 3.4.2. Toutefois, nous reviendrons de manière détaillée sur
ces exemples dans la partie 3.5.4. Ceci sera l’occasion de présenter le genre de calculs menés par
Sage, ainsi que de mettre en perspective ces résultats de structure avec notamment les résultats déjà
obtenus par ailleurs dans les sous-sections 3.3.2 et 3.3.3.

Les cas pd, pq “ pd, 2q ou pd, 3q

Ces cas là ont déjà été traités dans la sous-section 3.3.1. On les rappelle simplement par esprit
de synthèse. Lorsque p “ 2, on obtient :

Proposition 3.3.60 - Soit f : C Ñ C 1 » C{xσy un revêtement double. On suppose que C est
hyperelliptique ou trigonale. Alors

RσpψZ˚C;Zq “ Qrω0s{pω
d`1
0 q.

Le cas des revêtements triples est donné par :

Proposition 3.3.61 - Soit f : C Ñ C 1 » C{xσy un revêtement Galoisien cyclique de degré 3 avec
C hyperelliptique. Alors

RσpψZ˚C;Zq “ Qrω0s{pω
d`1
0 q.

Le cas pd, pq “ p2, 5q

Proposition 3.3.62 - Soit f : C Ñ C 1 » C{xσy un revêtement Galoisien cyclique de degré 5 avec
C hyperelliptique. On suppose que dimZ “ 2. Alors

RσpψZ˚C;Zq “ Qrω0, ω1s{pω
3
0, ω

2
0 ´ ω

2
1, 3ω

2
0 ´ 2ω0ω1, ω

3
1q.

Le cas pd, pq “ p4, 5q

Proposition 3.3.63 - Soit f : C Ñ C 1 » C{xσy un revêtement Galoisien cyclique de degré 5 avec
C hyperelliptique. On suppose que dimZ “ 4. Alors l’anneau tautologique RσpψZ˚C;Zq est de la
forme Qrω0, ω1s{I4,5 où I4,5 est l’idéal des relations entre ω0 et ω1. Cet idéal est engendré par les
relations suivantes

1. ω5´i
0 ωi1 “ 0 pour i P J0, 5K,

2. 3ω4
0 ´ 2ω3

0ω1 “ 0, 11ω4
0 ´ 6ω2

0ω
2
1 “ 0, 3ω4

0 ´ 2ω0ω
3
1 “ 0, ω4

0 ´ ω
4
1 “ 0,

3. ω3
0 ´ 3ω0ω

2
1 ` 3ω3

1 “ 0, 3ω2
0ω1 ´ 9ω0ω

2
1 ` 8ω3

1 “ 0.
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Le cas pd, pq “ p6, 5q

Proposition 3.3.64 - Soit f : C Ñ C 1 » C{xσy un revêtement Galoisien cyclique de degré 5 avec
C hyperelliptique. On suppose que dimZ “ 6. Alors l’anneau tautologique RσpψZ˚C;Zq est de la
forme Qrω0, ω1s{I6,5 où I6,5 est l’idéal des relations entre ω0 et ω1. Cet idéal est engendré par les
relations suivantes

1. ω7´i
0 ωi1 “ 0 pour i P J0, 7K,

2. 3ω6
0 ´ 2ω5

0ω1 “ 0, 2ω6
0 ´ ω

4
0ω

2
1 “ 0, 9ω6

0 ´ 4ω3
0ω

3
1 “ 0, ω6

0 ´ ω
6
1 “ 0,

3ω6
0 ´ 2ω0ω

5
1 “ 0, 2ω6

0 ´ ω
2
0ω

4
1 “ 0,

3. ω5
0 ´ 5ω0ω

4
1 ` 6ω5

1 “ 0, ω4
0ω1 ´ 6ω0ω

4
1 ` 7ω5

1 “ 0, 2ω3
0ω

2
1 ´ 11ω0ω

4
1 ` 12ω5

1 “ 0,
2ω2

0ω
3
1 ´ 6ω0ω

4
1 ` 5ω5

1 “ 0,

4. ω4
0 ´ 6ω2

0ω
2
1 ` 12ω0ω

3
1 ´ 8ω4

1 “ 0, 4ω3
0ω1 ´ 18ω2

0ω
2
1 ` 32ω0ω

3
1 ´ 21ω4

1 “ 0.

Le cas pd, pq “ p3, 7q

Proposition 3.3.65 - Soit f : C Ñ C 1 » C{xσy un revêtement Galoisien cyclique de degré 7 avec
C hyperelliptique. On suppose que dimZ “ 3. Alors l’anneau tautologique RσpψZ˚C;Zq est de la
forme Qrω0, ω1, ω2s{I3,7 où I3,7 est l’idéal des relations entre ω0, ω1 et ω2. Cet idéal est engendré par
les relations suivantes

1. ω4´i´j
0 ωi1ω

j
2 “ 0, pour i, j P J0, 4K avec i` j ď 4,

2. ω3
0 ´ ω

3
1 “ 0, ω3

0 ´ ω
3
2 “ 0, 5ω3

0 ´ 3ω2
0ω1 “ 0, 5ω3

0 ´ 3ω2
0ω2 “ 0,

2ω3
0 ´ ω0ω

2
1 “ 0, 2ω3

0 ´ ω0ω
2
2 “ 0,

19ω3
0 ´ 6ω0ω1ω2 “ 0, 17γ3

0 ´ 3ω2
1ω2 “ 0, 10ω3

0 ´ 3ω1ω
2
2 “ 0,

3. ω2
0 ` 2ω0ω2 ´ 2ω1ω2 ` ω

2
2 “ 0, 2ω0ω1 ` 20ω0ω2 ´ 16ω1ω2 ` 7ω2

2 “ 0,
26ω0ω2 ` ω

2
1 ´ 20ω1ω2 ` 9ω2

2 “ 0.

3.4 Programmation des calculs avec Sage

On donne dans cette section les codes sources des programmes Sage utilisés en pratique pour
obtenir les applications numériques vues précédemment.

3.4.1 Code source du programme calculant les relations du type RqpP pσ
2q, ηq

On commence par un code qui calcule et affiche les relations RqpP pσ
2q, ηq pour des valeurs de d

et p données, ainsi qu’un polynôme P pσ2q “ alpha donné.

# coding: utf-8

timer = walltime() # Temps de calcul du programme (temps à la montre)

var(’s’) # Définition de l’anneau Z[s] des polynômes à coefficients entiers en l’indéterminée s
A.<s> = ZZ[]

##############
# Paramètres #
##############

p = 5 # Ordre premier p de l’automorphisme s
d = 4 # Dimension de la variété de Prym généralisée Z déterminée par s

alpha = s^2 # Polynôme dont on veut calculer les relations R_q(alpha,eta)

########################
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# Début du programme #
########################

if 2*d % (p-1) != 0 : # On vérifie que p-1 divise 2d
print "\nErreur : il est nécessaire que p-1 divise 2d."
print "Fin du programme.\n"
quit()

else :
print "\n######################################################################"
print "# #"
print " Calcul des relations R_q(", alpha, ",eta) lorsque d =", d, "et p =", p
print "# #"
print "######################################################################\n"

w = list(var("w_%d" % i) for i in [0..p-1]) # Déclaration des variables w_0,w_1,...,w_(p-1)

#########################################
# Calcul de la trace des polynômes en s #
#########################################

# Fonction : tracePoly
# Entrée : un polynôme P de Z[s]
# Sortie : la trace de P

def tracePoly(P) :
dicoP = P.dict()
t = 0
for k in dicoP.keys() :

if k % p == 0 :
trace = 2*d

else :
trace = -2*d/(p-1)

t = t + dicoP[k]*trace
return t

########################################################
# Calcul du polynôme caractéristique du polynôme alpha #
########################################################

sigmaAlpha = [1]

# Calcul du coefficient du terme de degré 2d-q du polynôme caractéristique de alpha

for q in [1..2*d] :
M = matrix(QQ,q,q)
for i in [1..q] :

for j in [1..q] :
if j >= i+2 :

M[i-1,j-1] = 0
elif j == i+1 :

M[i-1,j-1] = i
else :

for l in [1..q] :
if j == i-l+1 :

M[i-1,j-1] = tracePoly(alpha^l)
sigmaAlpha = sigmaAlpha + [1/factorial(q)*M.determinant()]

#############################################
# Construction des relations Rq(P(s^2),eta) #
#############################################

dicoAlpha = alpha.dict()
tailleDico = len(dicoAlpha)

j = add(dicoAlpha.values()) # j = alpha(1)

# Calcul de D_alpha(eta)

Dalpha = 0
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for u in [0..tailleDico-1] :
indice = 1/2*dicoAlpha.keys()[u] # 0 <= indice <= p-1
multi = dicoAlpha.values()[u] # éventuelle multiplicité, ie. coefficient > 1
if indice == 0 :

Dalpha = Dalpha + 4*multi*w[0]
elif indice >= (p+1)/2 : # On se ramène à des w_i avec 0 <= i = indice <= (p-1)/2

indice = p - indice
if indice == (p-1)/2 : # On utilise la relation w_((p-1)/2)=(p-2)w_0-w_1-...-w_((p-3)/2)

Dalpha = Dalpha + (p-2)*multi*w[0] - multi*add(w[1:(p-1)/2])
else :

Dalpha = Dalpha + multi*w[indice]
else :

if indice == (p-1)/2 :
Dalpha = Dalpha + (p-2)*multi*w[0] - multi*add(w[1:(p-1)/2])

else :
Dalpha = Dalpha + multi*w[indice]

Dalpha = Dalpha - 2*j*w[0]

# Calcul de alpha^*(eta)

alphaStar = 0
for u in [0..tailleDico-2] :

for v in [u+1..tailleDico-1] :
indice = 1/2*abs(dicoAlpha.keys()[u] - dicoAlpha.keys()[v])
multi = dicoAlpha.values()[u]*dicoAlpha.values()[v]
if indice == 0 :

alphaStar = alphaStar + 4*multi*w[0]
elif indice >= (p+1)/2 :

indice = p - indice
if indice == (p-1)/2 :

alphaStar = alphaStar + (p-2)*multi*w[0] - multi*add(w[1:(p-1)/2])
else :

alphaStar = alphaStar + multi*w[indice]
else :

if indice == (p-1)/2 :
alphaStar = alphaStar + (p-2)*multi*w[0] - multi*add(w[1:(p-1)/2])

else :
alphaStar = alphaStar + multi*w[indice]

alphaStar = alphaStar + 2*add(dicoAlpha.values()[u]^2 for u in [0..tailleDico-1])*w[0] - j^2*w[0]

# Calcul effectif et affichage des relations Rq(alpha,eta)

for q in [0..2*d] :
tmp1 = sigmaAlpha[2*d-q]*w[0]^d
for i in [max(0,q-d)..floor(q/2)] :

coeffMulti = factorial(d)/(factorial(i)*factorial(q-2*i)*factorial(i+d-q))
tmp1 = tmp1 - coeffMulti*w[0]^i*Dalpha^(q-2*i)*alphaStar^(i+d-q)

print "R_", q, "(", alpha, ", eta) : ", expand(tmp1), "= 0"

print "\nFin du programme en", walltime(timer), "secondes.\n"

3.4.2 Code source du programme complet

Ce second programme Sage est celui utilisé pour calculer les degrés des cycles sur Z qui s’ex-
priment comme des monômes de degré d en les ωi mais aussi, et surtout plus généralement, pour
étudier les relations dans la Q-algèbre RσpψZ˚C;Zq. L’accroissement des constantes p et d rend vite
indispensable l’utilisation de l’ordinateur pour effectuer les différents calculs. On s’en rendra mieux
compte dans la section 3.5 lorsqu’il s’agira d’effectuer nous-même tout ou partie de ces calculs.

Plus spécifiquement, le programme donné ci-après applique la méthode décrite précédemment
étant donnés un nombre premier p quelconque et la dimension d de la variété Z. Ce programme

1. génère dans un premier temps une liste listePoly de polynômes en σ2 à coefficients entiers
positifs en proposant plusieurs méthodes de génération. Le choix de la méthode (0,1, 2 ou 3)
se fait via le paramètre methode :
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(a) la méthode 0 offre la possibilité à l’utilisateur de fournir lui-même une liste de polynômes
en σ2 à coefficients entiers positifs ;

(b) la méthode 1 en est une probabiliste : on construit aléatoirement une liste de polynômes
en σ2 dont les coefficients appartiennent à l’intervalle J0, limiteCoeffK. La taille de la
liste peut être ajustée à l’aide de la constante nbrePoly ;

(c) les méthodes 2 et 3 sont déterministes et fournissent des listes de polynômes dont la taille
peut être en partie contrôlée par le paramètre tailleMax. La taille de la liste construite
augmente rapidement avec p et d. On privilégiera donc la méthode 1 ;

2. calcule le polynôme caractéristique de chacun des polynômes en σ2 de listePoly ;

3. construit la liste des relations RqpP pσ
2q, ηq pour chacun des polynômes de listePoly et les

stocke dans un vecteur vRq ;

4. résout le système correspondant aux relations données par vRq : la solution, si elle est entière-
ment déterminée, fournit le degré de chaque monôme en les ωi en codimension maximale d ; si
la solution n’est pas unique, il faut considérer plus de polynômes en σ pour avoir davantage de
relations RqpP pσ

2q, ηq (ou au moins d’autres polynômes si on utilise la méthode probabiliste) ;

5. construit les systèmes pΣq
pd,pqq et les résout ; déterminant ainsi les (possibles) relations en co-

dimension q.

6. affiche les différentes informations obtenues concernant les relations ;

7. encadre la dimension de l’anneau tautologique RσpψZ˚C;Zq.

Voici le code source du programme :

# coding: utf-8

timer = walltime() # Temps de calcul du programme (temps à la montre)

var(’s’) # Définition de l’anneau Z[s] des polynômes à coefficients entiers en l’indéterminée s
A.<s> = ZZ[]

##############
# Paramètres #
##############

p = 7 # Ordre premier p de l’automorphisme s
d = 3 # Dimension de la variété de Prym généralisée Z déterminée par s

methode = 0 # Méthode pour générer une liste de polynômes (0, 1, 2 ou 3)

# Paramètre pour la méthode 0

listePoly = [s^2, s^4, s^2 + s^4] # Liste de polynômes en s^2, à coefficients entiers positifs

# Paramètres pour la méthode 1

limiteCoeff = 1 # Entier naturel non nul ; les coefficients des polynômes appartiennent à [[0,limiteCoeff]]
nbrePoly = 10 # Ordre de grandeur du nombre de polynômes générés aléatoirement

# Paramètre pour les méthodes 2 et 3

tailleMax = 2 # Constante déterminant à terme le nombre de polynômes générés non aléatoirement

########################
# Début du programme #
########################

if methode not in [0,1,2,3] : # On vérifie le choix de la méthode
print "Erreur : la constante ’methode’ ne peut prendre que les valeurs 0,1,2 ou 3."
print "Fin du programme.\n"
quit()
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elif 2*d % (p-1) != 0 : # On vérifie que p-1 divise 2d
print "\nErreur : il est nécessaire que p-1 divise 2d."
print "Fin du programme.\n"
quit()

else :
print "\n######################################################################"
print "# #"
print " Etude de la Q-algèbre R_s(Psi_Z* C ; Z) lorsque p =", p, "et d =", d
print "# #"
print "######################################################################\n\n"

w = list(var("w_%d" % i) for i in [0..p-1]) # Déclaration des variables w_0,w_1,...,w_(p-1)

if p <= 3 :
print "L’anneau tautologique R_s(Psi_Z* C ; Z) est engendré par", w[0]
print "Il est de dimension", d+1, ", isomorphe à Q[", w[0], "]/(", w[0]^(d+1), ")"
print "\nFin du programme en", walltime(timer), "secondes.\n"
quit()

else :
print "L’anneau tautologique R_s(Psi_Z* C ; Z) est engendré par", seq(w[i] for i in [0..(p-3)/2]) , "\n"

###################################################################################
# Construction d’une liste de polynômes utilisés pour construire les relations Rq #
###################################################################################

# On construit une liste de polynômes en s^2 à coefficients entiers positifs

if methode == 0 : # Liste de polynômes entrée manuellement en paramètre
tailleListePoly = len(listePoly)

elif methode == 1 : # Construction aléatoire uniforme de polynômes en s^2 à coefficients positifs et <= limiteCoeff
if p == 5 and nbrePoly == 1 : # Le cas p = 5 étant particulièrement simple, il est traité directement

listePoly = [s^2]
tailleListePoly = len(listePoly)

else :
var(’S’)
B.<S> = IntegerModRing(limiteCoeff+1)[]
listeEntiers = []
for i in [0..p-1] :

listeEntiers = listeEntiers + seq(i for j in [1..(i+1)*(limiteCoeff+1)])
tailleListeEntiers = len(listeEntiers)

listePoly = []
for i in [1..nbrePoly] :

choixDeg = randint(0,tailleListeEntiers-1)
listePoly = listePoly + [B.random_element(listeEntiers[choixDeg])]

for i in [0..nbrePoly-1] :
listePoly[i] = A(listePoly[i](S^2))

listePoly = list(set(listePoly))
tailleListePoly = len(listePoly)

print "\nListe de polynômes générée avec succès."
print "Calcul des polynômes caractéristiques en cours...\n"

elif methode == 2 : # Construction non aléatoire 1
listePoly = [A(1), s^2]

tmpDebut = 0
tmpDebut2 = len(listePoly)

while tailleMax > 1 :
for i in [tmpDebut..len(listePoly)-2] :

for m in [ZZ(1/2*max(listePoly[i].dict().keys()))+1..p-1] :
listePoly = listePoly + [listePoly[i] + s^(2*m)]

tmpDebut = tmpDebut2
tmpDebut2 = len(listePoly)
tailleMax = tailleMax - 1

listePoly = listePoly[0:2] + [s^(2*i) for i in [2..(p-3)/2]] + listePoly[2:]
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tailleListePoly = len(listePoly)

print "\nListe de polynômes générée avec succès."
print "Calcul des polynômes caractéristiques en cours...\n"

elif methode == 3 : # Construction non aléatoire 2 (plus lourde que la 1)
listePoly = [s^m for m in [0..(p-1)/2]]

tmpDebut = 0
tmpDebut2 = len(listePoly)

while tailleMax > 1 :
for i in [tmpDebut..len(listePoly)-2] :

for m in [max(listePoly[i].dict().keys())+1..p-1] :
if listePoly[i] - s^m != 0 and listePoly[i] + s^m != 0 :

listePoly = listePoly + [listePoly[i] + s^m, listePoly[i] - s^m]

tmpDebut = tmpDebut2
tmpDebut2 = len(listePoly)
tailleMax = tailleMax - 1

tailleListePoly = len(listePoly)

# On se ramène à une liste de polynômes en s^2 à coefficients entiers positifs

for i in [0..tailleListePoly-1] :
dicoAlpha = listePoly[i].dict()
for j in dicoAlpha.keys() :

if dicoAlpha[j] < 0 :
listePoly[i] = listePoly[i] + abs(dicoAlpha[j])*s^j

+ add(abs(dicoAlpha[j])*s^k for k in [0..j-1] + [j+1..p-1])
dicoAlpha = listePoly[i].dict()
for j in dicoAlpha.keys() :

if j % 2 == 1 :
listePoly[i] = listePoly[i] - dicoAlpha[j]*s^j + dicoAlpha[j]*s^(j+p)

print "\nListe de polynômes générée avec succès."
print "Calcul des polynômes caractéristiques en cours...\n"

#########################################
# Calcul de la trace des polynômes en s #
#########################################

# Fonction : tracePoly
# Entrée : un polynôme P de Z[s]
# Sortie : la trace de P

def tracePoly(P) :
dicoP = P.dict()
t = 0
for k in dicoP.keys() :

if k % p == 0 :
trace = 2*d

else :
trace = -2*d/(p-1)

t = t + dicoP[k]*trace
return t

####################################################################
# Calcul des polynômes caractéristiques des polynômes de listePoly #
####################################################################

sigmaAlpha = []

for k in [0..tailleListePoly-1] :
alpha = listePoly[k]
sigmaAlpha = sigmaAlpha + [[1]]

# Calcul du coefficient du terme de degré 2d-q du polynôme caractéristique de alpha
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for q in [1..2*d] :
M = matrix(QQ,q,q)
for i in [1..q] :

for j in [1..q] :
if j >= i+2 :

M[i-1,j-1] = 0
elif j == i+1 :

M[i-1,j-1] = i
else :

for l in [1..q] :
if j == i-l+1 :

M[i-1,j-1] = tracePoly(alpha^l)
sigmaAlpha[k] = sigmaAlpha[k] + [1/factorial(q)*M.determinant()]

#########################################################
# Construction de la liste des relations Rq(P(s^2),eta) #
#########################################################

vRq = []
for k in [0..tailleListePoly-1] :

alpha = listePoly[k]
dicoAlpha = alpha.dict()
tailleDico = len(dicoAlpha)

j = add(dicoAlpha.values()) # j = alpha(1)

# Calcul de D_alpha(eta)

Dalpha = 0
for u in [0..tailleDico-1] :

indice = 1/2*dicoAlpha.keys()[u] # 0 <= indice <= p-1
multi = dicoAlpha.values()[u] # éventuelle multiplicité, ie. coefficient > 1
if indice == 0 :

Dalpha = Dalpha + 4*multi*w[0]
elif indice >= (p+1)/2 : # On se ramène à des w_i avec 0 <= i = indice <= (p-1)/2

indice = p - indice
if indice == (p-1)/2 : # On utilise la relation w_((p-1)/2)=(p-2)w_0-w_1-...-w_((p-3)/2)

Dalpha = Dalpha + (p-2)*multi*w[0] - multi*add(w[1:(p-1)/2])
else :

Dalpha = Dalpha + multi*w[indice]
else :

if indice == (p-1)/2 :
Dalpha = Dalpha + (p-2)*multi*w[0] - multi*add(w[1:(p-1)/2])

else :
Dalpha = Dalpha + multi*w[indice]

Dalpha = Dalpha - 2*j*w[0]

# Calcul de alpha^*(eta)

alphaStar = 0
for u in [0..tailleDico-2] :

for v in [u+1..tailleDico-1] :
indice = 1/2*abs(dicoAlpha.keys()[u] - dicoAlpha.keys()[v])
multi = dicoAlpha.values()[u]*dicoAlpha.values()[v]
if indice == 0 :

alphaStar = alphaStar + 4*multi*w[0]
elif indice >= (p+1)/2 :

indice = p - indice
if indice == (p-1)/2 :

alphaStar = alphaStar + (p-2)*multi*w[0] - multi*add(w[1:(p-1)/2])
else :

alphaStar = alphaStar + multi*w[indice]
else :

if indice == (p-1)/2 :
alphaStar = alphaStar + (p-2)*multi*w[0] - multi*add(w[1:(p-1)/2])

else :
alphaStar = alphaStar + multi*w[indice]

alphaStar = alphaStar + 2*add(dicoAlpha.values()[u]^2 for u in [0..tailleDico-1])*w[0] - j^2*w[0]
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# Calcul effectif des relations Rq(alpha,eta)

for q in [0..2*d-1] :
tmp1 = sigmaAlpha[k][2*d-q]*w[0]^d
for i in [max(0,q-d)..floor(q/2)] :

coeffMulti = factorial(d)/(factorial(i)*factorial(q-2*i)*factorial(i+d-q))
tmp1 = tmp1 - coeffMulti*w[0]^i*Dalpha^(q-2*i)*alphaStar^(i+d-q)

vRq = vRq + [expand(tmp1)]

# On prépare l’ajout à venir de l’égalité deg w_0^d = d!*chi(eta)

vRq = vRq + [w[0]^d]

######################################################################
# Calcul et affichage du degré des monômes en codimension maximale d #
######################################################################

# Fonction : baseMonomesCodimFixee
# Entrée : un entier 0 <= q <= d, un entier 0 <= j <= p-1, un entier 1 <= n <= p-1
# Sortie : la liste des monômes homogènes de degrés q en w_j, w_(j+1), ... w_n

def baseMonomesCodimFixee(q,j,n) :
base = []
if q == 1 :

base = [w[k] for k in [j..n]]
else :

for k in [j..n] :
baseTmp = baseMonomesCodimFixee(q-1,k,n)
base = base + [w[k]*baseTmp[l] for l in [0..len(baseTmp)-1]]

return base

baseCodimMax = baseMonomesCodimFixee(d,0,(p-3)/2) # Liste des monômes de codimension maximale d
tailleBaseCodimMax = len(baseCodimMax)

# Construction de la matrice contenant les coefficients des relations de vRq

M = matrix(QQ,2*d*tailleListePoly+1,tailleBaseCodimMax)
for i in [0..2*d*tailleListePoly] :

for j in [0..tailleBaseCodimMax-1] :
M[i,j] = vRq[i].coefficient(baseCodimMax[j])

if M.rank() != tailleBaseCodimMax :
print "\nLes degrés ne sont pas entièrement déterminés par les relations fournies."
print "Il faut considérer d’autres polynômes.\n"
print "Fin du programme en", walltime(timer), "secondes.\n"
quit()

print "\nLes degrés des monômes en codimension maximale sont calculables."
print "Calcul des degrés en cours...\n"

N = matrix(QQ,2*d*tailleListePoly+1,1,0) # Second membre du système à résoudre pour déterminer les degrés
N[2*d*tailleListePoly,0] = factorial(d) # Dernière relation rajoutée deg w_0^d = d!*chi(eta)

degreMonomesCodimMax = M.solve_right(N) # Résolution du système

# Affichage des degrés

for k in [0..tailleBaseCodimMax-1] :
print "deg", baseCodimMax[k], "=", degreMonomesCodimMax[k][0], "chi(eta)"

###########################################################
# Calcul et affichage des relations en petite codimension #
###########################################################

print "\n\nEtude des relations en codimension quelconque en cours..."

# Vecteur stockant les bases de polynômes homogènes de chaque codimension 1 <= q <= d-1

vBaseMonomesCodimFixee = []
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for q in [1..d-1] :
vBaseMonomesCodimFixee = vBaseMonomesCodimFixee + [baseMonomesCodimFixee(q,0,(p-3)/2)]

# Construction des systèmes linéaires dont les noyaux fournissent les relations

vSystemeSigma = [] # Vecteur contenant les systèmes linéaires pour chaque codimension
vBoolRangMaxSystemeSigma = [] # Vecteur de booléens indiquant si les systèmes linéaires sont de rang max ou non

for q in [1..floor(d/2)] :
nbreLignes = binomial((p-1)/2+d-q-1,d-q)
nbreColonnes = binomial((p-1)/2+q-1,q)

vSystemeSigma = vSystemeSigma + [matrix(ZZ,nbreLignes,nbreColonnes)]

for i in [0..nbreLignes-1] :
for j in [0..nbreColonnes-1] :

for k in [0..tailleBaseCodimMax-1] :
if baseCodimMax[k] == vBaseMonomesCodimFixee[q-1][j]*vBaseMonomesCodimFixee[d-q-1][i] :

vSystemeSigma[q-1][i,j] = degreMonomesCodimMax[k][0]

# Affichage des relations en codimension 1 < q <= d/2

if vSystemeSigma[q-1].rank() == min(nbreLignes,nbreColonnes) :
vBoolRangMaxSystemeSigma = vBoolRangMaxSystemeSigma + [True]
print "\n--> Il n’existe pas de relation non triviale en codimension", q

else :
vBoolRangMaxSystemeSigma = vBoolRangMaxSystemeSigma + [False]
print "\n--> En codimension", q, "la méthode n’est pas totalement concluante. "

dimensionRelation = binomial((p-1)/2+q-1,q) - vSystemeSigma[q-1].rank()
rel = vSystemeSigma[q-1].right_kernel()

print "Les relations en codimension", q, "forment une sous-famille de la famille de dimension",
dimensionRelation, "engendrée par :\n"

for r in [0..dimensionRelation-1] :
print add([x*y for x, y in zip(rel.basis()[r],vBaseMonomesCodimFixee[q-1])]), "= 0"

#################################################
# Affichage des relations en grande codimension #
#################################################

# Affichage des relations en codimension d/2 < q <= d-1

for q in [floor(d/2)+1..d-1] :
if vBoolRangMaxSystemeSigma[d-q-1] :

dimensionRelation = binomial((p-1)/2+q-1,q) - binomial((p-1)/2+d-q-1,d-q)
print "\n--> Les relations en codimension", q, "forment une famille de dimension", dimensionRelation,

"engendrée par : \n"

rel = vSystemeSigma[d-q-1].transpose().right_kernel()

for r in [0..dimensionRelation-1] :
print add([x*y for x, y in zip(rel.basis()[r],vBaseMonomesCodimFixee[q-1])]), "= 0"

else :
print "\n--> En codimension", q, "la méthode n’est pas totalement concluante. "

dimensionRelation = binomial((p-1)/2+q-1,q) - vSystemeSigma[d-q-1].rank()
rel = vSystemeSigma[d-q-1].transpose().right_kernel()

print "Les relations en codimension", q, "forment une sous-famille de dimension au moins",
binomial((p-1)/2+q-1,q) - binomial((p-1)/2 + d-q-1,d-q),

"de la famille de dimension", dimensionRelation, "engendrée par :\n"

for r in [0..dimensionRelation-1] :
print add([x*y for x, y in zip(rel.basis()[r],vBaseMonomesCodimFixee[q-1])]), "= 0"

# Affichage des relations en codimension maximale d
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print "\n--> Les relations en codimension maximale", d, "sont engendrées par :\n"

for k in [1..tailleBaseCodimMax-1] :
pgcd = gcd(degreMonomesCodimMax[k][0],factorial(d))
print degreMonomesCodimMax[k][0]/pgcd*w[0]^d, "-", factorial(d)/pgcd*baseCodimMax[k], "= 0"

# Affichage des relations en codimension > d

print "\n--> Les relations en codimension >", d, "sont trivialement engendrées par les monômes de degrés", d+1

################################################################
# Calcul et affichage de la dimension de l’anneau tautologique #
################################################################

if d % 2 == 0 :
dimMin = 1 + 2*add([vSystemeSigma[q-1].rank() for q in [1..d/2]]) - vSystemeSigma[d/2-1].rank() + 1
dimMax = 2*add([binomial((p-1)/2+q-1,q) for q in [0..d/2 - 1]]) + binomial((p-1)/2+d/2-1,d/2)

else :
dimMin = 1 + 2*add([vSystemeSigma[q-1].rank() for q in [1..(d-1)/2]]) + 1
dimMax = 2*add([binomial((p-1)/2+q-1,q) for q in [0..(d-1)/2]])

if dimMin == dimMax :
print "\n\nL’anneau tautologique R_s(Psi_Z* C ; Z) est de dimension", dimMax

else :
print "\n\nL’anneau tautologique R_s(Psi_Z* C ; Z) est de dimension comprise entre", dimMin, "et", dimMax

print "\nFin du programme en", walltime(timer), "secondes.\n"

Avant de donner quelques nouvelles applications numériques, donnons quelques explications sup-
plémentaires sur ce code.

1. Les paramètres à définir avant d’exécuter le programme se trouvent tous dans la partie Paramètres
au début du code.

2. Concernant la méthode probabiliste (la méthode 1) utilisée pour générer la liste listePoly, on
pourra laisser la constante listePoly égale à 1. Notons qu’il est possible de générer plusieurs
fois le même polynôme (notamment en petit degré). La constante nbrePoly peut donc être
sensiblement supérieure à la taille effective de listePoly. Par ailleurs, l’aspect probabiliste
semble naturel afin que les relationsRqpP pσ

2q, ηq construites soient linéairement indépendantes
avec une forte probabilité. Puisque chaque polynôme P pσ2q de listePoly fournit au plus 2d
relations RqpP pσ

2q, ηq linéairement indépendantes et puisqu’il y a en codimension maximale
` p´1

2
`d´1

d

˘

monômes en les p´1
2 générateurs ω0, . . . , ω p´3

2
, on peut se fixer comme stratégie de

lancer une première simulation avec

nbrePoly ě
1

2d

ˆp´1
2 ` d´ 1

d

˙

ˆ 1.5.

Ce coefficient 1.5 (choisi arbitrairement) fournit une marge d’erreur qui devrait être suffisante
pour que listePoly contiennent suffisamment de polynômes, fournissant à leur tour suffisam-
ment de relations indépendantes.

3. Pour p “ 5 et même si d est très grand (par exemple d “ 100), les différentes exécutions
du programmes tendent à montrer qu’il suffit de ne considérer qu’un seul polynôme (ie. fixer
nbrePoly = 1). Le polynôme P pσ2q “ σ2 est le candidat le plus naturel vue la méthode
employée.

3.4.3 Autres applications numériques

Des exemples déjà connus

Le programme permet de retrouver (quasi)-instantanément chacune des propositions de la sous-
section 3.3.6. Par exemple, lorsque pd, pq “ p4, 5q, la sortie du programme est la suivante :
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Exemple 3.4.1 :

######################################################################
# #

Etude de la Q-algèbre R_s(Psi_Z* C ; Z) lorsque d = 4 et p = 5
# #
######################################################################

L’anneau tautologique R_s(Psi_Z* C ; Z) est engendré par [w_0, w_1]

Liste de polynômes générée avec succès.
Calcul des polynômes caractéristiques en cours...

Les degrés des monômes en codimension maximale sont calculables.
Calcul des degrés en cours...

deg w_0^4 = 24 chi(eta)
deg w_0^3*w_1 = 36 chi(eta)
deg w_0^2*w_1^2 = 44 chi(eta)
deg w_0*w_1^3 = 36 chi(eta)
deg w_1^4 = 24 chi(eta)

Etude des relations en codimension quelconque en cours...

--> Il n’existe pas de relation non triviale en codimension 1

--> Il n’existe pas de relation non triviale en codimension 2

--> Les relations en codimension 3 forment une famille de dimension 2 engendrée par :

w_0^3 - 3*w_0*w_1^2 + 3*w_1^3 = 0
3*w_0^2*w_1 - 9*w_0*w_1^2 + 8*w_1^3 = 0

--> Les relations en codimension maximale 4 sont engendrées par :

3*w_0^4 - 2*w_0^3*w_1 = 0
11*w_0^4 - 6*w_0^2*w_1^2 = 0
3*w_0^4 - 2*w_0*w_1^3 = 0
w_0^4 - w_1^4 = 0

--> Les relations en codimension > 4 sont trivialement engendrées par les monômes de degrés 5

L’anneau tautologique R_s(Psi_Z* C ; Z) est de dimension 9

Fin du programme en 0.603399038315 secondes.

Le cas pd, pq “ p5, 11q

Pour l’instant, les propositions données dans la sous-section 3.3.6 traitaient complètement le cas
d ď 4. En dimension 5, la condition p ´ 1 divise 2d “ 10 impose à p d’appartenir à l’ensemble
t2, 3, 11u. Aussi, dès que l’on aura étudié le cas pd, pq “ p5, 11q on aura en réalité étudié toutes les
structures possibles pour l’anneau RσpψZ˚C;Zq lorsque Z est de dimension ď 5.

Si pd, pq “ p5, 11q, le programme fournit des relations trop longues pour être présentées avec un
minimum de clarté dans ce manuscrit. On ne donne donc ici qu’un aperçu de la sortie du programme :

Exemple 3.4.2 :

######################################################################
# #

Etude de la Q-algèbre R_s(Psi_Z* C ; Z) lorsque d = 5 et p = 11
# #
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######################################################################

L’anneau tautologique R_s(Psi_Z* C ; Z) est engendré par [w_0, w_1, w_2, w_3, w_4]

Liste de polynômes générée avec succès.
Calcul des polynômes caractéristiques en cours...

Les degrés des monômes en codimension maximale sont calculables.
Calcul des degrés en cours...

deg w_0^5 = 120 chi(eta)
deg w_0^4*w_1 = 216 chi(eta)
deg w_0^4*w_2 = 216 chi(eta)
deg w_0^4*w_3 = 216 chi(eta)
deg w_0^4*w_4 = 216 chi(eta)
deg w_0^3*w_1^2 = 336 chi(eta)
deg w_0^3*w_1*w_2 = 402 chi(eta)
...
...
...
deg w_1*w_3^2*w_4^2 = 2452 chi(eta)
deg w_1*w_3*w_4^3 = 2298 chi(eta)
deg w_1*w_4^4 = 384 chi(eta)
deg w_2^5 = 120 chi(eta)
deg w_2^4*w_3 = 912 chi(eta)
deg w_2^4*w_4 = 1176 chi(eta)
deg w_2^3*w_3^2 = 1308 chi(eta)
deg w_2^3*w_3*w_4 = 1638 chi(eta)
deg w_2^3*w_4^2 = 1968 chi(eta)
deg w_2^2*w_3^3 = 912 chi(eta)
deg w_2^2*w_3^2*w_4 = 1836 chi(eta)
deg w_2^2*w_3*w_4^2 = 2276 chi(eta)
deg w_2^2*w_4^3 = 1572 chi(eta)
deg w_2*w_3^4 = 384 chi(eta)
deg w_2*w_3^3*w_4 = 1374 chi(eta)
deg w_2*w_3^2*w_4^2 = 2100 chi(eta)
deg w_2*w_3*w_4^3 = 2100 chi(eta)
deg w_2*w_4^4 = 648 chi(eta)
deg w_3^5 = 120 chi(eta)
deg w_3^4*w_4 = 648 chi(eta)
deg w_3^3*w_4^2 = 1572 chi(eta)
deg w_3^2*w_4^3 = 1968 chi(eta)
deg w_3*w_4^4 = 1176 chi(eta)
deg w_4^5 = 120 chi(eta)

Etude des relations en codimension quelconque en cours...

--> Il n’existe pas de relation non triviale en codimension 1

--> En codimension 2 la méthode n’est pas totalement concluante.
Les relations en codimension 2 forment une sous-famille de la famille de dimension 5 engendrée par :

w_0^2 + 742*w_1^2 - 2236*w_1*w_2 + 1394*w_2^2 + 786*w_1*w_3 - 932*w_2*w_3 + 165*w_3^2
+ 3902*w_0*w_4 - 1760*w_1*w_4 + 2002*w_2*w_4 - 1672*w_3*w_4 - 249*w_4^2 = 0

...

...

--> En codimension 3 la méthode n’est pas totalement concluante.
Les relations en codimension 3 forment une sous-famille de dimension au moins 20 de la famille de dimension 25
engendrée par :

w_0^3 - 950746*w_2^3 + 1155939*w_2^2*w_3 - 315669*w_2*w_3^2 - 23764*w_3^3 + 3061440*w_2^2*w_4
- 2532336*w_2*w_3*w_4 + 371997*w_3^2*w_4 + 2273130*w_1*w_4^2 - 6706545*w_2*w_4^2

+ 2586555*w_3*w_4^2 + 1206791*w_4^3 = 0
...
...
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--> Les relations en codimension 4 forment une famille de dimension 65 engendrée par :

w_0^4 - 108*w_3^4 + 212*w_3^3*w_4 + 102*w_2*w_3*w_4^2 - 390*w_3^2*w_4^2
+ 2362*w_2*w_4^3 - 782*w_3*w_4^3 - 2676*w_4^4 = 0

...

...

--> Les relations en codimension maximale 5 sont engendrées par :

9*w_0^5 - 5*w_0^4*w_1 = 0
9*w_0^5 - 5*w_0^4*w_2 = 0
9*w_0^5 - 5*w_0^4*w_3 = 0
9*w_0^5 - 5*w_0^4*w_4 = 0
14*w_0^5 - 5*w_0^3*w_1^2 = 0
67*w_0^5 - 20*w_0^3*w_1*w_2 = 0
...
...

--> Les relations en codimension > 5 sont trivialement engendrées par les monômes de degrés 6

L’anneau tautologique R_s(Psi_Z* C ; Z) est de dimension comprise entre 32 et 42

Fin du programme en 234.287231922 secondes.

Cet exemple est le premier que nous rencontrons pour lequel les systèmes en petite codimension
ne sont pas tous de rang maximaux comme cela avait pu être le cas lorsque p et d étaient plus petits.
Ceci se traduit par le fait que pour certaines codimensions q et d ´ q, les relations n’ont pu être
réduites qu’à une sous-famille d’un espace vectoriel dont le programme calcule une base. C’est en
fait assez naturel :

1. si p augmente, on dispose de plus de générateurs et on peut donc s’attendre à voir apparaître
plus de relations ;

2. si d augmente, on peut aussi s’attendre à ce que les conditions imposées en codimension
maximale aient de moins en moins d’effets sur les codimensions proches de d

2 ; laissant à
nouveau la place à des familles plus riches de relations.

Concrètement l’augmentation de d et p a pour effet d’augmenter la taille des systèmes linéaires
pΣq
pd,pqq dont les noyaux contiennent les relations. Ces noyaux n’ont à priori aucune raison d’être

triviaux même lorsque q ď d
2 .

On peut aussi avancer l’interprétation suivante : plus la dimension de la variété d est grande,
plus les cycles algébriques ont de « liberté ». Il est donc (à priori) possible d’avoir pour certaines
valeurs de d et p plusieurs structures différentes pour l’anneau tautologique RσpψZ˚C;Zq. C’est le
cas pour pd, pq “ p5, 11q mais ceci était exclu pour chacun des cas étudiés dans la sous-section 3.3.6
pour lesquels le théorème 3.3.59 s’applique.

Le cas pd, pq “ p6, 7q

Voici le résultat complet fourni par Sage lorsque pd, pq “ p6, 7q :

Exemple 3.4.3 :

######################################################################
# #

Etude de la Q-algèbre R_s(Psi_Z* C ; Z) lorsque d = 6 et p = 7
# #
######################################################################

L’anneau tautologique R_s(Psi_Z* C ; Z) est engendré par [w_0, w_1, w_2]
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Liste de polynômes générée avec succès.
Calcul des polynômes caractéristiques en cours...

Les degrés des monômes en codimension maximale sont calculables.
Calcul des degrés en cours...

deg w_0^6 = 720 chi(eta)
deg w_0^5*w_1 = 1200 chi(eta)
deg w_0^5*w_2 = 1200 chi(eta)
deg w_0^4*w_1^2 = 1776 chi(eta)
deg w_0^4*w_1*w_2 = 2112 chi(eta)
deg w_0^4*w_2^2 = 1776 chi(eta)
deg w_0^3*w_1^3 = 2232 chi(eta)
deg w_0^3*w_1^2*w_2 = 3408 chi(eta)
deg w_0^3*w_1*w_2^2 = 3240 chi(eta)
deg w_0^3*w_2^3 = 2232 chi(eta)
deg w_0^2*w_1^4 = 2208 chi(eta)
deg w_0^2*w_1^3*w_2 = 4896 chi(eta)
deg w_0^2*w_1^2*w_2^2 = 5624 chi(eta)
deg w_0^2*w_1*w_2^3 = 4056 chi(eta)
deg w_0^2*w_2^4 = 2208 chi(eta)
deg w_0*w_1^5 = 1440 chi(eta)
deg w_0*w_1^4*w_2 = 5808 chi(eta)
deg w_0*w_1^3*w_2^2 = 9336 chi(eta)
deg w_0*w_1^2*w_2^3 = 7152 chi(eta)
deg w_0*w_1*w_2^4 = 3792 chi(eta)
deg w_0*w_2^5 = 1440 chi(eta)
deg w_1^6 = 720 chi(eta)
deg w_1^5*w_2 = 4080 chi(eta)
deg w_1^4*w_2^2 = 14832 chi(eta)
deg w_1^3*w_2^3 = 12312 chi(eta)
deg w_1^2*w_2^4 = 6432 chi(eta)
deg w_1*w_2^5 = 2400 chi(eta)
deg w_2^6 = 720 chi(eta)

Etude des relations en codimension quelconque en cours...

--> Il n’existe pas de relation non triviale en codimension 1

--> Il n’existe pas de relation non triviale en codimension 2

--> En codimension 3 la méthode n’est pas totalement concluante.
Les relations en codimension 3 forment une sous-famille de la famille de dimension 3 engendrée par :

w_0^3 + 33*w_0*w_1^2 - 17*w_1^3 + 432*w_0^2*w_2 - 666*w_0*w_1*w_2 + 246*w_1^2*w_2 + 300*w_0*w_2^2
- 228*w_1*w_2^2 + 105*w_2^3 = 0

3*w_0^2*w_1 + 24*w_0*w_1^2 - 13*w_1^3 + 342*w_0^2*w_2 - 528*w_0*w_1*w_2 + 195*w_1^2*w_2 + 237*w_0*w_2^2
- 180*w_1*w_2^2 + 83*w_2^3 = 0

39*w_0*w_1^2 - 20*w_1^3 + 507*w_0^2*w_2 - 780*w_0*w_1*w_2 + 288*w_1^2*w_2 + 351*w_0*w_2^2 - 267*w_1*w_2^2
+ 123*w_2^3 = 0

--> Les relations en codimension 4 forment une famille de dimension 9 engendrée par :

w_0^4 + 3*w_0*w_1^2*w_2 + 33*w_0^2*w_2^2 + 12*w_0*w_1*w_2^2 - 30*w_1^2*w_2^2 - 193*w_0*w_2^3
+ 157*w_1*w_2^3 - 66*w_2^4 = 0

w_0^3*w_1 + 3*w_0*w_1^2*w_2 - w_1^3*w_2 + 9*w_0^2*w_2^2 + 15*w_0*w_1*w_2^2 - 18*w_1^2*w_2^2
- 108*w_0*w_2^3 + 87*w_1*w_2^3 - 37*w_2^4 = 0

w_0^3*w_2 + w_1^3*w_2 + 3*w_0^2*w_2^2 + 36*w_0*w_1*w_2^2 - 30*w_1^2*w_2^2 - 137*w_0*w_2^3
+ 111*w_1*w_2^3 - 47*w_2^4 = 0

3*w_0^2*w_1^2 + 30*w_0*w_1^2*w_2 - 15*w_1^3*w_2 + 12*w_0^2*w_2^2 + 33*w_0*w_1*w_2^2
- 42*w_1^2*w_2^2 - 340*w_0*w_2^3 + 269*w_1*w_2^3 - 117*w_2^4 = 0

3*w_0^2*w_1*w_2 + w_1^3*w_2 + 30*w_0^2*w_2^2 + 18*w_0*w_1*w_2^2 - 33*w_1^2*w_2^2 - 199*w_0*w_2^3
+ 162*w_1*w_2^3 - 68*w_2^4 = 0

3*w_0*w_1^2*w_2 + 39*w_0^2*w_2^2 - 24*w_1^2*w_2^2 - 173*w_0*w_2^3 + 141*w_1*w_2^3 - 59*w_2^4 = 0
w_0*w_1^3 + 30*w_0*w_1^2*w_2 - 15*w_1^3*w_2 + 27*w_0*w_1*w_2^2 - 30*w_1^2*w_2^2 - 261*w_0*w_2^3

+ 205*w_1*w_2^3 - 90*w_2^4 = 0

107



Chapitre 3. Anneaux tautologiques sur les variétés de Prym généralisées associées
aux revêtements Galoisiens n-cycliques par une courbe hyperelliptique

w_1^4 + 78*w_0*w_1^2*w_2 - 40*w_1^3*w_2 - 24*w_1^2*w_2^2 - 442*w_0*w_2^3 + 342*w_1*w_2^3 - 153*w_2^4 = 0
2*w_1^3*w_2 + 78*w_0*w_1*w_2^2 - 60*w_1^2*w_2^2 - 260*w_0*w_2^3 + 210*w_1*w_2^3 - 89*w_2^4 = 0

--> Les relations en codimension 5 forment une famille de dimension 18 engendrée par :

w_0^5 + 5*w_0*w_2^4 - 5*w_1*w_2^4 + 5*w_2^5 = 0
w_0^4*w_1 + 6*w_1^3*w_2^2 - 62*w_1^2*w_2^3 + 2*w_0*w_2^4 + 256*w_1*w_2^4 - 409*w_2^5 = 0
w_0^4*w_2 + 2*w_1^3*w_2^2 - 20*w_1^2*w_2^3 + 4*w_0*w_2^4 + 78*w_1*w_2^4 - 126*w_2^5 = 0
w_0^3*w_1^2 + 6*w_1^3*w_2^2 - 65*w_1^2*w_2^3 + 2*w_0*w_2^4 + 271*w_1*w_2^4 - 434*w_2^5 = 0
w_0^3*w_1*w_2 + w_1^3*w_2^2 + w_0*w_1*w_2^3 - 12*w_1^2*w_2^3 + 3*w_0*w_2^4 + 43*w_1*w_2^4 - 69*w_2^5 = 0
w_0^3*w_2^2 + 7*w_1^3*w_2^2 + w_0*w_1*w_2^3 - 69*w_1^2*w_2^3 + 7*w_0*w_2^4 + 274*w_1*w_2^4 - 439*w_2^5 = 0
w_0^2*w_1^3 + 4*w_1^3*w_2^2 + w_0*w_1*w_2^3 - 48*w_1^2*w_2^3 + 11*w_0*w_2^4 + 193*w_1*w_2^4 - 317*w_2^5 = 0
3*w_0^2*w_1^2*w_2 + 3*w_1^3*w_2^2 + w_0*w_1*w_2^3 - 50*w_1^2*w_2^3 + 3*w_0*w_2^4 + 209*w_1*w_2^4 - 336*w_2^5 = 0
3*w_0^2*w_1*w_2^2 + 9*w_1^3*w_2^2 - 93*w_1^2*w_2^3 + 6*w_0*w_2^4 + 372*w_1*w_2^4 - 592*w_2^5 = 0
4*w_1^3*w_2^2 + w_0^2*w_2^3 + w_0*w_1*w_2^3 - 39*w_1^2*w_2^3 + 4*w_0*w_2^4 + 152*w_1*w_2^4 - 243*w_2^5 = 0
w_0*w_1^4 + 8*w_1^3*w_2^2 - 92*w_1^2*w_2^3 + 10*w_0*w_2^4 + 384*w_1*w_2^4 - 623*w_2^5 = 0
w_0*w_1^3*w_2 + 7*w_1^3*w_2^2 + w_0*w_1*w_2^3 - 86*w_1^2*w_2^3 + 364*w_1*w_2^4 - 583*w_2^5 = 0
3*w_0*w_1^2*w_2^2 + 2*w_1^3*w_2^2 + w_0*w_1*w_2^3 - 31*w_1^2*w_2^3 + 9*w_0*w_2^4 + 110*w_1*w_2^4 - 177*w_2^5 = 0
8*w_1^3*w_2^2 + 2*w_0*w_1*w_2^3 - 80*w_1^2*w_2^3 + 325*w_1*w_2^4 - 516*w_2^5 = 0
8*w_1^3*w_2^2 - 78*w_1^2*w_2^3 + 13*w_0*w_2^4 + 312*w_1*w_2^4 - 506*w_2^5 = 0
w_1^5 - 10*w_1^2*w_2^3 + 50*w_1*w_2^4 - 83*w_2^5 = 0
w_1^4*w_2 + 8*w_1^3*w_2^2 - 114*w_1^2*w_2^3 + 501*w_1*w_2^4 - 809*w_2^5 = 0
10*w_1^3*w_2^2 - 100*w_1^2*w_2^3 + 415*w_1*w_2^4 - 661*w_2^5 = 0

--> Les relations en codimension maximale 6 sont engendrées par :

5*w_0^6 - 3*w_0^5*w_1 = 0
5*w_0^6 - 3*w_0^5*w_2 = 0
37*w_0^6 - 15*w_0^4*w_1^2 = 0
44*w_0^6 - 15*w_0^4*w_1*w_2 = 0
37*w_0^6 - 15*w_0^4*w_2^2 = 0
31*w_0^6 - 10*w_0^3*w_1^3 = 0
71*w_0^6 - 15*w_0^3*w_1^2*w_2 = 0
9*w_0^6 - 2*w_0^3*w_1*w_2^2 = 0
31*w_0^6 - 10*w_0^3*w_2^3 = 0
46*w_0^6 - 15*w_0^2*w_1^4 = 0
34*w_0^6 - 5*w_0^2*w_1^3*w_2 = 0
703*w_0^6 - 90*w_0^2*w_1^2*w_2^2 = 0
169*w_0^6 - 30*w_0^2*w_1*w_2^3 = 0
46*w_0^6 - 15*w_0^2*w_2^4 = 0
2*w_0^6 - w_0*w_1^5 = 0
121*w_0^6 - 15*w_0*w_1^4*w_2 = 0
389*w_0^6 - 30*w_0*w_1^3*w_2^2 = 0
149*w_0^6 - 15*w_0*w_1^2*w_2^3 = 0
79*w_0^6 - 15*w_0*w_1*w_2^4 = 0
2*w_0^6 - w_0*w_2^5 = 0
w_0^6 - w_1^6 = 0
17*w_0^6 - 3*w_1^5*w_2 = 0
103*w_0^6 - 5*w_1^4*w_2^2 = 0
171*w_0^6 - 10*w_1^3*w_2^3 = 0
134*w_0^6 - 15*w_1^2*w_2^4 = 0
10*w_0^6 - 3*w_1*w_2^5 = 0
w_0^6 - w_2^6 = 0

--> Les relations en codimension > 6 sont trivialement engendrées par les monômes de degrés 7

L’anneau tautologique R_s(Psi_Z* C ; Z) est de dimension comprise entre 27 et 30

Fin du programme en 13.5689549446 secondes.

Il existe donc à isomorphisme près au plus 4 structures de Q-espaces vectoriels possibles pour
RσpψZ˚C;Zq lorsque pd, pq “ p6, 7q. Ces 4 structures sont déterminées par la dimension de la famille
des relations en codimension 3 qui peut être soit 0, 1, 2 ou 3.
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Le cas pd, pq “ p6, 13q

Si pd, pq “ p6, 13q, on obtient de la même manière les faits suivants :
(i) RσpψZ˚C;Zq est engendré par ω0, ω1, ω2, ω3, ω4, ω5.
(ii) Il n’existe pas de relation non triviale en codimension 1.
(iii) Les relations en codimension 2 forment une sous-famille d’une famille de dimension 6.
(iv) Les relations en codimension 3 forment une sous-famille d’une famille de dimension 36.
(v) Les relations en codimension 4 forment une sous-famille de dimension au moins 105 d’une

famille de dimension 111.
(vi) Les relations en codimension 5 forment une famille de dimension 246.
(vii) L’anneau tautologique RσpψZ˚C;Zq est de dimension comprise entre 64 et 112.

Ces deux derniers exemples achèvent d’étudier le cas d ď 6.

Quelques compléments

1. Ce programme Sage permet de tester la conjecture 3.3.51. Celle-ci s’est vérifiée sur chacun des
exemples testés.

2. De manière générale, les calculs pour un automorphisme d’ordre 5 se font rapidement (bien
plus rapidement que pour p ą 5). Par ailleurs les systèmes linéaires pΣq

d,5q semblent toujours de
rang maximaux même pour des grandes dimensions d : le théorème 3.3.59 s’applique pour tous
les cas testés. Par exemple pour d “ 50, l’anneau tautologique RσpψZ˚C;Zq est de dimension
262 “ 676. Pour d “ 100, RσpψZ˚C;Zq est de dimension 512 “ 2601.

3. Lorsque le programme ne limite les relations en une certaine codimension q qu’à un sous-espace
de possibles relations (par exemple pour pd, pq “ p6, 13q et q “ 2, 3 ou 4), on peut réutiliser les
méthodes de la sous-section 3.3.3 pour affiner l’étude.
(a) On peut notamment utiliser la méthode qui consiste à faire agir par pull-back les σi`σ´i

sur les relations. Avec celle-ci, on peut par exemple espérer montrer que s’il existe une
droite de relations, alors il existe au moins un plan vectoriel de relations. Pour cela, il
suffirait de constater que l’action pull-back de l’un des σi`σ´i sur une relation en fournit
une autre linéairement indépendante.

(b) Dans le même ordre d’idées, on peut rappeler que toute relation Rk entre les ωi dont on
disposerait pour une certaine codimension k se répercuterait immédiatement en codimen-
sion supérieure : les relations en codimension k ` l contiennent la composante pk ` lq-
codimensionnelle de l’idéal engendré par la relation Rk. Pour illustrer ceci avec le cas
précédent pd, pq “ p6, 13q, une meilleure connaissance des relations en codimension 2 par
exemple permettrait d’exclure certains sous-espaces de relations en codimension 3 ou 4 :
tous ceux qui ne contiendraient pas les composantes 3 et 4-codimensionnelles de l’idéal
engendré par les relations en codimension 2.

La dernière section de ce chapitre pourra être mise de côté lors d’une première lecture. Elle vient
compléter l’étude des relations menée jusqu’à présent en détaillant certains cas particuliers et en
justifiant certains faits remarqués dans les exemples.

3.5 Compléments concernant l’étude des relations entre les ωi

3.5.1 Retour sur les relations Rqpσ
2k, ηq

Nous avions constaté sur les exemples 3.3.39, 3.3.40 mais aussi 3.3.41 que les expressions des
relations Rqpσ

2k, ηq et R2d´qpσ
2k, ηq étaient les mêmes. Le premier complément que l’on apporte
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dans cette partie est de justifier cette remarque. Ce sera chose faite dès que nous aurons démontré
la proposition 3.5.2.

Revenons tout d’abord sur la proposition 3.3.36 qui avait introduit les relations Rqpα,Hq et
regardons la forme que prend celle-ci lorsque α˚H “ H.

Corollaire 3.5.1 - On reprends les hypothèses et notations de la proposition 3.3.36 et on suppose
de plus que H est invariant par α˚, c’est-à-dire α˚H “ H. Alors pour tout entier q P J0, 2dK,

Σ2d´qpαq “
1

degHd

t
q
2

u
ÿ

i“maxp0,q´dq

ˆ

d

i, q ´ 2i, i` d´ q

˙

deg
´

H2i`d´q ¨DαpHq
q´2i

¯

“
1

degHd

t
q
2

u
ÿ

i“maxp0,q´dq

q´2i
ÿ

u“0

ˆ

d

i, u, q ´ 2i´ u, i` d´ q

˙

p´2qq´2i´u deg
´

Hd´u ¨ pα` 1q˚Hu
¯

.

Démonstration. Si α˚H “ H, alors on a par définition de DαpHq :

DαpHq “ pα` 1q˚H ´ 2H.

En utilisant la formule du binôme de Newton, il vient pour tout entier q P J0, 2dK

Σ2d´qpαq “
1

degHd

t
q
2 u
ÿ

i“maxp0,q´dq

ˆ

d

i, q ´ 2i, i` d´ q

˙

deg
`

H2i`d´q ¨DαpHq
q´2i

˘

“
1

degHd

t
q
2 u
ÿ

i“maxp0,q´dq

ˆ

d

i, q ´ 2i, i` d´ q

˙

deg
`

H2i`d´q ¨ ppα` 1q˚H ´ 2Hqq´2i
˘

“
1

degHd

t
q
2 u
ÿ

i“maxp0,q´dq

q´2i
ÿ

u“0

ˆ

d

i, q ´ 2i, i` d´ q

˙ˆ

q ´ 2i

u

˙

p´2qq´2i´u deg
`

H2i`d´q ¨ pα` 1q˚Hu ¨Hq´2i´u
˘

“
1

degHd

t
q
2 u
ÿ

i“maxp0,q´dq

q´2i
ÿ

u“0

ˆ

d

i, u, q ´ 2i´ u, i` d´ q

˙

p´2qq´2i´u deg
`

Hd´u ¨ pα` 1q˚Hu
˘

.

Proposition 3.5.2 - On garde les hypothèses de la proposition 3.3.36 et on suppose de plus que
α˚H “ H. Les relations Rqpα,Hq sont symétriques par rapport à q dans le sens où

Rqpα,Hq “ R2d´qpα,Hq.

De plus, on a aussi la relation

Σ2d´qpαq “ Σqpαq

sans hypothèse supplémentaire sur α autre que α˚H “ H.

Démonstration. Soit q P Jd, 2dK. Il s’agit de montrer que les expressions de R2d´qpα,Hq et Rqpα,Hq
sont les mêmes. On s’intéresse donc à la relation R2d´qpα,Hq et plus particulièrement à la somme
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dans cette relation. En utilisant le fait que q P Jd, 2dK (et donc que d´ q ď 0), on a

t
2d´q

2
u

ÿ

i“maxp0,p2d´qq´dq

ˆ

d

i, p2d´ qq ´ 2i, i` d´ p2d´ qq

˙

deg
´

H2i`d´p2d´qq ¨DαpHq
p2d´qq´2i

¯

“

t
2d´q

2
u

ÿ

i“0

ˆ

d

i, 2d´ q ´ 2i, i´ d` q

˙

deg
´

H2i´d`q ¨DαpHq
2d´q´2i

¯

.

En effectuant maintenant le changement d’indice j “ i´d`q, on obtient la combinaison équivalente
suivante

t
2d´q

2
u´d`q
ÿ

j“q´d

ˆ

d

j ` d´ q, q ´ 2j, j

˙

deg
´

H2j`d´q ¨DαpHq
q´2j

¯

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

termes apparaissant dans la somme de Rqpα,Hq

.

Pour conclure, il nous reste à vérifier que les bornes de sommation sont bien celles de la relation
Rqpα,Hq. Puisque par hypothèse q P Jd, 2dK, la somme sur i apparaissant de la relation Rqpα,Hq
débute à l’indice maxp0, q ´ dq “ q ´ d et se finit à l’indice

X

q
2

\

. Par ailleurs, on a immédiatement
l’égalité

Yq

2

]

“

Y2d´ q

2

]

´ d` q.

On vient donc de montrer que les sommes apparaissant dans les relations Rqpα,Hq et R2d´qpα,Hq
sont les mêmes. Par conséquent, on en déduit que

Σ2d´qpαq “
Rqpα,Hq

1

degHd

t
q
2

u
ÿ

i“maxp0,q´gq

ˆ

d

i, q ´ 2i, i` d´ q

˙

deg
´

H2i`d´q ¨DαpHq
q´2i

¯

“

t
2d´q

2
u

ÿ

i“maxp0,p2d´qq´dq

ˆ

d

i, p2d´ qq ´ 2i, i` d´ p2d´ qq

˙

deg
´

H2i`d´p2d´qq ¨DαpHq
p2d´qq´2i

¯

“
R2d´qpα,Hq

Σqpαq

et par suite les relations Rqpα,Hq et R2d´qpα,Hq sont les mêmes.

Si α˚H “ H, il est donc suffisant de calculer les relations Rqpα,Hq pour q P J0, dK ou si l’on
préfère q P Jd, 2dK.

Remarque 3.5.3 :
1. La symétrie Σ2d´qpαq “ Σqpαq se traduit par une symétrie des coefficients du polynôme ca-

ractéristique de α.
2. Si l’on n’a plus l’égalité α˚H “ H, la proposition précédente n’est plus vraie en général.

Cependant, on peut appliquer le même raisonnement et ainsi montrer que l’on garde tout de
même une symétrie au niveau des coefficients dans la somme. Précisément, si on écrit

Rqpα,Hq : Σ2d´qpHq ´
b
ÿ

i“a

βi deg
´

H i ¨DαpHq
q´2i ¨ α˚H i`d´q

¯

“ 0

pour certains scalaires βi P Q, alors la relation R2d´qpα,Hq est simplement donnée par

R2d´qpα,Hq : ΣqpHq ´
b
ÿ

i“a

βi deg
´

α˚H i ¨DαpHq
q´2i ¨H i`d´q

¯

“ 0.
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Appliquant la proposition 3.5.2 avec α “ σ2k et H “ η, on obtient finalement le résultat suivant :

Proposition 3.5.4 - Soit C une courbe complexe projective lisse munie d’un automorphisme σ
d’ordre fini. Soit q P J0, dK. On dispose des relations suivantes dans ApZq :

Rqpσ
2k, ηq : Σqpσ2kqωd0 ´

t
q
2

u
ÿ

i“0

q´2i
ÿ

u“0

ˆ

d

i, u, q ´ 2i´ u, i` d´ q

˙

p´2qq´2i´uωd´u0 ωuk “ 0.

Ces relations se réécrivent aussi

Rqpσ
2k, ηq : Σqpσ2kqωd0 ´

q
ÿ

u“0

t
q´u

2
u

ÿ

i“0

ˆ

d

i, u, q ´ 2i´ u, i` d´ q

˙

p´2qq´2i´uωd´u0 ωuk “ 0.

Démonstration. La proposition découle du corollaire 3.5.1 appliqué avec α “ σ2k et H “ η. On a
bien le résultat car pσk ` σ´kq˚η “ p1` σ2kq˚η puisque η est invariant par pull-back par σ (puisque
θ l’est). La seconde formulation de ces relations découle de ce que

#

maxp0, q ´ dq ď i ď
Y

q
2

]

0 ď u ď q ´ 2i
ðñ

#

maxp0, q ´ dq ď i ď
Y

q´u
2

]

0 ď u ď q ´ 2 maxp0, q ´ dq.

En particulier, si on se restreint à q P J0, dK (ce que l’on peut faire sans perte de généralité de part
la symétrie des relations obtenues), alors maxp0, q ´ dq “ 0 et on a le résultat annoncé.

Remarque 3.5.5 : Plus |p2d ´ qq ´ d| “ |d ´ q| est petit, plus la relation Rqpσ
2k, ηq est complexe

à calculer. On le constatera clairement avec la proposition 3.5.8.

Donnons une expression encore plus explicite des relations obtenues en utilisant le lemme suivant :

Lemme 3.5.6 - Soit u P J0, qK. Alors

t
q´u

2
u

ÿ

i“0

ˆ

d

i, u, q ´ 2i´ u, i` d´ q

˙

p´2qq´2i´u “
2p´1qq`ud!p2d´ 2u´ 1q!

u!pq ´ uq!p2d´ q ´ uq!pd´ u´ 1q!
.

Démonstration. Ce calcul de somme a été effectué à l’aide de Maple en se rappelant les formules
suivantes concernant la fonction Γ d’Euler :

ΓpnqΓ

ˆ

n`
1

2

˙

“ 21´2n?πΓp2nq

Γpn` 1q “ n!.

Par exemple, lorsque q “ 2a et u “ 2b sont pairs, Maple fournit la seconde égalité ci-dessous :

t
q´u

2
u

ÿ

i“0

ˆ

d

i, u, q ´ 2i´ u, i` d´ q

˙

p´2qq´2i´u “

a´b
ÿ

i“0

ˆ

d

i, 2b, 2a´ 2i´ 2b, i` d´ 2a

˙

p´2q2a´2i´2b

“
p´1q2a´2b16´b4dΓpd` 1qΓ

`

d´ 2b` 1
2

˘

Γp2b` 1qΓp2a´ 2b` 1q
?
πΓp2d´ 2a´ 2b` 1q

“
p´1qq`u16´b4dd!Γ

`

d´ u` 1
2

˘

u!pq ´ uq!
?
πp2d´ q ´ uq!

“
p´1qq`u16´b4dd!21´2pd´uq?πΓp2pd´ uqq

u!pq ´ uq!
?
πp2d´ q ´ uq!Γpd´ uq

“
2p´1qq`ud!p2d´ 2u´ 1q!

u!pq ´ uq!p2d´ q ´ uq!pd´ u´ 1q!
.

Les autres distinctions de cas fournissent les mêmes formules relativement à q et u.
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Finalement, si on rassemble les résultats précédents, on aboutit au théorème suivant :

Théorème 3.5.7 - Soit C une courbe complexe projective lisse munie d’un automorphisme σ d’ordre
premier p ą 2. Soit q P J0, dK. On dispose des relations suivantes dans ApZq :

Rqpσ
2k, ηq :

ˆ

Σqpσq ´ p´1qq
ˆ

2d

q

˙˙

ωd0 ´

q
ÿ

u“1

2p´1qq`ud!p2d´ 2u´ 1q!

u!pq ´ uq!p2d´ q ´ uq!pd´ u´ 1q!
ωd´u0 ωuk “ 0

où le coefficient Σqpσq peut être calculé explicitement et vérifie en particulier pour q P J0, p´ 1K,

Σqpσq “ p´1qq
ˆ 2d
p´1 ` q ´ 1

q

˙

.

Démonstration. La première assertion est une synthèse entre la proposition 3.5.4 et le lemme 3.5.6.
Il n’y a que le coefficient devant ωd0 dont on n’a pas encore donné une expression littérale simplifiée.
D’après la proposition 3.5.4, ce coefficient est égal à

Σqpσ2kq ´
2p´1qq`0d!p2d´ 2ˆ 0´ 1q!

0!pq ´ 0q!p2d´ q ´ 0q!pd´ 0´ 1q!
“ Σqpσ2kq ´

2p´1qqd!p2d´ 1q!

q!p2d´ qq!pd´ 1q!

“ Σqpσ2kq ´
2p´1qqdp2d´ 1q!

q!p2d´ qq!
“ Σqpσ2kq ´ p´1qq

ˆ

2d

q

˙

.

Par ailleurs, les lemmes 3.3.33 et 3.3.35 permettent non seulement de montrer que Σqpσ2kq “ Σqpσq
(ici on utilise l’hypothèse p ą 2) mais aussi de calculer ce coefficient. En effet, le lemme 3.3.35
montre que Trpσiq “ Trpσq “ ´ 2d

p´1 pour tout i P J1, p ´ 1K et Trpσiq “ Trp1Zq “ 2d si p divise i.
En complément, le lemme 3.3.33 prouve que pour tout pi, kq P J1, p´ 1K2

Σkpσiq “ Σkpσq “
1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣

t 1 0 ¨ ¨ ¨ 0

t t 2
...

...
. . . . . . . . . 0

...
. . . . . . k ´ 1

t t ¨ ¨ ¨ t t

∣∣∣∣∣∣∣∣∣∣∣∣∣
où t :“ ´ 2d

p´1 . En développant ce déterminant par rapport à la dernière colonne, on obtient la formule
de récurrence suivante :

Σkpσq “
p´1q2k´1pk ´ 1q

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣

t 1 0 ¨ ¨ ¨ 0

t t 2
...

...
. . . . . . . . . 0

...
. . . . . . k ´ 2

t t ¨ ¨ ¨ t t

∣∣∣∣∣∣∣∣∣∣∣∣∣
`
p´1q2dt

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣

t 1 0 ¨ ¨ ¨ 0

t t 2
...

...
. . . . . . . . . 0

...
. . . . . . k ´ 2

t t ¨ ¨ ¨ t t

∣∣∣∣∣∣∣∣∣∣∣∣∣
“

1´ k

k
Σk´1pσq `

t

k
Σk´1pσq “

t´ pk ´ 1q

k
Σk´1pσq.

Comme Σ1pσq “ t “ 1
1!

ś0
i“0pt´ iq, une récurrence immédiate montre que le résultat est vrai pour

tout 1 ď k ď p´ 1 :

Σkpσiq “ Σkpσq “
1

k!

k´1
ź

i“0

ˆ

´
2d

p´ 1
´ i

˙
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Puisque par convention Σ0pσq “ 1, ceci est aussi vrai pour k “ 0. On a donc le résultat annoncé :

Σkpσq “
p´1qk

k!

k´1
ź

i“0

ˆ

2d

p´ 1
` i

˙

“ p´1qk

´

2d
p´1 ` k ´ 1

¯

!

k!
´

2d
p´1 ´ 1

¯

!
“ p´1qk

ˆ 2d
p´1 ` k ´ 1

k

˙

.

On en déduit la proposition suivante qui exprime de manière explicite les relations Rqpσ
2k, ηq

obtenues dans le théorème 3.5.7 pour de petits indices q.

Proposition 3.5.8 - On dispose des relations suivantes dans ApZq :

1. Si d ě 0 et p ě 3, R0pσ
2k, ηq “ R2dpσ

2k, ηq :

ωd0 ´ ω
d
0 “ 0.

2. Si d ě 1 et p ě 3, R1pσ
2k, ηq “ R2d´1pσ

2k, ηq :
ˆ

´
2d

p´ 1
` 2d

˙

ωd0 ´ dω
d´1
0 ωk “ 0.

3. Si d ě 1 et p ě 3, R2pσ
2k, ηq “ R2d´2pσ

2k, ηq :
ˆ

dp2d` p´ 1q

pp´ 1q2
´ dp2d´ 1q

˙

ωd0 ` 2dpd´ 1qωd´1
0 ωk ´

1

2
dpd´ 1qωd´2

0 ω2
k “ 0.

4. Si d ě 2 et p ě 5, R3pσ
2k, ηq “ R2d´3pσ

2k, ηq :
ˆ

´
2

3

dp2d` p´ 1qpd` p´ 1q

pp´ 1q3
`

1

3
dp2d´ 1qp2d´ 2q

˙

ωd0 ´
d!p2d´ 3q!

pd´ 2q!p2d´ 4q!
ωd´1

0 ωk

`
d!

pd´ 3q!
ωd´2

0 ω2
k ´

1

6

d!

pd´ 3q!
ωd´3

0 ω3
k “ 0.

5. Si d ě 2 et p ě 5, R4pσ
2k, ηq “ R2d´4pσ

2k, ηq :
ˆ

1

6

dp2d` p´ 1qpd` p´ 1qp2d` 3p´ 3q

pp´ 1q4
´

1

12
dp2d´ 1qp2d´ 2qp2d´ 3q

˙

ωd0

`
1

3

d!p2d´ 3q!

pd´ 2q!p2d´ 5q!
ωd´1
0 ωk ´

1

2

d!p2d´ 5q!

pd´ 3q!p2d´ 6q!
ωd´2
0 ω2

k `
1

3

d!

pd´ 4q!
ωd´3
0 ω3

k ´
1

24

d!

pd´ 4q!
ωd´4
0 ω4

k “ 0.

Remarque 3.5.9 : La condition de validité sur d pour ces relations est imposée par 2d ě q, c’est-
à-dire d ě

Q

q
2

U

. Celle sur p est imposée par l’inégalité q ď p´ 1.

Cette proposition nous permet notamment de retrouver les exemples 3.3.39, 3.3.40 et 3.3.41.

3.5.2 Retour sur le degré des monômes de la forme ωd´q0 ωqk

Nous avons déjà expliqué dans la sous-section 3.3.4 de quelle manière on peut se servir des
relations RqpP pσ

2q, ηq pour calculer le degré des cycles qui s’expriment comme des monômes de
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degré d en les ωi. Nous revenons à présent sur ce fait en nous intéressant plus particulièrement aux
relations Rqpσ

2k, ηq et leur utilisation dans le calcul des degrés des cycles ωd´q0 ωqk.

Le théorème 3.5.7 montre que les relations Rqpσ
2k, ηq avec q P J1, dK se présentent sous la forme

Rqpσ
2k, ηq :

q´1
ÿ

u“0

λu,q,dω
d´u
0 ωuk “

ˆ

d

q

˙

ωd´q0 ωqk

pour certains rationnels λu,q,d P Q que l’on peut calculer explicitement. En particulier, les relations
Rqpσ

2k, ηq forment un système triangulaire (ou quasi-triangulaire) entre les ωd´u0 ωuk . On est donc
certain quel que soit le couple pd, pq de pouvoir calculer de proche en proche le degré de chaque
ωd´q0 ωqk en exprimant à chaque étape q le terme ωd´q0 ωqk en fonction des autres ωd´u0 ωuk pour u ă q.
On obtient ainsi le résultat suivant en nous appuyant plus directement sur les formules obtenues dans
la proposition 3.5.8. Ce résultat fournit des formules fermées pour degωd´q0 ωqk lorsque q P t0, 1, 2, 3u.

Proposition 3.5.10 - Pour tout entier 1 ď k ď p´ 1, on a
1. si d ě 0 et p ě 3, degωd0 “ d!χpηq,
2. si d ě 1 et p ě 3, degωd´1

0 ωk “
2d
p´1pp´ 2qpd´ 1q!χpηq,

3. si d ě 2 et p ě 3, degωd´2
0 ω2

k “
2p11p`2dp2´8dp´3p2`8d´8qd!

pd´1qpp´1q2
χpηq,

4. si d ě 3 et p ě 5, degωd´3
0 ω3

k “
4pdp´2p´2d`2qp2dp2´5p2´8dp`21p`8d´16qd!

pd´2qpd´1qpp´1q3
χpηq.

Démonstration. Soit 1 ď k ď p´ 1.
1. degωd0 “ d!χpηq : c’est la proposition 3.3.14.
2. La relation R1pσ

2k, ηq affirme que
ˆ

´
2d

p´ 1
` 2d

˙

ωd0 ´ dω
d´1
0 ωk “ 0.

Puisque degωd0 “ d!χpηq, il vient

degωd´1
0 ωk “

ˆ

´
2d

p´ 1
` 2d

˙

d!χpηq

d
“

2d

p´ 1
pp´ 2qpd´ 1q!χpηq.

3. La relation R2pσ
2k, ηq affirme que

ˆ

dp2d` p´ 1q

pp´ 1q2
´ dp2d´ 1q

˙

ωd0 ` 2dpd´ 1qωd´1
0 ωk ´

1

2
dpd´ 1qωd´2

0 ω2
k “ 0.

En isolant ωd´2
0 ω2

k et en utilisant que degωd0 “ d!χpηq et degωd´1
0 ωk “

2d
p´1pp´ 2qpd´ 1q!χpηq,

il vient

degωd´2
0 ω2

k “
2

dpd´ 1q

ˆˆ

dp2d` p´ 1q

pp´ 1q2
´ dp2d´ 1q

˙

d!χpηq ` 2dpd´ 1q
2d

p´ 1
pp´ 2qpd´ 1q!χpηq

˙

“
2p11p` 2dp2 ´ 8dp´ 3p2 ` 8d´ 8qd!

pd´ 1qpp´ 1q2
χpηq.

4. La relation R3pσ
2k, ηq affirme que

ˆ

´
2

3

dp2d` p´ 1qpd` p´ 1q

pp´ 1q3
`

1

3
dp2d´ 1qp2d´ 2q

˙

ωd0 ´
d!p2d´ 3q!

pd´ 2q!p2d´ 4q!
ωd´1

0 ωk

`
d!

pd´ 3q!
ωd´2

0 ω2
k ´

1

6

d!

pd´ 3q!
ωd´3

0 ω3
k “ 0.
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En isolant à nouveau ωd´3
0 ω3

k et en utilisant

degωd0 “ d!χpηq, degωd´1
0 ωk “

2d

p´ 1
pp´ 2qpd´ 1q!χpηq

et degωd´2
0 ω2

k “
2p11p` 2dp2 ´ 8dp´ 3p2 ` 8d´ 8qd!

pd´ 1qpp´ 1q2
χpηq,

il vient après quelques calculs

degωd´3
0 ω3

k “
6pd´ 3q!

d!

ˆˆ

´
2

3

dp2d` p´ 1qpd` p´ 1q

pp´ 1q3
`

1

3
dp2d´ 1qp2d´ 2q

˙

d!χpηq

´
d!p2d´ 3q!

pd´ 2q!p2d´ 4q!

2d

p´ 1
pp´ 2qpd´ 1q!χpηq `

d!

pd´ 3q!

2p11p` 2dp2 ´ 8dp´ 3p2 ` 8d´ 8qd!

pd´ 1qpp´ 1q2
χpηq

˙

“
4pdp´ 2p´ 2d` 2qp2dp2 ´ 5p2 ´ 8dp` 21p` 8d´ 16qd!

pd´ 2qpd´ 1qpp´ 1q3
χpηq.

A partir de q ě 4, les relations deviennent trop longues et encore moins éclairantes pour être
données explicitement et de manière générale pour d ě 1 et p ą 2 quelconques.

Remarque 3.5.11 :
1. Pour d ě 1 et p ě 3, d! ‰ 0, de sorte qu’on a toujours ωd0 ‰ 0.
2. Pour d ě 1 et p ě 3, 2d

p´1pp´ 2qpd´ 1q! ‰ 0. Ainsi on a toujours ωd´1
0 ωi ‰ 0.

3. D’après Maple, la seule solution entière de l’équation

11p` 2dp2 ´ 8dp´ 3p2 ` 8d´ 8 “ 0

est pd, pq “ p1, 0q. Par suite, on a toujours ωd´2
0 ω2

i ‰ 0.
4. De même, si p ě 5, on a ωd´3

0 ω3
i ‰ 0.

Ces calculs fournissent donc des exemples où la proposition 3.3.48 s’applique.

Nous avions également observé sur les exemples 3.3.44, 3.3.45 et 3.3.46 une symétrie au niveau
des degrés des cycles ωd´q0 ωqk dans le cas d’un automorphisme d’ordre p “ 5. La proposition suivante
précise ce fait.

Proposition 3.5.12 - Si p “ 5, alors pour tout q P J0, dK et tout k P t1, 2u,

degωd´q0 ωqk “ degωq0ω
d´q
k .

Démonstration. Montrons le résultat pour k “ 1. L’autre cas se traite de la même manière. Si
p “ 5, alors pσ ` σ´1q´1 “ ´pσ2 ` σ´2q P AutpZq. Puisque les pull-backs commutent au produit
d’intersection, on a donc

degωd´q0 ωq1 “ deg ηd´q ¨ pσ ` σ´1q˚ηq

“ degpσ2 ` σ´2q˚
´

ηd´q ¨ pσ ` σ´1q˚ηq
¯

“ degpσ2 ` σ´2q˚ηd´q ¨ p´1q˚ηq

“ degpσ2 ` σ´2q˚ηd´q ¨ ηq

“ degωd´q2 ωq0 “ degωq0ω
d´q
2
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car on a aussi p´1q˚η “ η. Comme

degωq0ω
d´q
2 “ degωq0ω

d´q
1

car les ωd´q0 ωqi vérifient la même relation Rqpσ
2, ηq pour tout 1 ď i ď p´ 1, on a bien :

degωd´q0 ωq1 “ degωq0ω
d´q
1 .

D’où la proposition.

Terminons cette étude des degrés de la forme degωd´q0 ωqk en notant que pour p “ 5 on peut aller
encore un peu plus loin : on peut calculer les degrés degωd´q0 ωqk avec q impair connaissant les degrés
de ωd´i0 ωik pour i “ 0, . . . , q ´ 1. Ceci repose sur le résultat suivant :

Proposition 3.5.13 - On suppose dans cette proposition que σ est un automorphisme d’ordre 5.
Soient q P J0, dK et k P t1, 2u. On note pour tout entier i P J0, dK, ai :“ degωd´i0 ωik. Alors

aq “

q
ÿ

k“0

3q´kp´1qk
ˆ

q

k

˙

ak.

En particulier, si q est impair

aq “
1

2

q´1
ÿ

k“0

3q´kp´1qk
ˆ

q

k

˙

ak.

Démonstration. On a déjà remarqué que les entiers ai ne dépendent pas de l’entier k car les relations
Rqpσ

2k, ηq qui permettent de les calculer ne dépendent pas de k. Par ailleurs, grâce à l’égalité
1` σ ` . . .` σ4 “ 0Z , on a pu montrer dans le lemme 3.3.4 que

´3ω0 ` ω1 ` ω2 “ 0.

Par suite,

aq “ degωd´q0 ωq2 “ degωd´q0 p3ω0 ´ ω1q
q
“

q
ÿ

k“0

3q´kp´1qk
ˆ

q

k

˙

degωd´q0 ωq´k0 ωk1

“

q
ÿ

k“0

3q´kp´1qk
ˆ

q

k

˙

ak “

q´1
ÿ

k“0

3q´kp´1qk
ˆ

q

k

˙

ak ` p´1qqaq.

Dans ce cas, si q est impair, p´1qq “ ´1 et on a l’égalité annoncée

aq “
1

2

q´1
ÿ

k“0

3q´kp´1qk
ˆ

q

k

˙

ak.

Exemple 3.5.14 : On suppose que p “ 5 et donc d ě 2. On sait que a0 “ degωd0 “ d!χpηq, alors
par la proposition précédente :

a1 “
3

2
a0 “

3

2
d!χpηq

et on retrouve le résultat de la proposition 3.5.10. Cette même proposition montre que a2 “
1
4

9d´14
d´1 d!χpηq. Par suite,

a3 “
1

2

ˆ

27 ¨ d!χpηq ´ 27 ¨
3

2
d!χpηq ` 9 ¨

p9d´ 14qd!

4pd´ 1q
χpηq

˙

“
9

8

3d´ 8

d´ 1
d!χpηq

et là encore on retrouve le résultat annoncé dans la proposition 3.5.10.
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On peut espérer généraliser cette méthode pour p ą 2 quelconque à condition de connaître les
degrés des cycles ωd´n1´...´nk

0 ωn1
i1
¨ ¨ ¨ωnkik . En effet, pour p quelconque, la relation du lemme 3.3.4

contient plus de termes : il faut donc utiliser la formule du multinôme au moment d’utiliser la relation

ω p´1
2
“ pp´ 2qω0 ´

p´3
2
ÿ

i“1

ωi.

3.5.3 Retour sur les relations Rqpσ
2i ` σ2j, ηq

Les relations Rqpσ
2k, ηq ne font apparaître que des monômes de la forme ωd´q0 ωqk. C’était suffisant

pour étudier l’anneau tautologique RσpψZ˚C;Zq dans le cas p “ 5 car celui-ci est engendré par
seulement ω0 et ω1. En revanche pour p ě 7, on a (à priori) au moins trois générateurs ; à savoir
ω0, ω1, . . . , ω p´3

2
. Ceci a motivé l’étude des relations plus générales de la forme RqpP pσ

2q, ηq. On
revient dans cette sous-section sur le cas P pσ2q “ σ2i ` σ2j .

Proposition 3.5.15 - Soient A une variété abélienne de dimension d sur un corps k (de caracté-
ristique 0) et H P NSpAq la classe d’un diviseur ample. Soient α, β P EndpAq tels que α˚H “ H et
β˚H “ H. Alors pour tout entier q P J0, 2dK, on a :

Σ2d´qpα` βq “
1

degHd

t
q
2 u
ÿ

i“maxp0,q´dq

ˆ

d

i, q ´ 2i, i` d´ q

˙

deg
`

Hi ¨Dα`βpHq
q´2i ¨ pα` βq˚Hi`d´q

˘

“
1

degHd

t
q
2 u
ÿ

i“maxp0,q´dq

ÿ

u`v`w“q´2i
u,v,wě0

p´4qw
ˆ

d

i, i` d´ q, u, v, w

˙

deg
`

Hi`w ¨ pα` 1q˚Hu ¨ pβ ` 1q˚Hv ¨ pα` βq˚Hi`d´q
˘

.

Démonstration. On a grâce au lemme 3.2.1

Dα`βpHq “ pα` β ` 1q˚H ´ pα` βq˚H ´H

“ pα` 1q˚H ` pβ ` 1q˚H ` pα` βq˚H ´ 1˚H ´ α˚H ´ β˚H ´ pα` βq˚H ´H

“ pα` 1q˚H ` pβ ` 1q˚H ´ 4H.

On applique ensuite le résultat de la proposition 3.3.36 avec l’endomorphisme α` β P EndpAq pour
obtenir :

Σ2d´qpα` βq “
1

degHd

t
q
2 u
ÿ

i“maxp0,q´dq

ˆ

d

i, q ´ 2i, i` d´ q

˙

deg
`

Hi ¨Dα`βpHq
q´2i ¨ pα` βq˚Hi`d´q

˘

“
1

degHd

t
q
2 u
ÿ

i“maxp0,q´dq

ÿ

u`v`w“q´2i
u,v,wě0

p´4qw
ˆ

d

i, i` d´ q, u, v, w

˙

deg
`

Hi`w ¨ pα` 1q˚Hu ¨ pβ ` 1q˚Hv ¨ pα` βq˚Hi`d´q
˘

.

En particulier, on obtient le théorème suivant qui nous intéresse :

Théorème 3.5.16 - Soit C une courbe complexe projective lisse munie d’un automorphisme σ
d’ordre premier p ą 2. Soient q P J0, 2dK et a, b deux entiers tels que 1 ď a, b ď p ´ 1. On dis-
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pose des relations Rqpσ
2a ` σ2b, ηq suivantes dans ApZq :

Σ2d´qpσ2a ` σ2bqωd0 “

t
q
2 u
ÿ

i“maxp0,q´dq

ÿ

u`v`w“q´2i
u,v,wě0

p´4qwp3δa,b ` 1qi`d´q
ˆ

d

i, i` d´ q, u, v, w

˙

ωi`w0 ωuaω
v
bω

i`d´q
a´b

“

t
q
2 u
ÿ

i“maxp0,q´dq

q´2i
ÿ

u“0

q´2i´u
ÿ

v“0

p´4qq´2i´u´vp3δa,b ` 1qi`d´q
ˆ

d

i, i` d´ q, u, v, q ´ 2i´ u´ v

˙

ωq´u´v´i0 ωuaω
v
bω

i`d´q
a´b

où δa,b désigne le symbole de Kronecker et où le coefficient Σ2d´qpσ2a ` σ2bq peut être calculé
explicitement grâce au lemme 3.3.33.

Démonstration. On a immédiatement

pσ2a ` 1q˚η “ pσa ` σ´aq˚η “: ωa

pσ2b ` 1q˚η “ pσb ` σ´bq˚η “: ωb

pσ2a ` σ2bq˚η “ pσa´b ` σ´pa´bqq˚η “ p3δa,b ` 1qωa´b “

#

4ω0 si a “ b,

ωa´b sinon.

En appliquant ensuite le résultat de la proposition 3.5.15 avec α “ σ2a, β “ σ2b et H “ η, il vient

Σ2d´qpσ2a ` σ2bqωd0 “

t
q
2 u
ÿ

i“maxp0,q´dq

ÿ

u`v`w“q´2i
u,v,wě0

p´4qwp3δa,b ` 1qi`d´q
ˆ

d

i, i` d´ q, u, v, w

˙

ωi`w0 ωuaω
v
bω

i`d´q
a´b

“

t
q
2 u
ÿ

i“maxp0,q´dq

q´2i
ÿ

u“0

q´2i´u
ÿ

v“0

p´4qq´2i´u´vp3δa,b ` 1qi`d´q
ˆ

d

i, i` d´ q, u, v, q ´ 2i´ u´ v

˙

ωq´u´v´i0 ωuaω
v
bω

i`d´q
a´b .

On en déduit immédiatement le corollaire suivant qui explicite les relations obtenues pour q “
2d´ 1 et q “ 2d´ 2.

Corollaire 3.5.17 - On reprend les hypothèses du théorème précédent.
1. Pour q “ 2d´ 1 et 1 ď a, b ď p´ 1 on a la relation

4dpp´ 2q

p´ 1
ωd0 ´ dω

d´1
0 ωa ´ dω

d´1
0 ωb “ 0.

2. Pour q “ 2d´ 2 et a` b “ p, on a la relation
ˆ

2dp4d` 3p´ 2´ p2q

pp´ 1q2
´ 8dpd´ 1q

˙

ωd0 ` 4dpd´ 1qωd´1
0 ωa ` 4dpd´ 1qωd´1

0 ωb ´ dω
d´1
0 ωa´b

´
1

2
dpd´ 1qωd´2

0 ω2
a ´

1

2
dpd´ 1qωd´2

0 ω2
b ´ dpd´ 1qωd´2

0 ωaωb “ 0.

3. Pour q “ 2d´ 2 et a` b ‰ p, on a
ˆ

4dp2d` p´ 1q

pp´ 1q2
´ 8dpd´ 1q

˙

ωd0 ` 4dpd´ 1qωd´1
0 ωa ` 4dpd´ 1qωd´1

0 ωb ´ gp3δa,b ` 1qωd´1
0 ωa´b

´
1

2
dpd´ 1qωd´2

0 ω2
a ´

1

2
dpd´ 1qωd´2

0 ω2
b ´ dpd´ 1qωd´2

0 ωaωb “ 0.

Démonstration.
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Cas q “ 2d´ 1 : Si d ě 1, p ą 2, 1 ď a, b ď p´ 1 et q “ 2d´ 1, on a d’après les lemmes 3.3.33 et
3.3.35

Σ1pσ2a ` σ2bq “ Trpσ2a ` σ2bq “ Trpσ2aq ` Trpσ2bq “ 2 Trpσq “ ´
4d

p´ 1
.

On obtient ainsi la relation

´
4d

p´ 1
ωd0 ´ d

´

ωd´1
0 ωa ` ω

d´1
0 ωb ´ 4ωd0

¯

“ 0,

c’est-à-dire
4dpp´ 2q

p´ 1
ωd0 ´ dω

d´1
0 ωa ´ dω

d´1
0 ωb “ 0.

Cas q “ 2d´ 2 : Si d ě 1, p ą 2, 1 ď a, b ď p´ 1 et q “ 2d´ 1, on a d’après le lemme 3.3.33

Σ2pσ2a ` σ2bq “
1

2

´

pTrpσ2a ` σ2bqq2 ´ Trppσ2a ` σ2bq2q

¯

“
1

2

´

pTrpσ2aq ` Trpσ2bqq2 ´ Trpσ4aq ´ 2 Trpσ2pa`bqq ´ Trpσ4bq

¯

“ 2 Trpσq2 ´ Trpσq ´ Trpσ2pa`bqq

“

#

2dp4d`3p´2´p2q

pp´1q2
si p|a` b, ie. si a` b “ p,

4dp2d`p´1q
pp´1q2

sinon.

Par conséquent, si 1 ď a ď p´ 1, 1 ď b “ p´ a ď p´ 1 et p ą 2, alors a ‰ b et donc 3δa,b ` 1 “ 1.
On obtient de cette manière la relation

ˆ

2dp4d` 3p´ 2´ p2q

pp´ 1q2
´ 8dpd´ 1q

˙

ωd0 ` 4dpd´ 1qωd´1
0 ωa ` 4dpd´ 1qωd´1

0 ωb ´ dω
d´1
0 ωa´b

´
1

2
dpd´ 1qωd´2

0 ω2
a ´

1

2
dpd´ 1qωd´2

0 ω2
b ´ dpd´ 1qωd´2

0 ωaωb “ 0.

De même, si 1 ď a, b ď p´ 1, a` b ‰ p et p ą 2, on obtient la relation
ˆ

4dp2d` p´ 1q

pp´ 1q2
´ 8dpd´ 1q

˙

ωd0 ` 4dpd´ 1qωd´1
0 ωa ` 4dpd´ 1qωd´1

0 ωb ´ dp3δa,b ` 1qωd´1
0 ωa´b

´
1

2
dpd´ 1qωd´2

0 ω2
a ´

1

2
dpd´ 1qωd´2

0 ω2
b ´ dpd´ 1qωd´2

0 ωaωb “ 0.

On donne à présent des exemples de relations Rqpσ
2i ` σ2j , ηq pour p “ 3, 5, 7 toujours dans

l’idée d’en déduire des informations quant aux degrés des différents monômes qui interviennent.

Exemple 3.5.18 (p “ 3, pa, bq “ p1, 2q) : Dans ce premier exemple, on suppose que p “ 3 et
pa, bq “ p1, 2q. Il vient :

1. Pour q “ 2d´ 1,
2ωd0 ´ ω

d´1
0 ω1 ´ ω

d´1
0 ω2 “ 0,

ce qui est trivialement vrai car lorsque p “ 3, ωd0 “ ωd´1
0 ω1 “ ωd´1

0 ω2. Ces cycles sont tous de
degré d!χpηq.

2. Pour q “ 2d´ 2,

´p6d´7qωd0`p4d´5qωd´1
0 ω1`4pd´1qωd´1

0 ω2´
1

2
pd´1qωd´2

0 ω2
1´

1

2
pd´1qωd´2

0 ω2
2´pd´1qωd´2

0 ω1ω2 “ 0,

ce qui est à nouveau parfaitement cohérent avec les égalités ωd´i0 ωik “ ωd´2
0 ωiωj “ ωd0 .
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Exemple 3.5.19 (p “ 5, pa, bq “ p1, 2q) : Si p “ 5, pa, bq “ p1, 2q et d ě 2 (nécessairement), on
obtient :

1. Pour q “ 2d´ 1,
3ωd0 ´ ω

d´1
0 ω1 ´ ω

d´1
0 ω2 “ 0.

2. Pour q “ 2d´ 2,

´
3

2
p5d´6qωd0`p4d´5qωd´1

0 ω1`4pd´1qωd´1
0 ω2´

1

2
pd´1qωd´2

0 ω2
1´

1

2
pd´1qωd´2

0 ω2
2´pd´1qωd´2

0 ω1ω2 “ 0.

On vérifie alors qu’en remplaçant ω2 par ω2 “ 3ω0 ´ ω1 (relation donnée dans le lemme 3.3.4),
ces deux formules obtenues sont compatibles avec les degrés des ωd´q0 ωqk obtenus dans les parties
précédentes. En fait, si p “ 5, la relation ω2 “ 3ω0 ´ ω1 permet de calculer directement les degrés
de tous les ωd´a´b0 ωa1ω

b
2 en exprimant ω2 en fonction de ω0, ω1, puis en utilisant la bilinéarité du

produit d’intersection et enfin en utilisant les expressions connues des degrés de ωd´q0 ωq1.
Si pd, pq “ p4, 5q, on montre de cette manière que

(i) degω2
0ω1ω2 “ degω2

0ω1p3ω0 ´ ω1q “ 3 degω3
0ω1 ´ degω2

0ω
2
1 “ 3ˆ 36χpηq ´ 44χpηq “ 64χpηq,

(ii) degω0ω1ω
2
2 “ 96χpηq,

(iii) degω1ω
3
2 “ 84χpηq,

(iv) degω0ω
2
1ω2 “ 96χpηq,

(v) degω2
1ω

2
2 “ 204χpηq,

(vi) degω3
1ω2 “ 84χpηq.

Revenons enfin sur le cas pd, pq “ p3, 7q ; premier cas à étudier où les relations de la forme
Rqpσ

2i ` σ2j , ηq apportent de réelles informations supplémentaires que nous ne pouvions pas avoir
avec les relations Rqpσ

2k, ηq. Nous retrouvons de cette manière les valeurs numériques données dans
l’exemple 3.3.47.

Exemple 3.5.20 (pd, pq “ p3, 7q, pa, bq “ p1, 2q) : Sous ces hypothèses, on a a ‰ b et a` b ‰ p. On
obtient ainsi les relations suivantes :

1. Pour q “ 2d´ 1 “ 5 :
10ω3

0 ´ 3ω2
0ω1 ´ 3ω2

0ω2 “ 0.

2. Pour q “ 2d´ 2 “ 4, on obtient une relation encore inconnue jusque-là :

´44ω3
0 ` 21ω2

0ω1 ` 24ω2
0ω2 ´ 3ω0ω

2
1 ´ 3ω0ω

2
2 ´ 6ω0ω1ω2 “ 0.

3. Pour q “ 2d´ 3 “ 3, en utilisant le fait que
(a) Trpσ2 ` σ4q “ 2 Trpσq “ ´2,
(b) Trppσ2 ` σ4q2q “ Trpσ4 ` 2σ6 ` σ8q “ 4 Trpσq “ ´4,
(c) Trppσ2 ` σ4q3q “ Trpσ6 ` 3σ8 ` 3σ10 ` σ12q “ ´8,
on peut calculer le coefficient Σ3pσ2 ` σ4q à l’aide du lemme 3.3.33 et ainsi obtenir la relation

56ω3
0 ´ 24ω2

0ω1 ´ 48ω2
0ω2 ` 6ω0ω

2
1 ` 12ω0ω

2
2 ` 18ω0ω1ω2 ´ ω

3
1 ´ 3ω2

1ω2 ´ 3ω1ω
2
2 ´ ω

3
2 “ 0.

4. Pour q “ 2d´ 4 “ 2, on utilise aussi que

Trppσ2`σ4q4q “ Trpσ8` 4σ10` 6σ12` 4σ14`σ16q “ 12 Trpσq` 4 Trp1Zq “ ´12` 4ˆ 6 “ 12.

On obtient alors la relation

9ω3
0 ´ 48ω2

0ω1 ` 21ω0ω
2
1 ` 24ω0ω1ω2 ´ 3ω3

1 ´ 6ω2
1ω2 ´ 3ω1ω

2
2 “ 0.
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5. Pour q “ 2d ´ 5 “ 1, on vérifie de même que Trppσ2 ` σ4q5q “ 38. Tous calculs menés, on
trouve la relation

´4ω3
0 ` 12ω0ω

2
1 ´ 3ω3

1 ´ 3ω2
1ω2 “ 0.

En se rappelant des relations de la forme Rqpσ
2k, ηq avec k “ 1, 2 (cf. Exemple 3.3.41), on a obtenu

pour pd, pq “ p3, 7q les relations suivantes
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

5ω3
0 ´ 3ω2

0ωk “ 0

´14ω3
0 ` 12ω2

0ωk ´ 3ω0ω
2
k “ 0

19ω3
0 ´ 18ω2

0ωk ` 6ω0ω
2
k ´ ω

3
k “ 0

10ω3
0 ´ 3ω2

0ω1 ´ 3ω2
0ω2 “ 0

´44ω3
0 ` 21ω2

0ω1 ` 24ω2
0ω2 ´ 3ω0ω

2
1 ´ 3ω0ω

2
2 ´ 6ω0ω1ω2 “ 0

56ω3
0 ´ 24ω2

0ω1 ´ 48ω2
0ω2 ` 6ω0ω

2
1 ` 12ω0ω

2
2 ` 18ω0ω1ω2 ´ ω

3
1 ´ 3ω2

1ω2 ´ 3ω1ω
2
2 ´ ω

3
2 “ 0

9ω3
0 ´ 48ω2

0ω1 ` 21ω0ω
2
1 ` 24ω0ω1ω2 ´ 3ω3

1 ´ 6ω2
1ω2 ´ 3ω1ω

2
2 “ 0

´4ω3
0 ` 12ω0ω

2
1 ´ 3ω3

1 ´ 3ω2
1ω2 “ 0.

On retrouve alors les degrés annoncés dans l’exemple 3.3.47 en résolvant simplement ce système
linéaire, en se rappelant que degω3

0 “ 6χpηq.

Signalons enfin que l’on peut déduire le degré de ω1ω
2
2 connaissant celui de ω2

1ω2, et réciproque-
ment. Voyons de quelle manière. Supposons connu que degω2

1ω2 “ 34χpηq et considérons l’endomor-
phisme µ :“ σ2 : c’est un automorphisme de C d’ordre 7 encore et il définit la même sous-variété
Z Ă J que σ car Φ7pσ

2q “ Φ7pσq. Notons, par analogie avec les cycles ωi correspondant à l’auto-
morphisme σ, les cycles κi :“ pµi ` µ´iq˚η pour i P J1, 6K et κ0 “ η. On a alors

1. deg κ0κ
2
1 “ 12χpηq,

2. deg κ3
1 “ 6χpηq,

3. deg κ2
1κ2 “ 34χpηq (de par notre hypothèse),

4. et aussi la relation ´5κ0`κ1`κ2`κ3 “ 0 d’après le lemme 3.3.4 appliqué à l’automorphisme
µ.

Par suite, on a les égalités suivantes :

degω1ω
2
2 “ degpσ ` σ´1q˚η ¨ pσ2 ` σ´2q˚η2

“ degpµ3 ` µ´3q˚η ¨ pµ` µ´1q˚η2

“ deg κ2
1κ3 “ deg κ2

1p5κ0 ´ κ1 ´ κ2q

“ 5 deg κ0κ
2
1 ´ deg κ3

1 ´ deg κ2
1κ2

“ 5ˆ 12χpηq ´ 6χpηq ´ 34χpηq “ 20χpηq

comme prévu.

Remarque 3.5.21 :
1. On observe sur ce dernier exemple qu’il n’y a plus de symétrie évidente pour les relations

Rqpσ
2i ` σ2j , ηq comme on pouvait en avoir pour les relations Rqpσ

2i, ηq “ R2d´qpσ
2i, ηq (cf.

Proposition 3.5.2). En effet, les relations Rqpσ
2i ` σ2j , ηq font intervenir du ωi, du ωj mais

aussi un terme supplémentaire : ωi´j “ ωj´i. Ceci se traduit par une dissymétrie au niveau
des degrés des cycles ωki ω

d´k
j et ωd´ki ωkj .

2. Les calculs nécessaires pour étudier le cas d’un automorphisme d’ordre 7 commencent déjà à
être assez lourds, même en petite dimension. Ceci renforce l’intérêt d’utiliser un logiciel de
calcul tel que Sage.
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3.5.4 Retour sur l’obtention des structures de Q-algèbre de RσpψZ˚C;Zq

Terminons ce chapitre en donnant des preuves des résultats annoncés dans la sous-section 3.3.6.
Le but de cette partie est de venir illustrer par l’exemple les résultats de la partie 3.3.5 mais aussi,
et surtout, de comparer ces résultats avec ceux des sous-sections 3.3.2 et 3.3.3.

Le cas pd, pq “ p2, 5q

Proposition (3.3.62) - Soit f : C Ñ C 1 » C{xσy un revêtement Galoisien cyclique de degré 5 avec
C hyperelliptique. On suppose que dimZ “ 2. Alors

RσpψZ˚C;Zq “ Qrω0, ω1s{pω
3
0, ω

2
0 ´ ω

2
1, 3ω

2
0 ´ 2ω0ω1, ω

3
1q.

Démonstration. D’après la proposition 3.3.5, RσpψZ˚C;Zq est engendré en tant que Q-algèbre pour
le produit d’intersection par ω0 et ω1. Reste à déterminer explicitement les relations entre ces deux
classes.

Relations en codimension ą 2 Les relations en codimension ą 2 “ d :“ dimZ sont trivialement
engendrées par

ωk0ω
l
1 “ 0 pour k ` l ą 2 “ d.

Relations en codimension maximale d “ 2 Les relations en codimension 2 sont entièrement
déterminées par les degrés de ω2

0, ω0ω1 et ω2
1. Ces degrés ont été calculés grâce aux relation Rqpσ

2, ηq
(cf. Exemple 3.3.44). Les relations obtenues sont :

3ω2
0 ´ 2ω0ω1 “ 0 et ω2

0 ´ ω
2
1 “ 0.

Relations en codimension 1 On cherche des relations sous la forme :

aω0 ` bω1 “ 0, pa, bq P Q2.

En intersectant cette relation avec ω0 et ω1 successivement, on obtient le système suivant de relations
en codimension maximale :

#

aω2
0 ` bω0ω1 “ 0

aω0ω1 ` bω
2
1 “ 0.

Connaissant les degrés de tous les cycles de ce système depuis l’exemple 3.3.44, on obtient au coef-
ficient près χpηq ‰ 0 le système équivalent suivant :

pΣ1
p2,5qq :

#

2a` 3b “ 0

3a` 2b “ 0

dont la seule solution est la solution triviale p0, 0q. Il ne peut donc pas exister de relation non triviale
en codimension 1 entre ω0 et ω1.

Conclusion de la preuve Finalement, les relations obtenues sont engendrées par :

ω3
0 “ 0, ω2

0ω1 “ 0, ω0ω
2
1 “ 0, ω3

1 “ 0, ω2
0 ´ ω

2
1 “ 0, 3ω2

0 ´ 2ω0ω1 “ 0

et même plus simplement par

ω3
0 “ 0, ω2

0 ´ ω
2
1 “ 0, 3ω2

0 ´ 2ω0ω1 “ 0, ω3
1 “ 0.

D’où la proposition.
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On retrouve en particulier les résultats annoncés concernant la dimension des Q-sous-espaces Rq.
Cette proposition 3.3.62 montre que

1. R0 » VectQprZsq est de dimension 1,
2. R1 » VectQpω0, ω1q est de dimension 2,
3. R2 » VectQpω

2
0, ω0ω1, ω

2
1q{VectQpω

2
0 ´ ω

2
1, 3ω

2
0 ´ 2ω0ω1q est de dimension 3´ 2 “ 1.

On notera au passage qu’il n’existe pas de relation non triviale entre ω0, ω1 en codimension ď d
2 “ 1

et que dimQRσpψZ˚C;Zq “ 4.

Le prochain cas à étudier est obtenu dans le cas hyperelliptique pour pd, pq “ p4, 5q.

Le cas pd, pq “ p4, 5q

Proposition (3.3.63) - Soit f : C Ñ C 1 » C{xσy un revêtement Galoisien cyclique de degré 5 avec
C hyperelliptique. On suppose que dimZ “ 4. Alors l’anneau tautologique RσpψZ˚C;Zq est de la
forme Qrω0, ω1s{I4,5 où I4,5 est l’idéal des relations entre ω0 et ω1. Cet idéal est engendré par les
relations suivantes

1. ω5´i
0 ωi1 “ 0 pour i P J0, 5K,

2. 3ω4
0 ´ 2ω3

0ω1 “ 0, 11ω4
0 ´ 6ω2

0ω
2
1 “ 0, 3ω4

0 ´ 2ω0ω
3
1 “ 0, ω4

0 ´ ω
4
1 “ 0,

3. ω3
0 ´ 3ω0ω

2
1 ` 3ω3

1 “ 0, 3ω2
0ω1 ´ 9ω0ω

2
1 ` 8ω3

1 “ 0.

Démonstration. D’après la proposition 3.3.5, RσpψZ˚C;Zq est encore engendré par ω0 et ω1. Étu-
dions les relations entre ces deux générateurs.

Relations en codimension ą 4 “ d :“ dimZ Celles-ci sont clairement engendrées par les ω5´i
0 ωi1

pour i P J0, 5K.

Relations en codimension maximale d “ 4 Les relations en codimension maximale sont en-
gendrées par les relations Rqpσ

2, ηq qui nous ont permis de déterminer les degrés des ω4´q
0 ωq1 (cf.

Exemple 3.3.45). On obtient ainsi les relations

36ω4
0 ´ 24ω3

0ω1 “ 0, 44ω4
0 ´ 24ω2

0ω
2
1 “ 0, 36ω4

0 ´ 24ω0ω
3
1 “ 0, 24ω4

0 ´ 24ω4
1 “ 0.

En divisant par le pgcd des coefficients on trouve le second type de relations données par la propo-
sition.

Relations en codimension 1 Vérifions qu’il n’existe pas de relation non triviale en codimension
1. Si une telle relation existait, elle serait de la forme

aω0 ` bω1 “ 0, avec pa, bq P Q2.

En intersectant successivement avec ω3
0, ω2

0ω1, ω0ω
2
1 et ω3

1, on en déduit grâce à l’exemple 3.3.45 le
système de relations en codimension maximale suivant :

$

’

’

’

’

&

’

’

’

’

%

aω4
0 ` bω

3
0ω1 “ 0

aω3
0ω1 ` bω

2
0ω

2
1 “ 0

aω2
0ω

2
1 ` bω0ω

3
1 “ 0

aω0ω
3
1 ` bω

4
1 “ 0.

ðñ pΣ1
p4,5qq :

$

’

’

’

’

&

’

’

’

’

%

24a` 36b “ 0

36a` 44b “ 0

44a` 36b “ 0

36a` 24b “ 0

dont on vérifie que la seule solution est une fois encore pa, bq “ p0, 0q.
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Relations en codimension 2 De même, on montre qu’il n’existe pas de relation (non triviale)
en codimension 2. En effet, une telle relation serait de la forme

aω2
0 ` bω0ω1 ` cω

2
1 “ 0, avec pa, b, cq P Q3.

En intersectant cette fois-ci avec ω2
0, ω0ω1 et ω2

1, on obtient les systèmes linéaires suivants
$

’

&

’

%

aω4
0 ` bω

3
0ω1 ` cω

2
0ω

2
1 “ 0

aω3
0ω1 ` bω

2
0ω

2
1 ` cω0ω

3
1 “ 0

aω2
0ω

2
1 ` bω0ω

3
1 ` cω

4
1 “ 0

ðñ pΣ2
p4,5qq :

$

’

&

’

%

24a` 36b` 44c “ 0

36a` 44b` 36c “ 0

44a` 36b` 24c “ 0

dont le seul triplet solution est pa, b, cq “ p0, 0, 0q.

Relations en codimension 3 En codimension d´1 “ 3, il y a moins de contraintes. Une relation
en codimension 3 est de la forme

aω3
0 ` bω

2
0ω1 ` cω0ω

2
1 ` dω

3
1 “ 0, avec pa, b, c, dq P Q4.

Pour augmenter la codimension jusqu’à son maximum, on peut ici intersecter par ω0 ou par ω1

uniquement. On n’obtient donc que deux relations (alors qu’on a 4 paramètres) :
#

aω4
0 ` bω

3
0ω1 ` cω

2
0ω

2
1 ` dω0ω

3
1 “ 0

aω3
0ω1 ` bω

2
0ω

2
1 ` cω0ω

3
1 ` dω

4
1 “ 0

ðñ pΣ3
p4,5qq :

#

24a` 36b` 44c` 36d “ 0

36a` 44b` 36c` 24d “ 0,

ce qui était prévu puisque les systèmes pΣ3
p4,5qq et pΣ

1
p4,5qq sont transposés l’un de l’autre grâce au

lemme 3.3.57. Les solutions de ce système linéaire pΣ3
p4,5qq forment un Q-sous-espace vectoriel de

dimension 2 de Q4. Par suite, on obtient une famille de possibles relations paramétrées par deux
paramètres pu, vq P Q2 :

uω3
0 ` 3vω2

0ω1 ´ p3u` 9vqω0ω
2
1 ` p3u` 8vqω3

1 “ 0.

Notez que les systèmes pΣ1
p4,5qq, pΣ

2
p4,5qq et pΣ

3
p4,5qq sont de rang maximal ce qui nous a permis de

montrer qu’il n’existe pas de relations en codimension ď 2 “ d
2 et, grâce au théorème 3.3.58, on en

déduit aussi que chaque membre de cette famille de possibles relations est effectivement une relation
dans R3. Une base des relations en codimension 3 est donc obtenue en considérant deux couples
pu1, v1q et pu2, v2q formant une base de Q2. Par exemple, en choisissant les couples p1, 0q et p0, 1q,
on obtient comme base de relation en codimension 3 la suivante :

ω3
0 ´ 3ω0ω

2
1 ` 3ω3

1 “ 0 et 3ω2
0ω1 ´ 9ω0ω

2
1 ` 8ω3

1 “ 0.

D’où la proposition.

Cette proposition 3.3.63 montre en particulier que

1. dimQR
0 “ 1 :

R0 » VectQprZsq,

2. dimQR
1 “ 2 :

R1 » VectQpω0, ω1q,

3. dimQR
2 “ 3 :

R2 » VectQpω
2
0, ω0ω1, ω

2
1q,
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4. dimQR
3 “ 2 :

R3 » VectQpω
3
0, ω

2
0ω1, ω0ω

3
1, ω

3
1q{VectQpω

3
0 ´ 3ω0ω

2
1 ` 3ω3

1, 3ω
2
0ω1 ´ 9ω0ω

2
1 ` 8ω3

1q,

5. dimQR
4 “ 1 :

R4 » VectQpω
4
0, ω

3
0ω1, ω

2
0ω

2
1, ω0ω

3
1, ω

4
1q{VectQp3ω

4
0´2ω3

0ω1, 11ω4
0´6ω2

0ω
2
1, 3ω

4
0´2ω0ω

3
1, ω

4
0´ω

4
1q.

On retrouve donc la symétrie Rq » Rd´q et les dimensions annoncées de ces espaces. En particulier,
on obtient dimQRσpψZ˚C;Zq “ 9. Par ailleurs, remarquez qu’en utilisant l’action des σ ` σ´1 sur
la relation obtenue par la transformée de Fourier (cf. Section 3.3.3), nous avions déjà obtenu dans
l’exemple 3.3.27 une famille de dimension 2 de relations en codimension 3 engendrée par :

8ω3
0 ´ 9ω2

0ω1 ` 3ω0ω
2
1 “ 0 et 3ω2

0ω1 ´ 9ω0ω
2
1 ` 8ω3

1 “ 0.

Avec les notations de la démonstration précédente, cette première relation est obtenue en considé-
rant le coupe pu, vq “ p8,´3q et la seconde pour pu, vq “ p0, 1q. Par conséquent, sur cet exemple,
l’argument de dimension utilisé pour l’étude des relations en codimension 3 n’était pas nécessaire
puisqu’on avait déjà vérifié que tout élément dans la famille de « possibles » relations était bel et
bien déjà réellement une relation.

Le cas pd, pq “ p3, 7q

Proposition (3.3.65) - Soit f : C Ñ C 1 » C{xσy un revêtement Galoisien cyclique de degré 7 avec
C hyperelliptique. On suppose que dimZ “ 3. Alors l’anneau tautologique RσpψZ˚C;Zq est de la
forme Qrω0, ω1, ω2s{I3,7 où I3,7 est l’idéal des relations entre ω0, ω1 et ω2. Cet idéal est engendré par
les relations suivantes

1. ω4´i´j
0 ωi1ω

j
2 “ 0, pour i, j P J0, 4K avec i` j ď 4,

2. ω3
0 ´ ω

3
1 “ 0, ω3

0 ´ ω
3
2 “ 0, 5ω3

0 ´ 3ω2
0ω1 “ 0, 5ω3

0 ´ 3ω2
0ω2 “ 0,

2ω3
0 ´ ω0ω

2
1 “ 0, 2ω3

0 ´ ω0ω
2
2 “ 0,

19ω3
0 ´ 6ω0ω1ω2 “ 0, 17γ3

0 ´ 3ω2
1ω2 “ 0, 10ω3

0 ´ 3ω1ω
2
2 “ 0,

3. ω2
0 ` 2ω0ω2 ´ 2ω1ω2 ` ω

2
2 “ 0, 2ω0ω1 ` 20ω0ω2 ´ 16ω1ω2 ` 7ω2

2 “ 0,
26ω0ω2 ` ω

2
1 ´ 20ω1ω2 ` 9ω2

2 “ 0.

Démonstration. D’après la proposition 3.3.5, RσpψZ˚C;Zq est encore engendré par ω0, ω1 et ω2. On
étudie de la même manière qu’avant les relations entre ces trois générateurs.

Relations en codimension ą 3 “ d :“ dimZ Celles-ci sont engendrées par les monômes
ω4´i´j

0 ωi1ω
j
2 pour i, j des entiers naturels vérifiant i` j P J0, 4K.

Relations en codimension maximale d “ 3 Comme toujours, les relations en codimension
maximale sont entièrement déterminées par les degrés des ω4´i

0 ωi1ω
j
2 ; degrés que l’on connaît grâce

à l’exemple 3.3.47.

Relations en codimension 1 En codimension 1, il n’y a pas de relation non triviale. En effet
une telle relation générale est de la forme

aω0 ` bω1 ` cω2 “ 0, avec pa, b, cq P Q3.
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En intersectant successivement par ω2
0, ω0ω1, ω0ω2, ω2

1, ω1ω2 et ω2
2, on obtient les six conditions

nécessaires sur a, b, c suivantes :
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

aω3
0 ` bω

2
0ω1 ` cω

2
0ω2 “ 0

aω2
0ω1 ` bω0ω

2
1 ` cω0ω1ω2 “ 0

aω2
0ω2 ` bω0ω1ω2 ` cω0ω

2
2 “ 0

aω0ω
2
1 ` bω

3
1 ` cω

2
1ω2 “ 0

aω0ω1ω2 ` bω
2
1ω2 ` cω1ω

2
2 “ 0

aω0ω
2
2 ` bω1ω

2
2 ` cω

3
2 “ 0

ðñ pΣ1
p3,7qq :

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

6a` 10b` 10c “ 0

10a` 12b` 19c “ 0

10a` 19b` 12c “ 0

12a` 6b` 34c “ 0

19a` 34b` 20c “ 0

12a` 20b` 6c “ 0

et ce dernier système pΣ1
p3,7qq n’admet pour seule solution que le triplet pa, b, cq “ p0, 0, 0q.

Relations en codimension 2 En codimension 2, on obtient une famille à 3 paramètres de relations
possibles. En effet, une relation en codimension 2 est de la forme

aω2
0 ` bω0ω1 ` cω0ω2 ` dω

2
1 ` eω1ω2 ` fω

2
2 “ 0, avec pa, b, c, d, e, fq P Q6.

En intersectant successivement par ω0, ω1, ω2, on obtient le système suivant :
$

’

&

’

%

aω3
0 ` bω

2
0ω1 ` cω

2
0ω2 ` dω0ω

2
1 ` eω0ω1ω2 ` fω0ω

2
2 “ 0

aω2
0ω1 ` bω0ω

2
1 ` cω0ω1ω2 ` dω

3
1 ` eω

2
1ω2 ` fω1ω

2
2 “ 0

aω2
0ω2 ` bω0ω1ω2 ` cω0ω

2
2 ` dω

2
1ω2 ` eω1ω

2
2 ` fω

3
2 “ 0

ðñ pΣ2
p3,7qq :

$

’

&

’

%

6a` 10b` 10c` 12d` 19e` 12f “ 0

10a` 12b` 19c` 6d` 34e` 20f “ 0

10a` 19b` 12c` 34d` 20e` 6f “ 0.

La résolution de ce système pΣ2
p3,7qq “

tpΣ1
p3,7qq (considérant a, b, c comme des paramètres) nous

donne la famille de possibles relations suivantes :

13uω2
0`26vω0ω1`26wω0ω2`p´u´10v`wqω2

1´p6u`8v`20wqω1ω2`p4u`v`9wqω2
2 “ 0, où pu, v, wq P Q3.

Puisque pΣ2
p3,7qq est de rang maximal 3, le théorème 3.3.58 nous assure à nouveau que chaque élément

de cette famille est une relation dans R2. Une base des relations en codimension 2 est donc obtenue
en considérant par exemple les triplets p 1

13 , 0,´
1
13q, p0,

1
13 ,

10
13q et p0, 0, 1q. On obtient alors comme

base de relation en codimension 2 les trois relations annoncées :

ω2
0 ` 2ω0ω2 ´ 2ω1ω2 ` ω

2
2 “ 0, 2ω0ω1 ` 20ω0ω2 ´ 16ω1ω2 ` 7ω2

2 “ 0

et 26ω0ω2 ` ω
2
1 ´ 20ω1ω2 ` 9ω2

2 “ 0.

D’où la proposition.

Si pd, pq “ p3, 7q, alors grâce à la proposition 3.3.65 on vérifie à nouveau les résultats obtenus
concernant les dimensions des sous-espaces Rq puisque

1. dimQR
0 “ 1,

2. dimQR
1 “ 3,

3. dimQR
2 “ 6´ 3 “ 3,

4. dimQR
3 “ 10´ 9 “ 1.
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En particulier, dimQRσpψZ˚C;Zq “ 8. Notez là encore que dans l’exemple 3.3.28 nous avions déjà
obtenu par une méthode directe trois relations linéairement indépendantes en codimension 2 :

19ω2
0 ´ 10ω0ω1 ´ 10ω0ω2 ` 2ω2

1 ` 2ω1ω2 ` 2ω2
2 “ 0,

74ω2
0 ´ 58ω0ω1 ´ 42ω0ω2 ` 15ω2

1 ` 16ω1ω2 ` 6ω2
2 “ 0,

14ω2
0 ´ 18ω0ω1 ` 4ω0ω2 ` 6ω2

1 ´ 4ω1ω2 ` 5ω2
2 “ 0.

En termes de triplets pu, v, wq, ces trois relations correspondent respectivement à la base de Q3

suivante :
ˆ

19

13
,´

5

13
,´

5

13

˙

,

ˆ

74

13
,´

29

13
,´

21

13

˙

et
ˆ

14

13
,´

9

13
,

2

13

˙

.

Les différentes approches pour étudier les relations sont donc une fois encore cohérentes les unes par
rapport aux autres.

Les exemples traités jusqu’à présent règlent complètement l’étude de la structure de l’anneau
RσpψZ˚C;Zq lorsque d ď 4. Et comme on l’a signalé, pour ces petites dimensions il nous a été
possible d’étudier directement certaines relations en manipulant convenablement la transformée de
Fourier et l’action des EndpZq sur RσpψZ˚C;Zq. Sur ces exemples, il se trouve qu’on obtenait avec
ces méthodes « directes » toutes les relations. L’exemple suivant se passe en dimension supérieure.
Dans ce cas, chaque résultat théorique développé dans la sous-section 3.3.5 sera incontournable ; ce
qui permettra de se rendre compte de l’efficacité de la méthode.

Le cas pd, pq “ p6, 5q

Proposition (3.3.64) - Soit f : C Ñ C 1 » C{xσy un revêtement Galoisien cyclique de degré 5 avec
C hyperelliptique. On suppose que dimZ “ 6. Alors l’anneau tautologique RσpψZ˚C;Zq est de la
forme Qrω0, ω1s{I6,5 où I6,5 est l’idéal des relations entre ω0 et ω1. Cet idéal est engendré par les
relations suivantes

1. ω7´i
0 ωi1 “ 0 pour i P J0, 7K,

2. 3ω6
0 ´ 2ω5

0ω1 “ 0, 2ω6
0 ´ ω

4
0ω

2
1 “ 0, 9ω6

0 ´ 4ω3
0ω

3
1 “ 0, ω6

0 ´ ω
6
1 “ 0,

3ω6
0 ´ 2ω0ω

5
1 “ 0, 2ω6

0 ´ ω
2
0ω

4
1 “ 0,

3. ω5
0 ´ 5ω0ω

4
1 ` 6ω5

1 “ 0, ω4
0ω1 ´ 6ω0ω

4
1 ` 7ω5

1 “ 0, 2ω3
0ω

2
1 ´ 11ω0ω

4
1 ` 12ω5

1 “ 0,
2ω2

0ω
3
1 ´ 6ω0ω

4
1 ` 5ω5

1 “ 0,
4. ω4

0 ´ 6ω2
0ω

2
1 ` 12ω0ω

3
1 ´ 8ω4

1 “ 0, 4ω3
0ω1 ´ 18ω2

0ω
2
1 ` 32ω0ω

3
1 ´ 21ω4

1 “ 0.

Démonstration. D’après la proposition 3.3.5, RσpψZ˚C;Zq est engendré par ω0 et ω1. Étudions les
relations entre ces deux générateurs.

Relations en codimension ą 6 “ d :“ dimZ Celles-ci sont engendrées par les ω7´i
0 ωi1 pour

i P J0, 7K.

Relations en codimension maximale d “ 6 Les relations en codimension maximale sont ob-
tenues comme d’habitude à partir des calculs menés dans l’exemple 3.3.46. On obtient ainsi les
relations

1080ω6
0 ´ 720ω5

0ω1 “ 0, 1440ω6
0 ´ 720ω4

0ω
2
1 “ 0, 1620ω6

0 ´ 720ω3
0ω

3
1 “ 0, 720ω6

0 ´ 720ω6
1 “ 0,

1080ω6
0 ´ 720ω0ω

5
1 “ 0, 1440ω6

0 ´ 720ω2
0ω

4
1 “ 0.

Puis en divisant par le pgcd des coefficients on trouve le second type de relations données par la
proposition.
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Relations en codimension 1 Vérifions qu’il n’existe pas de relation non triviale en codimension
1. Si une telle relation existait, elle serait de la forme

aω0 ` bω1 “ 0, avec pa, bq P Q2.

En intersectant cette relation générale avec ω5
0, ω4

0ω1,ω3
0ω

2
1, ω2

0ω
3
1, ω0ω

4
1 et ω5

1, on en déduit grâce à
l’exemple 3.3.46 le système de relations suivant :

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

aω6
0 ` bω

5
0ω1 “ 0

aω5
0γ1 ` bω

4
0ω

2
1 “ 0

aω4
0γ

2
1 ` bω

3
0ω

3
1 “ 0

aω3
0γ

3
1 ` bω

2
0ω

4
1 “ 0

aω2
0γ

4
1 ` bω0ω

5
1 “ 0

aω0γ
5
1 ` bω

6
1 “ 0

ðñ pΣ1
p6,5qq :

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

720a` 1080b “ 0

1080a` 1440b “ 0

1440a` 1620b “ 0

1620a` 1440b “ 0

1440a` 1080b “ 0

1080a` 720b “ 0

dont on vérifie que pa, bq “ p0, 0q est la seule solution.

Relations en codimension 2 De même, on montre qu’il n’existe pas de relation (non triviale)
en codimension 2. En effet, une telle relation serait de la forme

aω2
0 ` bω0ω1 ` cω

2
1 “ 0, avec pa, b, cq P Q3.

En intersectant cette fois-ci avec ω4
0, ω3

0ω1, ω2
0ω

2
1, ω0ω

3
1 et ω4

1, on obtient le système linéaire suivant

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

aω6
0 ` bω

5
0ω1 ` cω

4
0ω

2
1 “ 0

aω5
0ω1 ` bω

4
0ω

2
1 ` cω

3
0ω

3
1 “ 0

aω4
0ω

2
1 ` bω

3
0ω

3
1 ` cω

2
0ω

4
1 “ 0

aω3
0ω

3
1 ` bω

2
0ω

4
1 ` cω0ω

5
1 “ 0

aω2
0ω

4
1 ` bω0ω

5
1 ` cω

6
1 “ 0

ðñ pΣ2
p6,5qq :

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

720a` 1080b` 1440c “ 0

1080a` 1440b` 1620c “ 0

1440a` 1620b` 1440c “ 0

1620a` 1440b` 1080c “ 0

1440a` 1080b` 720c “ 0

dont le seul triplet solution est pa, b, cq “ p0, 0, 0q.

Relations en codimension 3 En codimension 3 ď 6
2 “

d
2 , il n’y a toujours pas de relation. En

effet, une relation en codimension 3 est de la forme

aω3
0 ` bω

2
0ω1 ` cω0ω

2
1 ` dω

3
1 “ 0, avec pa, b, c, dq P Q4.

Pour augmenter la codimension jusqu’à son maximum, on peut ici intersecter par ω3
0, ω2

0ω1, ω0ω
2
1

ou par ω3
1 uniquement. On n’obtient donc que quatre relations. Comme avant, on a

$

’

’

’

’

&

’

’

’

’

%

aω6
0 ` bω

5
0ω1 ` cω

4
0ω

2
1 ` dω

3
0ω

3
1 “ 0

aω5
0ω1 ` bω

4
0ω

2
1 ` cω

3
0ω

3
1 ` dω

2
0ω

4
1 “ 0

aω4
0ω

2
1 ` bω

3
0ω

3
1 ` cω

2
0ω

4
1 ` dω0ω

5
1 “ 0

aω3
0ω

3
1 ` bω

2
0ω

4
1 ` cω0ω

5
1 ` dω

6
1 “ 0

ðñ pΣ3
p6,5qq :

$

’

’

’

’

&

’

’

’

’

%

720a` 1080b` 1440c` 1620d “ 0

1080a` 1440b` 1620c` 1440d “ 0

1440a` 1620b` 1440c` 1080d “ 0

1620a` 1440b` 1080c` 720d “ 0,

système qui là encore n’admet pour seule solution que le quadruplet p0, 0, 0, 0q.
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Relations en codimension 4 “ d´ 2 Une relation en codimension 4 est de la forme

aω4
0 ` bω

3
0ω1 ` cω

2
0ω

2
1 ` dω0ω

3
1 ` eω

4
1 “ 0, avec pa, b, c, d, eq P Q5.

Grâce au lemme 3.3.57, on sait immédiatement que le système linéaire pΣ4
p6,5qq est obtenu en trans-

posant pΣ2
p6,5qq :

pΣ4
p6,5qq :

$

’

&

’

%

720a` 1080b` 1440c` 1620d` 1440e “ 0

1080a` 1440b` 1620c` 1440d` 1080e “ 0

1440a` 1620b` 1440c` 1080d` 720e “ 0.

La résolution de ce système pΣ4
p6,5qq “

tpΣ2
p6,5qq (considérant a, b comme des paramètres) nous donne

la famille de possibles relations suivante :

4uω4
0 ` 4vω3

0ω1 ´ p24u` 18vqω2
0ω

2
1 ` p48u` 32vqω0ω

3
1 ´ p32u` 21vqω4

1 “ 0, avec pu, vq P Q2.

Puisque pΣ4
p6,5qq est de rang maximal, le théorème 3.3.58 prouve que chacune de ces possibles relations

est effectivement une relation de R4. En particulier, une base des relations en codimension 4 est
donnée pour pu, vq “ p1

4 , 0q et p0, 1q par exemple :

ω4
0 ´ 6ω2

0ω
2
1 ` 12ω0ω

3
1 ´ 8ω4

1 “ 0 et 4ω3
0ω1 ´ 18ω2

0ω
2
1 ` 32ω0ω

3
1 ´ 21ω4

1 “ 0.

Relations en codimension 5 “ d´ 1 Une relation en codimension 5 est de la forme

aω5
0 ` bω

4
0ω1 ` cω

3
0ω

2
1 ` dω

2
0ω

3
1 ` eω0ω

4
1 ` fω

5
1 “ 0, avec pa, b, c, d, e, fq P Q6.

Grâce au lemme 3.3.57, on sait que le système linéaire pΣ5
p6,5qq est obtenu en transposant pΣ1

p6,5qq :

pΣ5
p6,5qq :

#

720a` 1080b` 1440c` 1620d` 1440e` 1080f “ 0

1080a` 1440b` 1620c` 1440d` 1080e` 720f “ 0

La résolution de ce système pΣ5
p6,5qq “

tpΣ1
p6,5qq nous fournit la famille de possibles relations suivante :

2uω5
0 ` 2vω4

0ω1` 2wω3
0ω

2
1 ` 2xω2

0ω
3
1 ´ p10u` 12v` 11w` 6xqω0ω

4
1 ` p12u` 14v` 12w` 5xqω5

1 “ 0,

avec pu, v, w, xq P Q4 et puisque pΣ5
p6,5qq est de rang maximal, le théorème 3.3.58 prouve à nouveau

que chacune de ces possibles relations est effectivement une relation de R5. En particulier, une
base des relations en codimension 5 est obtenue par exemple en prenant pu, v, w, xq “ p1

2 , 0, 0, 0q,
p0, 1

2 , 0, 0q, p0, 0, 1, 0q et p0, 0, 0, 1q :

ω5
0 ´ 5ω0ω

4
1 ` 6ω5

1 “ 0, ω4
0ω1 ´ 6ω0ω

4
1 ` 7ω5

1 “ 0,

2ω3
0ω

2
1 ´ 11ω0ω

4
1 ` 12ω5

1 “ 0, 2ω2
0ω

3
1 ´ 6ω0ω

4
1 ` 5ω5

1 “ 0.

D’où la proposition.

Dans ce cas là, l’anneau tautologique RσpψZ˚C;Zq est de dimension

dimQRσpψZ˚C;Zq “ 1` 2` 3` 4` 3` 2` 1 “ 16.

On voit bien sur cet exemple l’intérêt de la méthode :
1. En codimension 5, on vérifie que la relation obtenue à l’aide de la transformée de Fourier

correspond au quadruplet
`

120,´405
2 , 135,´45

˘

. Toutefois rien ne garanti qu’on aurait pu
trouver 3 autres relations linéairement indépendantes de celle-ci en faisant agir des polynômes
en σ sur cette relation.

2. Aucune des relations en codimension 4 n’aurait été trouvée en utilisant juste la transformée de
Fourier et l’action de EndpZq sur l’algèbre engendrée par les ωi puisque déjà aucune relation
non triviale n’était connue en codimension 2.
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CHAPITRE 4

Sous-variétés spéciales des variétés de Prym généralisées associées aux
revêtements Galoisiens n-cycliques

4.1 Introduction

Dans ce dernier chapitre, on précise le lien entre certains systèmes linéaires complets sans point de
base sur des courbes quotients et les anneaux tautologiques sur les variétés de Prym généralisées. Pour
cela, on considère dans tout ce qui suit un revêtement Galoisien n-cyclique étale f : C Ñ C 1 » C{xσy
de degré n ě 2 entre courbes complexes projectives lisses de genre respectif g “ gpCq et g1 “ gpC 1q ě
1. On rappelle (cf. Chapitres 1 et 2) que l’on dispose d’un morphisme Nf : J “ JpCq Ñ J 1 “ JpC 1q
(le morphisme d’Albanese induit par f), mais aussi d’un morphisme f :“ f˚ : J 1 Ñ J , ainsi que de
deux sous-variétés abéliennes complémentaires dans J ; à savoir la sous-variété Y :“ Impfq isogène
à J 1 et la variété de Prym généralisée Z déterminée par le revêtement.

On rappelle aussi que

Z “ KerpNY q
0 “ Kerp1` σ ` . . .` σn´1q0 “ Imp1´ σq;

cette dernière égalité pouvant se justifier par un argument de dimension en notant que Z est le
complémentaire de Y “ Kerpσ´1q0. Par ailleurs, de par la formule de Hurwitz, on a 2g´2 “ np2g1´2q
de sorte que

dimZ “ g ´ g1 “ npg1 ´ 1q ` 1´ g1 “ pn´ 1qpg1 ´ 1q.

Puisque f est cyclique étale de degré n ě 2, l’isogénie j :“ f : J 1 Ñ Y est de degré n et
son noyau est isomorphe à Z{nZ. Par dualité, il vient que le noyau de Nf admet n composantes
connexes disjointes notées Z “ Z0 “ KerpNf q

0 et Z1, . . . , Zn´1 (cf. [BL04, Proposition 12.6.1] pour
le cas n “ 2) :

KerpNf q » Z ˆ Z{nZ.

Ces composantes Zi sont des translatées les unes des autres.

Dans tout ce chapitre, on se donne un système linéaire complet grd sur C 1 de degré d et de
dimension projective r tel que

(i) 0 ă d ă 2g1,
(ii) le grd contient un diviseur réduit (ou de manière équivalente grâce au théorème de Bertini

dont on dispose en caractéristique 0, le grd n’a pas de point de base de multiplicité ě 2).
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Avant de poursuivre, faisons quelques remarques sur cette hypothèse (i) et tirons-en tout de suite
quelques conséquences :

1. D’après le théorème de Clifford [ACGH85, p107-108] l’hypothèse 0 ă d ă 2g1 implique que
2r ă d sauf dans deux cas :

(a) le grd est le système canonique gg´1
2g´2 sur C 1,

(b) C 1 est hyperelliptique et le grd est un multiple de l’unique g1
2 de C 1.

2. Dans la suite, on sera effectivement amené à faire l’hypothèse 2r ă d. Celle-ci implique que
d ă 2g1. En effet, supposons par l’absurde que d ě 2g1. Alors tout diviseur de degré d sur C 1

est non-spécial. Dans ce cas, le théorème de Riemann-Roch fournit l’égalité r “ d ´ g1. Par
conséquent, l’inégalité 2r ă d se traduit par 2d ´ 2g1 ă d, c’est-à-dire d ă 2g1 ; ce qui est en
contradiction avec l’inégalité d ě 2g1.

3. L’hypothèse 0 ă d ă 2g1 implique en particulier que g1 ě 1 et donc on a grâce à la formule de
Hurwitz

g ` 1 “ 2` npg1 ´ 1q ě 2g1.

Par conséquent, on a aussi 0 ă d ă 2g1 ď g ` 1, puis 0 ă d ď g.

Notons ensuite f pdq : Cpdq Ñ C
1pdq le morphisme induit par f sur les puissances symétriques

des courbes C et C 1. On fixe aussi un diviseur D1 P grd et on choisit un diviseur D sur C tel que
D1 “ f pdqpDq. On note

ϕ :“ ϕD : Cpdq Ñ J et rϕ :“ rϕD1 : C
1pdq Ñ J 1

les applications habituelles des puissances symétriques des courbes dans leur jacobienne, définies par

ϕpEq :“ LCpE ´Dq P Pic0pCq et rϕpE1q :“ LC1pE1 ´D1q P Pic0pC 1q

où E (resp. E1) est un point de Cpdq (resp. C 1pdq) vu comme un diviseur effectif de degré d sur C
(resp. C 1). On a donc le diagramme commutatif suivant :

Cpdq
ϕ //

f pdq
��

J

Nf
��

C
1pdq

rϕ
// J 1.

On considère maintenant le système grd comme partie de C 1pdq (isomorphe à Pr). On pose

S :“ pf pdqq´1pgrdq et V :“ ϕpSq Ă KerpNf q Ă J.

Autrement dit, S est l’ensemble des diviseurs effectifs E de degré d sur C tels que f˚E P grd. Posons
également Vi :“ V X Zi Ă Zi et Si :“ ϕ´1pViq. Puisqu’à translation près, les sous-variétés Vi sont
des sous-variétés de Z “ Z0, ces variétés Vi sont appelées sous-variétés spéciales de Z.

Remarque 4.1.1 :

1. Un choix différent de diviseur D ne fait que translater la variété V (et donc aussi les Vi).

2. Les variétés Vi et Si n’ont à priori pas de raison d’être connexes.
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Notez que l’hypothèse (ii) sert à s’assurer que les sous-variétés S et V sont réduites. En effet,
puisque f est étale (c’est-à-dire σ est sans point fixe sur C) l’hypothèse (ii) entraîne que le grd n’est
pas contenu dans le lieu de ramification de f pdq ; ce qui entraîne que S est une sous-variété réduite de
Cpdq et que les composantes de S sont de dimension r. Par ailleurs, répétons aussi [Bea82, Remarque
1]). Si E est un diviseur de S, alors ϕ´1pϕpEqq s’identifie à l’espace projectif |E|. En particulier,
ϕ : Si Ñ Vi est un isomorphisme si ses fibres sont de dimension 0 ; c’est-à-dire si h0pEq “ 1 pour tout
E P Si. Autrement dit, si S1 est une composante irréductible de S, le morphisme ϕ : S1 Ñ ϕpS1q Ă V
est birationnel si et seulement si ses fibres sont génériquement de dimension 0 si et seulement si ϕpS1q
est une composante irréductible de dimension r de V . Ceci justifie que dans la suite on se restreint à
l’étude des classes de cycles déterminées par les composantes de V de dimension r modulo équivalence
cohomologique (Section 4.2) et modulo équivalence algébrique (Section 4.3). Pour plus de clarté, on
notera par rV s l’union de ces composantes de dimension r de V ainsi que la classe de cycle associée
(attention à ne pas confondre cette notation pour V avec celle des précédents chapitres désignant
simplement le cycle déterminé par la sous-variété V « en totalité »). De même, on se restreint à
l’étude des composantes de dimension r des Vi. Celles-ci seront également notées rVis, de sorte que
rV s “ rV0s ` rV1s ` . . .` rVn´1s.

Remarque 4.1.2 : En adaptant l’argument de [Bea82, Remarque 2] au cas d’un automorphisme
d’ordre n ě 2 quelconque, on montre que les composantes de V sont de dimension entre r et r´n`1.

4.2 Classes de cohomologie de rV s et des rVis dans H2pg´g1´rqpZq

Pour une variété complexe X, on notera simplement dans tout ce qui suit H¨pXq “ H¨pX,Zq
la cohomologie entière de X. L’objectif de cette partie est d’étudier les classes de cohomologie
des composantes de dimension r de V et des Vi dans H2pg´g1´rqpZq. Rappelons également que la
cohomologie d’une variété abélienne X est sans torsion. Par suite, toute relation dans H¨pX,Qq entre
classes de cycles à coefficients entiers est déjà valable dans H¨pX,Zq. Enfin, dans toute cette partie,
on notera encore θ et θ1 les classes de cohomologie des diviseurs Theta sur J et J 1 respectivement.
De même, on notera η :“ ι˚Zθ P H2pZq.

4.2.1 Classe de rV s dans H2pg´g1´rqpZq

La proposition suivante vient généraliser [Bea82, Proposition 2].

Proposition 4.2.1 - La classe du cycle rV s “ rV0s ` rV1s ` . . .` rVn´1s dans H2pg´g1´rqpZq est

clZprV sq “ nd´g
1´r`1 ηg´g

1´r

pg ´ g1 ´ rq!
,

ce qui se réécrit encore sous la forme

clZprV sq “ nd´g
1´r`1 ηpn´1qpg1´1q´r

ppn´ 1qpg1 ´ 1q ´ rq!
.

La démonstration de ce résultat repose sur celle donnée par Beauville dans le cas particulier des
variétés de Prym.

Démonstration. On rappelle (cf. Preuve du théorème 2.6.1 – Step 4 ou encore [BL04, Proposition
12.3.4]) que ces cycles sont reliés par la formule

epZq2θ “
epZq2

n
N˚f θ

1 ` ψ˚Zη.
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Considérons encore rκ P H2pC
1pdqq la classe de l’image de C 1pd´1q dans C 1pdq par le plongement :

x11 ` . . .` x
1
d´1 ÞÑ x11 ` . . .` x

1
d´1 ` P

1.

où P 1 est un point rationnel quelconque fixé sur C 1. Rappelons que cet élément est caractérisé par
la propriété suivante : pour tout k ě 0 et tout diviseur effectif E1 de degré k, rκk est la classe de
l’image de C 1pd´kq par le plongement

x11 ` . . .` x
1
d´k ÞÑ x11 ` . . .` x

1
d´k ` E

1.

On pourra se référer à [Mac62] ou [ACGH85, Chapitre VIII] pour plus de détails à ce sujet. En
particulier, en prenant E1 “ D1 “ f pdqpDq (cf. Section 4.1 pour l’introduction des diviseurs D et
D1), on a pour tout k ě 0

rϕ˚rκ
k “

θ
1 k´d`g1

pk ´ d` g1q!
.

En effet, il s’agit essentiellement des formules de Poincaré dont on dispose au niveau des classes de
cohomologie (cf. [BL04, Formule 11.2.1 p322]). Si on note κ l’élément analogue de H2pCpdqq, on a de
même

ϕ˚κ
k “

θk´d`g

pk ´ d` gq!
“

θk´d`npg
1´1q`1

pk ´ d` npg1 ´ 1q ` 1q!
.

Remarquez aussi que la caractérisation de rκ et κ rappelée précédemment implique que pour tout
k ě 0

f pdq˚rκk “ nkκk

puisque f est de degré n et tous les points de C sont algébriquement équivalents entre eux.

Passons à présent au cœur de la preuve. D’après la formule de Macdonald [Mac62] ou [ACGH85,
Lemma VIII.3.2 p342], la classe de cohomologie du grd dans C 1d est la composante de degré 2d´ 2r
de p1` rκqd´r´g

1

erϕ
˚θ1 :

clC1pdqpg
r
dq “

ÿ

α`β“d´r

ˆ

d´ r ´ g1

α

˙

rκα
rϕ˚θ

1β

β!
.

En appliquant f pdq˚ et en utilisant que Nf ˝ ϕ “ rϕ ˝ f pdq et f pdq˚rκα “ nακα, on en déduit que la
classe de S dans H2d´2rpCpdqq est

clCpdqpSq “ f pdq˚clC1pdqpg
r
dq “

ÿ

α`β“d´r

ˆ

d´ r ´ g1

α

˙

nακα
ϕ˚N˚f θ

1β

β!
.

Ensuite, pour obtenir la classe rV s de V dans H2pg´g1´rqpJq, on applique ϕ˚ et on utilise en même
temps la formule de projection ainsi que les égalités rappelées précédemment :

clJprV sq “
ÿ

α`β“d´r

ˆ

d´ r ´ g1

α

˙

nαpϕ˚κ
αq
N˚f θ

1β

β!
“

ÿ

α`β“d´r

ˆ

d´ r ´ g1

α

˙

nα
θα´d`g

pα´ d` gq!

N˚f θ
1β

β!
.

Puis en remplaçant epZq2θ par epZq2

n N˚f θ
1 ` ψ˚Zη, et en développant avec la formule du binôme de
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Newton, il vient successivement :

clJprV sq “
ÿ

α`β“d´r

ˆ

d´ r ´ g1

α

˙

nα

epZq2pα´d`gq

p
epZq2

n N˚f θ
1 ` ψ˚Zηq

α´d`g

pα´ d` gq!

N˚f θ
1β

β!

“
ÿ

α`β“d´r

α´d`g
ÿ

λ“0

ˆ

d´ r ´ g1

α

˙ˆ

α´ d` g

λ

˙

nα´λepZq2λ

epZq2pα´d`gq

N˚f θ
1λ`β

β!

ψ˚Zη
α´d`g´λ

pα´ d` gq!

“

d´r
ÿ

β“0

g´r´β
ÿ

λ“0

ˆ

d´ r ´ g1

d´ r ´ β

˙ˆ

g ´ r ´ β

λ

˙

nd´r´β´λ

epZq2pg´r´β´λq

N˚f θ
1λ`β

β!

ψ˚Zη
g´r´β´λ

pg ´ r ´ βq!

“

d´r
ÿ

β“0

g´r´β
ÿ

λ“0

ˆ

d´ r ´ g1

d´ r ´ β

˙

nd´r´β´λ

epZq2pg´r´β´λq

N˚f θ
1λ`β

β!λ!

ψ˚Zη
g´r´β´λ

pg ´ r ´ β ´ λq!

“
ÿ

β,λ,µ

ˆ

d´ r ´ g1

d´ r ´ β

˙

nd`µ´g

epZq2µ
N˚f θ

1λ`β

β!λ!

ψ˚Zη
µ

µ!

“ nd´g
ÿ

β,λ,µ

ˆ

d´ r ´ g1

d´ r ´ β

˙

nµ

epZq2µ
N˚f θ

1λ`β

β!λ!

ψ˚Zη
µ

µ!

où la somme est prise sur les triplets d’entiers naturels β, λ, µ tels que β ` λ` µ “ g ´ r.

Identifions (par translation) chaque Vi à une sous-variété de Z “ Z0. Comme ψZ ˝ ιZ “ epZq, on
a

epZq2r
n´1
ÿ

i“0

clZprVisq “ epZq˚

n´1
ÿ

i“0

clZprVisq “ ψZ˚ιZ˚clZprV sq “ ψZ˚clJprV sq

de sorte que
ÿ

i

clZprVisq “ epZq´2rψZ˚clJprV sq.

Il reste à calculer cette dernière expression. Pour des raisons de degré, l’homomorphisme

ψZ˚N
˚
f : HkpJ 1q Ñ Hk´2g1pZq

est nul pour tout k ‰ 2g1 tandis que pour k “ 2g1 (ie. en degré maximal), on a

ψZ˚N
˚
f clJ 1po

1q “ ψZ˚

˜

ÿ

i

clJpZiq

¸

“ n ¨ degpepZq ¨ IdZq “ n ¨ epZq2pg´g
1q “ n ¨ epZq2pn´1qpg1´1q

où clJ 1po1q est la classe d’un point quelconque o1 P J 1. Autrement dit, on a montré que

ψZ˚N
˚
f

θ
1k

k!
“

#

0 pour k ‰ g1,

n ¨ epZq2pg´g
1q “ n ¨ epZq2pn´1qpg1´1q pour k “ g1.

Il s’ensuit à nouveau grâce à la formule de projection que

ÿ

i

clZprVisq “ epZq´2rnd´g
ÿ

β,λ,µ

ˆ

d´ r ´ g1

d´ r ´ β

˙

nµ

epZq2µ
ψZ˚

˜

N˚f θ
1λ`β

β!λ!

ψ˚Zη
µ

µ!

¸

“ epZq´2rnd´g
ÿ

β,λ,µ

ˆ

d´ r ´ g1

d´ r ´ β

˙

nµ

epZq2µ
ψZ˚N

˚
f θ

1λ`β

β!λ!

ηµ

µ!

“ epZq´2rnd´g
d´r
ÿ

β“0

ˆ

d´ r ´ g1

d´ r ´ β

˙

ng´g
1´r

epZq2pg´g1´rq
n ¨ epZq2pg´g

1q ¨ g1!

β!pg1 ´ βq!

ηg´g
1´r

pg ´ g1 ´ rq!
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car ici seuls les termes de la somme avec λ` β “ g1 sont non nuls, auxquels cas µ “ g´ r´ β´ λ “
g ´ g1 ´ r. Plus simplement, il vient

ÿ

i

clZprVisq “ nd´g
1´r`1 ηg´g

1´r

pg ´ g1 ´ rq!

d´r
ÿ

β“0

ˆ

d´ r ´ g1

d´ r ´ β

˙ˆ

g1

β

˙

.

Or
řd´r
β“0

`

d´r´g1

d´r´β

˘`

g1

β

˘

“ 1. En effet, ce coefficient est celui de td´r dans le développement du produit
p1` tqd´r´g

1

p1` tqg
1

“ p1` tqd´r. D’où

clZprV sq “
ÿ

i

clZprVisq “ nd´g
1´r`1 ηg´g

1´r

pg ´ g1 ´ rq!
;

ce qui prouve la proposition.

Exemple 4.2.2 (Le cas n “ 2) : Si n “ 2, η est le double d’une polarisation principale ξ sur Z. La
variété pZ, ξq est une variété de Prym. Dans ce cas, on a g ´ g1 ´ r “ g1 ´ 1´ r et

clZprV sq “ 2d´g
1´r`1 ηg

1´1´r

pg1 ´ 1´ rq!
“ 2d´2r ηg

1´1´r

pg1 ´ 1´ rq! ¨ 2g1´1´r
“ 2d´2r ξg

1´1´r

pg1 ´ 1´ rq!
.

Ainsi, on retrouve bien le résultat de Beauville [Bea82, Proposition 2].

4.2.2 Classe des rVis dans H2pg´g1´rqpZq

On veut à présent étudier la classe rVis des composantes de dimension r des sous-variétés spéciales
Vi dans H2pg´g1´rqpZq. Pour cela, on commence par caractériser les composantes Zi en termes de
faisceaux inversibles sur C.

Lemme 4.2.3 - Soit L P J tel que Nf pLq “ OC (ie. L P KerpNf q “
Ť

Zi). Alors

L »Mb σ˚M_

pour un certain M P PicpCq de degré k P J0, n´ 1K.

Démonstration. La démonstration est identique à celle de [Mum71, Lemma 1] donnée dans le cas
particulier où n “ 2 (ou encore celle de [LO16, Lemma 3.1] lorsque n “ 7). La seule différence est que
les fibrés M peuvent être choisis de degré k P J0, n´ 1K puisqu’on travaille avec un automorphisme
d’ordre n quelconque. Précisément, quitte à remplacerM parMbf˚N 1 pour un certainN 1 P PicpC 1q
on peut toujours à se ramener à un faisceau de degré k P J0, n´ 1K. En effet,

Mb σ˚M_ » pMb f˚N 1q b σ˚pMb f˚N 1q_

car σ˚f˚N 1 » f˚N 1 puisque f ˝ σ “ f .

On déduit de ce lemme la proposition suivante :

Proposition 4.2.4 - Quitte à réindexer les Zi pour i P J0, n´ 1K, on a

Zi “ tMb σ˚M_ P J | degM ” i mod nu “ tMb σ˚M_ P J | degM “ iu

et toujours Z “ Z0 “ KerpNf q
0. En particulier, si M b σ˚M_ P Zi, alors pour tout entier j on a

Mb σj˚M_ P Zij mod n.
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Démonstration. Il s’agit essentiellement de montrer que pour tout i P J0, n´ 1K la sous-variété

tMb σ˚M_ P J | degM “ iu Ă KerpNf q

est connexe. Soit k P N tel que i ` kn ě g. Considérons un point M b σ˚M_ de J où degM “ i.
Comme on vient de le remarquer, il existe un faisceau inversible N P PicpCq de degré i` kn ě g tel
que

Mb σ˚M_ » N b σ˚N_.

En effet, il suffit pour cela de considérer le fibré N :“Mb f˚LC1pkP 1q où P 1 est un point rationnel
sur C 1 fixé quelconque. Or par le théorème de Riemann-Roch,

h0pN , Cq ě degpN q ` 1´ g ě g ` 1´ g “ 1.

Par suite, il existe un diviseur effectif E sur C de degré i` kn tel que LCpEq » N . Autrement dit,
le point N b σ˚N_ (et donc aussi M b σ˚M_) appartient à l’image de la variété Cpi`knq par le
morphisme

F P Cpi`knq ÞÑ LCpF q b σ˚LCpF q_.
Cette variété image est donc exactement la variété tMbσ˚M_ P J | degM “ iu qui nous intéresse
ici. Comme Cpi`knq est connexe, tMb σ˚M_ P J | degM “ iu l’est aussi.

L’ensemble des sous-variétés connexes tM b σ˚M_ P J | degM “ iu pour i P J0, n ´ 1K doit
donc coïncider avec l’ensemble des composantes connexes de KerpNf q ; à savoir tZ0, Z1, . . . , Zn´1u.
Comme tous les Zj sont non vides, les tMbσ˚M_ P J | degM “ iu correspondent nécessairement
à des composantes Zj distinctes. Ceci fournit la première partie du résultat quitte à réindexer les
Zi. La seconde en découle immédiatement puisque

Mb σj˚M_ »

j´1
â

k“0

´

σk˚Mb σpk`1q˚M_
¯

»

j´1
â

k“0

pLk b σ˚L_k q

avec Lk :“ σk˚M P PicpCq qui est de degré i “ degM puisque σk P AutpCq. Autrement dit,

Mb σj˚M_ P Zij mod n;

ce qui est exactement le résultat annoncé.

Pour compléter cette proposition, portons un point de vue sensiblement différent sur les compo-
santes Zi. On a déjà signalé que KerpNf q » Z ˆ Z{nZ. Considérons alors une composante connexe
Zα de KerpNf q correspondant à un générateur α de Z{nZ. D’après le lemme 4.2.3 précédent, les
éléments de Zα sont de la forme M b σ˚M_ pour certains fibrés M P PicpCq de degré constant
(modulo n) kα P J0, n´ 1K. Notez que par connexité ce degré kα ne dépend effectivement que de la
composante Zα. A ce moment, on peut énoncer le fait suivant :

Fait 4.2.5 : Le caractère générateur de la composante Zα se traduit par le fait que kα est premier
à n.

Démonstration. Justifions cette assertion.

(ñ) : On veut obtenir ici que pgcdpkα, nq “ 1 à partir de la seule hypothèse que Zα est générateur.
Pour cela, on commence par fixer un point Mb σ˚M_ P KerpNf q avec degM “ 1. Puisque Zα est
générateur, il existe un point N b σ˚N_ P Zα tel que

Mb σ˚M_ » pN b σ˚N_q
i
» N i b σ˚N´i

pour un certain i P J1, nK. Comme degN i “ ikα, le fait que N i b σ˚N´i appartienne à la même
composante connexe que M b σ˚M_ signifie que ikα ” 1 mod n ; auquel cas n et kα sont bien
premiers entre eux.
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(ð) : Réciproquement, on suppose que kα et n sont premiers entre eux et il s’agit de voir que Zα est
bien générateur. En détail, on commence par considérer un point arbitraire Mb σ˚M_ P KerpNf q

avec degM “ β P J0, n´ 1K. Deux cas se présentent :

1. soit β “ 0 et on peut écrire β “ ikα ´ ln avec pi, lq “ pn, kαq ‰ p0, kαq ;

2. soit β P J1, n ´ 1K n’est pas divisible par n. Dans ce cas, puisque kα et n sont premiers entre
eux, il existe une relation de Bézout de la forme β “ ikα ´ ln pour certains entiers i, l avec
i ‰ 0.

Quelle que soit la situation qui se présente, on peut en utilisant les mêmes arguments que d’habitude
supposer que M est de degré β`ln “ ikα avec i ‰ 0. Pour un point rationnel P P C fixé quelconque,
on introduit alors le fibré M1 :“ Mp´ikαP q P Pic0pCq. La variété abélienne J étant divisible et i
étant non nul, il existe un point N P Pic0pCq tel que M1 » N i. Il s’ensuit que

M »M1pikαP q » N i b LCpikαP q » pN pkαP qqi .

Autrement dit, en posant L :“ N pkαP q qui est de degré kα, on a

Mb σ˚M_ » Li b σ˚L´i » pLb σ˚L
looomooon

PZα

qi.

Finalement le point de KerpNf q défini par le fibré M b σ˚M_ est bien un multiple d’un point de
Zα. Ceci étant vrai pour n’importe quel point Mbσ˚M_ de KerpNf q, on a montré que Zα est bien
une composante génératrice de KerpNf q.

Remarque 4.2.6 :

1. Remplacer σ par une puissance σk avec pgcdpk, nq “ 1 ne change pas la variété Z “ Z0 car

1` σ ` . . .` σn´1 “ 1` σk ` . . .` σkpn´1q.

En revanche, les composantes Z1, Z2, . . . , Zn´1 sont permutées.

2. Mis à part Z “ Z0 “ KerpNf q
0, il n’y a pas de manière canonique de différencier Z1, Z2, . . . , Zn´1.

A partir de cette proposition 4.2.4, on peut également décrire l’action de l’automorphisme sur
les points des variétés Si. C’est l’objet du prochain corollaire.

Corollaire 4.2.7 - Soit x1 ` . . .` xd P Si. Alors

x1 ` . . .` xd´1 ` σpxdq P Si`1 mod n.

Plus généralement, pour tout entier j, on a

x1 ` . . .` xd´1 ` σ
jpxdq P Si`j mod n.

Démonstration. Identifions dans cette preuve le diviseur x1 ` . . . ` xd avec le fibré L :“ LCpx1 `

. . .` xdq. Alors

ϕpLq “ LCpx1 ` . . .` xd ´Dq P ϕpSiq “ Vi Ă Zi Ă KerpNf q.

Par conséquent, la proposition 4.2.4 montre qu’il existe M P PicpCq de degré i tel que

ϕpLq »Mb σ˚M_.
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Ainsi, on a

ϕ pLCpx1 ` . . .` xd´1 ` σpxdqqq » LCpx1 ` . . .` xd´1 ` σpxdq ´Dq

» LCpx1 ` . . .` xd´1 ` xd ´Dq b LCpσpxdq ´ xdq
»Mb σ˚M_ b LCpσpxdq ´ xdq
»Mb σ˚M_ b LC

`

σpxdq ´ σ
´1pσpxdqq

˘

»Mpσpxdqq b σ
˚pMpσpxdqqq

_.

Puisque degMpσpxdqq “ degM` 1 “ i` 1, on en déduit que

ϕpLpσpxdq ´ xdqq “ ϕ pLCpx1 ` . . .` xd´1 ` σpxdqqq P Zi`1 mod n.

Notons par ailleurs que Lpσpxdq ´ xdq P S :“ pf pdqq´1pgrdq. En effet,

f pdqpx1` . . .`xd´1`σpxdqq “ fpx1q` . . .`fpxd´1q`fpσpxdqq “ fpx1q` . . .`fpxd´1q`fpxdq P g
r
d

car par hypothèse L “ LCpx1 ` . . .` xdq P S. Finalement,

Lpσpxdq ´ xdq P S X ϕ
´1pZi`1q “ Si`1.

La seconde assertion se déduit facilement de la première en utilisant le même argument que dans la
preuve de la proposition 4.2.4.

Ce corollaire 4.2.7 étant démontré, nous pouvons obtenir la proposition suivante en reprenant
quasiment mot pour mot les arguments de [Bea82, Proposition 1].

Proposition 4.2.8 - Si 2r ă d, les sous-variétés Si ont même classe de cohomologie dans Cpdq. De
même, les rVis ont même classe dans H2pg´g1´rqpZq.

Démonstration. Soit s : Cd Ñ Cpdq le morphisme naturel de projection. D’après [Mac62, (4) p
322] l’application s˚ : HpCpdqq Ñ HpCdq est injective. Il suffit donc de montrer que les sous-
variétés Ti :“ s´1pSiq sont homologiquement équivalentes dans Cd. Posons T :“ s´1pSq “

Ť

Ti et
considérons la projection p : Cd Ñ Cd´1 donnée par

ppx1, . . . , xdq “ px1, . . . , xd´1q.

Soit pT : T Ñ ppT q l’application induite. Etant donné px1, . . . , xd´1q P ppT q, il existe un unique
point y P C 1 tel que

fpx1q ` . . .` fpxd´1q ` y P g
r
d

(car sinon il existerait deux points sur C 1 rationnellement équivalents, et on aurait donc nécessaire-
ment g1 “ 0 ; ce qui est impossible dès lors que n ě 2).

Si f´1pyq “ ty1, . . . , ynu, la fibre p´1
T px1, . . . , xd´1q se compose des n points px1, . . . , xd´1, yiq

que l’on peut supposer appartenir à Ti (quitte à réindexer les yi). Cela signifie d’après le corollaire
4.2.7 que p induit un isomorphisme entre chaque Ti et ppT q. En particulier, on obtient

@i P J1, nK, p˚clCdpTiq “ clCd´1pppT qq.

Posons m :“ 2d´ 2r et considérons deux indices i, j P J1, nK. Notons

t :“ clCdpTiq ´ clCdpTjq P HmpCdq
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de sorte que p˚t “ 0. On considère la décomposition de Künneth suivante (Cd “ Cd´1 ˆ C) :

HmpCdq »
”

Hm´2pCd´1q bH2pCq
ı

‘

”

Hm´1pCd´1q bH1pCq
ı

‘

”

HmpCd´1q bH0pCq
ı

.

Après identification H2pCq » Z, l’homomorphisme p˚ : HmpCdq Ñ Hm´2pCd´1q s’identifie à la
projection sur le premier facteur de cette décomposition. Par conséquent, la relation p˚t “ 0 montre
que dans la décomposition de Künneth

HmpCdq »
à

α1`...`αd“m
0ďαjď2

HαipCq b ¨ ¨ ¨ bHαdpCq

toutes les composantes tα de t pour lesquelles αd “ 2 sont nulles.
Plus généralement, en reprenant le même raisonnement avec chacune des d différentes projections

Cd Ñ Cd´1, on obtient que toutes les composantes tα de t pour lesquelles l’un au moins des αi est
égal à 2 sont nulles. Or d ą 2r par hypothèse, ou de manière équivalente m ą d. Donc tout d-uplet
pα1, . . . , αdq avec

ř

αi “ m comporte au moins une composante αi ą 1. Ceci montre que chaque
tα “ 0, auquel cas t “ 0, ce qui signifie que

clCdpTiq “ clCdpTjq

et donc clCpdqpSiq “ clCpdqpSjq comme annoncé.
Ainsi ϕ˚clCpdqpSiq “ ϕ˚clCpdqpSjq. Or, comme rappelé en introduction, ϕ˚clCpdqpSkq est la somme

des classes des composantes de dimension r de Vk ; à savoir clJprVksq. Autrement dit, si on note
encore ιZ : Z Ñ J le plongement naturel, on a

ιZ˚clZprVisq “ ιZ˚clZprVjsq P H2pg´g1´rqpZq.

Par ailleurs, on considère encore le morphisme ψZ P HompJ, Zq tel que NZ “ ιZ ˝ ψZ . Puisque
NZ|Z “ epZq, on a ψZ ˝ ιZ “ epZq. Appliquant enfin ψZ˚ à l’égalité ιZ˚clZprVisq “ ιZ˚clZprVjsq, on
obtient

epZq2rclZprVisq “ epZq2rclZprVjsq

d’où l’on tire l’égalité clZprVisq “ clZprVjsq puisque H¨pZq est sans torsion.

En mettant bout à bout les propositions 4.2.1 et 4.2.8, on obtient le théorème suivant (générali-
sation de [Bea82, Théorème 1]) :

Théorème 4.2.9 - Si 2r ă d, alors pour tout i P J0, n ´ 1K la classe dans H2pg´g1´rqpZq de la
sous-variété spéciale rVis associée au système linéaire complet grd est

clZprVisq “ nd´g
1´r ηg´g

1´r

pg ´ g1 ´ rq!
,

ce qui se réécrit encore

clZprVisq “ nd´g
1´r ηpn´1qpg1´1q´r

ppn´ 1qpg1 ´ 1q ´ rq!
.

Les classes de cohomologie des sous-variétés spéciales rVis et rV s dans Z sont donc intimement
liées à la polarisation induite η “ ι˚Zθ. La partie suivante poursuit cette étude de la classe de rV s pour
l’équivalence algébrique. Plus spécifiquement, il va s’agir d’étudier la décomposition de Beauville de
rV s dans Ag´g1´rpZq.
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4.3 Classe d’équivalence algébrique de rV s dans Ag´g1´rpZq

On généralise dans cette partie le résultat de la partie 4 de [Ara12] et on fait le lien avec les
anneaux tautologiques introduits dans les chapitres précédents.

4.3.1 Notations

On continue de supposer que f : C Ñ C 1 » C{xσy est un revêtement galoisien n-cyclique étale
avec n ě 2. On fixe des entiers r, d vérifiant 0 ă 2r ă d ă 2g1. On considère les sous-variétés
spéciales Vi dans Z quitte à effectuer une translation et on note encore V (et Vi) les classes de cycles
déterminées dans ApZq.

Étant donné un r-uplet n “ pn1, . . . , nrq d’entiers naturels strictement positifs, on note

|n| :“
r
ÿ

i“1

ni et µn :“
r
ź

j“1

p´1qnj´1

nj
.

Notons aussi

Ir,d :“ tn “ pn1, . . . , nrq P N˚r | 1 ď n1 ď . . . ď nr et |n| ď du

et

An,s :“

#˜

m1,m2, . . . ,mn´1, s´
n´1
ÿ

k“1

mk

¸

P Nn |
n´1
ÿ

k“1

mk ď s

+

.

Le sous-groupe Pn Ă Sn engendré par la permutation cyclique p1, 2, 3, . . . , nq agit naturellement sur
l’ensemble An,s. On considère le quotient

Bn,s :“ An,s{Pn

et on fixe une fois pour toute un système Cn,s de représentants pour ce quotient. Pour ce faire, on
peut fixer un ordre (l’ordre lexicographique par exemple) et choisir le représentant minimal dans
chacune des classes. Ensuite, on considère la projection sur les n´1 premières composantes de Cn,s :

Dn,s :“ p1,...,n´1pCn,sq Ă Nn´1.

Exemple 4.3.1 (n “ 2) : D2,s “ J0, s2K.

Exemple 4.3.2 (n “ 3) :

1. D3,1 “ tp0, 0qu.

2. D3,2 “ tp0, 0q, p0, 1qu.

3. D3,3 “ tp0, 0q, p0, 1q, p0, 2q, p1, 1qu.

4. D3,4 “ tp0, 0q, p0, 1q, p0, 2q, p0, 3q, p1, 1qu.

5. D3,5 “ tp0, 0q, p0, 1q, p0, 2q, p0, 3q, p0, 4q, p1, 1q, p1, 2qu.

Enfin, pour tout n “ pn1, . . . , nrq P Ir,d, on pose

Jr,n,n :“
r
ź

j“1

Dn,nj Ă pN
n´1qr.
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Les éléments de Jr,n,n sont donc des r-uplets de (représentants de classes modulo permutations
cycliques de) pn´ 1q-uplets

m :“ ppm1,1,m1,2, . . . ,m1,n´1q, . . . , pmr,1,mr,2, . . . ,mr,n´1qq

vérifiant la condition

@j P J1, rK,
n´1
ÿ

k“1

mj,k ď nj .

Continuons avec quelques notations qui interviendront dans la suite. Soient n P Ir,d etm P Jr,n,n.
Pour chaque entier l ě 1, on note qplq le nombre de nj qui sont égaux à l. Supposons donc que

nj1 “ nj2 “ . . . “ njqplq “ l. On pose alors

ppl, n,mq :“

#

#tpermutations du qplq-uplet ordonné de pn´ 1q-uplets pmj1,´,mj2,´, . . . ,mjqplq,´qu si qplq ‰ 0,

1 si qplq “ 0.

On peut enfin définir

νn,m :“
d´r`1
ź

l“1

1

ppl, n,mq
.

Exemple 4.3.3 :

1. Si r “ 1, on a νn,m “ 1.

2. Si r “ 2, νn,m “ 1
2 si pn1 “ n2 et m1,´ ‰ m2,´q et νn,m vaut 1 sinon.

On définit maintenant le coefficient

αn,m :“ νn,m

r
ź

j“1

ˆ

nj
mj,1,mj,2, . . . ,mj,n´1, nj ´

ř

kmj,k

˙

où les coefficients multinomiaux ont déjà été rencontrés précédemment (cf. Définition 3.3.32). Puis
on considère le rationnel suivant

λn,m :“ nd´|n|µnαn,m

ˆ

d

|n|

˙

.

Ensuite, soient e1, . . . , ek des entiers qui comptent le nombre de répétitions dans la séquence de
paires

pn1, pm1,1, . . . ,m1,n´1qq , . . . . . . , pnr, pmr,1, . . . ,mr,n´1qq .

On pose
dn,m :“ e1!e2! ¨ ¨ ¨ ek!.

Exemple 4.3.4 : Si cette séquence est

p4, p0, 0, 1qq, p4, p0, 0, 1qq, p4, p1, 0, 1qq, p5, p2, 0, 0qq, p6, p0, 3, 0qq, p6, p0, 3, 0qq,

alors e1 “ 2, e2 “ 1, e3 “ 1, e4 “ 2.

Remarque 4.3.5 :

1. On peut choisir d’ordonner cette séquence selon l’ordre lexicographique par exemple mais ici
l’ordre n’a aucune importance.
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2. Si l’on n’avait pas fixé un système de représentants modulo permutations cycliques, il aurait
fallu compter les répétitions à permutations cycliques près.

Et pour en terminer avec les principales notations, définissons encore les endomorphismes suivants

@j P J1, rK, hjpn,m, σq :“ nj ´
n´1
ÿ

k“1

mj,k `

n´1
ÿ

k“1

mj,kσ
k P EndpJq.

4.3.2 Théorème principal

Le cas général n ě 2, r ě 1

On dispose à présent de tous les outils et notations nécessaires pour énoncer et démontrer le
théorème suivant qui vient généraliser (et corriger) [Ara12, Theorem 6].

Théorème 4.3.6 - Soit 0 ă 2r ă d ă 2g1 et V “
Ť

Vi l’union des sous-variétés spéciales vues dans
Z associées à un système linéaire complet sans point de base grd sur C 1. Alors la classe de rV s dans
Ag´rpJq est donnée par la formule suivante :

rV s “
ÿ

nPIr,d

ÿ

mPJr,n,n

λn,m

dn,m
h1pn,m, σq˚C ˚ . . . ˚ hrpn,m, σq˚C.

En particulier, la composante homogène de la classe de rV s dans Ag´rpJqptq est donnée par

rV sptq “
ÿ

nPIr,d

ÿ

mPJr,n,n

ÿ

0ďa1,...,ar
a1`...`ar“t

λn,m

dn,m
h1pn,m, σq˚Cpa1q ˚ . . . ˚ hrpn,m, σq˚Cparq

et la composante homogène de la classe de rV s dans Ag´g1´rpZqptq est donnée par

rV sptq “ epZq´2r´t
ÿ

nPIr,d

ÿ

mPJr,n,n

ÿ

0ďa1,...,ar
a1`...`ar“t

λn,m

dn,m
h1pn,m, σq˚ψZ˚Cpa1q ˚ . . . ˚ hrpn,m, σq˚ψZ˚Cparq.

Par conséquent, les rV sptq sont des cycles tautologiques appartenant à RσpC; Jq ou RσpψZ˚C;Zq
selon que l’on considère V comme sous-variété de J ou de Z.

Démonstration. La stratégie générale de la preuve repose sur celle de [Ara12, Theorem 6] qu’il nous
faut adapter au cas d’un automorphisme d’ordre n ě 2. On rappelle que l’on note encore grd le
système linéaire donné sur C 1 vu comme sous-variété de C 1pdq isomorphe à Pr. Étant donné un
r-uplet fixé d’entiers naturels n “ pn1, . . . , nrq, on considère la diagonale généralisée

δ1n :“ tn1x
1
1 ` n2x

1
2 ` . . .` nrx

1
r | x

1
1, . . . , x

1
r P C

1u Ă C
1p|n|q.

Soit D1 P grd un diviseur effectif fixé dont le support consiste en d points distincts. D’après [Her07,
Theorem 3 (ii) p888], la classe rgrds dans CHd´rpC

1pdqq du système linéaire est donnée par

rgrds “
ÿ

n,o1s

µnrδ
1
n ` o

1
1 ` . . .` o

1
ss,

où la somme est prise sur
1. les r-uplets d’entiers naturels n P Ir,d tels que s :“ spnq “ d´ |n| ě 0
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2. et les sommes (non-ordonnées) o1s :“ o11 ` . . . ` o1s obtenues en choisissant s points distincts
dans le support du diviseur D1.

Pour calculer la classe de S “ f pdq˚rgrds P Ad´rpCpdqq, on commence par introduire pour tout
m P Jr,n,n les diagonales généralisées modifiées suivantes

δn,m :“

#

r
ÿ

j“1

˜

pnj ´
ÿ

k

mj,kqxj `
n´1
ÿ

k“1

mj,kσ
kpxjq

¸

ˇ

ˇ

ˇ
x1, . . . , xr P C

+

Ă Cp|n|q,

ce qui peut se réécrire avec un léger abus de notation

δn,m :“

#

r
ÿ

j“1

hjpn,m, σqpxjq
ˇ

ˇ

ˇ
x1, . . . , xr P C

+

Ă Cp|n|q.

En comptant bien les points, on arrive à l’égalité suivante

f pdq˚rδ1n ` o
1
1 ` . . .` o

1
ss “

ÿ

m,us

αn,mrδn,m ` u1 ` . . .` uss

où la somme est prise sur
1. les r-uplets de pn´ 1q-uplets m P Jr,n,n
2. et les sommes (non-ordonnées) us “ u1`. . .`us avec des uj P f´1po1jq “ toj , σpojq, . . . , σ

n´1pojqu.
En effet, pour comprendre le passage de δ1n à δn,m on peut raisonner de la sorte : pour chaque j fixé
et pour chacun des nj points x1j , il faut choisir une correspondance entre les n éléments de la fibre au-
dessus de x1j (ie. les σ

kpxkq) et le n-uplet pmj,1,mj,2, . . . ,mj,n´1, nj´
ř

kmj,kq. Concrètement, une fois
fixés les choix correspondants aux σk pour k “ 1, . . . , n´ 1, tout est fixé. Ceci justifie l’introduction
des coefficients multinomiaux dans le coefficient αn,m. Comme dans [Ara12], le coefficient νn,m vient
corriger une redondance qui pourrait apparaître si certains des nj sont égaux.

Remarque 4.3.7 : Notez que c’est à ce moment là qu’il est intéressant de considérer des classes de
multiplets sous l’action des permutations cycliques ; tout ceci afin d’éviter de compter plusieurs fois
la même diagonale : remplacer xj par un σkpxjq revient à effectuer une permutation cyclique des
coefficients mj,1,mj,2, . . . ,mj,n´1, nj ´

ř

kmj,k.

En passant à l’équivalence algébrique, c’est-à-dire dans ApCpdqq, la formule pour le pull-back
d’une diagonale généralisée devient

f pdq˚rδ1n ` o
1
1 ` . . .` o

1
ss “

ÿ

mPJr,n,n

nd´|n|αn,mrδn,m ` pd´ |n|qos

car pour chacun des s “ d ´ |n| points ui à choisir, il y a n choix possibles ; chacun de ces choix
fournissant un point algébriquement équivalent à un point quelconque noté ici o P C. Il vient alors

S “ f pdq˚rgrds “
ÿ

n,o1s

µnf
pdq˚rδ1n ` o

1
1 ` . . .` o

1
ss “

ÿ

n,o1s

ÿ

m

µnn
d´|n|αn,mrδn,m ` pd´ |n|qos

“
ÿ

n

ÿ

m

nd´|n|µnαn,m

ˆ

d

|n|

˙

rδn,m ` pd´ |n|qos “
ÿ

nPIr,d

ÿ

mPJr,n,n

λn,mrδn,m ` pd´ |n|qos

car il y a
ˆ

d

s

˙

:“

ˆ

d

d´ |n|

˙

“

ˆ

d

|n|

˙
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sommes non-ordonnées o1s formées à partir de s “ d´|n| points distincts à choisir parmi les d points
distincts du support du diviseur D1.

Notons ensuite dj le degré du morphisme

hjpn,m, σq : C Ă J ÝÑ hjpn,m, σqpCq Ă J,

de sorte qu’en termes de classes de cycles, on a pour tout j l’égalité

hjpn,m, σq˚C “ djrhjpn,m, σqpCqs.

Le morphisme ϕ : Cpdq Ñ J induit donc un morphisme de degré d1d2 ¨ ¨ ¨ dr de δn,m ` pd´ |n|qo sur
un translaté de la variété image

řr
j“1 hjpn,m, σqpCq Ă J ; ce qui signifie dans ApJq :

ϕ˚rδn,m ` pd´ |n|qos “ d1d2 ¨ ¨ ¨ dr

«

r
ÿ

j“1

hjpn,m, σqpCq

ff

.

Remarque 4.3.8 : Bien que le morphisme ϕ : Cpdq Ñ J définit un morphisme birationnel sur son
image [Mil86, Theorem 5.1 (a)] car d ď g, celui-ci restreint à une sous-variété propre ne l’est plus
forcément.

Or le degré du morphisme d’addition

r
ź

j“1

hjpn,m, σqpCq ÝÑ
r
ÿ

j“1

hjpn,m, σqpCq,

est le coefficient dn,m vu dans la partie Notations. En effet, le nombre d’antécédents d’un point géné-
rique de

řr
j“1 hjpn,m, σqpCq (c’est-à-dire un point de la forme

řr
j“1 hjpn,m, σqpxjq avec des xj P C

distincts) dépend fondamentalement du nombre de fois que chaque endomorphisme hjpn,m, σq se
répète (étant entendu que génériquement des endomorphismes hj distincts déterminent des variétés
images indépendantes). Par conséquent, il vient par définition du produit de Pontryagin

rh1pn,m, σqpCqs ˚ rh2pn,m, σqpCqs ˚ . . . ˚ rhrpn,m, σqpCqs “ dn,m

«

r
ÿ

j“1

hjpn,m, σqpCq

ff

.

Finalement, on obtient

ϕ˚rδn,m ` pd´ |n|qos “ d1d2 ¨ ¨ ¨ dr

«

r
ÿ

j“1

hjpn,m, σqpCq

ff

“
d1d2 ¨ ¨ ¨ dr
dn,m

rh1pn,m, σqpCqs ˚ rh2pn,m, σqpCqs ˚ . . . ˚ rhrpn,m, σqpCqs

“
1

dn,m
h1pn,m, σq˚C ˚ h2pn,m, σq˚C ˚ . . . ˚ hrpn,m, σq˚C.

Par conséquent, on a dans Ag´rpJq

rV s “ ϕ˚f
pdq˚rgrds “

ÿ

nPIr,d

ÿ

mPJr,n,n

λn,mϕ˚rδn,m ` pd´ |n|qos

“
ÿ

nPIr,d

ÿ

mPJr,n,n

λn,m

dn,m
h1pn,m, σq˚C ˚ . . . ˚ hrpn,m, σq˚C.
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Comme ψZ commute aux polynômes en σ, on obtient

ψZ˚ϕ˚rδn,m ` pd´ |n|oqs “
1

dn,m
h1pn,m, σq˚ψZ˚C ˚ . . . ˚ hrpn,m, σq˚ψZ˚C.

En se rappelant que sur Z, ψZ “ epZq, il vient alors que la classe de rV s dans Ag´g1´rpZq vérifie

epZq˚rV s “ ψZ˚ϕ˚f
pdq˚rgrds “

ÿ

nPIr,d

ÿ

mPJr,n,n

λn,m

dn,m
h1pn,m, σq˚ψZ˚C ˚ . . . ˚ hrpn,m, σq˚ψZ˚C.

Il ne reste plus qu’à projeter les précédentes égalités sur Ag´rpJqptq et AdimZ´rpZqptq pour obtenir
les formules de rV sptq annoncées. Faisons-le en détails pour la formule sur Z (l’autre s’obtient encore
plus facilement de la même manière). Pour cela, il suffit de se rappeler que

1. epZq˚rV sptq “ epZq2 dimZ´2pdimZ´rq`trV sptq “ epZq2r`trV sptq,

2. AapZqpuq ˚AbpZqpvq Ă Aa`b´dimZpZqpu`vq,

3. si h P HompJ, Zq, h˚Ag´1pJqptq Ă AdimZ´1pZqptq.

Décomposons donc C “ Cp0q ` Cp1q ` . . . ` Cpg´1q avec Cpiq P Ag´1pJqpiq. Alors pour tout entier
0 ď t ď dimZ ´ 1, epZq2r`trV sptq est la composante homogène de degré t apparaissant dans la
somme

ÿ

nPIr,d

ÿ

mPJr,n,n

dimZ´1
ÿ

a1“0

¨ ¨ ¨

dimZ´1
ÿ

ar“0

λn,m

dn,m
h1pn,m, σq˚ψZ˚Cpa1q ˚ . . . ˚ hrpn,m, σq˚ψZ˚Cparq.

En conclusion, on a dans Ag´g1´rpZqptq

rV sptq “ epZq´2r´t
ÿ

nPIr,d

ÿ

mPJr,n,n

ÿ

0ďa1,...,ar
a1`...`ar“t

λn,m

dn,m
h1pn,m, σq˚ψZ˚Cpa1q ˚ . . . ˚ hrpn,m, σq˚ψZ˚Cparq.

Le cas des variétés de Prym n “ 2, r ě 1

Pour n “ 2, cas des variétés de Prym, on obtient une forme sensiblement plus simple du théorème
4.3.6.

Théorème 4.3.9 (Le cas n “ 2, r ě 1) - Soit 0 ă 2r ă d ă 2g1 et V “ V1 Y V2 l’union des
sous-variétés spéciales vues dans Z associées à un système linéaire complet sans point de base grd sur
C 1. Alors la composante homogène de la classe de rV s dans Ag´g1´rpZqptq est donnée par la formule
suivante

rV sptq “ 2´2r´t
ÿ

nPIr,d

ÿ

mďn
2

ÿ

0ďa1,...,ar
a1`...`ar“t

λn,m
dn,m

r
ź

j“1

pnj ´ 2mjq
aj`2ψZ˚Cpa1q ˚ . . . ˚ ψZ˚Cparq

où l’on précise les différentes notations utilisées ici avec n “ 2 :

1. la somme sur m est prise sur les r-uplets d’entiers naturels m :“ pm1,m2, . . . ,mrq P Jr,2,n,
c’est-à-dire vérifiant la condition pour tout j P J1, rK, mj ď

nj
2 ,

2. λn,m :“ 2d´|n|
`

d
|n|

˘

´

śr
j“1

p´1qnj´1

nj

`

nj
mj

˘

¯´

śd´r`1
l“1

1
ppl,n,mq

¯

.
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En particulier, les rV sptq sont des cycles tautologiques sur Z dans RσpψZ˚C;Zq. De plus, si t est
impair, alors rV sptq “ 0.

Démonstration. C’est une conséquence directe du théorème 4.3.6. En effet, si n “ 2, alors σ|Z “
´1Z P EndpZq car Z “ Kerp1`σq0. On a aussi epZq “ 2. En effet, rappelons que epZq divise l’ordre
de σ qui ici vaut 2 (cf. Sous-section 2.3.1, point (3)) et epZq “ epY q ‰ 1 car σ est non trivial et
C{xσy ‰ P1 puisque dans tout ce chapitre le revêtement f : C Ñ C 1 » C{xσy est supposé étale
(cf. Lemma 2.3.11, point 3). On peut également rappeler (Lemme 2.6.5) que dans ce cas tous les
ψZ˚Cp2i`1q sont nuls ; ce qui justifie la dernière assertion puisque si t est impair, alors chaque terme
de la somme apparaît avec au moins un des ai impair.

Cet énoncé permet de retrouver et corriger [Ara12, Theorem 6]. Bien que la démonstration donnée
par Arap soit correcte, l’énoncé de ce dernier ne l’est pas en général sauf si r “ 1 ou t “ 0, 1. La
« subtilité » se situe à la toute fin de la démonstration du résultat : la composante d’indice ptq
d’un produit de Pontryagin n’est pas le produit de Pontryagin des composantes d’indices ptq. Quoi
qu’il en soit les exemples [Ara12, Example 1] (cas r “ 1) et [Ara12, Example 2] (formule obtenue
directement en reprenant la dernière étape correcte de la preuve du théorème) donnés par Arap
restent valides. En revanche, sa dernière assertion (qui est cette fois-ci difficilement vérifiable pour
ne pas dire invérifiable) concernant la non-nullité de rV sp2q avec r “ 2, 3 semble compromise.

4.3.3 Formules particulières pour rV sptq lorsque r “ 1

Le cas particulier des g1
d (cas où la courbe C 1 est d-gonale) mérite lui aussi d’être mis en avant :

Proposition 4.3.10 (Le cas n ě 2, r “ 1) - Soit 2 ă d ă 2g1 et V “
Ť

Vi l’union des sous-variétés
spéciales vues dans Z associées à un système linéaire complet sans point de base g1

d sur C 1. Alors la
composante homogène de la classe de rV s dans Ag´g1´1pZqptq est donnée par la formule suivante

rV sptq “ epZq´2´t
d
ÿ

β“1

ÿ

mPDn,β

nd´β
p´1qβ´1

β

ˆ

d

β

˙ˆ

β

m

˙

hpβ,m, σq˚ψZ˚Cptq P RσpψZ˚C;Zq

où la somme sur m est prise sur les pn ´ 1q-uplets d’entiers naturels m :“ pm1,m2, . . . ,mn´1q P

J1,n,β “ Dn,β et avec
ˆ

β

m

˙

:“

ˆ

β

m1, . . . ,mn´1, β ´
ř

kmk

˙

et hpβ,m, σq :“ β ´
n´1
ÿ

k“1

mk `

n´1
ÿ

k“1

mkσ
k.

Regardons encore le cas plus particulier où pn, rq “ p2, 1q. On retrouve la formule obtenue par
Arap [Ara12, Example 1].

Corollaire 4.3.11 (Le cas n “ 2, r “ 1) - Soit 2 ă d ă 2g1 et V “
Ť

Vi l’union des sous-variétés
spéciales vues dans Z associées à un système linéaire complet sans point de base g1

d sur C 1. Alors la
composante homogène de la classe de rV s dans Ag´g1´1pZqptq est donnée par la formule suivante

rV sptq “ c2,1,d,t ψZ˚Cptq P RσpψZ˚C;Zq

où

c2,1,d,t :“
d
ÿ

β“1

X

β
2

\

ÿ

m“0

p´1qβ´12d´β´2´t

β

ˆ

d

β

˙ˆ

β

m

˙

pβ ´ 2mq2`t.
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En particulier, si t est impair ou si c2,1,d,t “ 0, alors rV sptq “ 0. Par conséquent, si les c2,1,d,2t sont
tous non nuls, alors l’anneau tautologique RσpψZ˚C;Zq est engendré pour le produit de Pontryagin
par les rV sp2tq.

4.3.4 Formules particulières pour rV sp0q lorsque r ě 1

Plus généralement, il est intéressant de regarder ce qu’il se passe pour r ě 1, mais il faut alors ne
considérer que le cas t “ 0 si l’on espère trouver des formules plus simples que celles déjà obtenues
dans le théorème 4.3.6 (à cause des sommes sur a). Ceci étant fait, nous pourrons notamment
recouper nos résultats avec celui de la proposition 4.2.1. Pour motiver davantage l’étude de rV sp0q,
signalons enfin la proposition suivante :

Proposition 4.3.12 - Soit 0 ă 2r ă d ă 2g1 et V “
Ť

Vi l’union des sous-variétés spéciales vues
dans Z associées à un système linéaire complet sans point de base grd sur C

1. Si C est hyperelliptique,
alors rV s “ rV sp0q P Ag´g1´rpZqp0q. Si n “ 2, il suffit de supposer que C est hyperelliptique ou
trigonale pour avoir la même conclusion.

Démonstration. Si C est hyperelliptique, C “ Cp0q P ApJq, de sorte que tous les ψZ˚Cpiq sont nuls
dans ApZq pour tout i ě 1. Le théorème 4.3.6 montre donc que chaque rV sptq “ 0 pour t ě 1. D’où
le résultat. Si n “ 2, on a ψZ˚Cp2i`1q “ 0 pour tout i (Lemme 2.6.5). Dans ce cas, on a le même
résultat en supposant C trigonale car sous cette hypothèse Cpiq “ 0 pour tout i ě 2 (cf. [Bea04,
Section 5]).

Le cas n “ 2

La proposition suivante vient compléter le théorème 4.3.9. Il s’agit d’exprimer explicitement
rV sp0q pour n “ 2 et r ě 1.

Proposition 4.3.13 (Le cas n “ 2, r ě 1, t “ 0) - Soit 0 ă 2r ă d ă 2g1 et V “
Ť

Vi l’union des
sous-variétés spéciales vues dans Z associées à un système linéaire complet sans point de base grd sur
C 1. Alors la composante homogène de la classe de rV s dans Ag´g1´rpZqp0q est donnée par la formule
suivante

rV sp0q “ c2,r,d,0

`

ψZ˚Cp0q
˘˚r

avec

c2,r,d,0 :“ 2´2r
ÿ

nPIr,d

ÿ

mďn
2

λn,m
dn,m

r
ź

j“1

pnj ´ 2mjq
2

où la somme sur m est prise sur les r-uplets d’entiers naturels m :“ pm1,m2, . . . ,mrq P Jr,2,n,
c’est-à-dire vérifiant la condition pour tout j P J1, rK, mj ď

nj
2 . Plus simplement, on a

rV sp0q “ rc2,r,d,0
ηdimZ´r

pdimZ ´ rq!

où

rc2,r,d,0 :“ 22r´g1`1r! c2,r,d,0 “ 2´g
1`1r!

ÿ

n

ÿ

mďn
2

λn,m
dn,m

r
ź

j“1

pnj ´ 2mjq
2.
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Démonstration. D’après le théorème général obtenu pour n “ 2 et r ě 1, on a immédiatement

rV sp0q “ 2´2r
ÿ

n

ÿ

mďn
2

λn,m
dn,m

r
ź

j“1

pnj ´ 2mjq
2
`

ψZ˚Cp0q
˘˚r

.

Par ailleurs, notons toujours η :“ ι˚Zθ P A1pZq. On rappelle (cf. Preuve du théorème 2.6.1 – Step 1)
que

ψZ˚Cp0q “ p´1q1´dimZψη˚FZpηq.

Ainsi, en utilisant [Bea83, Proposition 5], on a

ψZ˚Cp0q “ p´1q1´dimZψη˚FZpηq “ p´1q1´dimZψη˚ϕη˚
p´1qdimZ´1

χpηq

ηdimZ´1

pdimZ ´ 1q!
.

Comme ψη ˝ ϕη “ epZq “ 2Z par définition de ϕη et ψη (cf. Sous-section 2.3.1), il vient

ψZ˚Cp0q “
1

2dimZ
2˚

ηdimZ´1

pdimZ ´ 1q!
“ 22´dimZ ηdimZ´1

pdimZ ´ 1q!
“ 23´g1 ηg

1´2

pg1 ´ 2q!

car χpηq “ 2dimZ puisque η est le double d’une polarisation principale sur la variété de Prym Z. Il
s’ensuit en utilisant [Bea83, Corollaire 3] que

`

ψZ˚Cp0q
˘˚r

“ 2rp2´dimZq

ˆ

ηdimZ´1

pdimZ ´ 1q!

˙˚r

“ 2rp2´dimZqχpηqr´1

ˆ

r dimZ ´ rpdimZ ´ 1q

dimZ ´ pdimZ ´ 1q, . . . ,dimZ ´ pdimZ ´ 1q

˙

ηrpdimZ´1q´pr´1qpdimZq

prpdimZ ´ 1q ´ pr ´ 1qdimZq!

“ 2rp2´dimZq`pr´1q dimZ

ˆ

r

1, . . . , 1

˙

ηdimZ´r

pdimZ ´ rq!
“ 22r´dimZr!

ηdimZ´r

pdimZ ´ rq!
“ 22r´g

1
`1r!

ηg
1
´1´r

pg1 ´ 1´ rq!
.

D’où

rV sp0q “ 2´2r
ÿ

n

ÿ

mďn
2

λn,m
dn,m

r
ź

j“1

pnj ´ 2mjq
222r´g1`1r!

ηdimZ´r

pdimZ ´ rq!

“ 2´g
1`1r!

ÿ

n

ÿ

mďn
2

λn,m
dn,m

r
ź

j“1

pnj ´ 2mjq
2 ηdimZ´r

pdimZ ´ rq!
.

Corollaire 4.3.14 - Avec les notations de la proposition 4.3.13, on a

rc2,r,d,0 “ 2d´g
1´r`1 et c2,r,d,0 “

2d´3r

r!
.

Par conséquent, si n “ 2, on a

rV sp0q “ 2d´g
1´r`1 ηdimZ´r

pdimZ ´ rq!
“

2d´3r

r!

`

ψZ˚Cp0q
˘˚r

,

ce qui se réécrit aussi en notant ξ la polarisation principale de la variété de Prym telle que η “ 2ξ :

rV sp0q “ 2d´2r ξg
1´1´r

pg1 ´ 1´ rq!
“

2d´3r

r!

`

ψZ˚Cp0q
˘˚r

,
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Démonstration. La précédente proposition 4.3.13 montre que rV sp0q Ă Ag1´1´rpZqp0q est de la forme

rV sp0q “ rc2,r,d,0
ηdimZ´r

pdimZ ´ rq!
“ rc2,r,d,0

ηg
1´1´r

pg1 ´ 1´ rq!
.

Par ailleurs, en projetant cette égalité dans HpZq, en notant encore η “ clZpηq P H2pZq et en
utilisant la proposition 4.2.1, on a

rc2,r,d,0
ηg
1´1´r

pg1 ´ 1´ rq!
“ clZprV sp0qq “ clZprV sq “ 2d´g

1´r`1 ηg
1´1´r

pg1 ´ 1´ rq!
P H2pg1´1´rqpZq.

On en déduit que rc2,r,d,0 “ 2d´g
1´r`1. Enfin, la dernière égalité découle immédiatement de :

`

ψZ˚Cp0q
˘˚r

“ 22r´g1`1r!
ηg
1´1´r

pg1 ´ 1´ rq!
.

Le cas n “ 3

Cherchons à obtenir une formule analogue lorsque n “ 3, r ě 1 et t “ 0. Comme on l’a déjà vu,
le cas n “ 3 n’est pas beaucoup plus compliqué que le cas n “ 2 donc cette étude semble raisonnable
à priori.

Proposition 4.3.15 (Le cas n “ 3, r ě 1, t “ 0) - Soit 0 ă 2r ă d ă 2g1 et V “
Ť

Vi l’union des
sous-variétés spéciales vues dans Z associées à un système linéaire complet sans point de base grd sur
C 1. Alors la composante homogène de la classe de rV s dans Ag´g1´rpZqp0q est donnée par la formule
suivante

rV sp0q “ c3,r,d,0

`

ψZ˚Cp0q
˘˚r

avec

c3,r,d,0 “ 3´2r
ÿ

nPIr,d

ÿ

mPJr,3,n

λn,m

dn,m

r
ź

j“1

ajpn,mq

où on a posé pour tout j P J1, rK,

ajpn,mq :“ n2
j ` 3pm2

j,1 `mj,1mj,2 `m
2
j,2q ´ 3njpmj,1 `mj,2q.

Plus simplement, on a

rV sp0q “ rc3,r,d,0
ηdimZ´r

pdimZ ´ rq!

avec

rc3,r,d,0 :“ 32r´g1`1r! c3,r,d,0 “ 3´g
1`1r!

ÿ

n

ÿ

mďn
2

λn,m

dn,m

r
ź

j“1

ajpn,mq.

Démonstration. D’après le théorème principal 4.3.6, on a

rV sp0q “ 3´2r
ÿ

nPIr,d

ÿ

mPJr,3,n

λn,m

dn,m
h1pn,m, σq˚ψZ˚Cp0q ˚ . . . ˚ hrpn,m, σq˚ψZ˚Cp0q.
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Par ailleurs, l’action de l’involution de Rosati sur les hj est la suivante :

Rphjpn,m, σqq “ hjpn,m, σ
´1q.

Alors pour tout j

hjpn,m, σq˚ψZ˚Cp0q “ p´1q1´dimZψη˚FZpι˚Zhjpn,m, σ´1q˚θq.

Étudions plus précisément le diviseur

hjpn,m, σ
´1q˚θ “

˜

nj ´
2
ÿ

k“1

mj,k `

2
ÿ

k“1

mj,kσ
´k

¸˚

θ P A1pJq.

Pour ce faire, une première méthode consiste à utiliser directement le lemme 3.2.1. Une seconde
(sensiblement équivalente) consiste à utiliser la bijection entre NSQpJq et EndpsqpJq, puis à raisonner
directement sur les polynômes en σ. Pour changer, utilisons cette seconde méthode et pour alléger
les formules suivantes, notons mj,0 :“ nj ´

ř2
k“1mj,k P N. Le diviseur

hjpn,m, σ
´1q˚θ “

`

mj,0 `mj,1σ
´1 `mj,1σ

´2
˘˚
θ

correspond alors à l’endomorphisme symétrique

Rphjpn,m, σ
´1qq ˝ hjpn,m, σ

´1q “ hjpn,m, σq ˝ hjpn,m, σ
´1q

“ pmj,0 `mj,1σ `mj,2σ
2qpmj,0 `mj,1σ

´1 `mj,2σ
´2q

“m2
j,0 `m

2
j,1 `m

2
j,2 `mj,0mj,1σ

´1 `mj,0mj,2σ
´2 `mj,0mj,1σ `mj,1mj,2σ

´1 `mj,0mj,2σ
2 `mj,1mj,2σ

“m2
j,0 `m

2
j,1 `m

2
j,2 ` pmj,0mj,1 `mj,1mj,2 `mj,2mj,0qpσ

2 ` σ´2q

“m2
j,0 `m

2
j,1 `m

2
j,2 ` pmj,0mj,1 `mj,1mj,2 `mj,2mj,0q

`

pσ ` σ´1q2 ´ 2
˘

.

Ainsi,

hjpn,m, σ
´1q˚θ “

`

m2
j,0 `m

2
j,1 `m

2
j,2 ´ 2pmj,0mj,1 `mj,1mj,2 `mj,2mj,0q

˘

θ

` pmj,0mj,1 `mj,1mj,2 `mj,2mj,0qpσ ` σ
´1q˚θ.

Il s’ensuit que

hjpn,m, σq˚ψZ˚Cp0q “
`

m2
j,0 `m

2
j,1 `m

2
j,2 ´ 2pmj,0mj,1 `mj,1mj,2 `mj,2mj,0q

˘

ψZ˚Cp0q

` pmj,0mj,1 `mj,1mj,2 `mj,2mj,0qpσ ` σ
´1q˚ψZ˚Cp0q

“
`

m2
j,0 `m

2
j,1 `m

2
j,2 ´ pmj,0mj,1 `mj,1mj,2 `mj,2mj,0q

˘

ψZ˚Cp0q

car σ étant d’ordre 3,
Z “ KerpNY q

0 “ Kerp1` σ ` σ2q0,

auquel cas σ ` σ´1 “ σ ` σ2 “ ´1Z dans EndpZq et

pσ ` σ´1q˚ψZ˚Cp0q “ p´1q˚ψZ˚Cp0q “ ψZ˚p´1q˚Cp0q “ ψZ˚Cp0q.

Plus explicitement encore, on a en revenant à la définition de mj,0 :

hjpn,m, σq˚ψZ˚Cp0q “
`

m2
j,0 `m

2
j,1 `m

2
j,2 ´ pmj,0mj,1 `mj,1mj,2 `mj,2mj,0q

˘

ψZ˚Cp0q

“
`

n2
j ` 3pm2

j,1 `mj,1mj,2 `m
2
j,2q ´ 3njpmj,1 `mj,2q

˘

ψZ˚Cp0q.
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Notons enfin
ajpn,mq :“ n2

j ` 3pm2
j,1 `mj,1mj,2 `m

2
j,2q ´ 3njpmj,1 `mj,2q

de sorte que
hjpn,m, σq˚ψZ˚Cp0q “ ajpn,mqψZ˚Cp0q.

On a donc obtenu la formule suivante :

rV sp0q “ 3´2r
ÿ

nPIr,d

ÿ

mPJr,3,n

λn,m

dn,m

r
ź

j“1

ajpn,mq
`

ψZ˚Cp0q
˘˚r

.

Puis, comme dans la proposition précédente on a les égalités

`

ψZ˚Cp0q
˘˚r

“
32r

χpηqr
χpηqr´1r!

ηdimZ´r

pdimZ ´ rq!
“

32r

χpηq
r!

ηdimZ´r

pdimZ ´ rq!
“ 32r´g1`1r!

ηdimZ´r

pdimZ ´ rq!

car χpηq “ 3g
1´1 (Proposition 3.3.14), on aboutit à

rV sp0q “ 3´2r
ÿ

nPIr,d

ÿ

mPJr,3,n

λn,m

dn,m

r
ź

j“1

ajpn,mq3
2r´g1`1r!

ηdimZ´r

pdimZ ´ rq!

“ 3´g
1`1r!

ÿ

nPIr,d

ÿ

mPJr,3,n

λn,m

dn,m

r
ź

j“1

ajpn,mq
ηdimZ´r

pdimZ ´ rq!
;

ce qu’il fallait démontrer.

Comme conséquence directe de cette proposition, on obtient :

Corollaire 4.3.16 (Le cas n “ 3, r “ 1, t “ 0) - Soit 2 ă d ă 2g1 et V “
Ť

Vi l’union des
sous-variétés spéciales vues dans Z associées à un système linéaire complet sans point de base g1

d sur
C 1. Alors la composante homogène de la classe de rV s dans Ag´g1´1pZqp0q est donnée par la formule
suivante

rV sp0q “ c3,1,d,0 ψZ˚Cp0q

où

c3,1,d,0 :“
d
ÿ

β“1

ÿ

pm1,m2qPD3,β

3d´β´2 p´1qβ´1

β

ˆ

d

β

˙ˆ

β

m1,m2, β ´m1 ´m2

˙

apβ,mq

avec
apβ,mq :“ β2 ` 3pm2

1 `m1m2 `m
2
2q ´ 3βpm1 `m2q.

A l’instar du cas n “ 2, on obtient aussi le corollaire suivant :

Corollaire 4.3.17 - Avec les hypothèses de la proposition 4.3.15, on a

rc3,r,d,0 “ 3d´g
1´r`1 et c3,r,d,0 “

3d´3r

r!
.

Par conséquent, si n “ 3, on a

rV sp0q “ 3d´g
1´r`1 ηdimZ´r

pdimZ ´ rq!
“

3d´3r

r!

`

ψZ˚Cp0q
˘˚r

.
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Démonstration. La démonstration est analogue au cas n “ 2 :

rV sp0q “ rc3,r,d,0
ηdimZ´r

pdimZ ´ rq!
,

égalité que l’on compare à

rc3,r,d,0
ηdimZ´r

pdimZ ´ rq!
“ clZprV sp0qq “ clZprV sq “ 3d´g

1´r`1 ηdimZ´r

pdimZ ´ rq!
P H2pdimZ´rqpZq,

pour en déduire le résultat rc3,r,d,0 “ 3d´g
1´r`1. L’autre égalité est obtenue en se rappelant que

`

ψZ˚Cp0q
˘˚r

“ 32r´g1`1r!
ηdimZ´r

pdimZ ´ rq!
.

4.3.5 Exemples

Terminons ce chapitre par quelques illustrations numériques des formules obtenues. On commence
par s’intéresser au cas n “ 2, puis on passera au cas n “ 3.

Le cas n “ 2

Exemple 4.3.18 (c2,1,d,t) : D’après [Ara12, Example 1], lorsque n “ 2 et r “ 1, on a la formule
suivante :

c2,1,d,2s “
p4s`1 ´ 1qB2s`2

s` 1
¨ 2d´2

où Bm est le me nombre de Bernoulli défini par t
et´1 “

ř`8
m“0Bm

tm

m! . En particulier, on obtient
comme annoncé par le corollaire 4.3.14 :

c2,1,d,0 “ 2d´3.

On a alors par exemple dans le cas d’un g1
3

c2,1,3,0 “ 1, c2,1,3,2 “ ´
1

2

de sorte que rV s “ rV sp0q ` rV sp2q “ ψZ˚Cp0q ´
1
2ψZ˚Cp2q P RσpψZ˚C;Zq.

Exemple 4.3.19 (c2,r,d,0) : Plus généralement, on a vu dans le corollaire 4.3.14 l’égalité

c2,r,d,0 “
2d´3r

r!
;

résultat que l’on peut vérifier en utilisant directement la définition du coefficient c2,r,d,0 donnée dans
la proposition 4.3.13. On vérifie par exemple les affirmations suivantes :

c2,1,3,0 “ 1, c2,1,4,0 “ 2, c2,1,5,0 “ 4, c2,2,5,0 “
1

4
et c2,3,7,0 “

1

24
.
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revêtements Galoisiens n-cycliques

Le cas n “ 3

Exemple 4.3.20 (c3,1,d,0) : En utilisant la définition des coefficients c3,1,d,0 obtenue dans la propo-
sition 4.3.15 ou plus directement le corollaire 4.3.16, on peut vérifier par un calcul direct que

c3,1,3,0 “ 1, c3,1,4,0 “ 3, c3,1,5,0 “ 32;

ce qui est le résultat attendu depuis le corollaire 4.3.17. Plus généralement, pour d ě 3, on a bien
les égalités :

rV sp0q “ 3d´g
1 η2pg1´1q´1

p2pg1 ´ 1q ´ 1q!
“ 3d´3ψZ˚Cp0q.

Exemple 4.3.21 (c3,2,5,0) : On vérifie également par un calcul direct que

c3,2,5,0 “
1

6
;

résultat qui est bien celui annoncé par le corollaire 4.3.17 :

1

6
“

35´3¨2

2!
.

Aussi, on a les égalités :

rV sp0q “ 34´g1 η2pg1´1q´2

p2pg1 ´ 1q ´ 2q!
“

1

6

`

ψZ˚Cp0q
˘˚2

.

Exemple 4.3.22 (c3,3,7,0) : Tous calculs effectués, on trouve

c3,3,7,0 “
1

54

ce qui est bien en accord avec le corollaire 4.3.17 :

1

54
“

37´3¨3

3!
.

Autrement dit, on a :

rV sp0q “ 35´g1 η2pg1´1q´3

p2pg1 ´ 1q ´ 3q!
“

1

54

`

ψZ˚Cp0q
˘˚3

.

Au-delà des valeurs numériques obtenues dans ces différents exemples, il est toujours intéressant
(et rassurant) d’avoir pu les retrouver d’au moins deux manières bien distinctes.
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De manière générale, on étudie dans cette thèse les cycles algébriques sur les
variétés Jacobiennes de courbes complexes projectives lisses qui admettent des auto-
morphismes non triviaux. Il s’agit plus précisément d’introduire et d’étudier de nouveaux
anneaux tautologiques associés à des groupes d’automorphismes de la courbe. On
montre que ces Q-algèbres naturelles de cycles algébriques sur les Jacobiennes se
restreignent en des familles de cycles sur certaines sous-variétés spéciales de la
Jacobienne et que celles-ci méritent encore le nom d’anneaux tautologiques sur ces
sous-variétés. On étudie en détail le cas des courbes hyperelliptiques ; situation dans
laquelle les algèbres introduites admettent un nombre fini de générateurs, et en parti-
culier sont de dimension finie. On peut alors être très précis dans l’étude des relations
entre ces générateurs. Enfin, on montre que ces anneaux tautologiques apparaissent
naturellement dans un autre contexte : celui des systèmes linéaires complets sans point
de base.
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