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Et toute science, quand nous l’entendons non comme un instrument de pouvoir et de domination,
mais comme aventure de connaissance de notre espéce a travers les dges, n’est autre chose que cette
harmonie, plus ou moins vaste et plus ou moins riche d’une époque a l'autre, qui se déploie au
cours des générations et des siécles, par le délicat contrepoint de tous les thémes apparus tour a
tour, comme appelés du néant, pour se joindre en elle et s’y entrelacer.

Alexandre GROTHENDIECK.
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Résumé

De maniére générale, on étudie dans cette thése les cycles algébriques sur les variétés Jacobiennes
de courbes complexes projectives lisses qui admettent des automorphismes non triviaux. Il s’agit
plus précisément d’introduire et d’étudier de nouveaux anneaux tautologiques associés a des groupes
d’automorphismes de la courbe. On montre que ces Q-algébres naturelles de cycles algébriques
sur les Jacobiennes se restreignent en des familles de cycles sur certaines sous-variétés spéciales
de la Jacobienne et que celles-ci méritent encore le nom d’anneaux tautologiques sur ces sous-
variétés. On étudie en détail le cas des courbes hyperelliptiques ; situation dans laquelle les algébres
introduites admettent un nombre fini de générateurs, et en particulier sont de dimension finie. On
peut alors étre trés précis dans 1’étude des relations entre ces générateurs. Enfin, on montre que
ces anneaux tautologiques apparaissent naturellement dans un autre contexte : celui des systémes
linéaires complets sans point de base.

Mots clés : cycles algébriques, anneaux tautologiques, Jacobiennes, automorphismes, transformée
de Fourier, variétés de Prym généralisées.






Notations

[a,b] ensemble des entiers compris entre les réels a et b

#E cardinal d’un ensemble F

|z] fonction partie entiére de x

[z] fonction plafond de x

o, p-éme polyndéme cyclotomique rationnel

C courbe complexe compléte et non-singuliére

9(C) genre de C

K(C) corps des fonctions de C'

Aut(C) groupe d’automorphismes de C'

Cc(d) d-éme puissance symétrique de C

J(C) variété Jacobienne de C

fr plongement de C' dans J(C') déterminé par un point rationnel P de C

Zi(X) ensemble des cycles algébriques de codimension 7 sur une variété X

Zi(X) ensemble des cycles algébriques de dimension ¢ sur une variété X
produit d’intersection pour les cycles algébriques

% produit de Pontryagin pour les cycles algébriques

Div(X) groupe des diviseurs (de Weil) sur une variété X

CH(X) anneau de Chow d’une variété X

A(X) Q-algebre des classes de cycles algébriques sur une variété X modulo équiva-

lence algébrique
Pic(X) groupe de Picard de X

NS (X) groupe de Néron-Severi rationnel d’une variété X

Ac cycle algébrique déterminé par la diagonale de C?

X duale d’une variété abélienne X

f homomorphisme dual d’un homomorphisme de variétés abéliennes

Pyuz faisceau de Poincaré sur une variété abélienne X

Lo s classe de cycle algébrique dans A'(X x X ) déterminée par Py ¢

Fx transformée de Fourier pour les cycles algébriques sur une variété abélienne X
X caractéristique d’Euler

Vectg(Z)  K-espace vectoriel engendré par une famille de vecteurs 7






Introduction

L’objectif de cette thése est d’étudier les cycles algébriques sur les variétés Jacobiennes de courbes
complexes projectives lisses qui admettent des automorphismes. Il s’agit plus précisément d’intro-
duire et d’étudier de nouveaux anneaux tautologiques associés a des groupes d’automorphismes de
la courbe.

Anneau tautologique

La notion d’anneau tautologique a été pour la premiére fois introduite et étudiée par Arnaud
Beauville dans [Bea04]. L’idée est la suivante. Soit C' une courbe complexe projective lisse de genre
g =g(C) = 1. On note J = J(C) sa variété Jacobienne et A(J) 'anneau des cycles algébriques sur
J modulo équivalence algébrique tensorisé par Q. Un point rationnel P étant fixé sur C, on dispose
d’un plongement f¥ : C < J. On obtient de cette maniére un cycle exceptionnel et tout a fait
naturel dans A9~1(.J) : celui associé¢ a la courbe image f(C) < J. Pour alléger les notations, on
notera encore C' cette classe de cycle qui, grace a ’équivalence algébrique, est indépendante du choix
du point P. Pour plus de clarté introduisons déja une notation.

Notation : Soit X une variété abélienne et J < A(X) une famille de cycles sur X. On note par
Tautx () 'anneau tautologique engendré par J, c’est-a-dire le plus petit Q-sous-espace vectoriel
de A(X) contenant J et fermé pour les opérations naturelles de A(X) ; & savoir les produits d’inter-
section et de Pontryagin, les pull-backs et push-forwards par les opérateurs ks, k* induits pour tout
k € Z par les homothéties k = kx : z — kx de X.

Beauville a étudié 'anneau R(C;J) := Taut;({C}) grace a un outil important : la transformée
de Fourier pour les cycles algébriques. La puissance de cet outil, pour ce qui nous intéresse, réside
entre autres dans la compatibilité de la transformée de Fourier avec les produits d’intersection et de
Pontryagin mais aussi compatibilité vis-a-vis des pull-backs et push-forwards des cycles. Beauville a
alors montré que cette Q-sous-algebre de A(J) est engendrée

L. pour le produit de Pontryagin par les composantes homogenes C';) € AI~L(T )(i) apparaissant
dans la décomposition de Beauville [Bea86| du cycle C,

2. pour le produit d’intersection par la transformée de Fourier des cycles C;). Ces cycles seront
notés —N**1(w) pour des raisons qui apparaitront plus clairement dans la suite.

Aprés avoir présenté de maniére plus détaillée le cadre de travail de cette thése au chapitre 1,
on s’attachera dés le chapitre 2 & étudier le comportement fonctoriel des anneaux R(C;J). Plus
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précisément, supposons que 'on ait un morphisme fini f : C — C’ entre courbes complexes pro-
jectives lisses. Celui-ci induit deux (homo)morphismes de variétés abéliennes f* : J(C') — J(C)
et Ny : J(C) — J(C') (morphisme d’Albanese). On étudiera I’action de ces morphismes par pull-
back et push-forward sur les cycles tautologiques associés a C' et C’. Le cas plus intéressant pour
nous est celui des revétements Galoisiens cycliques f : C — €' ~ C/{s) déterminés par un au-
tomorphisme o € Aut(C) d’ordre n € N*. Dans ce cas, il apparait naturellement dans A(J(C))
des push-forwards de C par des polynémes en l'automorphisme o (ou plus précisément polynémes
en 'automorphisme d’Albanese encore noté ¢ = N, € Aut(J(C))). De ce point de vue, on sera
naturellement amené & étudier la plus petite extension de R(C'; J(C)) stable par les pull-backs et
push-forwards par les polynémes en o. On montrera que cette extension R,(C;J(C)) < A(J(C))
mérite encore le nom d’anneau tautologique sur J(C). Plus généralement, on introduira dans ce
chapitre 2 des anneaux tautologiques R (C'; J(C)) sur J(C) associés a n’importe quel groupe (fini)
d’automorphismes G < Aut(C'). Ces anneaux tautologiques sont engendrés pour le produit d’inter-
section par les 7* N*(w) pour 7 € Z[G].

En fait, I'étude de la fonctorialité de 'anneau R(C;J(C)) (mais aussi des Rg(C;J(C))) nous
ameénera & considérer la sous-variété abélienne Y := Im(f*) < J(C), sous-variété isogéne a J(C"). On
considérera également une sous-variété abélienne Z complémentaire de Y dans J(C). On montrera
que, sous-certaines hypothéses faibles sur G, les anneaux R (C'; J(C)) se restreignent en des familles
de cycles dans A(Y) et A(Z) qui méritent eux-aussi d’étre qualifiées d’anneaux tautologiques sur
Y et Z. On vient ainsi généraliser un théoréme de Maxim Arap [Aral2, Theorem 1| qui a mis en
évidence un anneau tautologique sur Z (analogue a 'anneau R(C;J(C)) sur les Jacobiennes) dans
le cas particulier ou Z est une variété de Prym.

Dans le chapitre 3, on étudiera en détail ces anneaux tautologiques sur J et Z associés a un
automorphisme o d’ordre p premier lorsque la courbe C' est supposée hyperelliptique. Dans ce cas,
on montre que ces Q-algébres sont engendrées par un nombre fini d’éléments. On présentera alors
dans ce chapitre une méthode pour étudier les relations entre ces générateurs; obtenant ainsi la
structure d’algébre compléte (générateurs et relations) pour les anneaux tautologiques sur Z au
moins lorsque Z est de petite dimension.

Le dernier chapitre, le 4, montrera que ces anneaux tautologiques sur les variétés de Prym
généralisées Z apparaissent aussi dans un autre contexte. Il s’agira de généraliser des résultats de
Beauville [Bea82| et de Arap [Aral2] en montrant que tout systéme linéaire complet g/, sans point
de base sur ¢’ ~ C/{o) (avec o d’ordre n quelconque sans point fixe) détermine des sous-variétés
spéciales sur Z dont les classes de cycles sont des cycles tautologiques sur Z. On donnera des formules
explicites pour décomposer ces classes en termes de générateurs de I’anneau tautologique sur Z.

Conventions

Les variétés considérées dans cette thése sont des variétés complexes (bien que ce ne soit pas tou-
jours essentiel). Les courbes considérées seront systématiquement supposées complexes projectives et
lisses. Le terme de point désignera (sauf mention contraire) un point rationnel ou de maniére équiva-
lente sur C, un point fermé. Lorsqu’on parlera de morphismes de variétés abéliennes, on sous-entendra
homomorphismes de variétés abéliennes. Un morphisme p; défini sur un produit de variétés désignera
classiquement la projection sur le i-éme facteur. Parfois, on notera aussi p = p; : X x Y — X et
qg=p2: X xY —>Y.

10



CHAPITRE 1

Cadre de travail et premiéres motivations

On précise dans ce chapitre le cadre de travail dans lequel ce texte s’inscrit. C’est 'occasion
d’introduire un certain nombre de notations, de rappeler les résultats connus et de commencer a
motiver I’étude & venir.

1.1 Cycles algébriques et relations d’équivalence

Pour plus de détails concernant cette section, une référence incontournable est [Ful98]. On pourra
toutefois s’intéresser dans un premier temps a [Murl4| pour obtenir une approche plus globale et
succincte des cycles algébriques et des relations d’équivalence.

1.1.1 Relations d’équivalence rationnelle, algébrique et homologique

Cycles algébriques :  Soient X une variété complexe projective lisse de dimension g et i € [0, g].
On note Z(X) = Z,_;(X) le groupe des cycles de codimension i (ou de maniére équivalente de
dimension g — i) sur X ; c’est-a-dire le Z-module libre engendré par les sous-variétés irréductibles de
X de codimension 1.

Exemple 1.1.1 : Z}(X) = Div(X) est le groupe des diviseurs (de Weil) sur X.

Etant donnée une sous-variété V' de X, on notera (sauf mention explicite du contraire) [V] le
cycle algébrique déterminé par V. Plus généralement, si on considére un sous-schéma V' dont les
composantes irréductibles sont Vi,..., V., on note [V] = Y77 m;[Vi] ot m; est la multiplicité de V;

dans V'; a savoir la longueur de 'anneau Oyy;.

Anneau de Chow : Soient pi,ps les deux projections de X x P! sur X et P! respectivement.
Etant donnée une sous-variété irréductible V' de X x P! qui se projette de maniére dominante sur
P!, on définit pour tout point ¢t € P! :

V(t):=p (V- (X x {t}))

Un cycle Z € Z%(X) est dit rationnellement équivalent & zéro, et on note Z € Rat!(X), s'il existe
une correspondance v € ZH(X x P!) et deux points a,b € P! tels que

Z =~(b) —(a).

11



Chapitre 1. Cadre de travail et premiéres motivations

On dit alors de deux cycles «, 8 € Z/(X) qu’ils sont rationnellement équivalents si leur différence est
rationnellement équivalente a zéro, c’est-a-dire a — 8 € Rat'(X). Ceci définit une relation d’équiva-
lence sur Z%(X). Le quotient sera noté

CH,_i(X) = CH'(X) := Pit(*(};))

Le groupe de Chow de X est par définition
g .
CH(X) := (P CH'(X).
i=0

On dispose d’un produit d’intersection bien défini sur CH(X') qui le munit d’une structure d’anneau
commutatif dont I’élément neutre est [X']. On parlera de 'anneau de Chow de X pour faire référence
a cette structure d’anneau pour le produit d’intersection (CH(X),+, ). Notons que la graduation
de 'anneau de Chow selon la codimension est compatible avec le produit d’intersection dans le sens
ou

CH'(X) - CH/(X) ¢ CH"™™(X).

Equivalence algébrique : On définit de maniére analogue une autre relation adéquate sur
ZY(X) : 'équivalence algébrique (voir par exemple [Murl4, Sous-section 1.3] ou encore [BL04, Re-
mark 16.1.1] pour une définition de relation adéquate). Pour cela, il suffit de reprendre la définition
d’équivalence rationnelle et de remplacer P! par une courbe projective lisse C. On définit ainsi le
sous-groupe Alg'(X) < Z%(X) des cycles algébriquement équivalents a zéro, puis

_ ZI(X)
Alg'(X)

On peut donc considérer I'anneau des cycles algébriques modulo équivalence algébrique :

AT(X) = Agi(X)

=0

En particulier, tout les points d’'une courbe complexe projective lisse C' sont algébriquement équiva-
lents entre eux de sorte que A'(C) ~ Z via I'application degré deg : A}Y(C) — Z.

Equivalence homologique :  On se fixe une cohomologie de Weil H'(X) sur X ; c’est-a-dire une
cohomologie avec les bonnes propriétés usuelles (décomposition de Kiinneth, application classe de
cycles, etc. [Murl4, Sous-section 2.3]). Puisque 'on travaille sur C, pour nous ce sera la cohomolo-
gie singuliére & coefficients entiers (ou rationnels) de X. Avec une cohomologie de Weil vient une
application classe de cycles

cy : 24(X) - H¥(X).

On définit
Hom'(X) := Ker (cly : 2'(X) — H*(X)) .

La relation d’équivalence rationnelle est la plus fine des relations adéquates. On a les inclusions
suivantes :

Rat’(X) c Alg’(X) c Hom®(X).

L’application clx passe donc au quotient a travers CH(X) et A(X).
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1.1. Cycles algébriques et relations d’équivalence

Convention : Dans tout ce qui suit, on notera encore
CH(X) = CH(X) ®z Q et AX) =AX)®z Q.

On travaillera donc avec des (classes de) cycles & coefficients rationnels.

1.1.2 Morphismes et théorie de 'intersection

Push-forward et pull-back : Si f: X — Y est un morphisme propre entre variétés projectives
lisses, on dispose d’un morphisme de groupes

défini de la maniére suivante. Soit V une sous-variété irréductible de X,

deg(fiy)[f(V)] sifly : V — f(V) est génériquement fini,

0 sinon.

f*[V] = {

Ce morphisme induit un morphisme de push-forward f, au niveau des anneaux de Chow mais aussi
au niveau des anneaux des cycles modulo équivalence algébrique.

Tout morphisme plat f: X — Y induit un morphisme de groupes
f*: 24Y) — ZY(X)

déterminé par f*[V] = [f~1(V)]. Sans hypothése de platitude sur f (grace au lemme de déplacement
de Chow), on obtient méme un morphisme d’anneaux au niveau des anneaux de Chow et modulo
équivalence algébrique.

Rappelons & présent deux résultats importants :

Proposition 1.1.2 (Formule de projection) - Soit f : X — Y un morphisme propre entre variétés
projectives lisses. Alors pour tout x € CH(X) et y € CH(Y), on a

fe(@- f*y) = fuz-y.

Proposition 1.1.3 (Formule de changement de base) - Considérons un carré cartésien

X Y.x

)

Y/ T Y
entre variétés projectives lisses avec f propre et g plat. Alors pour tout cycle x € CH(X), on a
feg™a = g* fua.

Correspondances :  Signalons enfin que tout correspondance (de codimension p) Z € CHP(X xY)

induit aussi un morphisme '
Zy : CH;(X) — CHPTY(Y)

défini par
Va e CHi(X), Zi(a) = p2(Z - pia).

13



Chapitre 1. Cadre de travail et premiéres motivations

1.2 Cycles algébriques sur une variété abélienne

1.2.1 Produit de Pontryagin

On considére a présent une variété¢ abélienne complexe X toujours de dimension g = 9(X).
On note m : X x X — X sa loi de groupe et X sa variété abélienne duale. En plus du produit
d’intersection sur CH(X), on dispose d'un second produit : le produit de Pontryagin défini de la
maniére suivante

v,y e CH(X), Txy 1= my(piT - pay) = my(x X y).

Intuitivement (et ensemblistement), considérer le produit de Pontryagin de deux cycles revient a
sommer (au sens loi de la variété abélienne) les points de ces deux cycles. Précisément, si V et W
sont deux sous-variétés irréductibles de X, alors

[V]# [W] = deg(myw)[V + W]

simyxw : VxW — V + W est génériquement fini, sinon ce produit est nul. En particulier, le
produit de Pontryagin est homogéne de degré —g :

CH!(X) * CH?(X) ¢ CH""79(X).
Ce produit de Pontryagin est lui aussi bien défini dans A(X) et on notera qu’il est compatible avec

les push-forwards de cycles par des homomorphismes de variétés abéliennes.

1.2.2 Transformée de Fourier

Un outil clé pour obtenir bon nombre de résultats présentés dans cette thése est la transformée
de Fourier pour les cycles algébriques sur une variété abélienne X. On notera dans tout ce qui suit
l =1, ¢ laclasse du cycle du fibré de Poincaré¢ P = P, ¢ sur X x X. La transformée de Fourier
Fx sur X est alors définie comme étant le morphisme induit par la correspondance

29
. = 1 ~
eXxX = E TL!l%x)?ECH(X ><X).

n=0

Plus explicitement, on a pour tout z € CH(X),
lo =
Fx(z) := pox(pia - € xxX),
Cette transformée de Fourier posséde de nombreuses propriétés, notamment :

1. Identifiant canoniquement X avec la variété biduale X (ce que 'on fera systématiquement),
on obtient une transformée de Fourier F; : CH(X) — CH(X) sur X. Elle vérifie I'importante
formule d’inversion de Fourier suivante :

FgoFx = (—1)(=1x)*.
2. Pour tous cycles x,y sur X, on a
Fx(z-y) = (-1)Fx(z) « Fx(y) et Fx(rvxy)=Fx(z) Fx(y).
On pourra se référer a [Bea83| pour obtenir bien d’autres propriétés sur cet outil.
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1.2. Cycles algébriques sur une variété abélienne

1.2.3 Décomposition de Beauville

La transformée de Fourier fournit par exemple une preuve élégante du théoréme suivant démontré
en 1986 par Arnaud Beauville dans [Bea86]. Ce résultat affirme que les opérateurs ky et k* induits
sur CH(X) (mais aussi A(X)) par les homothéties k = kx : X — X pour k € Z se codiagonalisent.

Théoréme 1.2.1 (Décomposition de Beauville) - Pour s € Z, on note CHP(X),) le sous-espace de
CHP(X) formé des classes x telles que k*z = k* =5z pour tout k € Z (ou de maniére équivalente
kex = K2972P%52). On a

s=p
CHP(X) = @ CHP(X),).
s=p—g

Esquisse de la preuve du théoréme : Soit z € CHP(X) un cycle de codimension pure p € [0, g].
On souhaite décomposer x comme une somme de composantes homogénes x1 + x2 + ... + xp pour
certains cycles z, dans certains sous-espaces CH”(X) ). Pour cela, on commence par appliquer Fx
a xz. Le cycle y := Fx(x) se décompose sous la forme y = yo + y1 + ... 4+ y,4 ol chaque y, € CHq()A().
Le premier argument clé consiste a vérifier que la composante y, appartient méme a CH? ()A( )p+q—g-
La seconde étape consiste a repasser a x grace a la formule d’inversion de Fourier : les composantes
x4 cherchées sont au signe prés les transformées de Fourier F¢(y,) des y,. Ce sont encore des
cycles homogeénes relativement a la bigraduation de Beauville puisque la transformée de Fourier est
compatible avec les sous-espaces CHP (X)) :

Fx(CHP(X)() = CHIPH(R) .
Schématiquement, on peut visualiser la stratégie de la preuve sur le diagramme suivant :

Fx

z € CHP(X) y e @J_, CHI(X)

?

2ig=0%q € Do CH(X) (p14—g)

()9 )*Fg .
Y0 Ya € D)o CHU(X) (p14—g)

Remarque 1.2.2 : Ce résultat de décomposition a été par la suite généralisé par Deninger et Murre
[DM91] au cas des schémas abéliens.

On obtient ainsi une bigraduation de CH(X) qui se trouve étre compatible avec les produits
d’intersection et de Pontryagin ainsi que vis-a-vis des pull-backs et push-forwards :

1. Si z € CHP(X)(,) et y € CHY(X)y, alors
T-yE CHp+q(X)(S+t) et Ty E CHp+q_9(X)(S+t).
2. 81 f: X - Y est un homomorphisme de variétés abéliennes, alors
f*CHP(Y)) c CHP(X)(5) et fu CHP(X)(y) < CHPTIm®M) =m0y o
Beauville a conjecturé que seuls les indices (s) avec s positifs interviennent :
Conjecture 1.2.3 (Beauville) : On a CHP(X),) = 0 pour s < 0.
Cette conjecture est vraie pour p € {0,1,9 — 2,9 — 1, g}.
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Chapitre 1. Cadre de travail et premiéres motivations

Remarque 1.2.4 : Le cas p = 1 dans le théoréme 1.2.1 est simplement la décomposition bien connue
Picg(X) = Pich(X) @ Pic}(X) = CH} (X)) ® CH! (X))

ot Pic§)(X) ~ NSg(X) est le sous-espace de Picg(X) formé par les diviseurs symétriques.

1.3 Variétés Jacobiennes

Pour plus de détails quant & cette partie, on pourra se référer (par exemple) a [Mil86].

1.3.1 Deéfinition, autodualité et propriété d’Albanese

Définition :  Etant donnée une courbe complexe projective lisse C, la composante neutre Pic?(C)
du schéma de Picard est munie d’une structure de schéma en groupe. C’est une variété abélienne
appelée la (variété) Jacobienne de la courbe C' [Mil86, Theorem 1.1] et dont la dimension est égale
au genre g = g(C) de C [Mil86, Proposition 2.1]. On la notera J(C') ou plus simplement J lorsqu’il
n’y a pas d’ambiguité pour identifier la courbe. Autrement dit, la variété J vient paramétrer les
classes d’isomorphie de faisceaux inversibles de degré 0 sur C.

Appelons correspondance divisorielle entre deux schémas pointés (.S, s) et (T, ¢) sur C un élément
L € Pic(S x T) dont les restrictions Lig ) et Ly le long de S x {t} et {s} x T sont triviales.
La Jacobienne de C vérifie alors la propriété universelle suivante [Mil86, Theorem 1.2] :

Soit P un point de C fixé. Il existe une correspondance divisorielle MF entre (C,P) et (J,0)
telle que pour toute correspondance divisorielle L entre (C, P) et un C-schéma pointé (T,t), il existe
un unique morphisme o : T — J tel que o(t) =0 et (1 x @)* M ~ L.

Par ailleurs, on fixera systématiquement un point P sur C. On disposera ainsi d’'un plongement
naturel (aussi appelé application d’Abel) f : C' < .J donné sur les points par

Q) :==Lc(Q - P)

out 'on a noté Lo(Q — P) la classe de faisceau inversible déterminée par le diviseur Q — P sur C.
Plus généralement, ce plongement induit pour tout entier d > 1 un morphisme de la d-éme puissance
symétrique de la courbe & valeurs dans la Jacobienne :

ug : 9 — J(0).
Identifiant les points de C@ avec des diviseurs effectifs E de degré d sur C, le morphisme ug est

donné par ug(E) := Lo(E — dP). En particulier, on a u; = f¥. On montre enfin lorsque d < g(C)
que l'application ug induit un morphisme birationnel sur son image [Mil86, Théoréme 5.1.(a)]

Wa=W9":= fP(O) + ...+ fF(C) = J.

d fois

On notera dans ce qui suit w9~ € A9=%(J) la classe de cycle déterminée par W9~ Remarquez
que modulo équivalence algébrique, ces classes de cycle w9~¢ sont indépendantes du choix du point
rationnel P fixé puisqu’un choix différent n’a pour seul effet que de translater les variétés images

W4,
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1.3. Variétés Jacobiennes

Autodualité : De maniére relativement classique et naturelle, la classe w9~ déterminée par
fF(C) sera simplement notée C' afin de ne pas alourdir le texte. Dans ce cas, on peut écrire

fwgfk:%C*k:%C*C*...*CGAg%(J)-
. .%/_J
k fois

La classe w! = 6 est quant & elle celle d'un diviseur Theta de la Jacobienne : c’est la classe de cycle
d’une polarisation principale © sur J. Les variétés Jacobiennes sont donc autoduales. Précisément,
étant donné un diviseur D sur J, on définit le morphisme

op:J — J ~Pic’(J)

donné sur les points par
ep(x) :=1;L,(D)® L;(D)”

oit L;(D)Y désigne le faisceau inversible dual de £;(D) (ou plus précisément sa classe dans Pic(.J)).
Le morphisme ¢p (qui est en fait un homomorphisme de variétés abéliennes de part le théoréme
du carré) ne dépend que de la classe d’équivalence algébrique de D. Autrement dit, on dispose d'un

~ A~

morphisme D — Hom(J, J) du groupe de Néron-Severi NS(J) de J a valeur dans Hom(.J, J). Avec
ces notations, on montre [Mil86, Lemma 6.9] que ¢g est inversible et que son inverse n’est autre que
I'opposé du morphisme f©V : J — J induit sur les points par

£ Pic®(J) ~ J(C) — J(C) ~ Pic’(C).

Citons encore les propriétés suivantes que 'on retrouvera dans [Mil86, Summary 6.11] :
1. Notons £LF := L(Ac— P xC—C x P) € Pic(C?) ot A¢ désigne la diagonale de C?. Le faisceau
inversible M” € Pic(C x J) vérifie (1 x fF)* M ~ L.
2. MP ~ (fF x (=1))*(1 x 0e) P, ;= (fP x (=1)*Prxy =~ (fF x D*Py. ;.
3. LE =~ (fF x fOY*Py, ;= (fF x fP)*(piL1(©) ® p5L(0) @ m*L;(0)").

On réutilisera ces formules par la suite.

Remarque 1.3.1 : Il existe une autre convention tout aussi répandue qui consiste & définir le
morphisme ¢p sur les points par ¢p(x) = L;(D) ® t:L;(D)Y. Autrement dit, on considére —pp
au lieu de pp. Un des avantages de cette autre convention réside essentiellement dans le fait que le
morphisme fFV induit par f* est alors directement Iinverse de g (et non pas son opposé).

Propriété d’Albanese : La variété Jacobienne d’une courbe complexe projective lisse coincide
avec sa variété d’Albanese caractérisée par la propriété universelle suivante [Mil86, Proposition 6.1] :

Soit P un point de C fixé. Pour toute application ¢ : C — A de C dans une variété abélienne
envoyant P sur 0, il existe unique homomorphisme Ny, : J — A tel que ¢ = N, o fr.

En particulier, chaque automorphisme o € Aut(C') se prolonge en un élément N, € Aut(J) que
I’on notera encore o et faisant commuter le diagramme suivant :

o)

g

On vérifie aisément que ce prolongement est bien indépendant du point rationnel P fixé et que
Papplication ainsi définie de Aut(C') — Aut(J) est un morphisme de groupes.
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Chapitre 1. Cadre de travail et premiéres motivations

1.3.2 Anneau tautologique R(C;J) de Beauville

Arnaud Beauville a étudié dans son article [Bea04]| le plus petit Q-sous-espace vectoriel R(C'; J)
de A(J) contenant la classe de cycle C € A9=1(J) et stable par les opérateurs naturels dont on dispose
sur A(J); a savoir le produit d’intersection, le produit de Pontryagin mais aussi tous les opérateurs
kx et k* induits par les homothéties de la Jacobienne pour tout k € Z. En ce sens, la Q-algébre (pour
le produit d’intersection ou le produit de Pontryagin) R(C;J) est qualifié¢e d’anneau tautologique
puisqu’il s’agit de déterminer quels sont les cycles de la Jacobienne naturellement engendrés par C.

Beauville a alors montré que R(C;J) est engendré en tant que Q-sous-algebre de A(J)

1. pour le produit d’intersection par w', w?, ..., w9,

2. pour le produit de Pontryagin par les composantes homogénes C(g), C (1), . . ., C(4—1) apparais-
sant dans la décomposition de Beauville de la classe du cycle w9~—! = C.

Il est par ailleurs intéressant de mettre en évidence un autre systéme de générateurs pour le
produit d’intersection. Il s’agit du systéme obtenu de la maniére suivante. Considérons le polynéme
%Zle Xik. C’est un polynéme symétrique en les indéterminées Xi,..., X . Par suite, c’est un
polynéme N* en les polynomes symétriques élémentaires usuels oy, .. ., og:

1 g
EZX{“ = N*¥ (01 (X1, ., Xg)s ooy (X, .o, X))
Ti=1

Si A; sont les racines formelles du polynoéme
N — w4 (=) =0,
les relations coefficients-racines montrent que oj(A1,...,Ay) = w? et on définit alors
N¥(w) := N¥(w, w?, ... w9) e AF(J).
Formellement, on a donc défini

1 g
N¥(w) = HEA?
T i=0

On reconnait 1a des sommes de Newton (& coefficient multiplicatif prés) et les relations coefficients-
racines fournissent par exemple les égalités suivantes :

NYw) =w!' =0, 2N?*(w) = (w")? —2w?, 6N3(w) = (w')® — 3w?w! + 3uw?.

Puisque I’on travaille en caractéristique 0, ces mémes formules montrent que N*(w) est un polynome
en w', ..., w¥ et réciproquement. En particulier, on a N*(w) € A¥(J) et les classes de cycles N*(w)
et w* engendrent la méme Q-algébre (pour le produit d’intersection). L’intérét d’introduire ces cycles

NF¥(w) est contenu dans I'égalité suivante [Bea04, Corollary 3.4] :
N¥(w) = =F;(Ci—1y) € A¥(J) o)

apreés identification de J et J via la polarisation principale pg.

Ceci étant dit, la premiére problématique étudiée dans cette thése est la suivante. Considérons
une courbe C' admettant un automorphisme o (ou plusieurs). Celui-ci induit naturellement par
propriété d’Albanese de J un automorphisme o € Aut(J).
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1.4. Variétés de Prym généralisées

Problématique 1 : Comment se comporte 'anneau tautologique R(C;J) vis-a-vis de "automor-
phisme o € Aut(.J)? Peut-on mettre en évidence un anneau tautologique dans A(.J) naturellement
associé & un ou plusieurs automorphismes ? Plus généralement, quelle(s) conséquence(s) a l'existence
d’un ou plusieurs automorphismes de C' sur 'anneau A(J) ?

Une premiére idée naturelle (mais qui s’avére trés vite sans intérét) est de faire agir le groupe
d’automorphismes engendré par o par pull-back et push-forward sur 'anneau R(C;J). Or o étant
induit par un automorphisme de la courbe C| il est immédiat qu’en tant que classe de cycles dans
A(J) on a pour tout entier k € Z,

o C = (67F).C = C,

puis, par unicité de la décomposition de Beauville de C,
" Cliy = (07%)xCiy = Cpiy.

Les push-forwards induits par les puissances de o étant compatibles avec le produit de Pontryagin,
les opérateurs o® (et donc aussi o**) fixent point par point I'algébre (pour le produit de Pontryagin)
engendrée par les C(;); & savoir 'anneau tautologique R(C;J) tout entier.

Cette approche est donc insuffisante. Pour combler cette lacune, 'idée sera de faire « agir » par
pull-back et push-forward non plus simplement le groupe d’automorphismes (o) < (Aut(J),0) sur
R(C; J) mais le Z-module Z[{c)] = (End(J), +,0) (qui n’est rien d’autre que 'anneau des polyndomes
en o lorsque o est d’ordre fini ; hypothése que I'on fera par la suite et qui est automatiquement vérifiée
lorsque g > 2). La suite de cette thése viendra appuyer encore davantage le caractére tout a fait
naturel de cette approche.

1.4 Variétés de Prym généralisées
1.4.1 Généralités

On considére a présent un morphisme fini f : C' — C’ de degré n € N* entre courbes complexes
projectives lisses de genre respectif g = g(C) = 1 et ¢ = g(C’) = 0. On dispose donc de deux
anneaux tautologiques R(C; J(C)) et R(C’; J(C")) dans A(J(C)) et A(J(C")) respectivement. On
notera de maniére concise J = J(C) et J' = J(C’). Le morphisme [ induit deux morphismes de
variétés abéliennes :

Ny:J—J: Lo (Zsz) — Lo (anf(Pz))
f=f*:J >J: L~ f*L.

Problématique 2 : Quels liens existent-ils entre les anneaux tautologiques R(C;J) et RLC’ )7

Plus précisément, quelle est I'action par pull-back et push-forward des morphismes Ny et f sur les
cycles tautologiques associés a C' et C'?

Autrement dit, on se pose la question de la fonctorialité des anneaux tautologiques R(C;.J).
L’intuition suggere que le lien entre R(C; J) et R(C’, J’) se fait au niveau de la sous-variété abélienne

Y :=Im(f) < J. On s’intéressera également a une sous-variété abélienne Z, complémentaire de Y
dans J (voir Chapitre 2, Sous-section 2.3.1 pour plus de détails & ce sujet).

Lorsque f est un revétement double étale ou ramifié en exactement deux points, la variété Z
n’est rien d’autre que la variété de Prym associée a f. En ce sens, on qualifiera les variétés Z de
variétés de Prym généralisées.
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1.4.2 Revétements Galoisiens n-cycliques

Dans cette thése, on s’intéresse en tout premier lieu aux courbes avec automorphismes. Ceci
justifie que I'on précise a présent le cas ot le revétement f : C' — C’ est associé & un automorphisme
de la courbe C'. Rappelons deux définitions.

Définition 1.4.1 Un revétement Galoisien fini est un morphisme fini f : C — C’ entre courbes
complexes projectives lisses C et C’ tel qu’il existe un isomorphisme C’ ~ C/ Aut(f) ou

Aut(f) :={peAut(C) | fou= f}

désigne le groupe d’automorphismes du revétement. Cela revient & dire que I'extension des corps de
fonctions K(C)/K(C”) est Galoisienne.

Dans ce cas, le corps de fonctions K(C’) de C’ est donné par le sous-corps des invariants
K(C)A"() < K(C) pour le groupe de Galois Gal(K(C)/K(C")) ~ Aut(f).

Définition 1.4.2 Soit f : C — C’ un revétement Galoisien entre courbes. On dit que f est un
revétement Galoisien n-cyclique si Aut(f) ~ Z/n7Z. Dans ce cas, on considérera systématiquement
un générateur o € Aut(f) de sorte que C’ ~ C/{o).

Remarque 1.4.3 : Soit C' une courbe projective lisse munie d’'un automorphisme o € Aut(C).
Alors la courbe C/{c) est aussi lisse. En effet, il s’agit de vérifier que la courbe C'/{c) est normale.
Puisque la lissité est une notion locale, on peut suppose que C' = Spec(A) est affine de sorte
que C' = Spec(A?). On vérifie alors facilement que A’ est intégralement clos dans K(C”) =
Frac(A{?) = K(C){? en utilisant la lissité de C.

1.4.3 Anneau tautologique R(¢7.C;Z) de Arap

Etant donné un revétement Galoisien n-cyclique f : C — C’ ~ C/{c), il se pose maintenant les
questions suivantes :

Problématique 3 : Que peut-on dire des restrictions & Y et Z de anneau tautologique R(C';J)?
des anneaux tautologiques sur J associées & un ou plusieurs automorphismes de C'? Ces restrictions
induisent-elles une notion raisonnable d’anneaux tautologiques (associés a un ou plusieurs automor-
phismes) sur Y et Z 7

Dans [Aral2, Theorem 1] Maxim Arap apporte un premier élément de réponse a cette probléma-
tique dans le cas particulier ou Z est une variété de Prym. Il montre que 'on dispose d’un anneau
tautologique R(¢z+C;Z) < A(Z) engendré pour le produit de Pontryagin par les cycles 1z4C(;
(et pour le produit d’intersection par la transformée de Fourier de ces cycles). On généralisera de
plusieurs maniéres ce théoréme de Arap. On obtiendra ainsi des anneaux tautologiques sur Z (et Y)
dont on connaitra un systéme au plus dénombrable de générateurs.

Problématique 4 : Jusqu’oil peut-on pousser ’étude des ces nouveaux anneaux tautologiques sur
Z associés a des automorphismes ? Peut-on étudier précisément les relations entre les générateurs de
ces Q-sous-algébres de A(Z) 7

On répondra de maniére détaillée & cette problématique dans le cas ot C est hyperelliptique et
I’automorphisme est d’ordre premier. Plus généralement, on accordera une importance toute particu-

liére & montrer que ces nouveaux anneaux tautologiques associés & des automorphismes apparaissent
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1.4. Variétés de Prym généralisées

naturellement en géométrie algébrique. On verra notamment que les anneaux sur Z apparaissent dés
lors que I'on dispose d’un systéme linéaire complet sans point de base sur C’.
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CHAPITRE 2

Tautological rings on Jacobian varieties of curves with automorphisms

Abstract ! Let J be the Jacobian of a smooth projective complex curve C' which admits non-
trivial automorphisms, and let A(J) be the ring of algebraic cycles on J with rational coefficients
modulo algebraic equivalence. We present new tautological rings in A(J) which extend in a natural
way the tautological ring studied by Beauville in [Bea04]. We then show there exist tautological
rings induced on special complementary abelian subvarieties of J.

Keywords Algebraic cycles - Tautological rings - Jacobians - Automorphisms - Fourier trans-
forms

Mathematics Subject Classification (2010) 14C15 - 14C25 - 14H37 - 14H40

2.1 Introduction

In this paper we consider varieties over C. Let X be an abelian variety of dimension g > 1. We
denote by m its group law and by X the dual variety. We consider the ring A" (X) of algebraic cycles
on X with rational coefficients modulo algebraic equivalence. Beauville showed in [Bea86| that there
exists a bigraduation on A(X). Specifically, we have

M) = @ AKX

s g

where p refers to the codimension grading and s refers to eigenspaces of the operators k, and k*
induced by the homotheties k = kx on X for any k € Z. These eigenspaces are characterized by x €
AP(X)(,) if and only if for all k € Z, k*z = k*~*z (or equivalently k.2 = k?9=2P*5z). Note that this
bigraduation is compatible with the intersection and Pontryagin products on X denoted respectively
by sl Ap(X)(s) X Aq(X)(t) - AP+<1(X)(S+t) and #* : AP(X)(S) X Aq(X)(t) - Ap+q—g(X)(s+t). An
important tool to study this structure on A(X) which will play a major role in the sequel is the

Fourier transform Fx : A(X) — A(X) on X. This map is defined as follows. Consider the Poincaré

line bundle P ¢ on X x X and its cycle class Ly, g = ci(Py, g) in AN(X x X). For any cycle

x € A(X), we put Fx(x) := pax(pix - elXx)?) where p; and ps are the natural projections of X x X
to X and X respectively. Recall the following important facts (see [Bea83)) :

1. [Ricl6]
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Chapitre 2. Tautological rings on Jacobian varieties of curves with automorphisms

1. Identifying X with its bidual variety X (as we will always do), we get a Fourier transform
Fg : A(X) — A(X) on X. It satisfies the relation

f)? O./."X = (—1)9(—1){)*.
2. For all cycles x,y on X, we have
Fx(x-y) = (—1)Fx(x) = Fx(y) and Fx(x+y) = Fx(x)  Fx(y).

The reader should refer to [Bea83] for an overview of many other properties of the Fourier transform.
In §2.2 we present slight generalizations of these properties. This section will be used in §2.5 and
§2.6 when we will work with non principal polarizations.

In §2.3 we consider a smooth projective curve C' of genus g(C) = g = 1 whose Jacobian will be
denoted by J = J(C). We fix a rational point P on C to embed the curve in its Jacobian via the
usual map f¥ : C < J(C) defined on points by @ — Lc(Q — P). This map allows us to consider the
cycle class defined by C, and still denoted by C, in A9~!(J). Note that this class does not depend
on the choice of P since we are working modulo algebraic equivalence. Let us introduce the following
notation. Let J < A(X) be a family of cycles on X. We denote by Tautx (J) the tautological ring
generated by J, that is to say the smallest Q-vector subspace of A(X) containing J and closed
under natural operations on A(X); namely intersection and Pontryagin products, and operators
ky, k* for all k € Z.

In [Bea04] Beauville studied the tautological ring R(C;J) := Taut;({C}). He proved that the
Q-algebra R(C;J) is generated for the intersection product by the classes

: 1 . :
w' = HC*(Q )e AY(J), i€ [0, 4]

of the subvarieties W,_; parametrizing effective divisors on C of degree g — i. Another system of
generators is given by Newton polynomials in the w?, denoted by N'(w) € A%(.J) (i—1)- When R(C; J)
is endowed with its structure of algebra for the Pontryagin product, a set of generators is given by
the Fourier transforms of the N*(w), which are (up to a sign) the components C(;y € A971(J)
appearing in Beauville’s decomposition of C' € A971(J). The aim of §2.3 is to clarify the functorial
behaviour of this tautological ring R(C;J). In Section 2.3 we consider a finite morphism of curves
f : C — C" and we explain the action of the induced morphism f* : J(C’) — J(C) and the
Albanese morphism Ny : J(C) — J(C") on R(C; J(C)) and R(C’; J(C")). For a morphism of curves
f, the abelian subvariety Y := Im(f*) of J(C) with canonical embedding ¢y : Y — J(C) plays
a crucial role. Indeed Y is isogenous to J(C’) via the corestriction map j = f* : J(C') —» Y. We
will also associate to Y (as we will do for any abelian subvariety of J(C')) its norm-endomorphism
Ny : J(C) — J(C) and the map 1y € Hom(J(C),Y) defined by Ny = ty o1y (see [BL04, §5.3|).
When f : C — C" ~ C/{o) is a cyclic Galois covering for some o € Aut(C) of finite order, one
highlights naturally in A(J(C)) some cycle classes of the form P(0).C where P(o) € Z[o] is a
polynomial in the automorphism o or more accurately a polynomial in the Albanese morphism still
denoted by o = N, € Aut(J(C)).

This leads us to §2.4 where we consider a curve C' with a finite automorphism group G < Aut(C).
We will prove the following main result :

Theorem 2.1.1. Let C' be a smooth projective complex curve of genus g = 1 and G a finite group
of automorphisms of C. Then the tautological ring

Ra(C;J) = Taut, ({w*c e A(J) | meZ[G] ¢ End(J)})
is generated as Q-subalgebra of A(J)
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1. for the intersection product by all 7 N*(w),
2. for the Pontryagin product by all m.C;_1)
with m € Z[G] and i € [1,g — 1].

In case of a cyclic automorphism group G = (o), we will put R, (C;J) := R (C;J). Further-
more, each subgroup K of G determines a subtautological ring Rx (C;J) € Rg(C; J). For example,
with K = {Id} we get R(C;J) < Rg(C;J). Actually, the tautological ring Rg(C; J) is the smallest
Q-algebra extension of R(C';J) which is stable under intersection product, Pontryagin product and
pull-backs and push-forwards by elements in Z[G] < End(J). This is a very natural characterization
which may have been chosen at first to define these tautological rings :

Corollary 2.1.2. The tautological ring Rz (C;J) is the smallest Q-algebra extension of R(C;J)
for the intersection product (resp. Pontryagin product) which is stable under pull-backs (resp. push-
forwards) by polynomials in Z|G] < End(J).

Now let us stress why the adjective tautological is still appropriate to such rings Rg(C;J). If
one considers a curve without non-trivial automorphism, we are interested in the smallest Q-vector
subspace of A(J) which contains the cycle class C, and closed under both products, pull-backs
and push-forwards by scalars in Z < End(J) (that is constant polynomials). This ring is precisely
Beauville’s tautological ring R(C';J). But if C has a non-trivial automorphism group G, the same
natural idea leads us to study the smallest Q-vector subspace of A(J) which contains the class
C, and closed under both products, pull-backs and push-forwards by elements in Z[G]; that is
R (C; J). Besides, having all these tautological and subtautological rings associated to groups and
subgroups of automorphisms strengthens the following idea : for a Jacobian variety with non-trivial
automorphisms, the ring A(J) carries a much richer structure than that of a generic Jacobian ; which
is already an interesting fact in itself.

In the next section, that is §2.5, we will explore the link between tautological rings of J(C/{c))
and J(C). These rings are closely related as pointed out in

Theorem 2.1.3. Let f : C — C' ~ C/{o) be a n-cyclic Galois covering associated to an auto-
morphism o € Aut(C) of order n € N*. We consider a finite group of automorphisms G < Aut(C)
and we suppose that each g € G commutes with o so that there is an automorphism § € Aut(C")
satisfying the relation fog = go f. We denote by Gc Aut(C") the group of automorphisms induced
that way on C'. Then the tautological ring

Re(Yy+C;Y) := Tauty ({ﬂ*w*c eA(Y) | me Z[G]})

is generated as Q-subalgebra of A(Y)
1. for the intersection product by all 7*% N (w) = (Fm* N (w),
2. for the Pontryagin product by all mby+Cyy = Yy «m:Clyy

with m € Z|G] and i € [0,g(C") — 1]. Therefore, the isogeny j = f* : J(C') — Y induces an
isomorphism (as Q-vector spaces)

R(C'; J(C)) = juRs(C'; J(C')) = Tauty (j*Ré(C’; J(C’)))
— 5 Ra(C; J(C)) = by« Ra(C; J(C)) = Ra(1hyLC;Y).

The last part of this article, that is §2.6, is dedicated to tautological rings induced on the natural
abelian subvariety Z of J(C), the complementary abelian variety to Y with respect to the Theta
polarization on J(C') (see [BLO04, Section 5.3]). We will prove
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Chapitre 2. Tautological rings on Jacobian varieties of curves with automorphisms

Theorem 2.1.4. Let f : C — C' ~ C/{o) be a n-cyclic Galois covering associated to an automor-
phism o € Aut(C) of order n € N*. We consider a finite group of automorphisms H < Aut(C) and
we suppose that o € H is central in H. Then the tautological ring

R% (12+C; Z) := Tauty ({W*W*c eAZ) | e Z[H]})

is generated as Q-subalgebra of A(Z)
1. for the intersection product by all 75 N*(w) = (57* Nt (w),
2. for the Pontryagin product by all T4 z+C(;_1) = ¥zxm:C(i_1)
with m € Z|H] and all i € [1,dim Z — 1]. In other words,

Ry (¢z+C; Z) = 17 R (C; J(O)) = 2. R (C; J(C)).
In particular, considering the case of a cyclic automorphism group H = (o) leads to :

Theorem 2.1.5. Let f : C — C' ~ C/{o) be a n-cyclic Galois covering associated to an automor-
phism o € Aut(C) of order n € N*. Then the tautological ring

Ro(wZ*C;Z) := Tautz ({P(U)*wZ*C € A(Z) | Pe Z[X]}>

is generated as Q-subalgebra of A(Z)
1. for the intersection product by all P(c)*1N(w) = 15 P(c)* Ni(w),
2. for the Pontryagin product by all P(0)«7z+C(i—1) = ¥z+P(0)+C(;_1)
with P € Z|X] and all i € [1,dim Z — 1]. In particular,

Ry(12+C; Z) = 15 R, (C; J(C)) = Y2+ R (C; J(C)).

This theorem 2.1.5 yields a generalization of a theorem proved by Arap [Aral2| who gave the
analogue in A(Z) of Beauville’s tautological ring R(C; J(C)) in the special case where Z is a Prym
variety. That is essentially when f : C — C’ is of degree 2 and either étale or ramified in exactly
two points (see [BL04, Theorem 12.3.3]). We finish with a few examples which provide a full explicit
structure for the algebra R, (¢7.C;Z) < A(Z) when o is of order 2 and C'is a k-gonal curve with
ke {2,3,4,5).

2.2 Preliminaries

The Fourier transform on abelian varieties will be central in almost all following results. The-
refore we start with some properties of this map. The following proposition is a slight but useful
generalization of Beauville’s result (|Bea83, Proposition 3.(iii)] or [BL04, Proposition 16.3.4]; see
also [MP10, Formula (3.7.1)]). It will help us to work with Fourier transform and pull-backs or
push-forwards by arbitrary morphisms of abelian varieties.

Remark 2.2.1. By definition a morphism of abelian varieties respects the group structure.

Proposition 2.2.2. Let X,Y be two abelian varieties and o : 'Y — X a morphism of abelian
varieties. Then

Fxoay =a"oFy and Fy oo = (—1)dimX-dim¥g "o Fo
In particular, if a is an isogeny or if X =Y, we have

Fxoay,=a"oFy and Fy oa™ = @y o Fx.
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Proof. We start with the proof of the first equality. The idea is to use the following universal property
of Poincaré line bundles :
(@ x 1) Py, g =~ (Iy x )" Py g

Passing to cycle classes, we obtain
(a X 15() lX><X (1y X Oé) lef/‘

Then passing to the exponential and using the fact that pull-backs are compatible with the inter-
section product, we get

(a x 1g)*elxxX = (1y x @)*elv=v e A(Y x X).
Moreover by definition of the Fourier transform on X, we have
Frau(y) = (€5:%)s04(y)

where A(elXW? )% : A(X) = A(X) denotes the morphism induced by the correspondence e xxX from
X to X (see [Ful98, Chapter 16] or [BLO04, Section 16.2]). Then using Equation (16.4) of [BL04| p527
or [Ful98, Propositions 16.1.1 and 16.1.2], we have
Fxau(y) = (%% au(y)
((ax 1g)%ex) (m) = ((1y x @)*ehr) ()
*

= G )u(y) = A" Fy ()

which completes the proof of the first statement.
We then prove the second equality by applying the first one with a: X — Y :

D
Fya*—a ]:X—a]:X

when identifying X and X by biduality. The other main tool is to use inversion formulas for the
Fourier transforms on X and Y. Moreover, as « is a morphism of abelian varieties, we immediately
have f o (—1ly) = (—1x) o a. Now it remains to put together these arguments :

Fyo* = fya*(—l)dimX(—lx)*}'&fx (inversion formula for Fy)
= (—1)dImX 7y (—1ly)*a*FeFx (Q-linarity of Fy and o™ and a o (—1y) = (=1x) o @)
DImXFy (—1y)sa* FeFx
1)dim X (—1p)* Fya*FgFx (applying first equality with —1y and Ty = —15)
(

= (=1) (—1y)* = (—1y)4 because —1y is an involution)
= (1)

= (1) F (—1p) Fy FpanFx

= (=1)

= (1)

applying first equality with &)
1 dim X — dnnY( 1)dimY(_1?) ./—'.Y./—'.?OC*IX

1)dimX=dim¥'a Fy (inversion formula for Fy-).

In particular, if o : Y — X is an isogeny or if X =Y, we have dim X = dimY and we get the last
part of the proposition. O

The different results presented in this paper involve polarized (but not necessarily principally
polarized) abelian varieties (X, &). For such a polarization, we consider the isogeny

~

¢e: X — Pic’(X) ~ X
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Chapitre 2. Tautological rings on Jacobian varieties of curves with automorphisms

given on points by
pe(@) = o Lx (§) @ Lx(§)”

where Lx(§)Y denotes the (class) of the dual invertible sheaf associated to the (class) of the ample
divisor &. It is known that there exists an inverse isogeny up to scalar, denoted by ¢ € Hom(X, X).
These morphisms satisfy relations

e o e =nx and peothe =ng

for some n € N*. Recall that the dual map of ¢ satisfies oz = ¢ (|[BL04, Corollary 2.4.6]) and thus

122 = ¢ too. Having said that, we will often consider the map ¢ Fx : A(X) — A(X) (or the map
YexFx + A(X) — A(X)) instead of Fy.

The following proposition give us some properties of the operator 902‘]-' x as in [Bea04, §2.4 - 2.7].
It allows us to link (more deeply) the Fourier transform on X and the Pontryagin product.

Proposition 2.2.3. Keeping above notations, we consider the operator F := cpZ‘}"X. It satisfies the
following properties :

1. Inversion formula : F o F = deg(ip¢)(—1)4mX(—1x)*.
2. We have for all z,y € A(X),

(71)dimX

Flw=y)=F(x) - Fly) and  Flz-y)= F(z) = F(y).

deg(ye)

3. ,F(AP(X>(S)) = AdimX*ers(X)(s).
4. Let x € A(X). We put T := (—1)*x. Then

Flx)=e* (T -e %) xet) e AX).

Proof.

1. It is known that FgoFx = (—1)3m¥X(—1y)*. Therefore, using that Pexipp = deg(pe), Pe = e
and the compatibility between Fx and isogenies (Proposition 2.2.2), we get

FoF = GiFxpiFx = Fypespi Fx = deg(pe) (=17 (—1x)".
2. Since pull-backs commute with the intersection product, we immediately get
Flary) = oiFx(@ry) = i (Fx(x) - Fx(y) = (0i Fx(x)) - (0 Fx(y)) = F(x) - F(y).

We deduce the other equality from the inversion formula.

3. According to [Bea86, Proposition 2|, we have
F(AP(X)(5) = PEAIPH(X) () € ATPTE(X) ).

Once again, we obtain the result thanks to the first assertion.
4. Keeping the notation [ ¢ for the cycle class in A*(X x X ) of the Poincaré line bundle P ¢
on X X )A(, we have according to [Mum08, p131]|

(1 9e) "y, g = m"E = p"E = q7¢
where p,q : X x X — X denote natural projections. We then use the flat base change formula
F(z) = @ipos(pfa - €xxX) = qu(1 x pe)*(pfa - exxX)
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2.2. Preliminaries

wherep1:XX)?HXandpQ:Xx)?H)’(\'. Thus
.7:(96') = (x ((1 X @5)*pTx . e(lxwf)*lXxj(\) — q*(p*x . em*f—p*f—q*§)_

The next step consists in introducing the involution w(a,b) = (—a,a +b) on X x X. We
immediately check the exactness of following relations

pow=—p, qgqow=m, Mow=q.
Therefore,
F(x) = e ¢ (guws)w* (p*(z - e7%) - ™)
= (1) (e ) )
— <.

ma(p*(T - e) - ")
because & € NSg(X) = A'(X)(q) is symmetric (that is (—1)*¢ = &). This yields the result by
definition of the Pontryagin product.

e

O

We use this proposition to deduce the following corollary (inspired by [Bea83, Lemme 1| or
[Bea83, Proposition 5]). It will be used only once, to prove Proposition 2.2.5.

Corollary 2.2.4. Let £ € AI(X)(O) be a polarization on an abelian variety X. Then
PiFx () = x(&e*

where x denotes the Euler characteristic. Accordingly,
(_1)dimX
x(€)
Proof. Thanks to Proposition 2.2.3 (4) and since (—1)*¢ = £, we have
@J:X(eﬁ) — 5. ((6(71)*5 ) 676) " 65) —e¢. ((65 . e*&) " 65) —e¢. ([X] = 65)'

et = PEFx(e7%).

Thus, for codimension reasons and by using the Riemann-Roch theorem for abelian varieties (see
[Mum08, p150]), we obtain
_ 1 im _
At = ¢ (X0 (s €)= x(©e - (1] o)
= x(©)e™ [X] = x(€)e™*,
where [o] denotes the class of a point in X. Hence the first part of the corollary. Moreover, using
the inversion formula (see Proposition 2.2.3 (1)), we get

deg(pe) (1) X (—1)*e® = EFxpf Fx(ef) = x(€)pEFx(e™).

Since deg(p¢) = x(€)? (see [Mum08, p150]) and (—1)*e* = e® (because & is symmetric), we obtain
the second part of this corollary. O

Proposition 2.2.5. Let T be a bigraded Q-subalgebra (for the intersection product) of A(X). We
suppose that T' contains the class of the polarization & on X. The following statements are equivalent :

1. T+«TcT.
2. i Fx(T) = T.
3. i Fxpe Fx(T) < i Fx(T).
4. & 0iFx(T) < 9 Fx (T).
Proof. Let us note F := ¢ Fx : A(X) — A(X).
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(1) = (2) We assume that T is stable under Pontryagin product. Let 2 € T'. According to Propo-
sition 2.2.3 (4), we have

F)=e* - (T-e)xeb)eT
because on the one hand T := (—1)*z € T (since T is bigraded) and on the other both e~¢ and e¢
belong to T' (since £ € T' by hypothesis and T is stable under intersection product).

(2) = (1) Let x,y € T. Thanks to Proposition 2.2.3 (1) and (2), we have

roy= GO ey - GO
deg(e) deg(pe)

eF(F(T) - F(T)cFT-T)c FT)

_1\dim X
CO™ ) F(F ) Fly)

since by hypothesis F(T') < T and the algebras T and F(T) are bigraded.
(2) = (3) If F(T) < T, then we immediately get FF(T) < F(T) by applying F.

(3) = (2) We assume that FF(T) < F(T'). Since T is a bigraded Q-vector space, the inversion
formula for F shows that we actually have T' ¢ F(T). Applying F to this inclusion, we get the
reversed one, that is statement (2). In particular, we have (2) if and only if we have (3) if and only

if F(T) =T.

(3) = (4) Now we assume that FF(T) < F(T) or equivalently F(T') = T. Therefore, since £ € T
and T is stable by intersection by hypothesis, we have assertion (4) as claimed.

(4) = (3) Assume that - F(T) < F(T). We are going to show that FF(T) < F(T). So let us
consider a cycle z € F(T'). The main idea is to use Proposition 2.2.3 (4). We first have 7 := (—1)*z €
F(T). Then

T-etee - F(T)c F(T).

Corollary 2.2.4 shows that e¢ € F(T). At this moment we have used one more time the hypothesis
that ¢ € T (as it implies that e~ € T' too). Consequently, we obtain

(Z-e ) xete F(T)+« F(T)c F(T-T) c F(T).
And finally
Flx)=e - (T-e S xef)ee s F(T)c F(T)

by using the hypothesis (4). Hence the claimed inclusion FF(T") < F(T'); which completes the proof
of this proposition. O
Remark 2.2.6. Note that it is essential in this proof that the polarization £ belongs to T

The two next results will be used several times to exchange pull-backs and push-forwards by
isogenies. Indeed it will be very convenient to work with pull-backs (resp. push-forwards) when
subalgebras of A(X) are endowed with the intersection product (resp. Pontryagin product).

Lemma 2.2.7. Let a: X — Y be an isogeny between two abelian varieties X and Y. There exists
an isogeny B :Y — X and an integer n € N* such that a o 8 = ny and foa = nx. Then for all
y € A(Y) we have

]‘ %
Bxy = mnx*a Y.
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Therefore, if y € Ai(Y)(S) for some indices i and s, then Byy € Ai(X)(S) is proportional to oy (and
is nonzero if y # 0).

Proof. Let y € A(Y). Since foa = ny and « is a finite flat morphism of degree deg(a) # 0, we have

nxx0*y = Braza®y = By (deg(a)y) = deg()Bxy,

which means that

*
Ny’ y.

1
By = 7deg(a)

Therefore if y € A'(Y) () it is known that a*y € A*(X) 4 is still homogeneous (because a commutes

with the multiplication by n on X and Y’) and so

n2 dim X —2i+s

T ) Y

is proportional to a*y. Finally, as f, and o* are isomorphisms between A(X) et A(Y) (because
a and [ are isogenies and we work with algebraic cycles with rational coefficients), S,y is nonzero
when y # 0 (and vice versa). O

Corollary 2.2.8. Let a: X — Y be an isogeny between two abelian varieties X and Y. There exists
an isogeny B 1Y — X and an integer n € N* such that « o f = ny and foa = nx. Let T (resp.
T') be a bigraded Q-vector subspace of A'(Y) (resp. of A'(X)). Then

2. B*T' = o, T'.

Proof. We only prove the first statement as the second one can be obtained in a similar way. By
hypothesis T" is bigraded which means that every y € T' can be (uniquely) written as y = », ( y; s for

some y; s € T(is) =Tn Ai(Y)(S). The result then follows on from Lemma 2.2.7 applied to each y; s :

a*y = Z a*yi,s = Z )\i,sﬁ*yi,s = ﬁ* (Z )\@Syi,s) € ﬁ*T
1,8

7,5 2,8

for some nonzero \; s € Q (if y; s = 0 we can assume that \; ; = 1). Note that we have used here
in an essential way that each component y; , € Ai(Y)(s) defines a class which already belongs to
T. So we have proven that o*T < §,T. The reverse inclusion can be obtained similarly because if
Yy = ZLS yis € T for some y; 5 € T(is), then we have

5*31 Z —a* Yi,s = a* (Z ;yi,s) e a*T.

i,s bS8
This shows that o*T = 8, T. O
Combining Proposition 2.2.5 and Corollary 2.2.8, we immediately get

Proposition 2.2.9. Let T be a bigraded Q-subalgebra (for the intersection product) of A(X). We
suppose that T contains the class of the polarization & on X . The following statements are equivalent :
1. T+«TcT.
2. e Fx(T) T
8. YexFxVesFx(T) < hesFx (T).
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4. & wé*}—X(T) c wg*fX(T)~

Proof. The equivalence with Proposition 2.2.5 follows from the equality
e Fx(T) = esFx (T)

which holds thanks to Corollary 2.2.8 applied to the bigraded Q-vector space Fx(T') and isogenies
e and lﬁg. [

2.3 Functoriality of tautological rings R(C'; J)

2.3.1 Notations

In this subsection we present all notations and previous results useful for our work. A more
detailed approach of the following notions can be found in [BL04, Sections 5.3, 12.1, 12.3|. Let C'
and C’ be two smooth projective complex curves of genus g = g(C) = 1 and ¢’ = g(C’) = 1. We put
as always J = J(C') and J' = J(C") for their Jacobians endowed with usual principal polarizations
© and ©'. We avoid the case ¢’ = 0 (that is C' ~ P!) to spare us some case distinctions when
A(J") = {0}. We suppose that we have a finite morphism f : C — C’ of degree n € N*. This
morphism induces morphisms of abelian varieties :

Ny:J—J:Lc (Zmﬂ) — Lcr (Z nz’f(B’))
fi=f:J >J: L~ f*L.
Note that Ny : J — J’ is the Albanese morphism induced by f which makes commute the following
diagram :

C——C (%)

fP£ &CP’
J

where P is any fixed rational point on C' and P’ := f(P) € C’. In particular, as C' and C’ generate
J and J' respectively (as abelian varieties), the surjectivity of f implies the surjectivity of Ny.

Denote by Y := Im(f) = J (see [BL04]). The map f factors through an isogeny j : J' — Y
followed by the canonical embedding ¢ty : Y < J. Also consider the polarization P, ON Y (a priori
non principal) induced by ©. Denote also by e(Y") the exponent of Y, that is the exponent of the
finite group Ker P It is known (see for example |[BL04, Proposition 1.2.6]) that the map

Yo = e(Y)epy: Y - Y eHom(Y,Y)®Q

Y
is a morphism (that is it belongs to Hom(l’}, Y')) and even an isogeny. Consider the following elements
Ny = Lyl/}L;k/@@go@ € End(J) and gy = Ly(pgef)?cp@ e End’(J) := End(J) ® Q.

By definition, we have
Ny = G(Y)Ey.

Denote by R : End®(J) — End®(J) the Rosati involution on J with respect to the Theta polariza-
tion : R
R(f) := ¢g' o f o pe.
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According to Lemma 5.3.1 of [BL04| we have
R(Ny)=Ny and N =e(Y)Ny.

This implies immediately that R(ey) = ey and 5%, = ¢y. In other words, Ny is symmetric and ey is
a symmetric idempotent element of End®(.J). Note that these morphisms are (in particular) linked
by the following facts :

(1) ﬁf = f after identifying Jacobians and duals [BL04, Equation (2) p331],

(2) N¢f =n-1dy by definition of Ny and f,

(3) fNy = PVORALE [BL0O4, Proposition 12.3.2] and in particular, since oy Ny = ney € End(J),

we deduce that e(Y) divides n thanks to [BL04, Proposition 12.1.1],

(4) Nyjy =e(Y)-Idy [BLO4, p125],

(5) Y =Im(f) = Im(fNys) = Im(Ny) is isogenous to .J'.

Besides, the map Y — ¢y defines a bijection between the set of abelian subvarieties of J and
symmetric idempotents in End®(J) [BL04, Theorem 5.3.2]. This yields a natural subvariety of .J,
denoted by Z, which is complementary to Y (with respect to the Theta polarization on J). This
subvariety is associated to the symmetric idempotent element 1 — ey and satisfies

7 = Tm(Ny) = Ker(Ny)° = Ker(Ny)? = Ker(iy) =~ J/Y
where Nz is the norm-endomorphism of J associated to Z. It is defined similarly to Ny.

Since (J, ©) is principally polarized, the complementary subvarieties Y and Z have same exponent
[BLO4, Corollary 12.1.2]. Finally, let us recall the following relations |[BL04, p125]

Nyiz=0 —and NyNz=0 and Ny +Nz=e(Y) Id;.
This provides an isogeny p =ty + 1z : Y x Z — J [BL04, Corollary 5.3.6].

At this point, it is useful to look at the commutative diagram

vo

<

s>

Note that commutativity is justified by the identities (1) —(5) recalled above and following relations :

(6) Pire = Ly oty : this can be checked immediately on points since for an arbitrary point y € Y,
we have

Pioly) = BT Ls(O) @1 Ls(0) = i () Ls(O) ® L1(0)") = 1§ poluv (v):

(7) In the same way, Prrg = foof.
(8) Lemma 12.3.1 of [BLO04| states that
Prrg = Pner = NPer.

We now have all necessary tools to study the functoriality of tautological rings R(C’; J).
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2.3.2 Functoriality of tautological rings R(C;J)

Let us start with a very simple proposition which is the key to all following results in this section.

Proposition 2.3.1. Let f : C — C’ be a finite morphism of degree n. We have

— 1 n 1

Proof. Considering the commutative diagram (*), we have
(N§)«C = deg(f)C" = nC" € AIL(J').

Then using relation (3), we get

0FuC = FuND.C = (9 = ()

But %Ny = #e(Y}ey =nNey = €yN. -

This proposition immediately implies :
Corollary 2.3.2. Let f : C — C’ be a finite morphism of degree n. For all i € [0,g — 1] we have
(Nf)*C(Z') = TLC{Z») € Ag/_l(J,)(i).

Furthermore put ip := max{i | C’Ei) # 0}. Then for all ip < i < g, we have (Ny)«C(;y = 0. Also if
C(i) = 0 for some i, then C’i) = 0.

Proof. Decomposing C' = C(g)+...+C(y_1) and C" = C )t A+C7 , the equality (Ny)+C = nC’

) (0 (¢'-1)
gives
g—1 g -1

Since (Ny)«C;) € Agl_l(J’)(i) [Bea86, Proposition 2.c|, we have by uniqueness in Beauville’s decom-
position :

(Np)xCy = nCyy € AT (T ) .
The second part of this corollary follows easily from the first one. O

Now we can easily deduce results concerning tautological rings since the cycles C;) and Céi) are

generators of algebras R(C;J) and R(C’; J') for the Pontryagin product.

Corollary 2.3.3. Let f : C — C' be a finite morphism. The map (Ny)« induces a surjective
morphism

(Np)« : R(C; J) —> R(C"; J").
In particular, R(C"; J') is a quotient of R(C;J).

Proof. Since push-forwards are ring morphisms when we consider A(J) and A(J’) endowed with the
Pontryagin product, and since the CE )€ Im((Ny)«) generate R(C’; J') as Q-subalgebra of A(J’) for

i

the Pontryagin product, we deduce from Corollary 2.3.2 the surjectivity of the morphism

(Nf)« : R(C; J) — R(C"; J").
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Remark 2.3.4. (Ny)s is a surjective morphism as Q-linear map and is also a morphism of Q-algebra
when we endow A(J) and A(J’) with the Pontryagin product. Similarly, the next corollary gives
a surjective morphism as Q-linear map and also as morphism of Q-algebra when we consider the
intersection product.

By Fourier duality we get the equivalent corollary :

Corollary 2.3.5. Let f : C — C' be a finite morphism. The map ?* induces a surjective morphism
7 R(C;J) — R(C"; J).

Proof. Let x € R(C;J). According to relation (1), we have f = N; (after identifying Jacobians with
their duals). Thus we deduce thanks to inversion formulas for the Fourier transforms on J and .J !
and thanks to Proposition 2.2.2 applied to the morphism f : J' — J with X = J and Y = J’ that

~

!

Fro= (=09 (=10 F;Fpfa = (1) (<1,)* F;(-1)77¢
Then keeping the identifications of J' ~ J' and J ~ J, we get
Tl = (=1)9(=1,)*F(Ny)uFy(z) € R(C'; J')
because on the one hand (Ny).R(C;J) < R(C"; J) (Corollary 2.3.3) and on the other both R(C; J)

and R(C"; J') are Q-vector subspaces stable under Fourier transform and under operators k*. This
proves the existence of B
7 R(C;J) — R(C ).

The surjectivity of f follows from the surjectivity of (N #)x (Corollary 2.3.3). Indeed if y € R(C"; J'),
then there exists an z € R(C’; J') such that y = F(2) (by stability of R(C’; J') under (—1)*, F
and inversion formula). Consequently, for some x € R(C;J) such that (Ny).x = z, we still have
thanks to Proposition 2.2.2

v =Fr(e) = Fo((Np)az) = Ny Fy(e) = T Fyla) € TR(C: )
because R(C; J) is stable under F;. O

Now we would like to consider, roughly, R(C’;J’) from the point of view of A(J). That is we
are interested in the rings f,R(C’;J') = A(J) and (N§)*R(C’; J') = A(J). The intuition suggests
that cycles in f,R(C';J’) and (Ny)*R(C’;J’) should be with support on Y (recall that Y is the
subvariety of J isogenous to J'). The next two results explain this fact.

Proposition 2.3.6. Let f : C — C’ be a finite morphism. The isogeny j : J' — Y, corestriction
map of f = f*, induces an isomorphism

jx s R(C';J') = jR(C"; J') = 15 R(C; J) < A(Y).
Proof. The morphism j : J' — Y is an isogeny (in particular, it is finite and flat). Therefore
Jxj* = deg(j) - Idagyy : A(Y) — A(Y).
So applying j. to the relation of the previous corollary, we deduce
GeR(C ') = juf R(C; T) = juloy 0 j)*R(C; J) = juj* 3 R(C; ) = deg(j)ef R(C; T) = i R(C5 J).

Moreover, as j is an isogeny, there exists an isogeny h : Y — J' such that hoj = dy and joh =
dy for some d € N*. In particular, j, (%h)* = Ida(y) and (éh)*j* = Ida(yr), so that ji is an
isomorphism. O
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Corollary 2.3.7. Let f : C — C' be a finite morphism. The map f : J — J induces a surjective
morphism

fo it R(CHT') — iyt R(C; J) = [Y] - R(C; J) < A(J).

By Fourier duality we obtain similarly a surjective morphism
Nf: R(C";J") — Y54y« R(C; J) = 9 Fs([Y]) * R(C; J)
with y = ¢,xg © ly o po € Hom(J,Y).

Proof. The first assertion is a direct consequence of Proposition 2.3.6 because ?* = Lys O Js. See
also |Ful98, Example 8.1.1|. The second statement can be deduced from the first one by using
Proposition 2.2.2 and the fact that Fourier transforms on .J and J’ respectively induce automorphisms
of R(C;J) and R(C';J'). Indeed, recall [Bea04| that &, Fr(R(C’;J")) = R(C';J') and similarly
05 Fr(R(C;J)) = R(C; J). Then, we have on the one hand

— jal s fat
6 F ([ R(CT) = 06 Fr(R(CH ) = 0bf wo'*0&Fr(R(C; ") = NFR(C'; J).
And on the other hand,

EF1(tyut¥ R(C; ) = (—1)979 &5 i o F1(R(C; ) = 057 v s pou by Fr(R(C; J))
= o5ly ty«pexR(C; J).

Besides, we have
Pirest ety xpexR(C; ) = deg(0)iy o R(C; J) = iy wpes R(C; J)
and using Corollary 2.2.8 twice, we get
bixelinexly «posR(C; J) = iy speulR(C; J).
Therefore we obtain
NIR(C'; J') = i 0% oty 0317 400 R(C3 J) = Y30y R(C; ).
Finally, the last assertion follows from the equalities (obtained thanks to Proposition 2.2.3)

poF([Y]- R(C;J)) = (=1)70a Fs([Y]) * po Fu(R(C; ) = o Fu([Y]) = R(C; J).

2.3.3 The special case of n-cyclic Galois coverings

In this section we get more explicit results when the covering f : C — (' is associated to an
automorphism of the curve C'. We start with definitions.

Definition 2.3.8. A finite Galois covering is a finite morphism f : C' — C’ of smooth projective
complex curves C' and C” such that there is an isomorphism C’ ~ C'/ Aut(f) where

Aut(f) :={pe Aut(C) | fou= f}

denotes the automorphism group of the Galois covering. This amounts to say that the function field
extension K(C)/K(C") is Galois.
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The function field K(C”) is then given by the subfield of invariants K(C)A"(/) = K(C) according
to the Galois group Gal(K(C)/K(C")) ~ Aut(f).

Definition 2.3.9. Let f : C — C’ be a Galois covering of smooth projective complex curves. We
say that f is a n-cyclic Galois covering if Aut(f) ~ Z/nZ. In that case, we will usually consider a
generator o € Aut(f) so that ¢’ ~ C/{0o).

Remark 2.3.10. Let C be a smooth projective curve endowed with an automorphism o € Aut(C').
Then the curve C/{o) is still smooth. Indeed we have to check that the curve C'/{c) is normal.
Because normality is a local matter, we can assume that C' = Spec(A) is affine so that C' =
Spec(AS?). We then easily check that A% is integrally closed in K(C') = Frac(A{) = K(C){
using the fact that C' is smooth.

We start with a lemma which specifies general facts concerning the subvariety Y and the auto-
morphism o defining a cyclic Galois covering f : C' — C /(o).
Lemma 2.3.11. Let f : C — C' ~ C/{o) be an n-cyclic Galois covering associated to an automor-
phism o € Aut(C) of order n € N* (with possibly g(C") = 0). Then

1. f:J — J induces an isogeny j : J' — Y := Im(f) = J of degree dividing n. Furthermore
this isogeny is an isomorphism if and only if f does not factorize via a cyclic étale covering
f:C" — " of degree = 2.

2. fNy = ®,(0) with ®,(X) =1+ X + ...+ X""L. Therefore Ny = e(:;) D, (0).
3. Y = Ker(o — 1)°.

4. We have the equality e(Y) = 1 if and only if Y = J(C) or' Y = {0} if and only if n = 1 or
C'~ P!

Proof.

1. According to [BLO04, Proposition 11.4.3], j is an isomorphism (that is to say f is injective)
if and only if f does not factorize via a cyclic étale covering of degree > 2. More precisely
(see [BLO4, Corollary 11.4.4]), when f is non injective, f factorizes via a cyclic étale covering

fe: Ce — C" of degree > 2 and such that deg(j) := # Ker(f) = # Ker(f*). Since f. is a cyclic
étale covering, we also have # Ker(f¥) = deg(fe), which divides n = deg(f) by multiplicativity
of the degree map.

2. Relation (3) of Section 2.3.1 states that

— n
N = Ny

e(Y)

But the fibres of f : C'— C” are cyclic orbits for the action of (o) on C' (because f is Galois).
Then for every point z € J represented by Lo (D) n;P;), we have

n

- T e - e St
=Lco (an(Pz +o(P)+...+ Un_l(B’)))

=z+40(2)+...+0"(2) = B,(0)(2).

So ﬁNY = ®,(0) that is Ny = @@n(a).

3. We now have to justify the equality Y := Im(f*) = Ker(c — 1)°. In order to do this, let us
begin by noting that a point x € J (corresponding to a class of invertible sheaf £ € Pic?(C))
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belongs to Ker(o — 1) if and only if 0*£ ~ L. Indeed, the Albanese morphism o : J — J is
the inverse map of o* = & : Pic’(C) — Pic’(C) (thanks to relation 2.3.1 (2)). Then we have

ox) =2 <= ollx)=2 <= o*L=L
Moreover, f oo = f (by definition of the quotient C/{o)). Then each element L := f*M €
Im(f*) is invariant under o*. Indeed, one has

oL~ f* M~ M~ L.

Thus we have proven that Im(f*) < Ker(o — 1) and by the connectedness of Im(f*), we even
obtain Im(f*) < Ker(oc — 1)°. This leads us to following inclusions (using assertion (2))

Y c Ker(o — 1)°  Ker(e(Y) — Ny)? = Ker(Nz)°.
But we know that Y = Ker(Nz)?, which can be proven by the following argument

dim Ker(Ny)? = dim J(C) — dimIm(Nz) = dim J(C) — dim Z

=g(C) — (dim J(C) —dimY) = g(C) — g(C) + dimY = dim Y.
Hence the previous inclusions are in fact equalities :

Y = Ker(o — 1) = Ker(e(Y) — Ny)° = Ker(Nz)°.

4. As (J,0) is a principally polarized abelian variety, Y and Z = Im(e(Y) — Ny) have same
exponent e(Y) = e(Z) (see Subsection 2.3.1 or more directly |[BL04, Corollary 12.1.2]. If this
exponent is equal to 1, then the polarizations induced by © on Y and Z, namely Pixe and
Pxe, are principal polarizations. So Lemma 12.1.6 of [BL04| implies that the isogeny

poi=ty +iz (Y x Z, "0 = py13:0 + p530) — (J,0)

which is of degree #(Y n Z) = #Ker(gpL; o) = 1 is an isomorphism of principally polarized
abelian varieties. Since O is irreducible, we have Y = {0} or Z = {0}. The first case means
that C' ~ C/{o) ~ P! because Y is isogenous to J(C/{c)). The second case means that
J =Y = Ker(oc — 1)? (according to assertion (3)); that is o = 1.
[
Remark 2.3.12. The dimension argument used to prove assertion (3) of this lemma can be replaced

by the construction of a section to the inclusion Y <> Ker(c — 1)°. This can be achieved thanks to
a descent lemma (see [DN89, Théoréme 2.3]).

The next (easy) lemma will be widely used in the sequel.

Lemma 2.3.13. Let o0 € Aut(C) be an automorphism of C. As before, we denote by o the Albanese
automorphism induced in End(J) and R the Rosati involution on End®(J) (with respect to the Theta
polarization). Then R(c) = o~ 1. Accordingly, we have for all P € Q[X]

R(P(0)) = P(c™").
Proof. Consider a point  on J. Then by definition of the Rosati involution, we have
voo R(o)(x) =dope(x)=0c"(tiL;(O)RLs(O))
=15 1(y0*L1(O) ®*L(0)" = pore(o ! (x)) = po(o (x))

because 0* = 6 € Al(J) (since o defines an automorphism of the curve). Thus we have R(o)(z) =
o~ 1(z) for all point z, which proves the first statement.

The last assertion follows immediately since the Rosati involution defines an anti-morphism of
the ring (End®(J), +, o). O
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Proposition 2.3.14. Let f : C' — C" ~ C/{o) be an n-cyclic Galois covering associated to an
automorphism o € Aut(C) of order n € N*. The map f induces a surjective morphism

fo i R(CH ) — @,(0)«R(C; ).
More precisely, the following equality holds
—= 1
f.C"'=—=®,(0).C.
n
Likewise, Ny induces a surjective morphism
Nf:R(C;J') — ®u(0)*R(C; J).

Proof. Recall that fN; = ®,(c) by Lemma 2.3.11 (2). Consider a cycle y € R(C'; J'). By Corollary
2.3.3 (Nf)x : R(C;J) — R(C";J') is surjective so there exists z € R(C;J) such that (N¢).xz = y.
Hence B B B
fsy = Foe(Np)sw = (fNp)ex = On(0)sx € Op(0)R(C; J).
Conversely, for all z € R(C; J),
@n(a)*x = 7*(Nf)*$ = ?*y € T*R(C, J)
where y 1= (Ny)sz € R(C"; J'). Using C’ = 1(Ny),C (Proposition 2.3.1), we obtain

z ool _1
FoC' = —Fu(NPC = —0(0)4C.

Then note that Rosati involution fixes ®,(¢). Indeed, according to Lemma 2.3.13, we have
R(®,(0)) = ®,(c7 ') = ®,(c) € End(J).

To get the second statement about N ]’f and thus conclude the proof, it remains to use this fact,
Proposition 2.2.2; assertion (1) of Subsection 2.3.1 and the fact that Fourier transforms on J and J’
induce automorphisms of R(C';J) and R(C’; J’) respectively. O

Corollary 2.3.15. Let f : C — C' ~ C/{o) be an n-cyclic Galois covering associated to an
automorphism o € Aut(C) of order n € N*. For all indices i € [0,g" — 1], we have

_ 1 _
f:Cliy = —®n(0):Cp) € A7 M) @)

Proof. With Proposition 2.3.14 we have

S|~

g-1 B 1 g—1
D T4Cly = FoC' = —®p(0)C = )
_ n :
i=0 1=0
By uniqueness of Beauville’s decomposition, we deduce the result since
0, (0)+Cs) € ©u(0)xAY () ) € A7) )
(see |Bea86, Proposition 2.c|). O

At this point, we would like to stress that push-forwards by polynomials in the automorphism
appear naturally when considering tautological rings associated to curves with automorphisms. This
may be the main idea to keep in mind about this whole section on Galois coverings. It raises the
question to get a better understanding of cycle classes of the form P(0).C and motivates the study
of the tautological ring containing all of them. This is the purpose of the rest of this paper.
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2.4 The tautological ring Rs(C; J)

Let C be a smooth projective complex curve of genus g > 1. Until the end of this section we
assume that we have a finite automorphism group G' < Aut(C'). We use the same notation G for the
corresponding subgroup of Aut(.J) and we shall note by Z[G] the subring of (End(J), +, o) formed
by polynomials in elements of G, that is the image in End(J) of the group ring Z[G]. Note that if G
is an abelian group generated by automorphisms o1, ..., o, of finite order, then Z[G] identifies with
Z|o,...,05] < End(J).

Remark 2.4.1. Recall that if g > 2, then any o € Aut(C) is finite.

Now we want to prove Theorem 2.1.1 which provides a set of generators for the tautological ring
RG(C; J) := Tauty ({w*c eA(J) | e Z[G]}).

The main difficulty is to show that the algebra for the intersection product generated by cycles
of the form 7* N%(w) is stable under Pontryagin product too. Thus we first prove the following :

2.4.1 Key-theorem

Theorem 2.4.2. Let Sg := Sq(C;J) < A(J) be the Q-subalgebra (for the intersection product)
generated by the m* N*(w) for m € Z[G] and i € [1,g9 — 1]. Then Sg is stable under the Pontryagin
product.

To prove this theorem we will use Beauville’s strategy [Bea04]| which essentially consists in using
the Fourier transform on J and more specifically we will use implication (4) = (1) of Proposition
2.2.5. To be brief, we will denote by F the automorphism @& F; : A(J) — A(J). We always identify
J and J via the principal polarization g. In particular, we will consider the Poincaré line bundle
on J x J, namely :

Pixsi=(1xve) P, ;
and its cycle class ;7 = m*0 — p*0 — q*0 € AL (J x J).

Remark 2.4.3. In his paper |[Bea04| Beauville uses the relation ljx ; = p*0 + ¢*0 — m™0 for the class
of the Poincaré line bundle on J x J. This equality is given by a different choice for the principal
polarization of J. Namely, he uses the polarization —pg to identify J and J. In this article, we have
chosen the principal polarization pg as Milne did in [Mil86]. As always we fix a rational point P on
C to embed the curve C in J = J(C). With our convention, we recall some relations whose proofs
can be found in [Mil86] (see Summary 6.11).

1. We put L' := L(Ac — P x C — C x P) € Pic(C?).

2. There is an invertible sheaf M* € Pic(C x J) such that (1 x fF)*MP ~ £F.
3. MP =~ (fP x (1) (1 x p)* P, 5~ (f© x (=1))*Psxs = (f¥ x 1)*PJ, ;.
4 LV~ (fF < [P Py ;= (f7 < ) (0" Ls(0) ® ¢*L1(0) ® m*L1(©)").

)

. There is a map fFV : J — J such that (fF x D*P, 7~ (1x fEVY* MP. On points, fFV is
induced by f* : Pic(J) — Pic(C).

6. va = —(p(:)l.

Proof of Theorem 2.4.2. We decompose the proof of Theorem 2.4.2 in several steps.
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Step 1 By definition S¢ is generated as Q-algebra (for the intersection product) by classes 7* N*(w)
with i € [1, g] and 7 € Z[G]. Since 7* N9(w) is a multiple of the class of a point and N!(w)I = §9 =
g!- P, it suffices to consider indices i € [1,¢g — 1].

Moreover, thanks to Proposition 2.2.2 applied with X =Y = J and a = 7, we have

F(r*N'(w)) = R(m)«F(N'(w)) = (=1)9"" R(1)+C(;_1).
Thus F(S¢) is generated as Q-vector space by products of the form
(R(ﬂ'l)*C(il_l)) * (R(T(-Q)*C(iz—l)) * ...k (R(WT)*C(ir—l))'
By Lemma 2.3.13, we get that each R(m) € Z[G]. Precisely, if 7 is a finite sum 7 = ¥ a4 0 g with
coefficients ag € 7Z, then R(m) = dea g © g~!. In other words, the Rosati involution induces an
involution of Z[G]. Consequently, F(Sg) is generated as Q-vector space by products
(m1:Ciy 1)) * (12:Cip 1)) * - % (M0 Cy, 1))
for 7; € Z[G] and integers i; € [1, g — 1]. The following lemma is inspired by Lemma 4.2 of [Bea04].
Lemma 2.4.4. F(S¢q) is generated as Q-vector space by the classes of the form

(kl*Trl*C) * ...k (k‘r*ﬂ'r*C)

for all sequences (ki,...,k,) e (N*)" and all m; € Z[G]. Therefore it is generated as Q-vector space
by classes of the form
(m14C) % ... % (m1,5C)

for m; € Z|G].
Proof of Lemma 2.4.4. This lemma depends in an essential way on the following equality

(kl*ﬂ-l*c) * ...k (kﬁr*ﬂ'r*C)
= (k1 ke)® D0 Rk (m1Clay) o (e Cl ) € F(Sa).

S1y.ySr

We then have to choose some k; wisely (by considering an invertible Vandermonde matrix) in order
to invert some of these relations. The second statement is a direct consequence of the first one since
if m; has integer coefficients and k; € N*, then k;7; has still integer coefficients. O

This lemma proves exactly that F(S¢g) is generated as Q-vector space by the products
(71'1*0) * (WQ*C) *oL00% (WT*C>

for the nonzero 7; € Z[G].

Step 2 According to Proposition 2.2.5 (that we can apply since § = N'(w) € Sg), it remains
essentially to prove that 6 - F(Sg) < F(Sg). Actually we will show that for all nonzero 7y, ..., 7, €
Z|G] the class

0 [(m1:C) # ... % (m,4C)]

belongs to F(Sq).

If r = 0, we have § = NY(w) € R(C;J) = F(R(C;J)) « F(Sg). Also note that if r = 1,
0 - m14+C € A9(J) is a multiple of the class of a point. Therefore it is a multiple of F([J]) € F(S¢q).
Thus we suppose from now on that r > 2 in which case we consider the following map :

w:or 2 g K g, g
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with @ := f x ... x f (r times), K := m x ... x m, and where m : J" — J is induced by the
multiplication on J. Then the cycle

0 [(m1:C) % ... % (m,,C)]

is a multiple of u,u*6 (by the projection formula). We now introduce projections p; : J= — J and
pij + J" — J?. In the same way we consider projections ¢; : C" — C and gij : C" — C?. As in

[Bea04] we have
m* = ij@ + ) Pl

i<j
Considering that

1. pjoKo® =mop;o®=mofFog,

2. pijoKo® = (m xmj)opijo® = (mxm)o(ffx f)oqy,

we get

1<J

—Z%fp* *9+qu FE X Y (i x 7).

1<j

It implies that ©*@ is a linear combination of classes of the form
q;‘fp*ﬂi*G and qu(fp X fP)*(m- X 5) Ly
Thus us.u™0 is a linear combination of classes of the form

u*q;‘fp*ﬂfe and u*q;“j(fP X fP)*(m- X ) L.

Step 3 The class f7*770 is a divisor class (modulo algebraic equivalence) on the curve C. Thus it
is a multiple of the class of a point. Therefore, ¢f f£*7*6 is a multiple of the class C' x ... x C' x P x
C x ... x C (where the factor P is in ith place). So we obtain that u.g; * fPu +0 is proportlonal to

(m14C) % ... % (. C) % ... % (1,4.C) € F(Sq)

where the ” means that we omit the emphasized factor.

Step 4 The main part of this proof rests in the study of classes (ff x f£)*(m; x 7;)*l;xs. Put
= (ff x f2)*(m; x 7j)*Pyxs € Pic(C x C). In order to study this invertible sheaf, we are going
to study its fibres and then glue them.
Let M be a point on C. Define ju; : N € C — (N, M) € C? and similarly jy : U € J — (U, V) €
J? where V is a given point on J. Then we easily check that

Micxnr = Gar(fF x f2)*(m x m)* Py
> FPURET oy (07 L3(0) ©5Ls(0) ©4°Ly(0)")
Pent (5 prany£9(0) ® £4(0))
Therefore the isomorphism class of M|cy s corresponds to the point
fPEntpe(miff (M) € Pic(C).
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2.4. The tautological ring Rq(C; J)

Then note that we have by definition of the Rosati involution R the equality
i © pe = Yo o R(m).

Thus we get
™ pe(R(mi)m; f7(M)) = [T e (n [ (M))

where 7 := R(m;) o m; € Z[G]. Since 7 has integer coefficients and g is a morphism of abelian
varieties, it suffices essentially to study the case where 7 is a monomial, that is 7 € G. Indeed, any
polynomial with integer coefficients is (by definition) a sum of monomials. Precisely, let us decompose

7 as a finite sum l
T= ) ag,9s
B=1

with coefficients ag, € Z non all zero and gz € G. Moreover put N := ZB lags| € N*. Then, we can
consider the map

S = (fgn(agl)gl, ... 7sgn(agl)g},sgn(agz)gg7 .. .,sgn(agz)gg, )i d —> JN

lag, | times lag, | times
where sgn : Z — {£1} denotes the sign map. Note that with these notations, we have
m=moS:J—J
where m : JV — J is still the map deduced from the multiplication map on J. We also have a map :
n:[1,N] — [1,]]
defined in such a way that
Va e [1, NJ, Pa© S = sgn(ag, ., )9n(a)

where po : JV — J is here the ath projection.
Ezample 2.4.5. If s = 2 and 7 = 2 — 0103 + 20703 for some automorphisms o1, o2, then
1. N=5,1=3
2. Gn(1) = 9n2) = 1, n@3) = 0105 and gp) = gn(s) = 0103,
3. S=(1,1,—0103,0%02,0%03).
Thus the following equality holds in Pic®(.J)

7TfP

||M2

agn(a) 909(.971 a)fP(M))

Now recall that any g € G satisfies the following Albanese property :
goff =0

Consequently, we have

:]
&,}
“U

Mz

sgn( agn(a) 90@<fgn(a)( )9 (a)( ))-

a=1
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In order to have compact notations, we chose to denote from now on until the end of this proof by
e (U) the invertible sheaf t};£;(©) ® L;(©)" for an arbitrary point U € J (and not its class in the
Picard group). Therefore, considering the relation

17 = ooy S

where tLgnioy(P)—P) J — J denotes the translation by the point of J corresponding to the

line bundle Lo (gp(a)(P) — P) € Pic?(C) and since goe(fgn<a>(P)gn(a)(M)) e Pic’(J) is translation-
invariant (see [MumO08, I1.8.1 p74|), one obtains that

N
Micsar = Q) FP*0o (£ P g ) (M) 0n)
a=1

N
® gn(a)(P fgn(a)( In (a )( ))s‘qn(agn(a)).

Moreover, we know from relations of Remark 2.4.3 that
(fP x OV Prey ~ (LP)Y := L2 (P x C+C x P - Ag).
It is then straightforward to get that for all points U,V € C,
(EUV)\ch = (EUV)|CxV ~ [P ee(f7 (V)

(put 7y = m; =1, P =U and M =V in previous formulas). It follows that for all points M in C

N N
~ gn(a)(P)\/ Sgn(agn(o‘>) ~ * P90 (a) (P) _sgn(ag”(o‘))
Micxm = a@l (5\0xgn<a>(M>> = a@l <(1 X Inie))"£ )|cxM

because jg, . (v) = (1 X gp(a)) © jm- According to the Seesaw principle [Mum08, Corollary 6 p54|,
we deduce the existence of a line bundle A on C such that

N
M ~ (@(1 X gn(a)>*(£9n<a)(P))sgn(agn(a>)> ®q*./\/

a=1
N
~ (6{)1(1 X gn(a))*ﬁcg (sgn(agn(a))(gn(a)(P) x C+C x gn(a)(P) — AC))) ®q*N

where g : C x C' — C denotes the second projection. Therefore, passing to algebraic cycle classes,
we get that (f7 x f£)*(m; x 7;)*1yxs is a linear combination of classes of the form

1. (1 xg)*(g(P) x C) = P x C (because all points on the curve C' are algebraically equivalent
and each monomial g € G is still an automorphism),

2. (1xg)*(Cxg(P)=CxP,

3. (1 xg)*A¢,

4. q*(deg(N) - P) = deg(N)(C x P)
for some automorphisms g € G.

Remark 2.4.6. Note that there appear naturally cycle classes of the form (1 x g)*A¢, that is essen-
tially graphs of automorphisms.

Finally, ¢;( fPx f2)*(m; x mj)*yxs is a linear combination of
L. gj5(P x C) =¢qP,
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2.4. The tautological ring Rq(C; J)

2. ¢;(C x P)=qiP,
3. g1 x 9)*Ac
and 50 uxqj;( P x f2)*(m; x m)*1yx s is a linear combination of the following classes
1. (7150) % ... % (1ixC) % ... % (1,:C) € F(Sc),
2. (115C) * ... % (m32C) % ... % (m2C) € F(Sa),
3. (m1:C) # ... % (W\Z*E) % ... % (m) % ..k (M C) x (m; + ﬂjg_l)*C e F(Sq).
S

=! Tr+1

Conclusion So we proved that each cycle class
0 [(m1+C) * ... x (m:C)] € F(Sq)

defines an element in F(S¢) as (rational) linear combination of classes all belonging to the Q-vector
space F(Sg). Thus F(Sg) is stable under intersection with the (principal) polarization 6, so stable
under F. Therefore this fact also holds for Sg, which we know now that is stable under Pontryagin
product. This completes the proof of this key-theorem. O

2.4.2 Interpretation in terms of tautological rings

Theorem 2.4.2 yields all we need to prove Theorem 2.1.1. The hard part has already been done.
It is now easy to conclude.

Proof of Theorem 2.1.1. By definition, tautological ring Rg(C'; J) is the smallest Q-vector subspace
of A(J) containing every m,C where m € Z[G] and stable under intersection product, Pontryagin
product and operators ki, k™. Therefore it contains the Q-algebra (for the Pontryagin product)
generated by thes classes m,.C. According to Theorem 2.4.2 and Lemma 2.4.4 this Q-algebra is none
other than F(S¢(C;J)), which equals S¢(C;J) thanks to Proposition 2.2.5. So we have

Ra(C;J) o Sa(C; J).

Also since S¢(C;J) = F(Sq(C;J)) contains each m.C and is closed under intersection product,
Pontryagin product and also under the operators k, and k* (because S (C;J) is generated by
homogeneous classes 7% N*(w) in A*(J)(;_1)), one has

Ra(C;J) < Sa(C; J).
So we get the equality Rg(C;J) = Sq(C; J). O

We now have a tautological ring on J associated to the group of automorphisms G < Aut(C).
This ring is all the more natural if one considers Corollary 2.1.2. Let us prove it now.

Proof of Corollary 2.1.2. Here again we decompose the proof in several steps.

Step 1 The algebra R(C;J) introduced by Beauville is generated (for the intersection product)
by N'(w) = 0,..., N9(w) according to [Bea04] (and even by N'(w),..., N9 1(w)). So if S is an
arbitrary algebra extension of R(C;J) stable under all pull-backs by polynomials in Z[G], then
necessarily Z[G]*R(C;J) = S and in particular, S contains each 7*N*(w) for all 7 € Z[G] and
i€ [1,g]. Thus, Rg(C;J) < S.

Step 2 Since Rg(C;J) contains each 7* N(w), it follows that Rg(C;.J) contains each generator
N(w) of the algebra R(C;J). That is why we trivially have the inclusion R(C;J) < Rg(C; J).
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Step 3 Now Rg(C;J) is generated as Q-vector space by classes of the form
TEN (w) - ... - TEN"™ (w).

Moreover, if we pull-back each one of these cycles by elements in Z[G], we still have a cycle in
R (C; J) of the same form. Indeed, for all 7 € Z[G] and all z,y € A(J), we have

™ (x-y) =7tz 7ty.

Therefore, Rz (C;J) is stable under all pull-backs by elements in Z[G].

Conclusion In other words Rg(C;J) is an algebra extension of R(C;J) (for the intersection
product) stable under all pull-backs by polynomials in Z[G] < End(J) and contained in every
extension S of R(C;J) with this property. Thus Rg(C;J) is the smallest Q-algebra extension of

R(C;J) (for the intersection product) which is stable under pull-backs by polynomials in Z[G].
Similarly we prove that the tautological ring Rg(C;J) is the smallest Q-algebra extension of
R(C; J) (for the Pontryagin product) which is stable under push-forwards by polynomials in Z[G].
O

This proves the following interpretation of the tautological ring Rg(C;J). It is the smallest
Q-vector subspace of A(J) containing the cycle class C' and closed under intersection product, Pon-
tryagin product, pull-backs and push-forwards by polynomials in Z[G]. Actually, since the generators
7*N*(w) and mxC(;—1) are homogeneous with respect to Beauville’s decomposition, the tautological
ring Rg(C; J) is even closed under pull-backs and push-forwards by polynomials in Q[G]  End®(.J).

2.4.3 Tautological divisors, Néron-Severi group and symmetric endomorphisms

Let 0 € Aut(C) and G = (o) < Aut(C). It is well-known that the Theta polarization induces an
isomorphism between the rational Néron-Severi group of J and the set of symmetric endomorphisms
of J (see [MumO08, p190]) :

NSg(J) — End®)(J) = {f € End’(J) | R(f) = f}
D - (pél o Yp.

Under this bijection, for any 7 € Z[G] the divisor class 7* N!(w) = 7% € R,(C;J) corresponds to
the symmetric endomorphism R(7) o 7. Indeed, we easily check on points that ¢,+g = 7 o pg o 7.
In particular, if 7 is symmetric, then 7*6 corresponds to 72 € End(s)(J ).

For example, for any integer ¢ the divisor class

v = (o + 07)%0

is associated to the endomorphism (¢ + 07%)? = 0% + 072 + 2. Also, let T'; € A'(J) be the divisor
class corresponding to o + o~ € End®)(J). We then have the relation

vi =T +20 € AY(J) n R, (C; J).

We leave it to the reader to verify that these cycle classes v; and I'; are both related to the graphs
I',i and I',—: in A'(C?) of 0% and o~*. For example, we can obtain some relations of the form

ATy = k(C x P) + k(P x C) =T, — T, € AY(C?)

ot

for some integer k where f2 :=mo (ff x fP):C x C — J. This can be seen by using the proof of
Theorem 2.4.2, Step 4. More generally, any divisor class of the form 7*6 can be related to graphs of
elements in G. Here again, we see how natural this tautological ring R, (C;J) is.
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2.5 The tautological ring Rg(¢y.C;Y)

From now on and until the end of this paper we consider a n-cyclic Galois covering f : C — C’ ~
C/{o) associated to an automorphism o € Aut(C) of finite order n € N*. Moreover, we fix a finite
automorphism group G < Aut(C) and we suppose that each g € G commutes with o. Therefore,
each g € G determines an automorphism g € Aut(C’) fitting into the following commutative diagram

Also, let us denote by G the subgroup of Aut(C”) formed by all these automorphisms § with g € G.
The covering f : C'— C’ determines two complementary abelian subvarieties Y and Z of J = J(C)
as in §2.3. We recall that we denote by 7 the polarization on Y induced by © and

Yy =1, oty o pe € Hom(J,Y)

which is polynomial in o (according to Lemma 2.3.11 (2)). In this section we study the tautological
ring induced on Y by Rg(C;J). This is the aim of Theorem 2.1.3.

Proof of Theorem 2.1.3. In order to ease notations, put J' = J(C"). Since j : J' — Y is an iso-
geny, it induces an isomorphism (of Q-vector spaces) between Ry(C’;J") = A(J') and its image
JxRx(C"; J') in A(Y'). As push-forwards commute with Pontryagin products, j is even an isomor-
phism of Q-algebras when we consider R@(C” ; J') endowed with the Pontryagin product. In particu-
lar, j.Ry(C"; J') is a Q-vector subspace of A(Y") which is stable under Pontryagin product but also
under operators ky and k* (because Rx(C’; J') has these properties and j is a morphism of abelian
varieties). Also, there exists an isogeny u : Y — J’ such that uoj = ky and j ou = ky for some
integer k € N*. According to Corollary 2.2.8, we get

R5(C;J") ~ juR5(C; J') = u* R (C' J').
It follows that j.Rx(C';J') = u*Ry(C';J') is stable under intersection product too (because
R@(C’ ;J') has this property and pull-backs commute with intersection product). Up to now, we
have proven that
Ra(C'; J') ~ juRa(C'; J') = Tauty <j*Ré(C’; J’)).

~

According to Proposition 2.3.1, we have (Nf),C = nC’. Thus, we get for all 7 € Z[G]

But we have for all g € G, fog = go f so that more generally when considering Albanese morphisms,
we have for all 7 € Z[G]
N fom= ToN f

~

where if =3 _cag0y9, then ¥ =, ;ag0 g€ Z[G] with § the automorphism induced on C/{o)
(or its Jacobian). Consequently, we obtain

(Nf)*ﬂ-*c - ’I’L%*C/.
From this equality we deduce as in Corollary 2.3.2 that for each i,
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Then as in Corollary 2.3.3, we get a surjection
(Np)s : Ra(C;J) — Ry(C ).
Similarly, we obtain by Fourier transform a surjective morphism (see Corollary 2.3.5)
I": Ra(C; 1) — Ra(C' ).
We now repeat the argument used in Proposition 2.3.6 :
jsRe(C3T) = jif Ra(C5 ) = ju(ey 0 §)* Ra(C3 J) = juj* iy Ra(C; ) = 13 Ra(C5 J)
because j.j* = deg(j) - Ids(y). Accordingly,
Ra(Cl ') ~ juRx(C'; J') = iy Rg(C; J) = Tauty (j*R@(C’; J’))-
It remains to show the following equalities :
Tauty (JuRg(C'; 7)) = yRo(C3 J) = Ro(yC3Y).

As the bigraded Q-algebra
iy Ra(C;J) = j«Rz(C; J')

contains the induced polarization n = (-6 and is stable under both products, the assertions (2) and
(3) of Proposition 2.2.9 prove that

§RG(C1T) = s FrtnnFy ($R(C D) | = Py (15 Ra(C1)).

Let us get a more explicit description of the generators ;. Fy (@Rg(c; J )) Using Proposition
2.2.2, Lemma 2.3.13 and the fact that 1y commute with any 7 € Z[G], the following equalities are
satisfied :

Yo Fy (3N (w))
1979 iy 7 Fy (N (w))
1 g+z’+(g—g')¢n*[§*7?*90e*0(i—1)

1

1

)

) iy s porPor e perCli_t)

)Fg/l/}n*f?*@@*R(W)*C(ifl)
l)i_g/ (%@0@)*3(#)*0@71)

)

)

[y

(_
(_
(f
= (_
(_
(—1)9 gy R(7)5Ci1)
(—1)"9 R(m)stbysCi_1)

where we recall that the Rosati involution R induces a surjection R : Z[G] — Z[G] (see the proof of
Theorem 2.4.2, Step 1). It follows that ;. Fy (Lg",Rg(C’; J)) is generated as Q-vector space by the
products of the form

(T« Cliy—1)) * - - % (Trathy o Cli 1))

Actually, using the argument of the proof of Lemma 2.4.4, we get that 1), Fy (L;}R(;(C; J)) is the
algebra (for the Pontryagin product) generated by all 7.1y ,C for polynomials 7 € Z[G]. Since the
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Pontryagin product commutes with push-forwards and as we already noted that ¢y (which is a
polynomial in o) commutes with each 7 € Z[G], we immediately get the equalities

Taty (eRa(C'2 7)) = 13RG(C:T) = wu Py (13 Ra(C: ) ) = dysRe(C:D).
Moreover this shows not only that
Tauty (juRg(C'sJ')) > Tauty ({matpyC € A(Y) | w € ZG]}) = Ra(ty.C;Y)
but also the reverse inclusion. Indeed,
Ro(y+C;Y) i= Tauty ({mutby.C e A(Y) | 7 € Z[G]})

contains (by definition) the algebra for the Pontryagin product generated by all m.1y,C, which
equals Tauty (j*Ré(C’; J’)). This completes the proof of Theorem 2.1.3. O

In fact, it is quite reasonable that we were able to deduce Theorem 2.1.3 from Theorem 2.1.1
since Y is closely related to the Jacobian J(C”) ~ J(C/{c)) on which all technical issues have been
solved previously. Also note that if we denote by H < Aut(C') the group generated by ¢ and G (in
such a way that o is central in H), then we have

wyRu(C;J) = 1y Ra(C5 J).
Indeed, we have as subrings of End(Y)
Z|H] =Z|G] < End(Y)

since Y = Ker(c — 1)? (according to Lemma 2.3.11). This remark is not true in general in the next
section in which we will work with cycles supported on Z = Ker(Ny ). Thus we will need to consider
(in general) elements in Z[H| and not only in Z[G].

2.6 The tautological ring R, (1 z.C; Z)

We want to obtain a tautological ring in A(Z) as we just did in A(Y'). The basic strategy
remains identical to Theorem 2.4.2 except that we have to manage the fact that Z has no reason to
be (isogenous to) a Jacobian. Nevertheless, considering the induced polarization on Z, also denoted
by n = 1,0 € Al(Z), and noting that this polarization is closely related to canonical principal
polarizations of J = J(C) and J' = J(C") ~ J(C/{o)) (associated to 6 € A'(J) and §' € A}(J")), we
can solve this problem. As in the previous section, put ¢z := 1, 0 iz 0 pg. We have Nz = 1z 0z
and these morphisms are polynomials in . Also consider a finite automorphism group H < Aut(C)
such that ¢ € H is central.

2.6.1 Key-theorem

Theorem 2.6.1. Let S, = S, (¢2+C; Z) be the Q-subalgebra of A(Z) (for the intersection product)
generated by the m* 5N (w) for 7 € Z[H] and i € [1,dim Z — 1]. Then S% is stable under the
Pontryagin product.

Remark 2.6.2. Note here the particular role played by o because Z depends on ¢ and, in general, o
is non-trivial in Aut(Z).

Proof. As for Theorem 2.4.2, we decompose the proof in several steps.
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Step 1 According to Theorem 2.1.1, the algebra S, is none other than the restriction 3, Ry (C; J)
of the corresponding tautological ring on J. The strategy of the proof is again to use implication
(4) = (1) of Proposition 2.2.9 (note that Proposition 2.2.9 applies because 1 := 50 = 5N (w) €
S7;). Thus we have to show that

- Yo Fz(Sh) < neFz(SH)-
Using the same arguments as in the proof of Theorem 2.1.3, we get
wn*fZ(LEW*Ni(w)) = (‘”iidimZR(W)*QﬁZ*C(Fl)-
It follows that ), Fz(S%) is generated as Q-vector space by products of the form

(1325 Ciy 1)) * -+ - # (Trah 26 Cli, 1))
hence by products of the form
(771*71}2*0) oLk (ﬂ'r*wZ*C)

with nonzero m; € Z[H].

Step 2 For any nonzero element 7; € Z[H| we study the class of the cycle

N [(m1sthz:C) % .o x (Tt 24 O)]

The same argument as in the proof of Theorem 2.4.2 shows that this cycle is a linear combination
of elements of the form

uegf fPR05mEn and wegl(F7 < fE)¥ (g x ) * (mi x w5) gz

where

Lo lzxz = (1 x@y)*l, 5 =m*n—p*n—qne AYZ x 7)

2. the map u : C" — Z is defined by the composition

RN oL LN

zr Ko gzr g
with @ := fPx...x fF (r times), ¥ := ¢z x...x9)z, K := 7 x...xm, and where m : Z" — Z
is induced by the multiplication on Z.

Step 3 The cycle f¥ *min is a divisor class (modulo algebraic equivalence) on the curve C. Thus
it is a multiple of the class of a point. Therefore, f7*y%7*n is a multiple of the cycle C' x ... x C x
P x C x ...x C (where the factor P is in ith position). So u*q;"fp*l/}}ﬁ"n is proportional to

(M1 z:C) % .. % (M5 z25C) % .ok (T 724 C) € Y F2(ST).
Step 4 We now have to study the class
(F7 % f7)* (2 x vz)*(mi x 17)*Izx 2.
Since o is central in H, we have
(m x mj) o (Yz x Pz) = (Yz X ¥z) o (i x 7).
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Thus we obtain
(f7 < IV bz x bz2)* (mi x 7)) lzwz = (F7 % f7)5(mi x m5)* (Y2 % ¢2) 2% 2.

The key-argument is the following (see [BL04, Proposition 12.3.4]) :

e(Y)?0 = e(Y)*0 = N30 + N30
e(Y)= *

= ( (n )fo> 0+ (Lz¢z)*9

e(Y)?
n2

e¥)’

NiF 0+ vy

NFO' + U7

These different equalities are justified by facts recalled in Section 2.3.1; namely :
1. Ny + Nz = G(Y) -1dy,

2. TNy = 5Ny,

3. 770 = no € AL(J").

In other words, we have

Wiy = e(Y)20 — e(?QN}“H’.
Thus,
(F7 x )% (mi x ) * (V2 % ¥z)*lzxz
e(Y)?

= e(W)2(f7 x fO)*(mi x ) Lywg —

- (F7 x f2)*(mi < ) (Ng x Np)*lyreg.

Step 5 The cycle class (f x f7)*(m; x 7;)*17x s has already been studied in the proof of Theorem
2.4.2. Tt is a linear combination of

P xC, CxP  and (1 x h)*Ac

for h € H. It follows that q;"j(fp x fEY*(m x 7j)*1yx is a linear combination of
L. qU(PXC)_q P
2. ¢j;(C x P)=gq;P,
3. g1 x h)*A
(

So u*qw P x fP) (mi x m;)*lyx s is as usual a linear combination of

1. (msz:C) % ... % (m*T/J_Z/*C) s .k (M0 24 C) € U F7(SG),

2. (matz4C) % ..o (@MO) . (Trsth 24 C) € Uy F7(S%),

3. (M2 C) # .. o# (s z24C) % .5 (W24 C) % .. (M0 24C) % (w5 + 75D ) e
—_———

=. Tr41

which also defines a cycle in 1, Fz(S%).
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Step 6 We now study the class (£ x f£)*(m; x m;)*(Ny x Ng)*Ly . As in [Aral2|, we use the
following equality :
NyofP =f/Ploy.

Nevertheless, we first have to commute the map Ny with polynomials in Z[H]. To be more precise,
since by hypothesis o is central in H, there exist for all h € H an automorphism he Aut(C") such
that foh = ho f. These automorphisms h extend to automorphisms of J (C") which we still denote
by . We consider the group H formed by these automorphisms.

Remark 2.6.3. Note that we have & = 1.

As in Section 2.5, each 7 € Z[H] induces an element % € Z[H] and for all k, we have the relation
Nf OTE = ’;T\]; e} Nf
Thus we have

(FF > f2) (i x )" (Ng x Np)*Lyrse e
= (ffxfF )*(Nf X Np)*(7i x 75)* Ly
= (f < [T x TN (R 5 7) Ly .

Now the same argument as in Step 5 shows that this cycle class is a linear combination of

L (f x /)*(f(P) x C") = n(P x C) (because all points on C are algebraically equivalent and
because f: C' — C' is of degree n),

2. (f x f)*(C" x f(P)) =n(C x P) for the same reason,

3. and finally, since each h € H < Aut(C’) is induced by some h € H < Aut(C), we also have
cycles of the form

(f x [*(A x B)*Acr = (1 x h)*(f x f)*Acr
=(1xh)*(Ac + (1 x o) Ao+ ...+ (1 x O'n_l)*Ac)

for some elements h € H.

So far, we proved that u*q;’;(fp x fPY*(m; x 7)) (Ng x Ng)*lyxy is a linear combination of cycles
all in 1+ F7(S%). To be precise, the classes we obtain are on the one hand of the form

(Wl*wZ*C) * LK (Wi*wZ*C) *LLLE (Wr*wZ*C)

and on the other, we get for k € [0,n — 1] classes of the form :

(T14025C) % ... % (Tiath74C) % % (Mjatbz4C) % % (M) 22C) % (5 + mih ™ o) w1p 7. C.

Conclusion All this implies that

n- [(7"1*¢Z*0) #o0x (mratpzeC)) € ¢n*}—Z(Sg{)
as (rational) linear combination of cycles which all belong to 1y« Fz(S%). In other words, ¥+ Fz(S%)

is stable by intersection with 7 so that Proposition 2.2.9 shows that S is stable under Pontryagin
product. This completes the proof. ]
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2.6.2 Interpretation in terms of tautological rings

Theorem 2.6.1 immediately implies Theorem 2.1.4, just as we deduced Theorem 2.1.1 from Theo-
rem 2.4.2. At the same time, we obtain Theorem 2.1.5. O

We now consider some special cases of Theorem 2.1.4. We first consider the case where o is of
order 2. In that case
Z = Ker(Ny)? = Ker(®5(0))? = Ker(1 + ¢)°

and thus |z = —1z. This implies that the image of Z[H] in End(Z) does not depend on ¢. Therefore,
as in Section 2.5, o does not need to belong to H : we just have to assume that each automorphism
of H commutes with . That being said, Theorem 2.1.4 leads to

Theorem 2.6.4. Let f : C — C' ~ C/{o) be a double covering. In particular, this implies that
Z = Ker(1+0)? and 0\ = —1z. We consider a finite group of automorphisms G < Aut(C) and we
suppose that each g € G commutes with o. Then the tautological ring RZ.(Vz+C; Z) is generated as
Q-subalgebra of A(Z)

1. for the intersection product by all 7*5N*(w) = t5m* Nt (w),

2. for the Pontryagin product by all mstpz+Ci_1) = Yzxm:Ci_1)
with m € Z|G] and i € [1,dim Z — 1] odd. As a result, we get the tautological ring :

RG(Vz+C; Z) = 1z Ra(C; J) = Yz+Ra(Cs J).
Note that in this theorem we can restrict to consider odd indices ¢ because of

Lemma 2.6.5. With the above notations and assumptions of Theorem 2.6.4, the cycle class of
VYz:C € A(Z) is symmetric. Therefore, each ¥z7.C(9i11) = 0 in AdimZ—l(Z)(%H).

Proof. The following diagram is commutative

fr Yz

C——J]—F7—7
U\L o \Ll
C—sJ—7.

IR

Indeed commutativity of the left square follows from the definition of Albanese morphism. Whereas
commutativity of the right hand square is justified by 0|z = —1z (because Z = Ker(1 + a)?). A
diagram chase gives

(_1)*7/]Z*ffc = wZ*f:(P)O'*C-
Since (—1)* = (=1)x : A(Z) - A(Z) and 0,C = C (because o € Aut(C)), we have

(—1)*¢za fFC = ¢z f2F)C.

But we are working modulo algebraic equivalence so that we can translate cycles without changing
the cycle class :

00 = fhoe AsmL(J(0)).
Thus we have
(—1)*thz4 f£ C = thz4 f£ C

which means that 1z, f'C (which we denoted by v7,C) is symmetric. Therefore (see [Bea83,
Corollary 1])

Yz fEC e @Adimz_l(z)(%)

and we have proven our lemma. O
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Also, if one only considers the automorphism o of order 2 (that is if we are interested in the res-
triction of Beauville’s tautological ring R(C;J) to the subvariety Z = Ker(1 + ¢)°), we immediately
deduce :

Corollary 2.6.6. Let f : C — C" ~ C/{c) be a double covering. Then the tautological ring
Ry (¢7:C; Z) := Tauty ({P(a)*@bZ*C ceAZ) | Pe Z[X]})

is generated as Q-subalgebra of A(Z)
1. for the intersection product by all 1% N*(w),
2. for the Pontryagin product by all ¥ z.+C;_1)
for all odd indices i € [1,dim Z — 1]. Consequently, we get the tautological ring

Ro(7+Cs Z) = 17 R(Cs J) = ¢z:R(C; J).

This corollary provides a generalization of Arap’s theorem [Aral2, Theorem 4|. His result deals
with double coverings which are étale or ramified in exactly two points so that Z is in fact a Prym
variety (and in particular principally polarized which simplifies the proofs of Propositions 2.2.5 and
2.2.9).

2.6.3 Some remarks about relations between generators in A(Y) and A(Z)

Until now we studied tautological rings on J, Y and Z. These rings on Y and Z are obtained
as restrictions of analogous tautological rings on J. In particular, we can deduce relations between
generators in A(Y) or A(Z) by projecting known relations in A(J). By projecting we essentially
mean applying ¢§- or ¢}, (resp. ¥y, or ©z,) if one considers relations for the intersection product
(resp. Pontryagin product).

We recall a theorem of Colombo and van Geemen [Cv(G93] which states that if C' is a k-gonal
curve, then C;) = 0 for all © > k — 1. By Fourier duality, this is equivalent to N ‘(w) = 0 for all
i = k. This means that in all previous results involving classes N’(w) we could restrict ourself to
indices i € [1,gon(C) — 1] where gon(C) is defined as the smallest positive integer d such that there
exists a finite morphism of degree d from C' to P!

Thus we can obtain two corollaries as in Beauville [Bea04| for tautological ring R(C;J) for
hyperelliptic and trigonal curves. These corollaries describe the explicit Q-algebra structure (for the

intersection product) of tautological rings R, (¢7.C; Z) < A(Z) whence o is of order 2 for k-gonal
curves with k € {2,3,4,5}.

Corollary 2.6.7. Let f: C — C' ~ C/{o) be a double covering. We suppose that C' is hyperelliptic
or trigonal and we denote by 1 := 150 the induced polarization on Z. Also put d := dim Z. Then

Ry(¢2:C; Z) = Q[??]/(??d+1)-

Proof. 1f C' is hyperelliptic, then the only nonzero N(w) is N'(w) = 6. Thus R,(¢z.C; Z) is
generated by (560 = n. If C is trigonal, the only nonzero generators are N'(w) = 6 and N?(w).
However, projections ¢} N (w) of N?(w) in A(Z) are 0 in A(Z) (because the projection ¢z,C =
Y7+C o) + 1z+C(1) is symmetric according to Lemma 2.6.5). O

Remark 2.6.8. Since on any curve of genus g there exists a g} with d < [g%‘q’J (see [ACGHS85, Chapter
5, Theorem 1.1]), this corollary applies (in particular) to curves of genus < 4.
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Corollary 2.6.9. Let f : C — C" ~ C/{o) be a double covering. We suppose that C is 4-gonal
or 5-gonal. We put n := 150 € AYZ) ) and p := yN3(w) € A*(Z)). We continue to write
d :=dim Z. Then R,(¢z.C;Z) < A(Z) is the algebm generated by n and p (for the intersection
product). Moreover, there exists a positive integer k < g such that

Ro(2+C; Z) = Qn, ul /(0™ ™ g, M b, B,

Proof. The fact that R, (¢7+C; Z) is generated by n and p follows from previous theorems. We have

to find all the relations between these generators. Note that we have n*u® e AP(Z )(s) if and only if

k + 3s = p. Consequently nP~3%1* is the only one of these monomials in

R:E)s) = Ro—('lﬂz*c; Z) M Ap(Z>(S)

We deduce that this monomial generates R < as Q-vector space and that the only possible relations
are also monomials. It remains to establish an exhaustive list of which monomials n"p® are trivial. To
do so, we are going to use the Fourier transform on Z to juggle with generators for the intersection
product (the :%N*(w)) and generators for the Pontryagin product (the 1z.C;)).

As Q-algebra for the Pontryagin product, R, (1z.C; Z) is generated by

UneFz(n) = (=1)9"2.Clop  and  puFz(p) = (—1)792.Ca),

hence by ¥z+C () and P z.C o). It follows that R’()s) is generated by a monomial of the form 1 Z*C(*O“) *
Yz:C, Prec1se1y, since
Unu F2 AT (Z)(s) = AT (2) o)

and sinced —r+s=pifandonlyifr=d—p+s, Rfs) is generated by

wn*]_—z(n(d—p+s)—3s . Ms),
—_—

d—p+s
ER(S)

that is the cycle class ¥ 7.C d —p=29)

be rewritten as (p — 3s) + 53 > d. It follows that n'pt=0e R(s) (r=p—3s)ifr+5s>d.

Let us stress that n"u® and 1/JZ*C +dmr=5s) wz*C(*;) both generate R?;Sgs (as Q-vector space).
This implies that

* 7, CP5 . In particular, R( ) is zero if p + 2s > d, which can

UTMS =0 — 'QZ)Z* *(d r—59) *@ZJZ*C(*QS) =0

Consider the smallest positive integer k such that p* # 0 and p**' = 0. If 5k > d, then
pF = nOuF = 0 according to this last inequality (0 + 5k > d). Therefore, we must have 5k < d. It
remains to establish that n"u® # 0 for all positive integers r, s satisfying r + 5s < d and s < k.
Suppose this is not true that is to say suppose that n"u® = 0 for some integers r, s with r + 5s < d
and s < k. Since " u® = 0, the first part of the proof implies that Rﬁg’s = 0. So any generator of

this subspace is trivial too. In particular, it means that 1z, (()d r=58) 4 ¢Z*C*8 = 0. Taking the

#(d—r—>5s) *(d 5s)

Pontryagin product of 1,C ) * 1/)2*0* with ¢z.C (0)7 we get z:C * %ZJZ*CE“;) =0

or in other words R?Ss) 0. As this space is generated (when adopting the point of view of the
intersection product) by n°u® = p*, this implies that pu® = 0, which is in contradiction with the
minimality of k.

To conclude, the relations n"* = 0 hold if and only if s > k or r +5s > d. This first case (s > k)
provides the relation

/J,k‘-i-l =0
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whereas the other relations have to be considered for r > d —5s + 1 and s € {0,..., k}. These ones
are obtained from

gdOX0+1 0 pd=5x14+1) 1 pd=5k+1 k-
that is to say n@*!, nd=4p, ... nd=dk+1, k. O

Remark 2.6.10. This corollary applies
are d-gonal with d < [232] = 5.

—~

in particular) to curves of genus g < 8 because such curves

2.6.4 Outlooks

In general, finding a (complete) system of non-trivial relations between the 7* N‘(w) is a hard
task. Actually, it is already tough to study relations between the N¢(w) (or the C(;)) as shown by
papers by Polishchuk, Colombo and van Geemen, and Herbaut for example. Apart some special cases,
we do not know whether tautological rings defined in this article are of finite dimension over Q. Also
it would be interesting to lift these tautological rings modulo rational equivalence as it has been done
for R(C;J) by Polishchuk. Furthermore, there is another important matter which would deserve to
be studied. We know that different automorphism groups may determine the same tautological ring
(e.g. on a hyperelliptic curve C' endowed with its hyperelliptic involution ¢, consider the trivial group
{Id} and G = {Id,¢}). However, we can wonder whether non-isomorphic group algebras Z[G1] and
Z|G2] (seen as subrings of End(J)) always determine non-isomorphic tautological rings Re, (C; J)
and Rg, (C;J).
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CHAPITRE 3

Anneaux tautologiques sur les variétés de Prym généralisées associées aux
revétements Galoisiens n-cycliques par une courbe hyperelliptique

3.1 Introduction

3.1.1 Généralités

Soit C' une courbe complexe projective lisse de genre g = g(C) = 1 munie d’un automorphisme
o € Aut(C) d’ordre fini n € N*. On rappelle (Théoréme 2.1.1) que 'on dispose d’un anneau tauto-
logique

R (C; J) := Taut, ({P(J)*C e A(J) | P(o) € Z[a]})

engendré en tant que Q-sous-algébre de A(J) pour le produit d’intersection (resp. produit de Pon-
tryagin) par les P(c)*N*(w) (resp. par les P(0)+C(;_1)) avec P(0) € Z[o] et i € [1,g — 1].

Par ailleurs, considérons un revétement Galoisien n-cyclique f: C — C’ ~ C'/{o). La encore, on
dispose d’un anneau tautologique R, (¢ 7+C; Z) < A(Z) sur Z ot ¢z € Hom(J, Z) est un morphisme
surjectif, polynomial en o. La sous-variété abélienne 1z : Z < J est d’exposant noté e(Z) = e(Y)
divisant n (cf. Sous-section 2.3.1) et la dimension de Z est encore notée d := dimZ = g — ¢’. On
considére tout particuliérement la polarisation induite 7 := 1560 € A*(Z) ). On rappelle (Théoreme
2.1.5) que l'anneau tautologique

Ry ($24C; Z) i= Tauty; ({P(0)s124C € A(Z) | P(0) € Z[o]})

est engendré en tant que Q-sous-algebre de A(Z) pour le produit d’intersection (resp. produit de Pon-
tryagin) par les P(o)*15N'(w) = 15 P(0)*N*(w) (resp. par les P(0)«z+C(i—1) = ¥z+P(0)+Ci_1))
avec P e Z[X] et i € [1,d — 1] et qu’a ce titre, on a

Ry(12+C; Z) = 15 R, (C; J) = Yz Ry (C5 J).

Dans ce chapitre, on étudie ces Q-algébres lorsque C est hyperelliptique. Il s’agira de montrer
que ces anneaux tautologiques sont alors de dimension finie, puis on étudiera plus en profondeur les
relations entre les générateurs sur Z lorsque n = p est un nombre premier. On terminera par des
exemples explicites quand la variété Z est de petite dimension.
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aux revétements Galoisiens n-cycliques par une courbe hyperelliptique

3.1.2 Exemples de courbes hyperelliptiques avec automorphismes

Signalons tout d’abord que les courbes hyperelliptiques avec automorphismes sont nombreuses.
Les résultats de structure présentés dans la suite pour l'anneau tautologique R, (¢z.+C;Z) s’ap-
pliquent donc & une multitude de courbes. Nous en donnons maintenant plusieurs exemples en nous
appuyant sur Uarticle [Sch71] qui classifie justement de telles courbes.

Les exemples qui suivent se concentrent sur les automorphismes d’ordre premier p > 2. Remar-
quons que la dimension de Z, notée d = g — ¢’, dépend du genre de C' et C/{c) mais peut aussi étre
reliée au nombre v € N de points fixes de o. En effet, la formule de Hurwitz appliquée a la projection
naturelle C' — C/{c) fournit 'égalité

29 —-2=p(2¢' —2)+v(p—1),

soit 5
d=g—g’=(p—1)(§—1+g’)~

. . . PEEN .. pfl ..
En particulier, ceci prouve déja que p — 1 divise 2d ou encore que ~5- divise d.

Courbes de la forme y? = (2P — a})(2? — ab) - - - (2P — b))

Dans 'article [Sch71] de John Schiller, les courbes hyperelliptiques complexes C' admettant une
équation de la forme y? = z(2P — af) (2P — ab) - - - (zP — ab;) sont référencées sous le cas 1.1. Ce sont

des courbes qui admettent un automorphisme o d’ordre p donné par

o(z,y) = (Gpr,\/GpY)

ol (, est une racine primitive p-iéme de 'unité dans C. On a dans ce cas g = i - p. On vérifie que la
courbe quotient C/{o) admet pour équation 7% = Z(Z — a})(T — ab) - - - (T — ab,) et est donc de genre
¢’ = i. Ainsi, la variété de Prym généralisée Z déterminée par o est de dimension d = i(p — 1).

Courbes de la forme y? = z(af — a) (2P — ab) -+ (aP — b))

Les courbes C' admettant pour équation y? = x(a? —al)(a? — ab) - - - (2 — ab, . |) sont référencées

sous les cas 1.2 et 3.2 dans [Sch71]. Ces courbes admettent aussi ’automorphisme d’ordre p suivant :

o(z,y) = (G, v/ GpY)-

Une telle courbe C' est alors de genre g =i -p + % tandis que la courbe C/{o) dont I’équation est
7 =%(x—d)(@T—a}) - (T—ab;,,) est quant & elle de genre ¢’ = i. Par suite, la variété abélienne

Z est de dimension d = (i + 1) (p — 1).

Courbes de la forme y? = (2P — a}) (2P — ab) - - - (2P — ab,)

La troisiéme et derniére famille de courbes hyperelliptiques que 1’on présente ici correspond au
cas 3.1 de [Sch7l]. Il s’agit des courbes qui peuvent étre décrites par une équation de la forme

y? = (2P — af) (2P — ab) - - - (aP — ab,). Celles-ci admettent ’automorphisme d’ordre p suivant :

o(z,y) = (G, ).

On montre alors que la courbe C//{o) a pour équation 3> = (T—a})(T—ab) - - - (F—abh;). En conclusion,

onag=i-p—1,¢g =i—1etdoncd=i(p—1).
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3.2. Générateurs de R,(C;J) et R,;(¢z.C; Z)

Le cas particulier C/{c) ~ P!

Terminons cette introduction en insistant sur les courbes hyperelliptiques C' admettant un auto-
morphisme o d’ordre p premier tel que C/{c) ~ P!. Pour de telles courbes, les revétements Galoisiens
p-cycliques f : C — C' ~ P! sont nécessairement ramifiés (conséquence de la formule de Hurwitz).
Ce cas correspond & la situation Z = J ou de maniére équivalente

dy(o)=1+0+...+0P =0y

dans End(J). Onaalors d=g,¢ =0,e(Y) =e(Z) =1 et n = 0.

Cette situation se produit pour les courbes de la forme 3? = (2P — aP)(aP — bP) [Sch71, Cas 3.1]
mais aussi y? = z(zP —aP) [Sch71, Cas 3.2|. Notons enfin que la condition ®,(c) = 0 peut se vérifier
directement au niveau des différentielles. Détaillons cet argument pour une courbe C' de la forme
y? = (2P — aP)(zP — V). D’aprés [Koo91], une base des différentielles sur C' est donnée par

dx zdr 29 dx
77 gy .

) ) )

Ces différentielles sont des vecteurs propres pour o* associés aux valeurs propres respectives ¢, (2, .. .,
¢9 = (P~1. En particulier, 1 n’est pas valeur propre et on a comme prévu la relation ®,(0) = 0.

3.2 Générateurs de R,(C;J) et R,(¢z.C;7)

3.2.1 Reéduction a un systéme fini de générateurs

Abordons a présent 'étude des générateurs des anneaux tautologiques R, (C; J) et Ry (¢ £+C; Z),
un automorphisme o € Aut(C') d’ordre fini n € N* étant fixé. On commence par une généralisation
du corollaire 2 de [MumO08, p58-59].

Lemme 3.2.1 - Soient k = 3 un entier, X une variété, Y une variété abélienne et f1,..., fr : X —
Y des morphismes. Alors pour tout L € Pic(Y), on a

(it + S L=~ ( ® (fi+fj)*ﬁ> ®< © fi*uw).

1<i<j<k 1<i<k
Démonstration. Ce résultat se démontre facilement par récurrence sur k > 3. O

Remarque 3.2.2 : Lorsque k = 1, 2, c’est-a-dire lorsque dans le formule pour £ = 3 un ou deux des
morphismes sont nuls, cette formule est triviale.

L’intérét fondamental de ce lemme est de nous permettre de « casser » les polyndmes (a coeffi-
cients entiers) en o par lesquels on tire en arriére le cycle N'(w) = 6. Ceci nous améne au résultat
suivant :

Proposition 3.2.3 - Soit C une courbe hyperelliptique admettant un automorphisme o d’ordre n €
N*. Alors l’anneau tautologique R,(C;J) < A(J) est engendré en tant que Q-sous-algébre de A(J)
pour le produit d’intersection par les classes de cycles suivantes :

1. sin est pair :

Yi= (1 +0*)0=(c"+07 9% et 7 :=1+0*™)*0 pourie [[0, g - 1]] ,
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2. st n est impair :

. . . 1
vi=(1+0*)*0= (6" + 0 )*0 pourie [[O, [C— 5 H .

En particulier, Ry(C; J) est de dimension finie sur Q.

Démonstration. Puisque C' est hyperelliptique (c’est-a-dire 2-gonale), on a C' = C(q) € Al(J) de
sorte que d’aprés le théoréme 2.1.1 rappelé en introduction R,(C;J) est engendré par les classes de
cycles de la forme

(ap 4+ a10 + ... + ap_10™1)*0, avec Vi € [0,n — 1], a; € Z.

Le lemme 3.2.1 permet de casser ces cycles sous la forme d’une combinaison linéaire entiére en les
classes de cycles

(P )0 = (c" o (1+c7F)*0 =1+ 0 = (1 +0!7%)*0  avec (k,1) € [0,n — 1]
car pour tout entier v € Z, o“*6 = 6. Par ailleurs, pour tout entier u, on a
0=01+0"—0")0=(1+0")0+(1—0")"0 — 30,

de sorte qu’on peut méme ne considérer comme générateurs que les (1 + o!=%)*g. Par suite, puisque
0 est symétrique, on a lorsque [ — k = 24 est pair

vii= (14020 = (6" o (6" + 07))*0 = (o° + 0 H)*c™0 = (¢' + o )*6.

Ceci prouve 'assertion lorsque n est pair. Lorsque n est impair, on peut pousser le raisonnement un
peu plus loin. En utilisant I'imparité de n et le fait que 6™ = 1, on a

. . -, n+1
,% - (1 +O_2@+1)*9 _ (1 + 0_21+n+1)*9 _ (1 + 0,2(14-%))*9
= ("3 o (0T 4 o)) *g
= (o'iJrnTH —+ 0'7(7"+HT+1))*0'(1’+”T+1)*9 = Y, n+l.
2
Comme pour tout entier j on a la symétrie v; = v,—; = 7—;, on obtient le résultat annoncé. O

Remarque 3.2.4 :
1. Par dualité de Fourier, on en déduit classiquement un systéme fini de générateurs de la Q-
algébre R,(C;J) pour le produit de Pontryagin.

2. On a un résultat analogue pour les anneaux tautologiques Rg(C';J) ou G est un groupe fini
d’automorphismes de C. Dans ce cas, on se raméne & un systéme fini de générateurs de la
forme (1 +g)*f o ge G.

En restreignant a Z lanneau tautologique R, (C;J) < A(J), on obtient instantanément un
résultat analogue pour 'anneau tautologique Ry (¢2.C;Z) < A(Z).

Corollaire 3.2.5 - Soit f : C — C' ~ C /(o) un revétement Galoisien n-cyclique. On suppose que C
est hyperelliptique. Alors l'anneau tautologique R, (1 z+C'; Z) est engendré en tant que Q-sous-algébre
de A(Z) pour le produit d’intersection par les classes de cycles suivantes :
1. sin est pair : '
(14+c")*n pourie[0,n—1],
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2. st n est impair :

, , , -1
(1+a**n=(c"+07)*n pourie |[O, 712]] .

En particulier, Ry(vz+C; Z) est de dimension finie sur Q.

Démonstration. C’est une conséquence de la proposition 3.2.3 précédente : les générateurs (pour
le produit d’intersection par exemple) de R, (17+C;Z) = 13 R,(C;J) sont les restrictions a Z des
générateurs de 'anneau tautologique ambiant R,(C;J) < A(J). O

3.2.2 Interprétation des cycles I'; et v; sur C? et involution de Rosati

Soit o € Aut(C) un automorphisme d’ordre p premier (éventuellement égal & 2). On rappelle
que la polarisation (principale) 6 € Al(.J )(0) induit un isomorphisme entre le groupe de Néron-Severi
rationnel NSg(J) = Al(J )(0) et P'ensemble des endomorphismes symétriques de J (pour I'involution

de Rosati sur J définie par R(f) := g’ o fo vo) [Mum08, p190] :

NSg(J) = End®(J) = {f € End’(J) | R(f) = f}
D - cp(:)l oYp.
Suivant cette bijection, pour tout P(c) € Z[o] < End(J) la classe du diviseur P(c)*0 € R,(C;J)
correspond a 1’élément symétrique R(P(0)) o P(o). En effet, on vérifie sur les points que

¢po)xp = P(0) o pg o P(0).

En particulier, si P(c0) est symétrique, alors P(0)*@ correspond a P(0)% € End® (.J).
On note I'; € NSqg(J) la classe de diviseur correspondant a I’endomorphisme symétrique ol ot
pour tout entier ¢. En particulier, on a I'j,_; = T'; et I'g = 26. De plus, on a v; = I'g; + I'g car

(0" + 0792 =0% + 0% +2; € End(J).

Montrons a présent que les cycles T'; (et donc indirectement les 7;) qui sont apparus naturellement

a la section précédente sont tout aussi naturellement reliés aux graphes des automorphismes o' et

o "

Interprétation géométrique des I'; et ; sur C?
D’apreés [Mil08, Corollary I11.6.3 p104], on a un isomorphisme

End(J) — {classes d’isomorphismes de correspondances divisorielles entre (C, P) et (C, P)}

0 — Ly = (1x (o fF))*MP ePic(C x O)

entre 'ensemble des endomorphismes de J et I’ensemble des (classes d’équivalence linéaire de) fais-
ceaux inversibles £ € Pic(C x C) tels que Licxp ~ Lipxc ~ Oc¢; un point rationnel P étant

toujours fixé sur C. De cette maniére, 'endomorphisme symétrique o + 0% € End(s)(J ) détermine
naturellement la correspondance

Lyivgi:=(1x ((c"+ o fF)* MF € Pic(C x C).

61



Chapitre 3. Anneaux tautologiques sur les variétés de Prym généralisées associées
aux revétements Galoisiens n-cycliques par une courbe hyperelliptique

Notons Pjyxs := (1 x po)*P 75 le faisceau de Poincaré sur J x J. On a (cf. preuve du théoréme
2.4.2) les isomorphismes suivants :

Lotpomi = (15 fPY*(1x (0 + 0~ MP

=~ (Ix fOP A x (0" + o7 )*(f7 x 1)*PJs
~ (fPx Oy (A x (o' +0 Z)>*PJ><J
~ (1x o) L7 P @1 x o) L P @ g N

ou q: C x C — C est la seconde projection, N € Pic(C) et ou pour tout point @ € C, on a posé
L = Lovc(Ac—CxQ—Q xO).

Remarque 3.2.6 : Si ¢ admet un point fixe et si le point rationnel P fixé sur C' est un tel point
fixe, alors le fibré N est trivial. En effet, on a alors

N =~ (¢"N)pxc ~ (Loipoi ® (1 x o) (L") @ (1 U_i)*(ﬁp)v)uaxc
> (Loino)pue ® (1 X 0 (Ll o) @ (1 x 07 (Ll )"
> (LotpoNpec = (1% fV(Ux (0 +07)* (Mh, ) = Oc

car Eﬁ?xc ~ (¢ et parce qu'on a aussi grice a la remarque 2.4.3 :

M|P><J ~ (7 x 1)*P}XJ)\PXL7 = (PJVXJ)\fP(P)xJ = (Pfo)\oxJ ~0y.

En passant aux classes d’équivalence algébrique de diviseurs sur C2 et en notant I'j« les graphes
des o*, on obtient

lyivo—i =TEAC+TE i Ac—2(P xC)—(2—degN)(C x P)
=T i+, —2(P x C) — (2 —deg N)(C x P) e NSg(C?)

car tous les points de C sont algébriquement équivalents entre eux.

Par ailleurs, on dispose d’une application f?: C? — J qui est donnée sur les points par
(M,N)— Lo(M + N —2P).

Il s’agit a présent d’étudier le lien entre f2*T; et la correspondance divisorielle £, ,—i. Essentielle-
ment une correspondance divisorielle est une correspondance que 1’on a trivialisée le long des fibres
C x P et PxC (et en fait le long de n’importe quelle fibre C'x @ et @ x C puisqu’on travaille modulo
équivalence algébrique). Ainsi, on s’attend a ce que f2*I'; soit égal & la correspondance divisorielle
associée aux o' + o, plus deux termes de bord (les parties & priori non triviales de f2*I; le long
C x Pet Px (). On a en fait la propriété suivante :

Proposition 3.2.7 - Soit D € NSg(J). On note g = pg' opp € End®) (J) I’élément de End®)(.J)
associé a D. Alors

F#Ly(D) =~ p* 7 Ly(D) @ " [ L (D) ® Ly
Démonstration. En utilisant les formules rappelées dans la remarque 2.4.3, on a les isomorphismes
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de faisceaux inversibles suivants :
FHLID) = (mo (fF x fP)*L(D) = (fF x f£)m*L,(D)

= (7 7Y (P £o(D) ® ¢* Ly (D) @ (1 x 1) P, ;)

~ p*fP* Ly (D) @ ¢* fF* Ly (D

Zp*fp*ﬁj D ®q*fP*EJ(D

(D) )®
(D) )®
=~ p* fPL(D) @ a* LD ® (X (1) (7 x )P, 5]
~p L (D)@ ¢* L (D) @ [(1 % (opf )" (1 x (=1))* (1 x f7)* M7
~ p* L (D) @ ¢* 7L (D) @ [(1 x (onfT) (1 x (=) MP]”
~ p* 7L (D)@ ¢* 7L (D) @ [(1 x (05 ¢n ) MPT"
~ p* fPLy (D) @ ¢* f7Ly (D) ® Ly ;
ce qui est exactement le résultat annoncé. O

Exemple 3.2.8 (f>*I'; et f?*v;) : Pour D =I;, on a dans A'(C x C)
STy = p* FPT5 4 ¢ 7T = iy i

Notons aussi que p* fF*T; est un multiple de P x C (puisque fF*I'; est une classe d’équivalence
algébrique de diviseurs sur la courbe C). De méme ¢* fF*T; est un multiple de C' x P. En conclusion,
les éléments I'; € NSg(J) déterminent des éléments de NSg(C?), combinaisons linéaires entiéres des
graphes I': et I';—; avec des composantes « de bord » C' x P et P x C. Il en est donc de méme de
vi = T'2i + Lo.

Plus généralement, toute classe de la forme P(0)*6 peut étre reliée de cette fagon aux graphes
des o* apparaissant dans P(c).

Interprétation cohomologique des Li,,-: sur Cc?

Terminons en donnant une interprétation cohomologique de ces classes de diviseurs dans H?(C?, Q).
La décomposition de Kiinneth de H?(C?, Q) est donnée par

H*(C x C,Q) ~ [H*(C,Q) @ H°(C,Q)] @ [H'(C,Q) @ H'(C, Q)] @ [H*(C,Q) @ H*(C, Q)]
= H29(C,Q) @ HIV(C,Q) @ H®? (0, Q),

ot 'on a noté H) (C, Q) := H(C,Q)®@H’ (C, Q) (a ne pas confondre avec une structure de Hodge).
Remarquons le fait suivant. Puisque C' est une courbe lisse, H2(C, Q) ~ Q : tout élément est un
multiple de la classe d’un point [P]. En fait, on a déja

CHI(C)/ ~alg™ CHO(C)/ ~alg™ 7.

Par ailleurs, ce coefficient multiplicatif est égal au degré d’un représentant de la classe du diviseur sur
C considéré. Si on identifie maintenant H%) (C, Q) avec un sous-espace de H?(C' x C, Q), la compo-
sante d’une classe de diviseurs [D] € H2(C' x C,Q) dans HZ9(C, Q) est simplement la multiplicité
d’intersection D - (C' x P), ou encore deg(Dcp).

Mais alors si [D] = [I',i] est la classe du graphe d’un automorphisme, cette multiplicité doit
étre égale a 1 : lintersection I'yi - (C' x P) s’identifie au point schématique simple (o~*(P), P)
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(intersection simple car ¢* est un automorphisme). Autrement dit, la composante du graphe [T',:]
dans HZ9(C, Q) est exactement P x C, et de méme celle dans H(®?)(C, Q) est juste C' x P.

Ce qui apparait alors, c’est que la classe de cohomologie de la correspondance divisorielle [£ i ,—i]
dans H2(C?, Q) est exactement la composante principale des graphes [[',:]+[',—:] dans HLD (O, Q).
Par conséquent, la composante principale de [f2*T;] dans H(l’l)(C, Q) est, au signe prés, exactement
la composante principale des graphes [[',:] + [T, —i].

Terminons cette partie par un fait général reliant 'involution de Rosati pour les endomorphismes
et I'involution usuelle dont on dispose au niveau des correspondances sur C2.
3.2.3 Action de l’involution de Rosati au niveau des correspondances sur C?

Une polarisation principale pg de J étant fixée, on dispose de I'involution de Rosati de End(J).
Par ailleurs, on dispose d’une bijection

g € End(J) — L, € Corrg;, (C?)

qui envoie un endomorphisme g sur sa correspondance divisorielle associée. On dispose également
sur Corrg, (C?) d’une involution naturelle donnée par

a € Corrgy, (C?) — h*a € Corrg;, (C?)

ott h: (z,y) € C% — (y,r) € C%. La proposition suivante établit un lien entre ces deux involutions.

Proposition 3.2.9 - L’involution de Rosati de End(J) et Uinvolution induite par h sur Corr g, (C?)
sont compatibles avec la bijection g € End(J) — Ly € Corrgi, (C?). Autrement dit, pour tout endo-
morphisme g € End(J), on a

ER(g) >~ h*ﬁg

Démonstration. On a

L) = (1 x (vg'Gref’))* M
~ (1x f7)*(1 % pe)*(1 x §)*(1 x pg')*M”
~ (1x [P (1% o) (1 x 9)*(f7 x (=1))*P,, 5
car pg' = —fFV et (1 x pg! ) MP =~ (1 x (—fPV))*MP ~ (fF x (=1))*P,, 5 (cf. Section 1.3.1 ou
encore Remarque 2.4.3). Ainsi,
Lrg = (7 x 1) (1 x po)*(1 x §)*P ;.

Comme (1 x g)*PJ G~ ~ (g x 1)* P

2 f2Y*(1 x pe)*(g x 1)* Py s
(gf") x ) (1 x po)*PY >
(9fF) < fEY*Ps

(") x D*(1 x f2)*Py,

ou Py, ;= (1x QDQ)*P}/Xj =m*L;(0)Y ®p*L;(0) ®¢*L;(O). Enfin, de I'isomorphisme

on en déduit que

IZ

12

0

(
(
(
(

0

MP = (FF < (=1)*Prug =~ (fF x )*PY,,
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il vient
WEMP > B (7 < 1P~ (Ux YR Py~ (U fP) Py
(car on a clairement h*Pj, ; ~ Py de par la définition de Py s). On conclut donc que
Lrig) = ((9f7) x )*P* M7 > h*(1 x (9f7))* M" =~ h*Ly,
ce qui démontre la proposition. O

Corollaire 3.2.10 - Un endomorphisme g € End(J) est symétrique si et seulement si la correspon-
dance divisorielle Ly € Corrg;, (C?) est invariante sous laction de h*.

Démonstration. Conséquence immédiate de la proposition précédente. ]

Conséquence 3.2.11 : On a vu dans la sous-partie précédente que
Loiig—i~ (1 xa )y L7 P @1 x o)L P g¢*N

o q: C x C — C est la seconde projection et N' € Pic(C) est un certain fibré sur C. Puisque
o' + 07" est symétrique, ce dernier corollaire montre qu’on a méme N € Pic?(C). En effet, on a

;Co-i_;’_o-fi = LR(a-i_;’_a-fl) = h*ﬁgi_i_gﬂ',
ce qui signifie en termes de classes d’équivalence algébrique de diviseurs sur C? :
Ipi+T,-i —2(P xC)—(2—degN)(C x P)
= lo-i_;’_a—i = h*lo-i+o-—i
= h*T,i + T, — 2h* (P x C) — (2 — deg N)h*(C x P)
=T, 4T, —2(Cx P)—(2—degN)(P x C);
d’ott 'on déduit que deg V' (C'x P— P x C') = 0 € NSg(C?). Comme C x P et P x C ne déterminent

pas la méme classe modulo équivalence algébrique (car ce n’est déja pas le cas modulo équivalence
homologique), on en déduit le résultat annoncé.

Maintenant que 'on comprend un peu mieux le caractére naturel de ces cycles I'; et ; sur J,
abordons la partie centrale de ce chapitre. On étudie dans la suite les relations entre les générateurs
de R, (1 z.+C; Z) lorsque o est un automorphisme d’ordre premier. Comme on va le voir, il est possible
d’étre trés précis dans ’étude de ces relations dans A(Z).

3.3 Générateurs et relations dans R,(¢z.C; Z) lorsque o est d’ordre
p est premier

On suppose dans toute cette partie que o est d’ordre n = p un nombre premier et on notera
dans tout ce qui suit d := dim Z = g — ¢’. L’objectif de cette longue partie est d’étudier les relations
entre les ¢%7;. On donnera réguliérement des applications numériques des résultats obtenus.

3.3.1 Premiers résultats : lescasp=2et p=3

Le cas le plus simple : p = 2

Le cas p = 2 a déja été traité (Corollary 2.6.7). Par esprit de synthése, rappelons tout de méme
briévement ce résultat.
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Proposition 3.3.1 - Soit f : C — C' ~ C/{o) un revétement double. On suppose que C est
hyperelliptique ou trigonale et on note n := 3,0 la polarisation induite sur Z. Notons aussi d :=
dim Z. Alors

Ry (¢2:C; Z) = Q[n}/(n™*1).
En particulier,

Ro(z+C; Z) = 1z R(C5 J) = ¥z R(C; J).

Les classes de cycle ; et w; : une relation linéaire

Maintenant que le cas p = 2 est traité, on supposera dans tout ce qui suit que o est un
automorphisme d’ordre p > 3 premier. En particulier, p est impair. Comme avant, la polari-
sation 7 := (50 € Al(Z)(O) induit un isomorphisme entre le groupe de Néron-Severi rationnel
NSq(Z) = AY(Z) g) et I'ensemble des endomorphismes symétriques de Z (pour I'involution de Rosati

sur Z définie par R(f) := @,;1 ofo ¢y [Mum08, p190] :
NSq(Z) = End®(Z) = {f € End(2) | R(f) = f}
D 90;1 o pp.

Comme dans le cas des Jacobiennes, pour tout P(o) € Z[o] < End(Z) la classe du diviseur P(o)*n €
Ry (17+C; Z) correspond & I'élément symétrique R(P (o)) o P(c) ou plus simplement P(c)? si P(o
est symétrique.

Par analogie avec la section précédente, on note §2; € NSg(Z) la classe de diviseur correspondant
a endomorphisme symétrique o' + o~" € End(Z) pour tout entier . En particulier, on a ,,_; = Q;
et Qo = 2n.

Proposition 3.3.2 - Soit 0 € Aut(C) d’ordre p > 2 premier. Alors on a la relation suivante dans
AN(Z)
1
2

ce qui s’écrit encore
D+ ...+ Qp =—n.
2
Démonstration. On commence par utiliser les faits rappelés dans la sous-section 2.3.1 ainsi que le
lemme 2.3.11 afin de justifier que Z = Ker(®,(0))?, cest-a-dire qu’en tant qu’endomorphisme de Z
on a l’égalité
l+o0+...+07 ! =0z € End(2).
Puisque p est premier, e(Y) est égal & 1 ou p (car e(Y) divise p). Le premier cas e(Y) = 1 ne se
produit que lorsque Y = Ker(o — 1)? = J, ce qui est exclu car o est d’ordre p > 1; ou lorsque

Y =TIm(fNy) = Im(®,(0)) = {0},

et alors Z = J = Ker(®,(c))". Le second cas e(Y') = p implique directement Ny = fN; = ®,(0) et
la encore Z = Ker(Ny)? = Ker(®,(0))°.

On obtient ensuite le résultat en rassemblant les endomorphismes symétriques o +0?~¢ = o'+~
dans la relation polynomiale 1 + ¢ + ... + 0?~! = 0z et en suivant I’isomorphisme de groupes
NSg(Z) ~ End®(Z). A noter que P'on utilise ici que p est impair. O

)

A présent, on pose wy = 71 et pour i € [1,p — 1] (c’est-a-dire pour p ne divisant pas i),
w; = (O’i + Uﬁi)*n =9 + Q€ NSQ(Z)

car (o' + o~%)*n correspond & I’endomorphisme symétrique (0% + 07%)2 = 02 + 0% 4 2.
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Remarque 3.3.3 :

1. Attention ici au changement de notation par rapport aux parties précédentes : on n’a pas défini
wo comme étant
(0" + 070 = 2%y =4y
pour éviter d’avoir un coeflicient 4 dans les futures relations aux dénominateurs.

2. wo = qt370 et pour i€ [1,p — 1], w; = ey

La relation entre les 2; obtenue dans la proposition 3.3.2 se traduit immédiatement en termes
de Wi .

Lemme 3.3.4 - Soit 0 € Aut(C) d’ordre p > 2 premier. Alors on a la relation suivante dans A'(Z)

p—1

2
(2—p)w0+2wi20.
=1

Démonstration. 1l s’agit d’une réécriture de la proposition 3.3.2 en termes de wj :

, =
-0 Q; =
5 0+i:Zl 0
1 -1
= <2—p2>Qo-i—(Ql+Qo>+(Qz+ﬂo)+(93+ﬂo)+(Q4+Qo)+...:0
2 _
— Tp90+(Qp_1+Qo)+w1+(Qp_3+QO)+w2+...=0
— (2—p)w0+pr—1+w1+pr—3+w2+...=0
p—1
2
= (2—p)w0+2wi=0.
=1

O]

Ce lemme nous permet ainsi de préciser le corollaire 3.2.5 en réduisant de un cycle le systéme de
générateurs connu jusque la pour 'anneau tautologique R, (¢ z.+C; Z) :

Proposition 3.3.5 - Soient C hyperelliptique de genre g =1 et 0 € Aut(C) d’ordre p > 2 premier.
L’anneau tautologique Ry(¢7+C;Z) < A(Z) est engendré pour le produit d’intersection par les w;
pour i € [0, 25°].

Démonstration. D’aprés le corollaire 3.2.5, R, (17+C’; Z) est engendré par wp, w1, . .., wp-1. Le lemme
2
3.3.4 précédent montre que cette algébre est déja engendrée par wp,wq, ..., wp-3. ]
2
Le cas p =3

Proposition 3.3.6 - Soit f : C — C' ~ C/{c) un revétement Galoisien cyclique de degré 3 avec C
hyperelliptique. On note n := 15,0 € Al(Z)(O) et d:=dim Z. Alors

Ry(¢2:C; Z) = Q[??]/(??d+1)-

En particulier,
RJ(¢2*0§ Z) = LER(CQ J) = wZ*R(C§ J)~
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Démonstration. Puisque p = 3, la proposition précédente montre que R, (1 z.C; Z) est engendré par
wp = 1. Le résultat est alors immédiat. O

En d’autres mots, si f : C — €' ~ C/{o) est un revétement Galoisien double ou triple avec
C hyperelliptique, I'algebre (5 R(C; J) est déja stable par les pull-backs et push-forwards par Z[o].
Ainsi, pour un automorphisme d’ordre 2 ou 3, on n’élargit pas I'anneau R, (¢ z+C; Z) = 15 R(C; J) <
A(Z) en faisant agir les polyndémes en o par pull-back et push-forward. La situation est beaucoup
plus complexe pour les p > 3 premiers; ce que ’on étudie dans la suite.

3.3.2 Transformée de Fourier des w; dans A(Z)

Avant d’étudier le cas des automorphismes d’ordre premier supérieur, faisons une parenthése sur
la transformée de Fourier des w; ; ceci afin de mieux comprendre ces classes de diviseurs.

Préliminaires techniques

On commence par quelques généralités concernant les bien connus polynémes de Tchebychev.

Définition 3.3.7 (Polynomes de Tchebychev) On définit les polynémes de Tchebychev de premiére
espéce pour n € N par récurrence :

To(X) =1, Ti(X)=X, Vn =2, Thio(X) =2XT, 1 (X) — T,(X).
On peut montrer que T}, € Z[X] est le polynome de degré n vérifiant
Vo e R, T,(cos(p)) = cos(ny).

Définition 3.3.8 On définit de la méme maniére pour tout n € N le polyndéme

T)(X) := 2T, (?) .

Les polynomes T, (X) vérifient la relation de récurrence
Ty(X)=2 TI(X)=X, VYn=2 T, ,(X)=XT,(X)-T,(X).

et pour tout ¢ € R,
T/ (2 cos ) = 2T, (cos p) = 2 cos(nyp).

Remarque 3.3.9 : On prendra garde a ne pas confondre les polyndmes T}, avec la dérivé formelle
des polynémes T,.

Lemme 3.3.10 - Soit n € N. Alors Ty, (0) = 2(—1)" et T, ,(0) = 0.

Démonstration. Les formules sont vraies pour Tj) et T7. Le résultat découle alors de la formule de
récurrence : 1), ,(0) = =77 (0). O

Corollaire 3.3.11 - Soit p = 1 un entier impair.

p—1

2 1 sip=1 mod 8 oup=3 mod 8,
EWHOE P i’

= -1 stip=—-1 mod8 oup=-3 mod 8.
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Démonstration. Sip=1 mod 8, p est de la forme 8k + 1 pour un certain entier k. Par conséquent,

% = 4k est divisible par 4 et alors
et ak 2% 2% .
1+ Y T(0) =1+ > T/(0) =1+ > T5,(0) =1+2 ) (-1)' =1+2x 0= 1.
i=1 i=1 i=1 i=1
Les autres cas sont analogues. ]

Ceci nous ameéne au lemme suivant :

Lemme 3.3.12 - Soit o0 € Aut(C) d’ordre p > 2 premier. Soit j € [1,p—1]. Alors 0 +0~7 € Aut(Z).
Plus précisément, il existe un polynome Q € Z[X] a coefficients positifs, indépendant de j et que l’on
peut calculer explicitement tel que

(07 +079)7t = Q(07) € Aut(Z) c End(Z).

Démonstration. Si p est premier et p ne divise pas 7, alors o7 vérifie aussi la relation 1+ o/ + ... +
o?®P=1) = 0, dans End(Z). Par suite, il suffit de montrer le résultat pour j = 1; ce que l'on fait a
présent.

Puisque dans End(Z), ona 140 +...+0P~! = 0, on peut identifier Q[¢,] ~ Q[¢] = End’(Z) (ot
G = 621777). Autrement dit, Q[o] est un corps. En particulier, o + 0~! est inversible dans End’(Z) :
c’est une isogénie et il s’agit de voir que (0 + o~1)7! est déja défini dans End(Z). Dans la suite de
la démonstration, on fera indifféremment référence a o ou (.

Remarquons que (o 4+ 0~ 1)~! € End’(Z) peut se calculer explicitement. L’idée est de déterminer
le polynoéme minimal de o + ¢! afin de pouvoir exprimer son inverse comme un polynéme en o.

Notons ®,(X) =1+ X + X2+ ...+ XP~1 le p-i¢me polynome cyclotomique. C’est le polynome
minimal de o € End®(Z) sur Q. De plus,

[Q(¢p) : Q] = deg(®)) =p—1 et [Q(¢p) = Q¢ + Cp_l)] =2

de sorte que [Q((p + C;l) : Q] = %. Dans ce cas, le polynéme minimal de ¢, + (1;1 (sur Q) est
de degré % (& ce moment 1a on utilise I'hypothése p > 2). On constate par ailleurs que I'on peut
écrire
p—1 1
o, (X)=X2P(X+—=),
X
p—1
ou P € Q[X] est un polynome unitaire avec deg(P) = %. Comme ®,((,) =0et (,> # 0, on en
déduit que P (X + %) est annulateur de (p, ou encore P est annulateur de ¢, + ¢, L Autrement dit,
P n’est rien d’autre que le polynéme minimal de ¢, + ¢, 1 (ou o + 071). Notons que ce polynéome
minimal est aussi celui de ¢ + (,” (ou encore celui de 07 + o77) : il ne dépend pas de j.
La relation précédente se réécrit,

plred) -2 1S (v k)

Or pour n = 1, X™ + X" est un polynome & coefficients entiers en X + % En effet, pour tout
pelR, ona

; 1 , e 1
e’ + e 2cos (np) =T, (2cos (¢)) =T, <ew + ei@> ;
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de sorte que

1 1 -
X”+—T,’L<X+X>6Z[X+X .

X
Ainsi,
p—1
P X+1 —1+iT’ X+1
X)) i:1i X
Oou encore

P(X)=1+ ZZ] T/ (X) € Z[X].
i=1

Comme P(0) = £1 d’apreés le corollaire 3.3.11, il s’ensuit qu’on peut toujours écrire

1

WP()Q =1-XQ(X),

avec () € Z[X] non nul de degré deg(Q) = deg(P) — 1 = %. Finalement,
07 = —Plo+0 V) =1y — (0 4+ 0O + o)
P(0)

et
(c+0 ) '=Q(0c+0') e End(2).

Puisque 0! = 0?1, l'inverse de o + o~ dans End(Z) est donné par Q2(0) € Z[o] o
Qa(X) == Q(X + XP 1 e Z[X].

On a également pour tout 7 € [0,p — 1],

i—1

—o'=140c+...+0" 4+ 4. 40P e End(2),

ce qui nous autorise a supposer que les coefficients de Q2 sont dans N. En effet, si un (ou plusieurs)
des coefficients de ()2, disons a;, est négatif, il suffit de changer ()2 en le polynéme

Q2(X) — a;Pp(X)

ce qui revient & remplacer le terme a; X? de Q2(X) par —a;(1+X +... + XL X4 4 XP~1) et
permet de remplacer i-iéme coefficient négatif de Q2 par 0 (le rendant donc positif) sans affecter ni
le signe des autres coefficients déja positifs ni le fait que Q2(c) = (¢ + o)7L, Ce dernier polynéme
Q2 convient ; ce qui achéve la preuve du lemme. ]

Remarque 3.3.13 : D’un point de vue purement calculatoire, le calcul explicite de l'inverse de
o'+ 07 € End(Z) peut se faire & I’aide d’un logiciel. Par exemple avec Sage, le code suivant affiche
cet inverse (dans le cas p=>5et i =1):

p=>5 # Ordre de 1’automorphisme s

i=1

Q.<x> = QQ[] # Anneaux Q[x]

Qp.<s> = Q.quo(cyclotomic_polynomial (p)) # Corps cyclotomique Q(s)

show((s~i + s~(-1))~(-1)) # Affichage de 1’inverse de s~i + s~(-1)

La prochaine proposition précise quant a elle le degré de la polarisation 1 induite sur Z par 6.
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Proposition 3.3.14 - On considere toujours un revétement Galoisien p-cyclique f : C — C' ~
C /(o) ou o € Aut(C) est d’ordre p premier (éventuellement égal a 2) et on note x(n) la caractéris-
tique d’Euler de n. Alors

pd s f est étale,
X(U) = g .
P sinon.
En particulier,
dl-p9 =1 sif est étale
degrnt = di-x(n) = {2 oS ’
d - p9 sinon.
Démonstration. En s’appuyant sur [Ort03, Proposition 2.1|, le type de la polarisation 7 lorsque f
est étaleest ((1,...,1 ,p,...,p), auquel cas x(n) = p? ~!. Maintenant, supposons que f est ramifié.
M Y=
(r—2)(¢'-1) g'-1
Puisque f est de degré p premier, il ne se factorise pas a travers un revétement étale cyclique non

trivial. D’aprés [BLO04, Proposition 11.4.3], on en déduit que f := f* : J' — J est injectif. Autrement

dit, f induit un isomorphisme de J: sur Y et la polarisation induite par 6 sur Y est égale a p fois une

polarisation principale sur Y (car 70 = po' ). Finalement, (§-6 est de type (p,p,...,p) puis, grace
-

!

g
au corollaire 12.1.5 de |[BL04|,  est de type (1,...,1,p,...,p); ce qui fournit le résultat concernant
\_.\,__/
g/
X(n). La seconde assertion est une conséquence immédiate du théoréme de Riemann-Roch pour les
variétés abéliennes [Mum08, p150|. O

Aprés ces quelques préliminaires techniques passons a 1’étude de la transformée de Fourier des
Ws.

Etude des F(w;)

On note F : ¢y Fz : A(Z) — A(Z) la transformée de Fourier sur Z apreés identification A(Z) ~
A(Z) via I'isogénie ¢, := e(Z)g, ' € Hom(Z, Z).

Remarque 3.3.15 : Onae(Y)=e(Z)=1si Z={0} ou Z = J. Sinon e(Y) = e(Z) = p.
On a par définition wg = n. La transformée de Fourier de wy est donc bien connu :

Proposition 3.3.16 - On a les égalités

Flwo) = (=1)"pz.C gy = (—1)

Démonstration. Grace a la proposition 2.2.2, on obtient
Flwo) = YuFz(t50) = (=1 99z F5(0) = (=1)" 99yl 00x05 F (6)
_ (_1)d*g+g+1wz*0(0) _ (_1)d+1wz*0(0).

D’un autre coté, en utilisant [Bea83, Proposition 5|, on a

1)1 pd-1
VrClo) = (1 e P () = (-1 i X()n) @1
B 1 . 77d_1 _e(Z)2 77d—l
S T @
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Dot le résultat. O
Il nous reste a déterminer F(w;) pour i € [1,p — 1]. Pour cela, on aura besoin des préliminaires

précédents.

Théoréme 3.3.17 - On suppose que p > 2 est premier. Alors pour tout entier i€ [1,p — 1],
.F(UJZ) = (—1>d+1(0i + Uﬁi)*”l/JZ*C(O).

Par conséquent, x(n)(d — 1)\ F(w;) appartient au Z-module engendré par les produits d’intersection
de la forme
_ ‘ ‘ . p—3
Wiy Wiy ** Wiy, € Ad 1(Z)(0), 0<i1 <9< ...< 191 < ?

De plus, on peut exprimer explicitement les F(w;) en fonction de ces produits en les wj.

Démonstration. Pour tout entier 4, ’endomorphisme o’ +0 % € End®) (Z) est symétrique, c’est-a-dire
Rlo"+o Y=c"+0o'=0"+0o"

oit R: End’(Z) — End’(Z) désigne l'involution de Rosati sur Z relativement & la polarisation 7).
On vérifie en effet que R(c) = o~ 1. Par conséquent, les mémes arguments que pour la proposition
3.3.16 précédente montrent que

F(wi) := F((o + 070 ) = R(o" + 07 F(n) = (6" + 0 ) F(n) = (~1)¥ (0" + 07)402:C().-

Comme v7.C(p) = e)E(Zn); (Zd:ll)!, on en déduit que
Z)Q ) . nd—l
J—_‘wi =(—1 dJrle( ot o,
B T R (]

Or d’apres le lemme 3.3.12, il existe un polynéme @ € Z[X] a coefficients entiers positifs, indépendant
de i et que I'on peut calculer explicitement tel que

(0" + 07971 = Q%) € Aut(Z2).

On obtient dans ce cas

d+1€(Z)2 o) nd=1
v A @

et puisque les pull-backs commutent au produit d’intersection, il vient

Flwi) = (=1)

(—l)d'He(Z)Q
x(n)(d —1)!

Or Q(0%)*n € Ry(1z+C; Z) n A1(Z), c’est donc une combinaison rationnelle et méme entiére (car Q
est a coefficients entiers) en wy, . . . ,wp—s d’apreés le corollaire 3.2.5 (2). Noter qu’une telle combinaison
2

F(w;) = (Q(e")*n)

s’obtient explicitement en utilisant le lemme 3.2.1 puisque @ est connu. Finalement, F(w;) est un
polynéme homogéne de degré d — 1 & coefficients entiers en les wg, w1, . ..,wp-3. Plus précisément,

2
x(n)(d — 1)\ F(w;) appartient au Z-module engendré par les produits d’intersection de la forme

p—3

d—1 . . .
Wilwig"'wid—leA (Z)(O), 0<t1<i9<...<431 < 5

ce qu’il fallait démontrer. O
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Exemples

Notons que si o est un automorphisme d’ordre p premier vérifiant ®,(c) = 0 sur une variété
abélienne de dimension d, alors p — 1 divise 2d (car [Q(o) : Q] = p— 1) et en particulier p — 1 < 2d.
Ainsi, le cas p = 3 est & étudier pour d = 1, le cas p = 5 est lui & étudier pour d = 2, le cas p =7
est a étudier pour d > 3, etc...

Exemple 3.3.18 (d > 1 et p =3) : On suppose ici que d = 1 et p = 3. On a

Dl g o
1. Flwp) = (=1)4 1z, Co) = %w% ! (Proposition 3.3.16),

2. Flw1) = Flwo) = %wg_l grace au lemme 3.3.4.

Exemple 3.3.19 (d > 2 et p = 5) : On suppose ici que d = 2 et p = 5. Avec les notations introduites
dans la démonstration du lemme 3.3.12, on a

P(X)=—-1+X+ X2

de sorte que Q(X) =1+ X et donc

(c+o D) l=l4o+ol=1+0+0'=—-0?-03=—(c?+072).
Dans ce cas :
1. Flwy) = (—1)d+1¢Z*C(O) = %wg_l comme toujours.

2. De méme,

Flw) = F((o+ 0 YHn) = (=) (6% + 0_2)*(—1)*wz*0(0) — (-1)¥*(o? + 0_2)*wZ*C(0)
(=)™ e(2)? (D)™ e(2)* 4

_ o2 4 o=2)5 A1 = w
= oD T = Sy

3. Pour F(ws2), le méme raisonnement montre d’une part
Flwz) = (=)™ (0? + 07)stp7:Cr0) = (=) (0 + 071 * (=1)*2:Cg

(_1)d+16(Z>2
x(n)(d —1)!

((U+U_1)*77)d_1 _ (_l)dJrle(Z)zwil—l

= (=)™ (o + o) *hz:Cg) = x(n)(d —1)!

et d’autre part, par le lemme 3.3.4,
(_1)d+le(Z)2
x(n)(d —1)!

La transformée de Fourier nous permet donc d’obtenir une relation non triviale en codimension

d—1:

F(we) = F(Bwo — w1) = 3F (wp) — F(wr) = (ng_l — wg_l).

—Bwit +wit +witt = 0.

Par ailleurs, en réinjectant la formule wy = 3wy —w; dans celle-ci, on obtient une relation (non
triviale si d > 2) entre wp et wy (cf. Exemple 3.3.22).
i

Exemple 3.3.20 ((d,p) = (3,7)) : On suppose ici que d = 3 et p = 7. L’inverse de o’ + o~ est

—(1 + 0% + o). Alors :

1. ,7:((4}0) = wZ*C(O) = 2X(77)w0'
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2. Pour F(wy), on trouve en utilisant le lemme 3.2.1 ainsi que le fait que pour tout entier k,
kx
o¥n=mn:

Flw) =1+ + 0732 = [(1+ 0+ 07%)*]"

1+ n+ L+ H*n+ (63 + 073y — 1% — o> n— 0_3*17]2
21+ 073)*n + w3 — 3w0]2 = [20 + o) *n +ws — 3w0]2
= (2wg + w3 — 3w0)2 = 2wy — w1 + w2)2 par le lemme 3.3.4

= 4w(2] — 4dwow1 + dwowse + w% — 2wiwo + w%,

de sorte que

22 —9 1 2 1 2
wp wow1 + 2wows + 2w1 wiwa + 2w2 .

Flwe) =(1+0+ 071)*7]2 = [(1 +o0+ 0*1)*77]2

= (2ws + w1 — 3w2)? = (Twy — w1 — 2ws)? par le lemme 3.3.4

= 49w§ — 1dwowr — 28wows + w% + dwiwo + 4w%,

et dans ce cas

6(Z)2 (49 2 ]- 2 2
Flws) = —wj — Twow — ldwows + —w] + 2wiwy + 2wj | .
2 ="y 240 27 i

4. Pour F(ws), on a de maniére analogue :

Flwsg) =(1+ o’ + 0_2)*772 = [(1 +02+ 0_2)*17]2

— (=3wp + 2w1 + wy)?

= 9w3 — 12wow1 — bwows + 4w% + dwyiwg + w%,

et donc

e(Z2)? (9 1
f(w:;) _ ( ) <w§ — bwow — 3wows + 20.}% + 2wiwg + 2(/.}%) .

D’autre part, on a

5?2(7)73 Flws) Zcz(?)?g (F(5wo — w1 — wp)) = ZZ‘Z@ (5F (wo) — F(w1) — F(w2))

5wg — (4w8 — dwowy + dwowsz + w% — 2wiwy + w%)

— (49w8 — ldwowr — 28wpws + w% + dwiws + 4w§)

— 48w(2) + 18wowr + 24wows — Zw% — 2w we — 5w§.
Ainsi

9w8 — 12wpw1 — bwows + 4w% + dwiws + w% = —480.:(2) + 18wow1 + 24wows — Zw% — 2wiwg — 5w§.
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Autrement dit, on obtient la relation non triviale suivante :

57wa — 30wowr — 30wows + 6w? + 6wiws + 6ws = 0
ou plus simplement en divisant par 3 :

19w3 — 10wow;s — 10wows + 2w7 + 2wiws + 2w3 = 0.

Il s’agit & présent d’étudier de maniére plus générale les relations entre les cycles w;. On va
montrer comment obtenir d’autres relations non triviales et, & terme, on donnera méme une liste
compléte de toutes les relations existantes entre les w; en petite dimension d.

3.3.3 Meéthodes générales pour étudier les relations entre les w;

Dans cette partie, on présente quelques méthodes pour étudier les relations entre les w;. Notez
qu’une relation en codimension k € [0, dim Z] est déterminée par un polynéme homogéne de degré
k en les w;.

Les deux premiéres méthodes que I'on présente s’appuient sur le principe suivant :

Fait 3.3.21 : Soit T : R;(¢¥2+C;Z) — Ry (1z+C;Z) un opérateur dont on sait exprimer 'image
de tout polynome en les w; sous la forme d’un polynéme en les w; et tel que T(0) = 0. On peut
appliquer 7" & une relation entre les w; pour obtenir encore une relation (en générale nouvelle) entre
les w;.

En utilisant la transformée de Fourier d’une relation

Comme on vient de le voir dans les exemples 3.3.19 et 3.3.20, on peut obtenir de nouvelles
relations en utilisant la transformée de Fourier. L’idée est la suivante.

Méthode : Soit R” une relation entre les w; € AY(Z )(0) en codimension k € [0,dim Z]. Supposons
que I'on sache exprimer R := F(RF) comme un polynéme homogéne de degré d — k en les w;.
Alors R4 est une relation (en général non triviale) en codimension d — k entre les w;.

Cette méthode s’applique en particulier & la relation R! : (2 —p)wo +wy +... +wp-1 = 0 donnée

par le lemme 3.3.4 : ’

0=]—“<(2—p)w0+w1+...+w,%1)
:(2—p)]:(OJ0)+]:((/J1)+...+]'—(wp771)

= polyndéme nul ou homogéne de degré d — 1 en wy, ..., wp-3 (par le théoréme 3.3.17).
2

Exemple 3.3.22 (d > 2 et p = 5) : L’exemple 3.3.19 qui calculait les F(w;) pourd >2etp=>5a
fourni la relation suivante :

—3wg_1 + w{l_l + wg_l = 0.

De sorte que pour (d,p) = (2,5), la relation en codimension 2 — 1 = 1 obtenue entre wy, w1, wy est
juste —3wp + w1 + wa (c’est le lemme 3.3.4) et le fait de substituer we = 3wy — w; nous donne bien
stir la relation triviale entre wy et wq. Ainsi pour (d,p) = (2,5), cette méthode n’apporte rien de
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plus. En revanche pour (d,p) = (4,5), on obtient une relation non triviale :
0= —3w8 —I—wi)’ —i—wg’
= —3wi + wd + (Bwy — wy)?
= —3wi + wd + 27wd — 27wdw; + Jwow? — W}
= 24w] — 2Twiw; + Ywow?.
En simplifiant par 3, on a donc obtenu la relation non triviale

8w8 — 9w8w1 + 3wow? = 0.

Exemple 3.3.23 ((d,p) = (3,7)) : Dans l'exemple 3.3.20, on a déja obtenu par cette méthode
(présentée trés légérement différemment) la relation

19w3 — 10wowi — 10wows + 2wi + 2wiwy + 2w3 = 0.

Bien qu’intéressante cette méthode reste tout de méme limitée par les faits suivants :
1. il est nécessaire de connaitre initialement une relation,

2. il faut pouvoir exprimer explicitement la transformée de Fourier de la relation de départ en
termes de produits d’intersection des w; ; ce qui est généralement (trés) difficile.

La méthode suivante est un peu plus performante et accessible. Elle propose notamment d’éli-
miner cette seconde contrainte.

En faisant agir les ¢’ + 0~ par pull-back sur une relation

Si C' est une courbe admettant un automorphisme ¢ d’ordre p > 2 premier, alors on peut en
particulier faire agir Z[o] < End(Z) sur A(Z) par pull-back et puisque (Z[c],0) est commutatif,
cette action induite est méme covariante.

La méthode présentée dans cette partie s’appuie sur le fait suivant que 'on a déja utilisé pour
obtenir le corollaire 3.2.5 : pour tout générateur w; de R,(¢z+C; Z) et tout polynéme P € Z[X], le

cycle P(o)*w; est une Z-combinaison linéaire en les wg, w1, . ..,wp-3. Par ailleurs, on peut calculer
2

explicitement ces combinaisons linéaires.

Méthode : Soit R¥ une relation entre les w; en codimension k € [0,dim Z]. Alors pour tout
P(0) € Z[o], P(c)*RF est encore une relation en codimension k entre les w; ; relation que I'on peut
calculer explicitement comme on vient de le rappeler.

Remarque 3.3.24 : Le lemme 3.2.1 montre en fait que 'action par pull-back de End(Z) sur les
w; est essentiellement connue dés lors que I'on connait celle des o7 + o7 avec j € [1, 1%3]] sur ces
meémes wj.

Exemple 3.3.25 (p =5) : Sip = 5, alors
1. (0 + 0 YH*wy = wi,
2. (0 + 07 Y)*w = —4wo + 4wy + ws = —wp + 3wi. En effet, on a toujours grace au lemme 3.2.1 :
(c+o Do =2+0*+0 H*p
=2*n+ 21+ o)*n+2(1 + o 2)* n+ (6* + 0 2)*n— 8y
= 2wy + wo + 2w1 — 4wy = —4dwgy + w1 + wo
= —4dwg + 4w + (Bwo —w1) = —wp + 3ws.
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3. (0+ 07wy = (—=1)*wp = wo.

Exemple 3.3.26 (p=7) : Sip =7, alors
1. (0 + o0 Y*w = wy et (02 + 072)*wy = wa,
2. (0 4+ o0 H*w = 4wy + 4wy + wo,
3. (0 4+ 07 Y wy = (062 4+ 072)*w; = —8wp + 3w1 + 2wy + w3 = —3wg + 2w1 + wo. En effet,
(c+o Nwy=("+o  +o+0 3
=@+ Y+ @ +o)n+ @@+ )+ (c+o Vn+ (e +o )+ (0 +03)*n—8y
=wo + w1 + w3z +wi +wi +wr— 8wy = —8wp + 3wi + 2wy + ws
= — 8w + 3w + 2wz + (bwp — w1 — w2) = —3wp + 2w + wa.
4. (02 4+ 072)*wy = —4dwp + 4wy + w3 = wp — w1 + 3wa. En effet,
(2 + o0 Dy = (0" +2+0 Y
=200t + 1) n+ (" + o n+2*n+ 201 + o H*n -8y
= 2wy + w3 + 4wy + 2wy — 8wy = —4dwgy + 4w + w3

= —4dwy + dws + (bwy — w1 — w2) = wp — w1 + 3we.

Maintenant si ’on souhaite mettre en pratique cette méthode pour obtenir de nouvelles relations,
il reste encore un probléme auquel on se heurte (comme pour la transformée de Fourier) : cette
méthode requiert de connaitre au préalable une relation sur laquelle faire agir les P(o)*. Toutefois,
si une telle relation est donnée, les calculs se font alors relativement bien méme s’ils peuvent devenir
assez lourds.

Traitons dans le détail les cas (d,p) = (4,5) et (d,p) = (3,7).

Exemple 3.3.27 ((d,p) = (4,5)) : D’aprés 'exemple 3.3.22, la transformée de Fourier fournit une
premiére relation non triviale en codimension 3 :

8w8’ - ngwl + 3wow? = 0.
En faisant agir o + o~! sur cette relation, on obtient la relation

3wiwy — Ywow? + 8w = 0.
En effet, en utilisant les formules de I'exemple 3.3.25 on a

(o0 + 0 1) *(8ws — Iwiw; + 3wow?) =0
— 8((c+ o)) —9(c+ o) w)? (6 + o H)*w) +3((c + 0 H*wo)- (0 +0 H*wi)?> =0
— 8w} — 9w (—wpy + 3w1) + 3wi(—wp + 3w1)> =0
= 8w} + Jwow? — 27w} + 3w (W§ — bwowr + Yw1) = 0
— 3wiwi — wow? + 8w? = 0.
Notez que cette seconde relation est bien distincte de la premiére, c’est-a-dire linéairement indépen-
dante.
Exemple 3.3.28 ((d,p) = (3,7)) : Depuis I'exemple 3.3.20, on connait la relation non triviale
suivante en codimension 2 :
19w — 10wow; — 10wows + 2w? + 2wiws + 2wi = 0.

En faisant agir o + 0~ ! et 0% + 02 sur cette relation, on va en obtenir deux autres.
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1. En s’appuyant sur 'exemple 3.3.26, les calculs pour 'action de o + o' sont les suivants :

(o + o H*(19w? — 10wow; — 10wows + 2w? + 2wiws + 2w3) = 0
— 19w — 10wy (—4wp + 4w + wa) — 10w (—3wp + 2wy + wa) + 2(—4wo + 4w + we)?
+ 2(—4wo + 4w + wa)(—3wo + 2w + wa) + 2(—3wo + 2wy + w2)? =0
— 19w% + 40wowy — 400.:% — 10wiwo + 30wowi — QOw% — 10wiw2
+ 2(16w2 + 16w? + w3 — 32wow1 — Swows + Swiws)
+ 2(12w(2) — wowi — dwows — 12wow1 + Swf + dwiwe — 3wows + 2wiwsy + w%)
+ 2(9w3 + 4w% + w% — 12wpwy — bwows + dwiws) =0

— 74w8 — B8wowi — 42wowsy + 15w% + 16wiwa + 60}% = 0.

2. En s’appuyant toujours sur 'exemple 3.3.26, les calculs pour 'action de o2 4+ o~2 sont les
suivants :

(0% + 072)*(19wf — 10wow; — 10wows + 2w? + 2wiws + 2w3) = 0
— 19w§ — 10wa(—3wp + 2w1 + wa) — 10wa(wp — w1 + 3wa) + 2(—3wp + 2wy + w2)2
+ 2(—3wp + 2w1 + w2)(wp — w1 + 3wa) + 2(wo — w1 + 3wa)? =0
—  19w3 + 30wows — 20wiws — 10w3 — 10wows + 10w wy — 30w3
+ 2(9wi + 4w? 4 w3 — 12wow1 — Bwows + dwiws)
+ 2(—3w8 + 3wowi — Ywowa + 2wowi — 2w% + 6wiwsg + wowg — wiwy + 3w%)
+ 2(w? + w? + 9w — 2w + Bwows — bwiws) = 0

— 14w(2) — 18wow1 + dwows + GM% — 4wiwa + 500% =0.

On vérifie alors immédiatement que ces trois relations en codimension 2 sont linéairement indépen-
dantes.

Signalons une autre limite concernant ces deux premiéres méthodes : il faut connaitre suffisam-
ment de relations au départ afin de pouvoir espérer en déduire toutes les relations via ces méthodes.
Et quand bien méme on obtiendrait plusieurs nouvelles relations, comment savoir si on les a toutes
obtenues ? La troisiéme méthode que l'on présente maintenant est plus complexe mais permettra
quant a elle de dépasser largement ces limites.

En connaissant les relations en codimension supérieure

Cette méthode que 'on introduit ici est basée sur la remarque suivante :
Fait 3.3.29 : Supposons qu'il existe une relation R* entre les w;. En intersectant cette relation avec
n’importe quel monéme de degré [ en les w;, on obtient une relation en codimension k + (. Autrement

dit, les relations en codimension k + [ contiennent la composante (k + [)-codimensionnelle de I'idéal
engendré par la relation R*.

On peut alors utiliser ce fait comme ceci :
Méthode : Supposons que l'on connaisse toutes les relations entre les w; en codimension k € [1,d]
pour un certain k fixé. Alors on en déduit des conditions nécessaires pour ’existence de relations en

codimension < k. Si ces contraintes sont trop importantes pour une certaine codimension [ < k, on
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peut en déduire la non existence de relation en codimension /. Dans le cas contraire, ces conditions
nécessaires limitent tout de méme 1’étude des relations & une famille de « possibles relations » qu’il
resterait encore a étudier.

La démarche présentée dans ce qui suit consiste plus particuliérement & déterminer toutes les relations
en codimension maximale d entre les w; ; ce qui revient & calculer le degré des cycles qui s’expriment
comme monodmes de degré d en les w;. Cette méthode combinée avec un argument de dimension
permettra (au moins en général) d’obtenir toutes les relations entre les w; et ceci en codimension
quelconque. Des calculs détaillés seront donnés pour d petit. On vient donc corriger avec cette
méthode les insuffisances des deux premiéres.

3.3.4 Relations en codimension maximale entre les w;

. s s PR TIA . A d— -
La partie précédente a motivé I’étude des degrés des mondmes de la forme w Lk M)
0 1 (p—3)/2

On propose maintenant un moyen de les calculer.

Relations R,(c,n) en codimension maximale

Idée de la méthode : L’idée utilisée dans cette partie repose sur le fait que les coefficients du
polynome caractéristique P, d’'un endomorphisme o € End(Z) sont des polynomes en les Tr(a*). En
effet, ces coefficients sont des fonctions symétriques en les racines A;, qui elles-mémes s’expriment en
caractéristique 0 via la identités de Newton comme un polynéme en les >, A\¥ = Tr(a*). Ceci nous
ameéne a définir les éléments suivants :

Définition 3.3.30 (Polynomes ¥*(a)) Soient o € End(Z) et k € [1,2d]. Chaque polynéme symé-
trique élémentaire o = 21<i1<...<ik<2d Xi, - Xi, € Z[ X1, ..., X94] s’exprime comme un polynéme
¥¥ e Q[Y1,...,Y:] en les sommes de Newton N*(X1,..., Xoq) = 2?21 XF. On définit alors

¥F(a) 1= B (Tr(a), Tr(a?),. .., Tr(aF)) € Q.
On convient aussi de poser ¥%(a) = 1.

Remarque 3.3.31 : On a méme k!XF € Z[Y1,..., V3]

Les deux prochains lemmes vont nous permettre de calculer concrétement les coefficients ¥*(a),
notamment lorsque « est un polynéme en . Mais avant cela, rappelons la définition suivante :

Définition 3.3.32 (Coefficients multinomiaux) Soient m € N et ny,no,...,ng € Z tels que ny +
ng + ...+ ng = m. On définit le coefficient multinomial suivant :

m! : .
m D e e B tous les n; = 0
N, N2, ..., Nk 0 sinon.

Si k = 2, on retrouve le coefficient binomial habituel et on notera de maniére classique
my m B m)!
n)  \n,m-n nl(m —n)!’
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Lemme 3.3.33 - Soit « € End(Z). Pour tout entier k € [1,2d], on a

Tr(a) 1 0 e 0

Tr(a?)  Tr(a) 2 :

Sha)=o| ¢ 0
: . : k—1
Tr(a®) Tr(a® 1) .- Tr(a?) Tr(a)

Démonstration. 11 s’agit simplement de revenir a la définition 3.3.30 du coefficient ¥* () et d’utiliser
[Mac95, p28|; référence prouvant 1’égalité suivante :

Y1 1 o -- 0
Y Y 2 :
zk(n,...,Yk)=% T |
: . k—1
Yo Youu -+ Yo 1

Exemple 3.3.34 :
1. ¥ a) = Tr(a).
2. ¥2(a) = 3(Tr(a)? — Tr(a?)).

3. 33(a) = #(Tr(a)® — 3Tr(a) Tr(a?) + 2 Tr(a®)).
4. ¥*(a) =

Ha) = & (Tr(a)* — 6 Tr(e)? Tr(a?) + 3 Tr(a?)? + 8 Tr(a) Tr(a?) — 6 Tr(a?)).

(07 «

(07

Lemme 3.3.35 - Soit 0 € Aut(C) un automorphisme d’ordre p premier. Soit i € [0,p — 1]. Alors

p — 1 divise 2d et
, 2d st =0,
Tr(o") = { 2d
=) stl<i<p—1.
Démonstration. Si i = 0, o' = 1z et Tr(1z) = 2dimZ = 2d. Sinon p ne divise pas i et on a
I’isomorphisme

Qlo'] ~ Q) ~ Q(¢)

24

oll §, = e » est une racine primitive p-iéme de I'unité. En particulier, ®,(X) =1+ X +... + xp-t
est le polynéme minimal (sur Q) de o (et aussi celui de o). Celui-ci est irréductible. Par conséquent,
le polynéme caractéristique P,: = P, de ¢* (ou o) est une puissance de ®,, et comme le degré du
polynome caractéristique de o° est de degré 2d (puisqu’on travaille sur une variété abélienne de
dimension d), alors 2d est nécessairement un multiple de p — 1, c’est-a-dire
2d « 2d_

71€N et Pi(X) = Py(X) = (Pp(X))?-T.

p —
Calculer la trace de o revient donc a déterminer 'opposé du coefficient du terme de degré 2d — 1

2d
du polynéme (®,(X))?»-1. Une récurrence immédiate montre que pour tous entiers n > 2 et k > 1,

(X" + X" L 4 X+ 1P = X 4 kXL o (termes de degré < kn —2).
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o 2 . . .
Dans notre cas, n=p—1let k = o1 Par suite, si 1 <i<p—1,

On en vient a présent aux résultats principaux de ce paragraphe.

Proposition 3.3.36 - Soient A une variété abélienne de dimension d sur un corps k (de carac-
téristique 0) et H € NS(A) la classe d’un diviseur ample. Pour tout endomorphisme o de A, on
note

D.(H) :=(a+1)*H —o*H — H.

Alors pour tout entier q € [0,2d], on dispose de la relation Rqy(co, H) suivante :

13)

- 1 d i —2i itd—
Ry(a, H): %2 @) = qor 3 <iq_2ii+d_q>deg(H-Da(H)qQ-a*Her Q).

i1=max(0,q—d)

Démonstration. Soit « € End(A). On note P, le polynoéme caractéristique de «. Les relations
coefficients-racines et la définition méme des ¥¥(a) donnent

2d
P,(—n) = Z »2474(q) pd.
q=0
De plus, d’aprés [Mum08, Théoréme 4 p180],
1
P.(—n) = deg(—n — a) = deg(a + n) = ——— deg ((aw + n)*H)*.

deg Hd

Or le lemme 3.2.1 montre que

2—1)(1 +1)*H = (n— 1)a*H — n(n — )1*H

=n(la+1)*H+2n(n—1)H — (n—1)a*H —n(n—1)H
=nla+1)*H+nn—-1)H - (n—1)a*H
=n?H +nDy(H) + a*H.

(0t n)*H = n(a+ 10 + "

Il s’ensuit grace a la formule du trindéme que

2d

1
Z $274(q) n? = deg(ov + n) = ——— deg (n*H + nDo(H) + a*H)d
= deg H

1 d ) ) o
. i J . ATk 2i+j
= 7deng | E <i,j, k) deg (H D,(H) -a*H ) n .

i+j+k=d
,5,k=0

En identifiant les coefficients d’ordre ¢ € [[0,2d], on obtient :

d

1 d . , 4

3200 = d (HZ-D H)I2% . *HHH).
(@) = Geg 1 P (i,q—Qi,i—i—d—q) o olH)T -0
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En effet, i étant fixé, la condition 2i 4+ j = ¢ détermine complétement j = g — 24, et alors la condition
i+ j + k = d détermine complétement k =d —i1—j=i+d—q.

De plus, la nullité de certains coefficients multinomiaux (reliée a la nullité des puissances « trop
grandes » ou « trop petites » des diviseurs) impose les conditions

0<i<d 0<i<d
0<gq d = qu<Z<%
0<i+d—qg<d —d<i<gq

<~ 0 < max <0, [q;d]) <max (0,g —d) <i < l%J <d.

Ainsi on peut se restreindre & sommer sur les i entre max (0,q — d) et [%J Ceci démontre la premiére
égalité. O

On peut également citer le cas particulier ot ¢ = 2d — 1. On retrouve le lemme 11.3 de [Mil08§] :

Corollaire 3.3.37 - On reprend les hypothéses de la proposition 3.3.36. Alors

Tr(a) = deg (Hd L. D, (H))

deg HY

Démonstration. La proposition 3.3.36 utilisée avec ¢ = 2d — 1 montre que

l2d71

1 d , , ,
Tr(a) = @) = ——— deg (H" - Do (H)1™% . o*HiT479) .
H(a) = ¥0) = G imax(o%d_l)_d) (Z (2d —1) — 2i,i+d — (2d — 1)) s ( (H)T o )

Cette somme ne contient qu'un seul terme, celui d’indice ¢ = d — 1. Il vient alors

1 d
T - = d del . Da H 2d—1-2(d—-1) | *Hd,1+d,(2d,1)
r(@) deg H? <d—1,1,0> eg( (H) @ )
d—1
= G 7 08 (H . D, (H))

O]

Nous appliquons & présent la proposition 3.3.36 aux endomorphismes de Z qui sont au cceur de
notre étude, a savoir les polynémes en o.

Théoréme 3.3.38 - Soit C' une courbe compleze projective lisse (pas nécessairement hyperelliptique)
munie d’un automorphisme o € Aut(C) d’ordre fini (premier ou non). On continue de noter (Z,n :=
150) la variété de Prym généralisée associée a o et munie de sa polarisation naturelle. Soient d :=
dim Z et P(0?) = Zf:o m;o? € End(Z) un polynéme en o a coefficients entiers positifs non tous
nuls. Alors pour tout entier q € [0,2d], la relation Ry(P(0?),n) s’écrit :

2d— 2 1 4 d i —2i 2\x | i+d—q
SHUP(0?) - —— )] <Z - >deg (n +Dp(o2y ()" - (P(o™)"n) ) =0,

degn i—max(0.g—d) q—2i,i+d—q
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ot les classes de diviseurs Dp(,2)(n) et P(0?)*n se calculent de la maniére suivante :

k k
02 =Z 0’+0’i 77—2me,
—T k k 9
et =Z Z mym;j(o ZJ—Hf“”)n—k(Zm—(Zrni))n

=0 =0
Démonstration. On applique la proposition 3.3.36 avec A = Z et a = P(c?). Il ne reste alors qu’a
donner une expression simple et explicite des classes de diviseurs Dp(,2)(n) et P(0?)*n; ce que I'on

fait en s’appuyant sur le lemme 3.2.1.

Calcul de P(c?)*n

k k
=Z _1mlai+a 77+Z 2 mim;(o? +02J)7]_Zmi<2mi_2>n
i=0

1=0 1=0 j=1+1 =0

k k k
=Z:2mZ —17]+2 Z m,mja J—l—a(i*j))*n—Zmi Zmi—2>7]

1=0 1=0 j=1i+1 =0 =0

car (0% + 0%)*n = g2 2%n = 2202y = 4n et
(02 + 04y = (07T 4 oI 1)1+ = (g0 4 o= (=D Y5y,
D’ou

-5 $ mnio s e (13- (S

Calcul de Dp(,2)(n) : Par définition de Dp(42)(n) (cf. Proposition 3.3.36) et en utilisant les calculs
précédents, on obtient

% & *
DP(J2) <1+Zma ) n—(Zmi02i> n—mn
i=0
k k-1 & k
(140 17+2Z}mZ 1717]+Z Z mim; (ot + o= (79)) n<2m1+1> (Zmil>n
=0 P =0

=0 j=i+1

||'M>r

On conclut comme avant en remarquant que (1 + o2))*n = (¢° + 0~%)*n toujours parce que 7 est
invariant sous l'action de o* (car 0 'est). O

Remarquons que les formules obtenues dans ce théoréme font apparaitre des cycles de la forme
(0" + o~ )*n (resp. (07 + o= (=9))*p), ’est-a-dire 4wy si I'ordre de o divise i (resp. si ordre de
o divise i — j), ou sinon w; (resp. wj;_ ]) En pratique, lorsque o est d’ordre premier p > 2, on se
rameénera encore a des wy avec k € [0, B ]] en utilisant I'égalité wy, = wp—i, et le lemme 3.3.4.

Signalons enfin un aspect intéressant de ce théoréme 3.3.38. Les formules obtenues sont totale-
ment explicite : on peut les programmer et ainsi automatiser le calcul des relations R4 (P (2),m) pour
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des polyndmes P arbitraires & coefficients entiers positifs. A ce sujet, on trouvera dans la sous-section
3.4.1 un code Sage effectuant ces calculs.

Exemples de relations R,(P(c?),n)

Nous allons & présent donner quelques applications numériques de ces relations selon différentes
valeurs de d et p. Les résultats obtenus nous serons utiles dans un second temps lorsqu’il s’agira
de calculer des degrés de cycles algébriques, puis dans un troisiéme temps de donner des structures
d’algebres totalement explicites pour les anneaux tautologiques sur Z.

Notons aussi que les relations R, (P(c?),n) données par le théoréme 3.3.38 traduisent des égalités
entre les degrés de classes de cycles algébriques de codimension maximale d = dim Z. Or A4(Z) ~ Q.
Autrement dit, les relations R, (P(c?),n) fournissent des relations linéaires entre des classes de cycles
qui s’expriment comme des mon6émes de degré d en les wj.

Enfin, rappelons ce que nous avions déja remarqué dans la sous-section 3.1.2 ou encore dans le
lemme 3.3.35. Si C' est une courbe de genre g > 1 admettant un automorphisme ¢ d’ordre p > 2
premier, alors Z est une variété abélienne de dimension d telle que p — 1 divise 2d. Par conséquent,

1. sid =2, alors p € {3,5},

2. sid =3, alors pe {3,7},

3. sid =4, alors p € {3, 5}.
Par ailleurs, le cas p = 3 étant déja traité, les exemples qui suivent seront détaillés uniquement pour
p=5.

Exemple 3.3.39 ((d,p) = (2,5) et P(0c?) = 0?*) : Pour d = 2 et p = 5, on obtient les relations
suivantes

(i) Ro(c®,n):0 =0,
(ii) Ri(a%,n) : 3wd — 2wowy = 0,
(iii) Ra(0*,n) @ —5wf + dwowy — w} = 0,
(iv) Ra(0?*,n) : 3wd — 2wowy, = 0,
(v) Ra(c®,n):0=0.

Dans ce cas, la combinaison linéaire 2 x (i) + (i7) permet de (re)trouver la relation plus simple
2,2
wj —wi = 0.

Exemple 3.3.40 ((d,p) = (4,5) et P(0?) = 0?¥) : Sid =4 et p = 5, on obtient :
(i) Ro(0*,m): 0 =0,

(ii) Ri(a,n) : 6ws — dwdwy = 0,
(iif) Ra(o?*,n) : —25w¢ + 24wiwy, — 6wiw? = 0,
(iv) Rs(a?,m) : 52wi — 60wiwy + 24wiw? — dwow; = 0,
(v) Ra(o?,m) : —65wi + 80wiwy, — 36wiw? + 8wowi — wi = 0,
(vi) Rs(0?*,n) : 52wi — 60wiwy, + 24wdw? — dwow; = 0,
(vil) Re(o,n) 1 —25wi + 24wiwy, — 6wiw? = 0,
(viii) R7(0%*,n) : 6wi — dwdwy = 0,
(ix) Rg(o?*,m) : 0 =0.

Exemple 3.3.41 ((d,p) = (3,7) et P(0?) = 0?*) : En dimension 3 et avec un automorphisme
d’ordre 7, on a les relations
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(i) Ro(a*,m):0=0,
(ii) R1(o?*,n) : 5wd — 3wiwy = 0,
(iif) Ra(o%*,n) : —14w + 12wiwy, — 3wow? = 0,
(iv) Rs(0?*,n) : 19w — 18wiwy, + bwow? — wi = 0,
(v) Ra(o®,m) : —14wd + 12w3wy, — 3wow? = 0,
(vi) Rs(a?,n) : 5w — 3wiwy = 0,
(vii) Re(c?*,n) : 0 =0.

On observe sur ces derniers exemples une symétrie entre les relations R, (02*,7) et Raog—q(c?*, ).
Ceci est un fait général concernant les relations Ry (cr, H) lorsque « est un endomorphisme stabilisant
la polarisation H, c’est-a-dire tel que a*H = H (cf. Proposition 3.5.2). On apportera quelques
compléments concernant ces relations dans la sous-section 3.5.1.

Exemple 3.3.42 ((d,p) = (3,7) et P(0?) = 02+0*) : Dans le cas plus compliqué ot P(0?) = 02+04,
on obtient les relations suivantes :

(i) Ro(o? +0%,n) : w —wi =0,
Ri(0? + o, n) « —4wd + 12ww? — 3w} — 3wiws = 0,
Ra(o?

)
) o2 + ot m) 1 9wl — 48wiwy + 21wew? + 2dwowiwa — 3w} — bwiws — 3wiws = 0,
(iv) Rs(0?+0,m) : 56ws — 24wdwr — 48wiws + 6wow? + 12wew3 + 18wowi wa — wi — 3wiws — 3wiw3 —wi = 0,
)
)
)

(v) Ra(0? + 0%, n) : —44wd + 21w3w + 24wdws — 3wow? — Bwowiws — 3wow3 = 0,
(vi) Rs(0? + ot n) 1 10w3 — 3wiw) — 3wiws = 0,
(vii) Rg(o? +0%,n):0=0.
< s - d—>a A(p—3)/2
Application au calcul des degrés des w, Pt - ‘w(pf3)/2

Nous allons & présent tirer profit des relations R,(P(c?),7n). En effet, et comme on I'a déja
vu, celles-ci traduisent des relations linéaires entre les degrés de classes de cycles qui s’expriment
comme des mondmes de degré d en les w;. Se rappelant la proposition 3.3.14 et sous réserve de
considérer suffisamment de relations de la forme R,(P(c?),n) pour une famille suffisamment variée
de polynémes P(c?), une résolution élémentaire d'un systéme linéaire doit permettre de déterminer
de maniére unique le degré de chaque cycle s’exprimant comme un mondéme de degré d en les w;.
C’est I'idée utilisée pour obtenir les exemples de ce paragraphe. Ici encore, ils sont obtenus & partir
de Sage grace au programme de la sous-section 3.4.2. Nous reviendrons sur ces exemples dans la
sous-section 3.5.2 avec des formules plus générales.

Remarque 3.3.43 : L'existence d'une famille de polynomes en o2 dont les relations R, (P(c?),n)
déterminent de maniére unique le degré de tous les cycles qui s’expriment comme des mon6émes
de degré d en les w; est une hypothése tout a fait vraisemblable et confortée par les exemples &
venir. Cependant la complexité des relations Ry (P(c?),n) rend trés difficile de démontrer ce fait de
maniére générale pour des couples (d, p) arbitraires. Nous donnerons toutefois des résultats précis
qui vont dans ce sens & la sous-section 3.5.2 avec notamment la proposition 3.5.10.

Les calculs de degrés qui suivent pour un automorphisme d’ordre 5 ont été faits en utilisant les

relations R, (P(0?),n) construites & partir du seul polynome P(0?) = o2.

Exemple 3.3.44 ((d,p) = (2,5)) :
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L. degwg = 2x(n),
2. degwowr = 3x(n),
3. degw? = 2x(n).

Exemple 3.3.45 ((d,p) = (4,5)) :
1. degwg = 24x(n),
2. degwiwi = 36x(n),
3. deguwiwi = 44x(n),
4. degwow = 36x(n),
5. degwi = 24x(n).

Exemple 3.3.46 ((d,p) = (6,5)) :
1. degw§ = 720x(n),

degwhwr = 1080x(n),

degwgw? = 1440x(n),

deg wiwi = 1620x(n),

deg wiwi] = 1440x(n),

deg wow? = 1080x(n),

degw® = 720x(n).

o e W

Ces premiers exemples mettent en évidence une nouvelle symétrie lorsque o est d’ordre 5. Il

semblerait qu’on ait :

q q

d— d—
degwy Twi = degwiw] ™.

Cest effectivement le cas, méme en dimension supérieure. Nous y reviendrons dans la sous-section
3.5.2.

Dans le cas (d,p) = (3,7), les seules relations de la forme Rq(a%,n) ne suffisent pas pour
déterminer tous les degrés, notamment le degré de wowiws ou encore les degrés de w?wy et wiw3.
En revanche, en considérant par exemple la famille de polynomes {02, 0%, 02 + o}, on aboutit au
résultat suivant :

Exemple 3.3.47 ((d,p) = (3,7)) :
1. degwg = 6x(n),

degwiw; = degwiws = 10x(n),

deg wow? = degwows = 12x(n),

degwowiws = 19x(n).

degw? = 6x(1),

deg w?wy = 34x(n),

degwiwi = 20x(n),

®© N o o WN

degws = 6x(n).

La méthode présentée jusqu’ici avec les polynémes caractéristiques doit donc permettre de déter-
miner toutes les relations en codimension maximale entre les générateurs wy,...,wp-3 de 'anneau
2
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tautologique R, (¢z+C; Z) < A(Z) dans le cas ou C est hyperelliptique de genre g > 1 et 0 € Aut(C)
est d’ordre p > 2 premier. Par ailleurs, signalons que tout ce raisonnement peut s’adapter pour étu-
dier le degré de cycles sur d’autres variétés abéliennes que Z (par exemple les cycles 7; sur les
Jacobiennes) a condition d’avoir un contréle suffisamment bon de l'automorphisme sur la variété
abélienne en question ; suffisamment bon signifiant « étre capable de calculer les Tr(a") ».

3.3.5 Relations en codimension quelconque entre les w;

A (p—3)/2

. . ; (p—3)/2

«; sont des entiers naturels vérifiant ag + o1 + ... + ap—3 = d, intéressons-nous aux conséquences
2

Maintenant qu’on dispose d’une méthode pour calculer les degrés des wy®w(™ - - - w ou les

que cela a en codimension inférieure.

Recherche de relations monémiales

Commencgons par un résultat trés simple.

Proposition 3.3.48 - Soient 0 < ip <11 < ... < i} < % des entiers et ag, aq, ..., € N tels que
Zf:o a; < d. On suppose que wy'wy,' - - wf;" # 0. Alors

Y(Bo, B, -, Bk) € [0, 0] x ... x [0, ax], wiﬁoow@l . -wi’“ #0  dans APoT-F8k(7).

11

Démonstration. Par Pabsurde. Si pour certains entiers (5o, 51, .., 8k) € [0,a0] x ... x [0, ag], on
avait wl@ IR ~wiﬁk k alors quitte & intersecter encore par wf:)o_ﬁ Owg 1=h 'wio; K=h k on obtiendrait
widwit - -wi® = 05 ce qui contredirait I’hypotheése. O
En particulier pour ), o = d, ce lemme motive I’étude du degré des w%owzl wf;k réalisée
précédemment.
Corollaire 3.3.49 - Soient 0 < iy < i1 < ... < i < 1%3 des entiers. On suppose que pour
tous entiers naturels aq, o, ..., qp tels que Zf:o a; =d, on a wféowf;l wf:‘ # 0. Alors pour tout
(Bo, B1s- - -, Br) € [0,d]F* tel que >uBi<d, ona
wiﬁoowgl . wi" #0 dans A'BOJF"‘JFﬁ’“(Z).
Autrement dit, les relations mondmiales formées a partir de wy, w1, . ..,wp—3 sont engendrées par les
2

relations

p=3

2

wywit - -w(o;(fgii/; =0 ot les «; € [0, d] vérifient Z a; =d+ 1.
i=0

En d’autres mots, il n’existe pas de relation mondmiale non triviale (c’est-a-dire en codimension
<d).

Démonstration. C’est une conséquence immédiate de la proposition 3.3.48. O

Exemple 3.3.50 : Le corollaire 3.3.49 s’applique par exemple

1. lorsque p=3etd=>=1,

2. lorsque (d,p) € {(2,5),(3,7),(4,5),(6,5)} d’apres les exemples de la sous-section précédente.
Autrement dit, le corollaire 3.3.49 s’applique (au moins) dés que d = 1,2,3 ou 4.
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Plus généralement, on peut formuler la conjecture suivante :

Conjecture 3.3.51 : Soit C' une courbe de genre g > 1 admettant un automorphisme o d’ordre
-3

p—o
p > 2. Alors pour tous ag, aq, ... )03 € N tels que >, %, oy =d, on a

Qp—
(p—3)/2 £ 0.

aO al DY
Wo W1 Wip-3)/2

Plus précisément, les précédents exemples (mais aussi ceux & venir) suggérent que

« Ap=3)/2 5

d
degwgwi™ - - Wi,y 2 degwy = d!- x(n).
La suite de cette section vise a étudier le cas bien plus compliqué des relations non monoémiales.

Dimension des Q-espaces vectoriels R, (1z.C;Z) n A1(Z)

Soit C' une courbe hyperelliptique de genre g > 1 admettant un automorphisme o d’ordre p > 2
premier. D’aprés la proposition 3.3.5, anneau tautologique R, (¢ z+C;Z) < A(Z) est engendré en
tant que Q-algebre par les % générateurs homogeénes wy, . .. yWps € AY(z )(0)- Une conséquence
directe de ceci est que l'algébre R, (1z.C; Z) est bigraduée. Précisément, si ’on note

RY:= R,(V7:C;Z) nAUZ) et R‘(]S) = Ry (¢2:C; Z) n A1(Z)(5) < R,

alors pour tout ¢ € [0, d], on a la décomposition de Beauville (triviale) suivante

Le lemme suivant est fondamental dans la suite de 1’étude des relations en codimension quel-
conque.

Lemme 3.3.52 - Soit C une courbe hyperelliptique admettant un automorphisme o € Aut(C') d’ordre
p > 2 premier. La transformée de Fourier F : A(Z) — A(Z) induit un isomorphisme entre les Q-
espaces vectoriels R1 et R*™9 pour tout q € [0,d]). En particulier, dimg R? = dimg R4,

Démonstration. L’anneau tautologique Ry (1z.C'; Z) est stable par transformée de Fourier : ¢’était
Pargument qui nous a permis de montrer que R,(1z.C; Z) est stable par produit de Pontryagin.
Ainsi, F se restreint en un isomorphisme de R, (¢ z,C; Z). Par ailleurs, par propriétés de F, on a
pour tout ¢ € [0, d]

F(RY) = F(R]) = R{™™ = R

D’ou le lemme. O

Remarque 3.3.53 : Le fait que R? = R?o) est tout a fait essentiel ici. C’est & ce moment qu’intervient
une fois de plus 'hyperellipticité de la courbe (dont on sait qu’elle implique la condition C' = Co) €

A(J)(0))-

Fixons a présent un entier ¢ € [0, d] et intéressons-nous plus en détail a la structure de Q-espace
vectoriel de RY. Celui-ci est engendré par les mondmes de la forme

p—3
2
Oy — N .
wowit '--w(;ﬁ3§>/22 e R? ot pour tout 7, a; € N et Z a; = q.
i=0
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Autrement dit,

p—1 _
dimQRq<< 2 T4 1).
q

—1
En effet, (pT;rq_l) est la dimension de 'espace vectoriel des polyndémes homogénes de degré g en

-1 . 1. s . ., , 1l
% indéterminées (les w;). Une relation « générale » entre les w; dépend donc d’au plus (2 ;rq 1)

parameétres.
Cherchons maintenant a minorer la dimension de R?, ce qui revient & majorer la dimension de
I’espace des relations en codimension ¢. Pour cela, on reprend la méthode expliquée précédemment

qui consiste & augmenter la codimension jusqu’a son maximum d. Notez que pour ce faire, on peut
p—1
d—q
A < A —1 . 4 .,
I'espace des polynémes homogénes de degré d — q en 25~ indéterminées.

intersecter avec ( monomes différents en les w; : cet entier correspond & la dimension de

De maniére plus détaillée, le processus est le suivant. On commence par fixer un ordre sur les

Qfp— . . . ~ . .
(p(f 3‘;%2. Ensuite, connaissant les degrés de chaque monéme de codimension

maximale d en les w;, chaque intersection de la relation générale avec I'un de ces (

monomes wy'wi? - - w

-1
pT-i-d—q—l)
d—q

N . , . Lo, L*1+q,1 N . L .
mondmes fournit une équation linéaire en les ( 2, ) paramétres de la relation générale en codi-
mension ¢. Ceci définit donc pour chaque entier ¢ un systéme linéaire (Z’(J 4 p)) en les paramétres de

).

la relation générale de codimension ¢ (les entiers d et p étant fixés).

Remarque 3.3.54 : Les systémes (E‘(I 4 p)) dépendent du choix de I'ordre fixé pour ordonner les

A ap, a1 H(p—3)/2
monomes wy w; Wipa)/2 -
Précisément un changement d’ordre a pour effet de multiplier a droite et & gauche les systémes (Z‘(I 4 p))

par des matrices de permutations. En particulier, les rangs de ces systémes sont bien définis.

Cependant un choix d’ordre différent fournit des systémes équivalents.

Ceci étant dit, les relations en codimension ¢ forment un sous-espace d’une famille paramétrée
de « possibles » relations dont le nombre de paramétres est égal a la dimension du noyau du systéme

() :

p—1
. S +q— . . . .
dimg R? = ( 2 g ) — dimg {espace des relations en codimension ¢ entre wy,...,wp-3 }
q 2
2lig-1
> 2 — dimg < espace des « possibles » relations en codimension ¢ entre wg,...,wp-3
Q 1Y p q , s
q 2
_ q
=rg(X a, p).

On a donc obtenu la proposition qui suit.

Proposition 3.3.55 - Soit C une courbe hyperelliptique de genre g = 1 admettant un automorphisme
o d’ordre p > 2 premier. Soit q € [0, g]] Alors

g1
rg($h,) < dimg R? = dimg R/ < < 2 )
’ q
En particulier, puisque [’on travaille modulo équivalence algébrique, on retrouve le fait que

dimg R° = dimg R? = 1.
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Corollaire 3.3.56 - Soit C une courbe hyperelliptique de genre g = 1 admettant un automorphisme
o d’ordre p > 2 premier. Soit q € [0, %]] On suppose que le systéme (E‘(de)) est de rang mazimal.
Alors 7

p—1 1
dimg RY = dimg R4 = ( z ¢ )
q

Démonstration. Notons que la fonction définie sur [0, d] par

p—1 p—1
= (77 o

vérifie f(4,)(n) = —f(ap)(d—n)). Par conséquent, elle s’annule en n = % (si d est pair). Dans tous les

p%l+d—n—1
d—n
de polynoémes homogenes, on constate que f(4,) est négative sur [[O, %l]] et positive sur [[g, d]]. Par

. . . p=1, . .
cas, en revenant a I'interprétation de ( 2 :n 1) et ( ) en termes de dimension d’espaces

suite, 'hypothése selon laquelle (Z((] y p)) est de rang maximal pour 'entier ¢ € [0, %l]] fixé signifie
simplement que

p—1 p—1 p—1
. S5 tq—1 S5 t+d—qg—1 S5 tq—1
Tg(z((ld,p)):mln<< 2 ¢ >,< 2 d—q )) = ( 2 ¢ )

La proposition précédente se traduit donc par les inégalités
p—l — p=l _
<2 e 1><dim@Rq<<2 T 1)
q q

auquel cas, on a exactement

p—1
= +q—-1
dimg R? = < 2 4 >
q
et puisque 'on a aussi dimg R? = dimg R%=% d’apreés le lemme 3.3.52, on a le résultat. ]

Si les systémes E((I dp) sont de rang maximaux, la situation est donc totalement comprise. Comme
on le verra dans les exemples suivants, ce n’est toutefois pas toujours le cas lorsque d et p augmentent.
Cependant, méme dans ces situations plus complexes, on pourra en déduire des informations inté-
ressantes quant & la structure de Q-algébre de ’anneau tautologique R, (¢ z.C; Z).

Application a I’étude des relations en codimension quelconque

C’est ce lien entre dimension de I'espace RY, nombre de générateurs et dimension de ’espace des
relations qui va nous permettre de trouver toutes les relations en codimension ¢ quelconque (toujours

sous réserve de savoir que le systéme (E'(Z 4 p)) est de rang maximal). Mais avant d’énoncer le résultat,

mettons en évidence une derniére propriété des systémes (E((I 4 p)).

Lemme 3.3.57 - Soit g € [0,d]. On fize un ordre sur les monémes wy wi™ - - w32 (par exemple

Hp-3)/2
lordre lexicographique). Alors les systémes (E‘(Jd p)) et (E?d_g)) sont transposés 'un de lautre :

Cla) = '

En particulier, ils ont méme rang.
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Démonstration. Ce lemme découle de la construction méme des systémes (Z‘(J dp)). On considére

. . N Qp_
l'ordre lexicographique (par exemple) pour ordonner les mondmes wy®wi'? - - -w(p(f 33’722.

sans restreindre la généralité que ¢ < 2. Les monomes en codimension ¢ et d — ¢ forment donc deux
familles ordonnées que ’on peut noter respectivement

() e (B

Supposons

1<i<("F o)

1 _
Le coefficient d’indice (4, 7) € [1, (ij;f;q_l)]] x 1, (pTl;rq_l)]] du systéme (E((Zd,p)) n’est ri(;n d’autre
—q

que dega;f;. Ce coefficient est précisément le coefficient d’indice (j,7) du systéme (E( dp))‘ Les

systémes (Z‘(J d,p)) et (Eﬁ;z)) sont donc bien transposés I'un de 'autre. En particulier, ils ont le méme
rang. O

Théoréme 3.3.58 - Soit C' une courbe hyperelliptique de genre g = 1 admettant un automorphisme

o d’ordre p > 2 premier. Soit q € [0, %]] On suppose que le systéme (Ec(ldp)) est de rang mazimal.

Alors il n’existe pas de relation non triviale en codimension q entre wy,...,wp-3 tandis que les
2

relations en codimension d — q forment un Q-sous-espace vectoriel de R*9 de dimension

—1 -1
S <pz+d—q—1>_<pz+q—1)
R d—gq q

dont on peut déterminer une base explicite & partir du systeme (E‘(]d p)).

-1
Démonstration. Si (E‘(Id p)) est de rang maximal, c’est-a-dire de rang (pT;rq_l)

le corollaire 3.3.56 montre que
p=1 1
dimg RY = ( 7 4 >
q

puisque ¢ < %, alors

. p=1 — s 2 p—1 — N 2 P N
Par suite, les ( 2 Zq 1) générateurs correspondant aux ( 2 ;rq 1) monomes de degré g formés a

partir de wy,...,wp-3 sont linéairement indépendants et forment donc une base de R?. Autrement
2

dit, il n’existe pas de relation (non triviale) en codimension ¢ entre les w;.

D’aprés ce méme corollaire 3.3.56 ou plus directement d’aprés le lemme 3.3.52, on en déduit
également que

p—1
. _ . 5= +q-1
dlm@qu:dlm@Rq=< 2 T4 )
q

—1

%-Hi—q—l)
d—q

monomes de degrés d — q en les w;. Par conséquent, le Q-espace des relations en codimension d — ¢

est de dimension
blid—qg-1 rlyg—1
Tg—g 1= — .
a-a d—q q

p—1
ota-l
q

Par ailleurs, on dispose d’une famille génératrice de R4~9. Cette famille est formée par les (

D’autre part, (E((id_g)) est un systéme formé par ( ) équations (chacune d’elles correspondant

aux formules obtenues en intersectant une combinaison linéaire générale de codimension d — ¢ par

R Byt td—q—1
q d—q

4 un mondéme générateur de R4~7 de degré d — ¢). Comme le systéme (E‘(] 4 p)) est supposé de rang

chacun des ( monomes de degré q) a ( ) inconnues (chacune d’elles correspondant

maximal, le lemme 3.3.57 précédent montre qu’il en est de méme du systéme (E‘(id_z)) et donc que

p—1
d— . d— S5 tqg—1
rg(Z(d;)) = nombre de lignes de (Z(d;)) = ( 2 . > = Tg(Z‘(]dvp)).
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Dans ce cas, la méthode qui consiste & augmenter la codimension d — ¢ d’une relation jusqu’a son
maximum d met en évidence que les relations en codimension d — ¢ forment un sous-espace vectoriel
d’une famille de « possibles » relations qui est elle de dimension

nombre de colonnes de (E?d_, §)> -9 (Z?d_;))

_ (B Hd—q-1\ (B 4g-1
d—q q
= Td—q-

Autrement dit, chaque combinaison linéaire dans cette famille de « possibles » relations est réellement
une relation dans R4~7. On connait donc toutes les relations en codimension d — ¢ et en déterminer
une base revient simplement a déterminer une base du noyau du systéme (E((id_g)). Ceci termine la

démonstration du résultat. O

Ce résultat est donc relativement fort puisque, modulo I'hypothése sur le rang des (E‘(J dp)),
il montre que pour d,p arbitrairement grands, le simple fait de connaitre le degré des monoémes

wél*Z aiw?l . -wgff ;):)5722 permet de connaitre toutes les relations en codimensions q et d — g € [0, d].

Finalement, une conséquence du théoréme 3.3.58 est la suivante :

Théoréme 3.3.59 - Soit C' une courbe hyperelliptique de genre g = 1 admettant un automorphisme

o d’ordre p > 2 premier. On suppose que pour tout q € [0, %}] les systémes (E'gd p)) sont de rang

p—1 ’

T*qfl)
q

maximal ( . Alors Uanneau tautologique Ry (¢ 7+C; Z) est donné par

Ra(wZ*C; Z) = Q[WO,Wl, oo 7("}7’%3]/1—517?

ot Iq, est lidéal des relations entre les w; que l'on peut calculer explicitement a partir des systémes
(E?dp))' Par ailleurs, on obtient

-1
1. pour q < %, dim(@ RY = dimQ Ri—a = (%;—q—l%

2. et par conséquent,

23 2, b ta-1 si d est impair,
dim@ Rg(@Z}Z*C; Z) = % 0 (p—l 1 1) p—l,d_ 4
2> 0 (T;q_ )= (% 4% ) sid est pair.
2
—1
4htl (%7 Ry sid=2k+1,
T k1 (B R 34k ,
4p%( i )—( 2, ) sid = 2k.

Démonstration. La premiére partie est une conséquence directe du théoréme 3.3.58 puisque dans ce
cas le fait de supposer tous les systémes (Z[(] i p)) de rang maximaux implique que ’on connait toutes
les relations entre les w; en codimension quelconque. Le point (1) de la seconde assertion concernant

dimg R? découle du corollaire 3.3.56. Il ne reste qu’a calculer la dimension de Ry (¢z.C; Z). Puisque
d
RO’(d}Z*C; Z) = @ Rq7
q=0

la dimension de R, (9z.C; Z) en tant que Q-espace vectoriel est la somme des dimensions des sous-
espaces R? qui le composent. Ceci fournit la derniére assertion en utilisant le point (1) et Sage pour
le calcul explicite de la somme. O
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On notera en particulier que si les hypothéses de ce théoréme 3.3.59 sont vérifiées pour un
certain automorphisme o d’ordre p > 2 premier, alors tout autre automorphisme de C' du méme
ordre détermine & isomorphisme d’algébres prés la méme structure d’anneau tautologique sur Z. On
verra dans la sous-section suivante des situations ou ceci ce produit, et plus tard, dans la sous-section
3.4.3, des situations ol ce n’est pas le cas.

3.3.6 Applications : structure de Q-algébre de R,(¢7.C;Z) en petite dimension

Il s’agit de donner ici la structure compléte de Q-algébre de 'anneau tautologique R, (1 z+C'; Z)
lorsque Z est de petite dimension. Ces résultats sont présentés comme applications directes du
programme donné dans la sous-section 3.4.2. Toutefois, nous reviendrons de maniére détaillée sur
ces exemples dans la partie 3.5.4. Ceci sera 'occasion de présenter le genre de calculs menés par
Sage, ainsi que de mettre en perspective ces résultats de structure avec notamment les résultats déja
obtenus par ailleurs dans les sous-sections 3.3.2 et 3.3.3.

Les cas (d,p) = (d,2) ou (d,3)

Ces cas la ont déja été traités dans la sous-section 3.3.1. On les rappelle simplement par esprit
de synthése. Lorsque p = 2, on obtient :

Proposition 3.3.60 - Soit f : C — C' ~ C/{o) un revétement double. On suppose que C est
hyperelliptique ou trigonale. Alors

Ro(42C; Z) = Qlwo]/(w§™)-
Le cas des revétements triples est donné par :

Proposition 3.3.61 - Soit f : C — C' ~ C/{o) un revétement Galoisien cyclique de degré 3 avec
C hyperelliptique. Alors

Ro(42:C; Z) = Q[wol/(wi™).

Le cas (d,p) = (2,5)
Proposition 3.3.62 - Soit f : C — C' ~ C/{o) un revétement Galoisien cyclique de degré 5 avec
C hyperelliptique. On suppose que dim Z = 2. Alors

Ry (12+C; Z) = Qlwo, w1]/(wh, wh — wi, 3wg — 2wowr, w?).

Le cas (d,p) = (4,5)

Proposition 3.3.63 - Soit f : C — C' ~ C/{o) un revétement Galoisien cyclique de degré 5 avec
C' hyperelliptique. On suppose que dim Z = 4. Alors l'anneau tautologique Ry (1z+C; Z) est de la
forme Qwo,w1]/1s5 ot Iy5 est Uidéal des relations entre wy et wy. Cet idéal est engendré par les
relations suivantes

1. wg_iwi =0 pourice€ [0,5],
2. 3wi —2wdwy =0, 1lwi —6ww? =0, 3wi —2wowi =0, wj—wi=0,

3. Wi — 3wow? + 3wi =0, 3wiw; — Jwow? + 8w} = 0.
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Le cas (d,p) = (6,5)

Proposition 3.3.64 - Soit f : C — C' ~ C/{o) un revétement Galoisien cyclique de degré 5 avec
C' hyperelliptique. On suppose que dim Z = 6. Alors l'anneau tautologique Ry (1z+C;Z) est de la
forme Qlwo,w1]/Is5 ot Ig 5 est lidéal des relations entre wy et wi. Cet idéal est engendré par les
relations suivantes
1. wi'wi =0 pourie[0,7],
2. 3wl —2wdw1 =0, 2w —wiw? =0, w§ —4wdw? =0, w§—-uwf=0,
3wd — 2wow? =0, 2wl —wiwi =0,
3. wh — Bwowi + 6w) =0, wiwr — bwow] + Tw) =0, 2wiw? — llwow] + 12wF = 0,
2wiw3} — bwow] + Hw? =0,

4. wi — 6wiw? + 12wew? — 8wt =0, dwiw; — 18wiw? + 32wow? — 21wt = 0.

Le cas (d,p) = (3,7)

Proposition 3.3.65 - Soit f : C — C' ~ C/{o) un revétement Galoisien cyclique de degré 7 avec
C' hyperelliptique. On suppose que dim Z = 3. Alors l’anneau tautologique Ry (v z+C;Z) est de la
forme Q[wo, w1, wa]/I37 ot I3 7 est l'idéal des relations entre wy, wy et wy. Cet idéal est engendré par
les relations suitvantes

1. wg_i_jwliw% =0, pouri,je[0,4] aveci+ j <4,

2. wg - wi” =0, wg’ — w% =0, SwS’ — ngwl =0, Sw(?j - 3w(2]w2 =0,
2w —wow? =0, 2w —wows =0,
19w8’ — bwowiws = 0, 1778’ — 3&)%&)2 =0, 10w8’ — Swlwg =0,

3. wg + 2wowe — 2wiwse + w% =0, 2wowi + 20wowe — 16wws + 7w§ =0,
26wowso + w% — 20wiwso + 9w% =0.

3.4 Programmation des calculs avec Sage

On donne dans cette section les codes sources des programmes Sage utilisés en pratique pour
obtenir les applications numériques vues précédemment.
3.4.1 Code source du programme calculant les relations du type R,(P(c?),n)

On commence par un code qui calcule et affiche les relations R,(P(c?),n) pour des valeurs de d
et p données, ainsi qu'un polynéme P(o?) = alpha donné.

# coding: utf-8

timer = walltime() # Temps de calcul du programme (temps & la montre)

var(’s’) # Définition de 1’anneau Z[s] des polyndmes & coefficients entiers en 1’indéterminée s
A.<s> = Z2Z[]

HERHHH

# Paramétres #

HERHHH

p=>5 # Ordre premier p de 1l’automorphisme s

d=4 # Dimension de la variété de Prym généralisée Z déterminée par s

alpha = s72 # Polynéme dont on veut calculer les relations R_q(alpha,eta)
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# Début du programme #

if 2%¢d % (p-1) !'= 0 : # On vérifie que p-1 divise 2d
print "\nErreur : il est nécessaire que p-1 divise 2d."
print "Fin du programme.\n"

quit()

else
print "\n##H#HEEEH "
print "# #"
print " Calcul des relations R_q(", alpha, ",eta) lorsque d =", d, "et p =", p
print "# #"

Print “##HHHHHHHEEE AR \n "

w = list(var("w_%d" % i) for i in [0..p-11) # Déclaration des variables w_O,w_1,...,w_(p-1)

# Calcul de la trace des polyndmes en s #

# Fonction : tracePoly
# Entrée : un polyndme P de Z[s]
# Sortie : la trace de P

def tracePoly(P)
dicoP = P.dict()
t=0
for k in dicoP.keys()
ifk%p==0:
trace = 2%d
else :
trace = -2*d/(p-1)

t = t + dicoP[k]*trace
return t

# Calcul du polyndme caractéristique du polyndme alpha #

sigmaAlpha = [1]
# Calcul du coefficient du terme de degré 2d-q du polyndme caractéristique de alpha

for q in [1..2%d]
M = matrix(QQ,q,q)
for i in [1..q]
for j in [1..q]
if § >= i+2

M[i-1,j-11 =0
elif j == i+1 :

M[i-1,j-1] = i
else :

for 1 in [1..q]
if § == i-1+1 :
M[i-1,j-1] = tracePoly(alpha~1l)
sigmaAlpha = sigmaAlpha + [1/factorial(q)#*M.determinant()]

# Construction des relations Rq(P(s~2),eta) #

dicoAlpha = alpha.dict()
tailleDico = len(dicoAlpha)

j = add(dicoAlpha.values()) # j = alpha(1l)
# Calcul de D_alpha(eta)

Dalpha = 0
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for u in [0..tailleDico-1]
indice = 1/2*dicoAlpha.keys() [u] # 0 <= indice <= p-1

multi = dicoAlpha.values() [ul # éventuelle multiplicité, ie. coefficient > 1
if indice ==
Dalpha = Dalpha + 4*multi*w[0]
elif indice >= (p+1)/2 : # On se raméne a des w_i avec 0 <= i = indice <= (p-1)/2
indice = p - indice
if indice == (p-1)/2 : # On utilise la relation w_((p-1)/2)=(p-2)w_0-w_1-...-w_((p-3)/2)
Dalpha = Dalpha + (p-2)*multi*w[0] - multi*add(w[1:(p-1)/2])
else :

Dalpha = Dalpha + multi*w[indice]
else :
if indice == (p-1)/2 :
Dalpha = Dalpha + (p-2)*multi*w[0] - multi*add(w[1:(p-1)/2])
else :
Dalpha = Dalpha + multi*w[indice]

Dalpha = Dalpha - 2*j*w[0]
# Calcul de alpha~*(eta)

alphaStar = 0
for u in [0..tailleDico-2]
for v in [u+l..tailleDico-1]
indice = 1/2*abs(dicoAlpha.keys() [u] - dicoAlpha.keys() [v])
multi = dicoAlpha.values() [u]*dicoAlpha.values() [v]
if indice ==
alphaStar = alphaStar + 4*multi*w[0]
elif indice >= (p+1)/2 :
indice = p - indice
if indice == (p-1)/2 :
alphaStar = alphaStar + (p-2)*multi*w[0] - multi*add(w[1:(p-1)/2])
else :
alphaStar = alphaStar + multi*w[indice]
else :
if indice == (p-1)/2 :
alphaStar = alphaStar + (p-2)*multi*w[0] - multi*add(w[1:(p-1)/2])
else :
alphaStar = alphaStar + multi*w[indice]

alphaStar = alphaStar + 2*add(dicoAlpha.values()[ul~2 for u in [0..tailleDico-1]1)*w[0] - j~2*w[0]
# Calcul effectif et affichage des relations Rq(alpha,eta)

for q in [0..2%d]
tmpl = sigmaAlphal[2*d-q]l*w[0]~d
for i in [max(0,q-d)..floor(q/2)]
coeffMulti = factorial(d)/(factorial(i)*factorial(q-2+*i)*factorial(i+d-q))
tmpl = tmpl - coeffMulti*w[0]~i*Dalpha~(qg-2*i)*alphaStar~(i+d-q)
print "R_", q, "(", alpha, ", eta) : ", expand(tmpl), "= 0"

print "\nFin du programme en", walltime(timer), "secondes.\n"

3.4.2 Code source du programme complet

Ce second programme Sage est celui utilisé pour calculer les degrés des cycles sur Z qui s’ex-
priment comme des mon6émes de degré d en les w; mais aussi, et surtout plus généralement, pour
étudier les relations dans la Q-algebre R, (174+C; Z). L’accroissement des constantes p et d rend vite
indispensable 1'utilisation de l'ordinateur pour effectuer les différents calculs. On s’en rendra mieux
compte dans la section 3.5 lorsqu’il s’agira d’effectuer nous-méme tout ou partie de ces calculs.

Plus spécifiquement, le programme donné ci-aprés applique la méthode décrite précédemment

étant donnés un nombre premier p quelconque et la dimension d de la variété Z. Ce programme

1. génére dans un premier temps une liste listePoly de polynomes en o2

positifs en proposant plusieurs méthodes de génération. Le choix de la méthode (0,1, 2 ou 3)
se fait via le paramétre methode :
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(a) la méthode 0 offre la possibilité a I'utilisateur de fournir lui-méme une liste de polynémes

en o2 & coefficients entiers positifs ;

(b) la méthode 1 en est une probabiliste : on construit aléatoirement une liste de polynomes
en o2 dont les coefficients appartiennent & l'intervalle [0,limiteCoeff]. La taille de la
liste peut étre ajustée a ’aide de la constante nbrePoly;

(c) les méthodes 2 et 3 sont déterministes et fournissent des listes de polynomes dont la taille
peut étre en partie controlée par le paramétre tailleMax. La taille de la liste construite
augmente rapidement avec p et d. On privilégiera donc la méthode 1;

2. calcule le polynome caractéristique de chacun des polynomes en o2 de listePoly;

3. construit la liste des relations R,(P(c?),n) pour chacun des polynémes de listePoly et les
stocke dans un vecteur vRq;

4. résout le systéme correspondant aux relations données par vRq : la solution, si elle est entiére-
ment déterminée, fournit le degré de chaque monéme en les w; en codimension maximale d ; si
la solution n’est pas unique, il faut considérer plus de polynémes en ¢ pour avoir davantage de
relations R, (P(0?),n) (ou au moins d’autres polynomes si on utilise la méthode probabiliste) ;

q

(d p)) et les résout ; déterminant ainsi les (possibles) relations en co-

5. construit les systémes (3
dimension q.

affiche les différentes informations obtenues concernant les relations;

encadre la dimension de 'anneau tautologique R, (1 z.+C; Z).
Voici le code source du programme :

# coding: utf-8

timer = walltime() # Temps de calcul du programme (temps & la montre)

var(’s?) # Définition de l’anneau Z[s] des polyndmes & coefficients entiers en 1’indéterminée s
A.<s> = 22[]

HEHHHHH

# Paramétres #

HEHHHH

p=7 # Ordre premier p de 1’automorphisme s

d=3 # Dimension de la variété de Prym généralisée Z déterminée par s

methode = 0 # Méthode pour générer une liste de polyndmes (0, 1, 2 ou 3)

# Paramétre pour la méthode 0
listePoly = [s~2, s~4, s~2 + s74] # Liste de polyndmes en s~2, a coefficients entiers positifs
# Paramétres pour la méthode 1

limiteCoeff = 1 # Entier naturel non nul ; les coefficients des polyndmes appartiennent & [[0,limiteCoeff]]
nbrePoly = 10 # Ordre de grandeur du nombre de polyndmes générés aléatoirement

# Paramétre pour les méthodes 2 et 3

tailleMax = 2 # Constante déterminant d& terme le nombre de polyndmes générés non aléatoirement

# Début du programme #

if methode not in [0,1,2,3] : # On vérifie le choix de la méthode
print "Erreur : la constante ’methode’ ne peut prendre que les valeurs 0,1,2 ou 3."
print "Fin du programme.\n"
quit()
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elif 2xd % (p-1) != 0 : # On vérifie que p-1 divise 2d
print "\nErreur : il est nécessaire que p-1 divise 24."
print "Fin du programme.\n"

quit()
else
print "\n##E AR R
print "# #"
print " Etude de la Q-algébre R_s(Psi_Z* C ; Z) lorsque p =", p, "et d =", d
print "# #"
Print "H#HHHEHHEHHEE R \n\n"
w = list(var("w_%d" % i) for i in [0..p-11) # Déclaration des variables w_O,w_1,...,w_(p-1)
if p <=3 :

print "L’anneau tautologique R_s(Psi_Z* C ; Z) est engendré par", w([0]
print "Il est de dimension", d+1, ", isomorphe & Q[", w[0], "1/(", w[0]~(d+1), ")"
print "\nFin du programme en", walltime(timer), "secondes.\n"
quit()
else :
print "L’anneau tautologique R_s(Psi_Z* C ; Z) est engendré par", seq(w[i] for i in [0..(p-3)/2]) , "\n"

# Construction d’une liste de polyndmes utilisés pour construire les relations Rq #

# On construit une liste de polyndmes en s~2 & coefficients entiers positifs

if methode == : # Liste de polyndmes entrée manuellement en paramétre
tailleListePoly = len(listePoly)

elif methode == : # Construction aléatoire uniforme de polyndmes en s~2 a coefficients positifs et <= limiteCoeff
if p == 5 and nbrePoly == : # Le cas p = b étant particuliérement simple, il est traité directement

listePoly = [s~2]
tailleListePoly = len(listePoly)
else :
var(’S?)
B.<S> = IntegerModRing(limiteCoeff+1) []
listeEntiers = []
for i in [0..p-1]
listeEntiers = listeEntiers + seq(i for j in [1..(i+1)*(limiteCoeff+1)])
tailleListeEntiers = len(listeEntiers)

listePoly = []
for i in [1..nbrePoly]
choixDeg = randint(0,tailleListeEntiers-1)
listePoly = listePoly + [B.random_element(listeEntiers[choixDeg])]

for i in [0..nbrePoly-1]
listePoly[i] = A(listePoly[i](8~2))

listePoly = list(set(listePoly))
tailleListePoly = len(listePoly)

print "\nListe de polyndmes générée avec succés."

print "Calcul des polyndmes caractéristiques en cours...\n"
elif methode == 2 : # Construction non aléatoire 1

listePoly = [A(1), s~2]

tmpDebut = 0
tmpDebut2 = len(listePoly)

while tailleMax > 1
for i in [tmpDebut..len(listePoly)-2]
for m in [ZZ(1/2*max(listePoly[i].dict().keys()))+1..p-1]
listePoly = listePoly + [listePoly[i] + s~ (2+%m)]

tmpDebut = tmpDebut2
tmpDebut2 = len(listePoly)
tailleMax = tailleMax - 1

listePoly = listePoly[0:2] + [s~(2#i) for i in [2..(p-3)/2]] + listePoly[2:]
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tailleListePoly = len(listePoly)

print "\nListe de polyndmes générée avec succés."
print "Calcul des polyndmes caractéristiques en cours...\n"

elif methode == 3 : # Construction non aléatoire 2 (plus lourde que la 1)
listePoly = [s™m for m in [0..(p-1)/2]]

tmpDebut = 0
tmpDebut2 = len(listePoly)

while tailleMax > 1
for i in [tmpDebut..len(listePoly)-2]
for m in [max(listePoly[i].dict().keys())+1..p-1]
if listePoly[i] - s™m != O and listePoly[i] + s™m != 0 :
listePoly = listePoly + [listePoly[i] + s™m, listePolyl[il - s~m]

tmpDebut = tmpDebut2
tmpDebut2 = len(listePoly)
tailleMax = tailleMax - 1

tailleListePoly = len(listePoly)
# On se raméne a une liste de polyndmes en s~2 & coefficients entiers positifs

for i in [0..tailleListePoly-1]
dicoAlpha = listePoly[il.dict()
for j in dicoAlpha.keys()
if dicoAlphal[j] < O :
listePoly[i] = listePoly[i] + abs(dicoAlphal[j])*s~j
+ add(abs(dicoAlphal[jl)*s~k for k in [0..j-1] + [j+1..p-11)
dicoAlpha = listePoly[i].dict()
for j in dicoAlpha.keys()
if j % 2 ==
listePoly[i] = listePoly[i] - dicoAlphal[jl*s~j + dicoAlphal[jl*s~(j+p)

print "\nListe de polyndmes générée avec succés."

print "Calcul des polyndmes caractéristiques en cours...\n"

# Calcul de la trace des polyndmes en s #

# Fonction : tracePoly
# Entrée : un polyndme P de Z[s]
# Sortie : la trace de P

def tracePoly(P)
dicoP = P.dict()

t=0
for k in dicoP.keys()
if k % p ==
trace = 2xd
else :

trace = -2%d/(p-1)

t = t + dicoP[k]*trace
return t

# Calcul des polyndmes caractéristiques des polyndmes de listePoly #

sigmaAlpha = []

for k in [0..tailleListePoly-1]
alpha = listePolyl[k]
sigmaAlpha = sigmaAlpha + [[1]]

# Calcul du coefficient du terme de degré 2d-q du polyndme caractéristique de alpha
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for q in [1..2xd]
M = matrix(QQ,q,q)
for i in [1..q]
for j in [1..q]
if § >= i+2

M[i-1,j-1] = 0
elif j == i+l :

M[i-1,j-1] = 1
else :

for 1 in [1..q]
if § == i-1+1 :
M[i-1,j-1] = tracePoly(alpha~1l)
sigmaAlpha[k] = sigmaAlphalk] + [1/factorial(q)*M.determinant()]

# Construction de la liste des relations Rq(P(s~2),eta) #

vRq = []

for k in [0..tailleListePoly-1]
alpha = listePoly[k]
dicoAlpha = alpha.dict()
tailleDico = len(dicoAlpha)

j = add(dicoAlpha.values()) # j = alpha(1)
# Calcul de D_alpha(eta)

Dalpha = 0
for u in [0..tailleDico-1]
indice = 1/2*dicoAlpha.keys() [ul # 0 <= indice <= p-1
multi = dicoAlpha.values() [u] # éventuelle multiplicité, ie. coefficient > 1
if indice ==
Dalpha = Dalpha + 4*multi*w[0]

elif indice >= (p+1)/2 : # On se raméne a des w_i avec 0 <= i = indice <= (p-1)/2
indice = p - indice
if indice == (p-1)/2 : # On utilise la relation w_((p-1)/2)=(p-2)w_0-w_1-...-w_((p-3)/2)
Dalpha = Dalpha + (p-2)*multi*w[0] - multixadd(w[1:(p-1)/21)
else :

Dalpha = Dalpha + multi*w[indice]
else :
if indice == (p-1)/2 :
Dalpha = Dalpha + (p-2)*multi*w[0] - multi*add(w[1:(p-1)/2])
else :
Dalpha = Dalpha + multi*w[indice]

Dalpha = Dalpha - 2*j*w[0]
# Calcul de alpha~*(eta)

alphaStar = 0
for u in [0..tailleDico-2]
for v in [u+l..tailleDico-1]
indice = 1/2*abs(dicoAlpha.keys() [u] - dicoAlpha.keys() [v])
multi = dicoAlpha.values() [u]l*dicoAlpha.values() [v]
if indice ==
alphaStar = alphaStar + 4*multix*w[0]
elif indice >= (p+1)/2 :
indice = p - indice
if indice == (p-1)/2 :
alphaStar = alphaStar + (p-2)*multi*w[0] - multi*add(w[1:(p-1)/21)
else :
alphaStar = alphaStar + multi*w[indicel
else :
if indice == (p-1)/2 :
alphaStar = alphaStar + (p-2)*multi*w[0] - multi*add(w[1:(p-1)/2])
else :
alphaStar = alphaStar + multi*w[indice]

alphaStar = alphaStar + 2*add(dicoAlpha.values()[u]l~2 for u in [0..tailleDico-11)*w[0] - j~2xw[0]
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# Calcul effectif des relations Rq(alpha,eta)

for q in [0..2%d-1]
tmpl = sigmaAlpha[k] [2*d-q]l*w[0]~d
for i in [max(0,q-d)..floor(q/2)]
coeffMulti = factorial(d)/(factorial(i)*factorial(q-2#*i)*factorial(i+d-q))
tmpl = tmpl - coeffMulti*w[0]-~i*Dalpha~(q-2%*i)*alphaStar~(i+d-q)
vRq = vRq + [expand(tmp1l)]

# On prépare l’ajout a venir de 1’égalité deg w_0"d = d!*chi(eta)

vRq = vRq + [w[0]~d]

# Calcul et affichage du degré des mondmes en codimension maximale d #

# Fonction : baseMonomesCodimFixee
# Entrée : un entier 0 <= q <= d, un entier 0 <= j <= p-1, un entier 1 <= n <= p-1
# Sortie : la liste des mondmes homogénes de degrés q en w_j, w_(j+1), ... w_n

def baseMonomesCodimFixee(q,j,n)
base = []
if q == :
base = [w[k] for k in [j..nl]
else :
for k in [j..n]
baseTmp = baseMonomesCodimFixee(q-1,k,n)
base = base + [w[k]*baseTmp[1l] for 1 in [0..len(baseTmp)-1]]
return base

baseCodimMax = baseMonomesCodimFixee(d,0, (p-3)/2) # Liste des mondmes de codimension maximale d
tailleBaseCodimMax = len(baseCodimMax)

# Construction de la matrice contenant les coefficients des relations de vRq

M = matrix(QQ,2*d*tailleListePoly+1,tailleBaseCodimMax)
for i in [0..2*d*tailleListePoly]
for j in [0..tailleBaseCodimMax-1]
M[i,j] = vRql[i].coefficient(baseCodimMax[j])

if M.rank() != tailleBaseCodimMax :
print "\nLes degrés ne sont pas entiérement déterminés par les relations fournies."
print "Il faut considérer d’autres polyndmes.\n"
print "Fin du programme en", walltime(timer), "secondes.\n"
quit()

print "\nLes degrés des mondmes en codimension maximale sont calculables."
print "Calcul des degrés en cours...\n"

N = matrix(QQ,2*d*tailleListePoly+1,1,0) # Second membre du systéme & résoudre pour déterminer les degrés
N[2*d*tailleListePoly,0] = factorial(d) # Derniére relation rajoutée deg w_0"d = d!*chi(eta)

degreMonomesCodimMax = M.solve_right (N) # Résolution du systéme
# Affichage des degrés

for k in [0..tailleBaseCodimMax-1]
print "deg", baseCodimMax[k], "=", degreMonomesCodimMax[k] [0], "chi(eta)"

# Calcul et affichage des relations en petite codimension #

print "\n\nEtude des relations en codimension quelconque en cours..."
# Vecteur stockant les bases de polyndmes homogénes de chaque codimension 1 <= q <= d-1

vBaseMonomesCodimFixee = []
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for q in [1..d-1]
vBaseMonomesCodimFixee = vBaseMonomesCodimFixee + [baseMonomesCodimFixee(q,0, (p-3)/2)]

# Construction des systémes linéaires dont les noyaux fournissent les relations

vSystemeSigma = [] # Vecteur contenant les systémes linéaires pour chaque codimension
vBoolRangMaxSystemeSigma = [] # Vecteur de booléens indiquant si les systémes linéaires sont de rang max ou non

for q in [1..floor(d/2)]
nbrelignes = binomial((p-1)/2+d-q-1,d-q)
nbreColonnes = binomial((p-1)/2+q-1,q)

vSystemeSigma = vSystemeSigma + [matrix(ZZ,nbrelLignes,nbreColonnes)]

for i in [0..nbreLignes-1]
for j in [0..nbreColonnes-1]
for k in [0..tailleBaseCodimMax-1]
if baseCodimMax[k] == vBaseMonomesCodimFixee[q-1][j]l*vBaseMonomesCodimFixee[d-q-1][i]
vSystemeSigmalq-1][i,j] = degreMonomesCodimMax [k] [0]

# Affichage des relations en codimension 1 < q <= d/2

if vSystemeSigmal[q-1].rank() == min(nbrelLignes,nbreColonnes)
vBoolRangMaxSystemeSigma = vBoolRangMaxSystemeSigma + [True]
print "\n--> Il n’existe pas de relation non triviale en codimension", q
else :
vBoolRangMaxSystemeSigma = vBoolRangMaxSystemeSigma + [Falsel
print "\n--> En codimension", q, "la méthode n’est pas totalement concluante. "

dimensionRelation = binomial((p-1)/2+q-1,q) - vSystemeSigmal[qg-1].rank()
rel = vSystemeSigmal[qg-1].right_kernel()

print "Les relations en codimension", q, "forment une sous-famille de la famille de dimension",
dimensionRelation, "engendrée par :\n"

for r in [0..dimensionRelation-1]
print add([x*y for x, y in zip(rel.basis() [r],vBaseMonomesCodimFixee[q-11)]), "= O"

# Affichage des relations en grande codimension #

# Affichage des relations en codimension d/2 < q <= d-1

for q in [floor(d/2)+1..d-1]
if vBoolRangMaxSystemeSigmal[d-q-1]
dimensionRelation = binomial((p-1)/2+q-1,q) - binomial((p-1)/2+d-q-1,d-q)
print "\n--> Les relations en codimension", q, "forment une famille de dimension", dimensionRelation,
"engendrée par : \n"

rel = vSystemeSigmal[d-q-1].transpose().right_kernel()
for r in [0..dimensionRelation-1]
print add([x*y for x, y in zip(rel.basis() [r],vBaseMonomesCodimFixee[q-1])]), "= 0"
else :

print "\n--> En codimension", q, "la méthode n’est pas totalement concluante. "

dimensionRelation = binomial((p-1)/2+q-1,q) - vSystemeSigmald-q-1].rank()
rel = vSystemeSigmal[d-q-1].transpose().right_kernel()

print "Les relations en codimension", q, "forment une sous-famille de dimension au moins",
binomial ((p-1)/2+q-1,q) - binomial((p-1)/2 + d-q-1,d-q),

"de la famille de dimension", dimensionRelation, "engendrée par :\n"

for r in [0..dimensionRelation-1]
print add([x*y for x, y in zip(rel.basis() [r],vBaseMonomesCodimFixee[q-1])1), "= 0"

# Affichage des relations en codimension maximale d
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print "\n--> Les relations en codimension maximale", d, "sont engendrées par :\n"
for k in [1..tailleBaseCodimMax-1]
pged = gcd(degreMonomesCodimMax [k] [0] ,factorial(d))
print degreMonomesCodimMax [k] [0]/pgcd*w[0]~d, "-", factorial(d)/pgcd*baseCodimMax[k], "= 0"

# Affichage des relations en codimension > d

print "\n--> Les relations en codimension >", d, "sont trivialement engendrées par les mondmes de degrés", d+1

# Calcul et affichage de la dimension de 1l’anneau tautologique #

B S S s s s e

ifd’% 2==0:
dimMin = 1 + 2*add([vSystemeSigmal[q-1].rank() for q in [1..d/2]]) - vSystemeSigmal[d/2-1].rank() + 1
dimMax = 2*add([binomial((p-1)/2+q-1,q) for q in [0..d4/2 - 11]1) + binomial((p-1)/2+d/2-1,d/2)

else :
dimMin
dimMax

1 + 2xadd([vSystemeSigmalqg-1].rank() for q in [1..(d-1)/211) + 1
2*add ([binomial ((p-1)/2+q-1,q) for q in [0..(d-1)/21]1)

if dimMin == dimMax :
print "\n\nL’anneau tautologique R_s(Psi_Z* C ; Z) est de dimension", dimMax
else :
print "\n\nL’anneau tautologique R_s(Psi_Z* C ; Z) est de dimension comprise entre", dimMin, "et", dimMax

print "\nFin du programme en", walltime(timer), "secondes.\n"

Avant de donner quelques nouvelles applications numériques, donnons quelques explications sup-
plémentaires sur ce code.

1. Les paramétres a définir avant d’exécuter le programme se trouvent tous dans la partie Paramétres
au début du code.

2. Concernant la méthode probabiliste (la méthode 1) utilisée pour générer la liste 1istePoly, on
pourra laisser la constante 1istePoly égale a 1. Notons qu’il est possible de générer plusieurs
fois le méme polynoéme (notamment en petit degré). La constante nbrePoly peut donc étre
sensiblement supérieure a la taille effective de listePoly. Par ailleurs, l'aspect probabiliste
semble naturel afin que les relations R, (P(0?),n) construites soient linéairement indépendantes
avec une forte probabilité. Puisque chaque polynome P(0?) de listePoly fournit au plus 2d

relations R,(P(0?),7n) linéairement indépendantes et puisqu’il y a en codimension maximale

(pT_lﬂifl
d

lancer une premiére simulation avec

1/t +d—1
nbrePoly > 2d< 2 +d > x 1.5.

A o P , .
) mondmes en les pT générateurs wy, . ..,wp-3, on peut se fixer comme stratégie de
2

Ce coefficient 1.5 (choisi arbitrairement) fournit une marge d’erreur qui devrait étre suffisante
pour que listePoly contiennent suffisamment de polynomes, fournissant a leur tour suffisam-
ment de relations indépendantes.

3. Pour p = 5 et méme si d est trés grand (par exemple d = 100), les différentes exécutions
du programmes tendent a montrer qu'’il suffit de ne considérer qu’un seul polynome (ie. fixer
nbrePoly = 1). Le polynome P(02) = o2 est le candidat le plus naturel vue la méthode
employée.

3.4.3 Autres applications numériques
Des exemples déja connus

Le programme permet de retrouver (quasi)-instantanément chacune des propositions de la sous-
section 3.3.6. Par exemple, lorsque (d,p) = (4,5), la sortie du programme est la suivante :
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Exemple 3.4.1 :

Etude de la Q-algébre R_s(Psi_Z* C ; Z) lorsque d = 4 et p = 5
# #

L’anneau tautologique R_s(Psi_Z* C ; Z) est engendré par [w_0, w_1]

Liste de polyndmes générée avec succes.
Calcul des polyndmes caractéristiques en cours...

Les degrés des mondmes en codimension maximale sont calculables.
Calcul des degrés en cours...

deg w_0"4 = 24 chi(eta)

deg w_0"3*w_1 = 36 chi(eta)

deg w_0"2%w_1"2 = 44 chi(eta)

deg w_0*w_1"3 = 36 chi(eta)

deg w_1"4 = 24 chi(eta)

Etude des relations en codimension quelconque en cours...

--> I1 n’existe pas de relation non triviale en codimension 1
--> I1 n’existe pas de relation non triviale en codimension 2

--> Les relations en codimension 3 forment une famille de dimension 2 engendrée par :

w_0"3 - 3*w_0*w_1"2 + 3*w_1"3 = 0
3xw_0"2%w_1 - 9*%w_O*w_1"2 + 8*w_1"3 = 0

--> Les relations en codimension maximale 4 sont engendrées par :
3*w_0"4 - 2xy_0"3*w_1 = 0

11%w_0"4 - 6*w_0"2%w_1"2 = 0

3*%w_0"4 - 2%w_O*w_1"3 = 0

w074 - w.1"4 =0

--> Les relations en codimension > 4 sont trivialement engendrées par les mondmes de degrés 5

L’anneau tautologique R_s(Psi_Z* C ; Z) est de dimension 9

Fin du programme en 0.603399038315 secondes.

Le cas (d,p) = (5,11)

Pour l'instant, les propositions données dans la sous-section 3.3.6 traitaient complétement le cas
d < 4. En dimension 5, la condition p — 1 divise 2d = 10 impose & p d’appartenir & 1’ensemble
{2,3,11}. Aussi, dés que 'on aura étudié le cas (d,p) = (5,11) on aura en réalité étudié toutes les
structures possibles pour 'anneau R, (1z.C; Z) lorsque Z est de dimension < 5.

Si (d,p) = (5,11), le programme fournit des relations trop longues pour étre présentées avec un
minimum de clarté dans ce manuscrit. On ne donne donc ici qu’'un apergu de la sortie du programme :
Exemple 3.4.2 :

S
# #

Etude de la Q-algébre R_s(Psi_Z* C ; Z) lorsque d = 5 et p = 11
# #
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L’anneau tautologique R_s(Psi_Z* C ; Z) est engendré par [w_0, w_1, w_2, w_3, w_4]

Liste de polyndmes générée avec succés.
Calcul des polyndmes caractéristiques en cours...

Les degrés des mondmes en codimension maximale sont calculables.
Calcul des degrés en cours...

deg w_0"5 = 120 chi(eta)

deg w_0"4*w_1 = 216 chi(eta)

deg w_0"4%w_2 = 216 chi(eta)

deg w_0"4*w_3 = 216 chi(eta)

deg w_0"4%w_4 = 216 chi(eta)

deg w_0"3*w_1"2 = 336 chi(eta)
deg w_0"3*w_1%w_2 = 402 chi(eta)

deg w_1*w_3"2%w_4"2 = 2452 chi(eta)
deg w_1*w_3*w_4~3 = 2298 chi(eta)
deg w_1*w_4~4 = 384 chi(eta)

deg w_2"5 = 120 chi(eta)

deg w_2"4%w_3 = 912 chi(eta)

deg w_2"4xw_4 = 1176 chi(eta)

deg w_2"3*w_3"2 = 1308 chi(eta)

deg w_2"3*w_3%w_4 = 1638 chi(eta)
deg w_2"3%w_4"2 = 1968 chi(eta)

deg w_2"2%w_3"3 = 912 chi(eta)

deg w_2"2*%w_3"2xw_4 = 1836 chi(eta)
deg w_2"2*w_3%w_4"2 = 2276 chi(eta)
deg w_2"2%w_4~3 = 1572 chi(eta)

deg w_2*w_3"4 = 384 chi(eta)

deg w_2*w_3"3%w_4 = 1374 chi(eta)

deg w_2*w_3"2xw_4"2 = 2100 chi(eta)
deg w_2*w_3%w_4"3 = 2100 chi(eta)
deg w_2*w_4"4 = 648 chi(eta)

deg w_3"5 = 120 chi(eta)

deg w_3"4xw_4 = 648 chi(eta)
deg w_3"3*w_4"2 = 1572 chi(eta)
deg w_3"2*w_4~3 = 1968 chi(eta)
deg w_3*w_4"4 = 1176 chi(eta)
deg w_4"5 = 120 chi(eta)

Etude des relations en codimension quelconque en cours...
--> I1 n’existe pas de relation non triviale en codimension 1

--> En codimension 2 la méthode n’est pas totalement concluante.
Les relations en codimension 2 forment une sous-famille de la famille de dimension 5 engendrée par :

w_0"2 + 742%w_1"2 - 2236*w_1*w_2 + 1394*w_2"2 + 786*w_1*w_3 - 932*w_2*w_3 + 165*w_3"2
+ 3902*w_0*w_4 - 1760*w_1*w_4 + 2002*xw_2*w_4 - 1672*w_3%w_4 - 249*w_4"2 = 0

--> En codimension 3 la méthode n’est pas totalement concluante.
Les relations en codimension 3 forment une sous-famille de dimension au moins 20 de la famille de dimension 25
engendrée par :

w_0"3 - 950746*w_2"3 + 1155939*w_2"2*w_3 - 315669*w_2*w_372 - 23764*w_3"3 + 3061440*w_2"2*w_4

- 2532336%w_2%w_3*w_4 + 371997*w_3"2%w_4 + 2273130*w_1%w_4"2 - 6706545%w_2%w_4"2
+ 2586555*%w_3*w_4"2 + 1206791%w_4"3 = 0
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--> Les relations en codimension 4 forment une famille de dimension 65 engendrée par :

w_0"4 - 108*w_3"4 + 212*w_373*w_4 + 102*w_2*w_3*w_4"2 - 390*w_3"2%w_4"2
+ 2362xw_2*%w_4"3 - 782%w_3*w_4"3 - 2676*xw_4"4 = 0

--> Les relations en codimension maximale 5 sont engendrées par :

9xw_0"5 - b*w_0"4*xw_1 =
9%w_0"5 - b*w_0"4x*xw_2
9%xw_0"5 - 5*w_0"4*w_3
9xw_0"5 - 5*w_0"4*w_4 =
14*w_0"5 - B*w_0"3*w_1"2 = 0

67*xw_0"5 - 20*%w_0"3*w_1*w_2 = 0

O O O O

--> Les relations en codimension > 5 sont trivialement engendrées par les mondmes de degrés 6

L’anneau tautologique R_s(Psi_Z* C ; Z) est de dimension comprise entre 32 et 42

Fin du programme en 234.287231922 secondes.

Cet exemple est le premier que nous rencontrons pour lequel les systémes en petite codimension
ne sont pas tous de rang maximaux comme cela avait pu étre le cas lorsque p et d étaient plus petits.
Ceci se traduit par le fait que pour certaines codimensions ¢ et d — g, les relations n’ont pu étre
réduites qu’a une sous-famille d’un espace vectoriel dont le programme calcule une base. C’est en
fait assez naturel :

1. si p augmente, on dispose de plus de générateurs et on peut donc s’attendre & voir apparaitre
plus de relations;

2. si d augmente, on peut aussi s’attendre a ce que les conditions imposées en codimension
maximale aient de moins en moins d’effets sur les codimensions proches de %; laissant &
nouveau la place a des familles plus riches de relations.

Concrétement 'augmentation de d et p a pour effet d’augmenter la taille des systémes linéaires

(E‘(I d p)) dont les noyaux contiennent les relations. Ces noyaux n’ont & priori aucune raison d’étre
d

triviaux méme lorsque ¢ < 5.

On peut aussi avancer l'interprétation suivante : plus la dimension de la variété d est grande,
plus les cycles algébriques ont de « liberté ». Il est donc (& priori) possible d’avoir pour certaines
valeurs de d et p plusieurs structures différentes pour 'anneau tautologique Ry (1z.C;Z). Clest le
cas pour (d,p) = (5,11) mais ceci était exclu pour chacun des cas étudiés dans la sous-section 3.3.6
pour lesquels le théoréme 3.3.59 s’applique.

Le cas (d,p) = (6,7)
Voici le résultat complet fourni par Sage lorsque (d,p) = (6,7) :

Exemple 3.4.3 :

Etude de la Q-algébre R_s(Psi_Z* C ; Z) lorsque d = 6 et p = 7
# #
B g g g g g g g

L’anneau tautologique R_s(Psi_Z* C ; Z) est engendré par [w_0, w_1, w_2]
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Liste de polyndmes générée avec succés.
Calcul des polyndmes caractéristiques en cours...

Les degrés des mondmes en codimension maximale sont calculables.
Calcul des degrés en cours...

deg w_0"6 = 720 chi(eta)

deg w_0"5*w_1 = 1200 chi(eta)

deg w_0"5*w_2 = 1200 chi(eta)

deg w_0"4xw_1"2 = 1776 chi(eta)

deg w_0"4*w_1xw_2 = 2112 chi(eta)
deg w_0"4*w_2"2 = 1776 chi(eta)

deg w_0"3%w_1"3 = 2232 chi(eta)

deg w_0"3%w_1"2*w_2 = 3408 chi(eta)
deg w_0"3*w_1*w_2"2 = 3240 chi(eta)
deg w_0"3*w_2"3 = 2232 chi(eta)

deg w_0"2%w_1~4 = 2208 chi(eta)

deg w_0"2*w_1"3*w_2 = 4896 chi(eta)
deg w_0"2%w_1"2*w_2"2 = 5624 chi(eta)
deg w_0"2#w_1xw_2"3 = 4056 chi(eta)
deg w_0"2%w_2"4 = 2208 chi(eta)

deg w_O*w_1"5 = 1440 chi(eta)

deg w_O*w_1"4xw_2 = 5808 chi(eta)

deg w_0*w_1"3%w_2"2 = 9336 chi(eta)
deg w_0*w_1"2%w_2"3 = 7152 chi(eta)
deg w_O*w_1*w_2"4 = 3792 chi(eta)
deg w_0*w_2"5 = 1440 chi(eta)

deg w_1"6 = 720 chi(eta)

deg w_1"5*w_2 = 4080 chi(eta)

deg w_1"4*w_2"2 = 14832 chi(eta)
deg w_1"3*w_2"3 = 12312 chi(eta)
deg w_1"2%w_2"4 = 6432 chi(eta)
deg w_1*w_2"5 = 2400 chi(eta)

deg w_2"6 = 720 chi(eta)

Etude des relations en codimension quelconque en cours...
--> I1 n’existe pas de relation non triviale en codimension 1
--> I1 n’existe pas de relation non triviale en codimension 2

--> En codimension 3 la méthode n’est pas totalement concluante.
Les relations en codimension 3 forment une sous-famille de la famille de dimension 3 engendrée par :

w_0"3 + 33*w_0*w_1"2 - 17xw_1"3 + 432*%w_0"2*w_2 - 666*w_O*w_1*w_2 + 246*w_1"2*%w_2 + 300*w_0*w_2"2
- 228*w_1xw_2"2 + 105*%w_2"3 =

3*w_072*%w_1 + 24*w_O0*w_1"2 - 13*w_1"3 + 342*w_0"2*xw_2 - 528*w_O*w_1*w_2 + 195%w_1"2*%w_2 + 237*w_0*w_2"2
- 180*w_1*w_2"2 + 83*%w_2"3 =
39%xw_0*w_1"2 - 20*%w_1"3 + B07*w_0"2*%w_2 - 780*w_O*w_1*w_2 + 288*w_1"2%w_2 + 351*w_0*w_2"2 - 267*w_1*w_2"2
+ 123%w_2"3

--> Les relations en codimension 4 forment une famille de dimension 9 engendrée par :

w_0"4 + 3*w_O*w_1"2*%w_2 + 33*w_0"2*xw_272 + 12*w_O*w_1*w_2"2 - 30*w_1"2%w_2"2 - 193*w_O0*w_2"3
+ 157*w_1%w_2"3 - 66*w_2"4
w_0"3*%w_1 + 3*w_O*w_1"2%w_2 - w_1"3*%w_2 + 9%w_0"2*%w_2"2 + 15xw_O*w_1%w_2"2 - 18*%w_1"2%w_2"2
- 108*w_0*w_2"3 + 87*w_1%w_2"3 - 37*w_2"4
w_0"3*%w_2 + w_1"3*%w_2 + 3*w_0"2*%w_2"2 + 36%w_0*w_1*%w_2"2 - 30%w_1"2%w_2"2 - 137*w_0*w_2"3
+ 111xw_1%w_2"3 - 47*w_2"4
3xw_072%w_1"2 + 30*%w_O*w_1"2%w_2 - 15%w_1"3*%w_2 + 12%w_0"2%w_2"2 + 33*w_0*w_1*w_2"2
- 42%w_1"2*%w_272 - 340%w_0*w_2"3 + 269*w_1xw_2"3 - 117*w_2"4
3xw_0"2%w_1%w_2 + w_1"3*%w_2 + 30*w_0"2*%w_2"2 + 18*w_O0*w_1%w_2"2 - 33%w_1"2*%w_2"2 - 199*w_0*w_2"3
+ 162xw_1*w_2"3 - 68*w_2"4
3xw_0*w_1"2%w_2 + 39%w_0"2%w_2"2 - 24*w_1"2%w_2"2 - 173*%w_O0*w_2"3 + 141*w_1%w_2"3 - 59*w_2"4 = 0
w_0*w_1"3 + 30*w_O*w_1"2%w_2 - 15%w_1"3*%w_2 + 27*w_O*w_1*w_2"2 - 30*w_1"2*%w_2"2 - 261%w_0*w_2"3
+ 206xw_1%w_2"3 - 90*w_2"4
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w_1"4 + 78*w_O*w_1"2%w_2 - 40*w_1"3%w_2 - 24%w_1"2*%w_2"2 - 442%w_O0x*w_2"3 + 342*xw_1*%w_2"3 - 153*w_2"4 = 0
2%w_173*%w_2 + 78*w_Oxw_1*%w_2"2 - 60*w_1"2*%w_2"2 - 260*w_O0*w_2"3 + 210*w_1*w_2"3 - 89*w_2"4 = 0

--> Les relations en codimension 5 forment une famille de dimension 18 engendrée par :

w_0"5 + B*w_O*w_2"4 - b*w_1%w_2"4 + 5*xw_2"5 = 0

w_0"4*w_1 + 6*%w_1"3*%w_2"2 - 62*w_1"2*%w_2"3 + 2*w_0*w_2"4 + 256*w_1xw_2"4 - 409*w_2"5 = 0

w_0"4*w_2 + 2*%w_1"3*%w_2"2 - 20*%w_1"2*%w_2"3 + 4*w_0*xw_2"4 + 78*w_1%w_2"4 - 126*w_2"5 = 0

w_0"3*%w_1"2 + 6*w_1"3*%w_2"2 - 65*w_1"2*%w_2"3 + 2*w_0*w_2"4 + 271*w_1*w_2"4 - 434*w_2"5 = 0

w_0"3*w_1*w_2 + w_1"3%w_2"2 + w_O*w_1*w_2"3 - 12*%w_1"2*%w_2"3 + 3*w_0*w_2"4 + 43*w_1%w_2"4 - 69*%w_2"5 = 0
w_0"3*%w_27"2 + Txw_1"3%w_2"2 + w_O*w_1*w_2"3 - 69*%w_1"2%w_2"3 + 7*w_0*w_2"4 + 274*w_1%w_2"4 - 439*%w_2"5 = 0
w_0"2%w_1"3 + 4*xw_1"3*w_2"2 + w_O*w_1*w_2"3 - 48*w_1"2*w_2"3 + 11*w_O0*w_2"4 + 193*w_1*w_2"4 - 317*w_2"5 = 0
3xw_072%w_1"2%w_2 + 3*xw_1"3%w_2"2 + w_O*w_1*w_2"3 - 50*w_1"2*%w_2"3 + 3*w_0*w_2"4 + 209*w_1%w_2"4 - 336*xw_2"5
3xw_0"2%w_1%w_272 + 9*w_1"3%w_2"2 - 93*%w_1"2%w_2"3 + 6*w_0*w_2"4 + 372*w_1*w_2"4 - 592*w_2"5 = 0
Axw_173%w_272 + w_0"2%w_2"3 + w_O*w_1*%w_2"3 - 39%w_1"2%w_2"3 + 4xw_0*w_2"4 + 152*xw_1*w_2"4 - 243*w_2"5 = 0
w_O*w_1"4 + 8*w_1"3*w_2"2 - 92*w_1"2*%w_2"3 + 10*w_O*w_2"4 + 384*w_1xw_2"4 - 623*w_2"5 = 0

w_0*w_1"3*%w_2 + 7*w_1"3*%w_272 + w_O*xw_1*w_2"3 - 86*w_1"2%xw_2"3 + 364*w_1*w_2"4 - 583*w_2"5 = 0
3xw_0*w_1"2%w_272 + 2%xw_1"3%w_2"2 + w_O*w_1*w_2"3 - 31*w_1"2*%w_2"3 + O9*w_0*w_2"4 + 110*w_1%w_2"4 - 177*w_2"5
8xw_1"3%w_2"2 + 2*w_O*w_1xw_2"3 - 80*w_1"2%w_2"3 + 325*w_1*w_2"4 - 516*w_2"5 = 0

8xw_1"3%w_2"2 - 78*w_1"2%w_2"3 + 13*%w_0*xw_2"4 + 312*w_1xw_2"4 - 506*w_2"5 = 0

w_1"5 - 10*%w_1"2%w_2"3 + 50*w_1*w_2"4 - 83*w_2"5 = 0

w_1"4*w_2 + 8*%w_1"3*%w_2"2 - 114%w_1"2*%w_2"3 + 501*w_1*w_2"4 - 809%w_2"5 = 0

10*w_1"3*w_2"2 - 100*w_1"2*w_2"3 + 4165*w_1xw_2"4 - 661*w_2"5 = 0

--> Les relations en codimension maximale 6 sont engendrées par :

5xw_0"6 - 3*w_0"5*w_1 = 0
5%w_0"6 - 3*%w_0"5*%w_2 = 0
2

37*w_0"6 - 15%w_0"4*w_1"2 = 0
44xw_0"6 - 15*w_0"4*w_1*xw_2 = 0
37*w_0"6 - 15%w_0"4*w_2"2 = 0
31*%w_0"6 - 10*w_0"3*w_1"3 = 0
T1xw_0"6 - 15%w_0"3*w_1"2*w_2 = 0
9*xw_0"6 - 2*%w_0"3*w_1*w_2"2 = 0
31*%w_0"6 - 10%w_0"3*w_2"3 = 0
46*%w_0"6 - 15%w_0"2*w_1"4 =0
34xw_0"6 - 5*w_0"2*%w_1"3*%w_2 = 0
703*%w_0"6 - 90*w_0"2*w_1"2*%w_2"2 = 0
169*w_0"6 - 30*w_0"2*w_1%w_2"3 = 0
46*%w_0"6 - 15%w_0"2*%w_2"4 = 0
2*%w_0"6 - w_O*w_1"5 =0

121%w_0"6 - 15*%w_O*xw_1"4%w_2 = 0
389%w_0"6 - 30*w_O*w_1"3*%w_2"2 = 0
149%w_0"6 - 15%w_O*w_1"2%w_2"3 = 0

79%w_0"6 - 15*w_O*w_1%w_2"4 = 0
2*w_0"6 - w_0*w_2"5 = 0

w_0"6 - w_.1"6 = 0

17*w_0"6 - 3*w_1"5*xw_2 = 0
103*w_0"6 - b*w_1"4*wy_2"2 = 0
171%w_0"6 - 10*w_1"3*%w_2"3 =
134*xw_0"6 - 1b*w_1"2*%w_2"4 =
10*w_0"6 - 3*w_1%w_2"5 = 0
w_0"6 - w_.2°6 =0

0
0

--> Les relations en codimension > 6 sont trivialement engendrées par les mondmes de degrés 7

L’anneau tautologique R_s(Psi_Z* C ; Z) est de dimension comprise entre 27 et 30

Fin du programme en 13.5689549446 secondes.

Il existe donc & isomorphisme prés au plus 4 structures de Q-espaces vectoriels possibles pour
Ry (¥z+C; Z) lorsque (d,p) = (6, 7). Ces 4 structures sont déterminées par la dimension de la famille
des relations en codimension 3 qui peut étre soit 0,1,2 ou 3.
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Le cas (d,p) = (6,13)

Si (d,p) = (6,13), on obtient de la méme maniére les faits suivants :

(i
(ii
(iv

(v

Ry (z:C; Z) est engendré par wy, wi,ws, ws, w4, Ws.

Il n’existe pas de relation non triviale en codimension 1.

)
)

(iii) Les relations en codimension 2 forment une sous-famille d’une famille de dimension 6.
) Les relations en codimension 3 forment une sous-famille d’une famille de dimension 36.
)

Les relations en codimension 4 forment une sous-famille de dimension au moins 105 d’une

famille de dimension 111.

(vi) Les relations en codimension 5 forment une famille de dimension 246.

(vii) L’anneau tautologique R, (¢z+C; Z) est de dimension comprise entre 64 et 112.

Ces deux derniers exemples achévent d’étudier le cas d < 6.

Quelques compléments

1. Ce programme Sage permet de tester la conjecture 3.3.51. Celle-ci s’est vérifiée sur chacun des
exemples testés.

2. De maniére générale, les calculs pour un automorphisme d’ordre 5 se font rapidement (bien
plus rapidement que pour p > 5). Par ailleurs les systémes linéaires (X7 <) semblent toujours de
rang maximaux méme pour des grandes dimensions d : le théoréme 3.3.59 s’applique pour tous
les cas testés. Par exemple pour d = 50, 'anneau tautologique Ry (1z.C; Z) est de dimension
262 = 676. Pour d = 100, R, (1 z+C; Z) est de dimension 512 = 2601.

3. Lorsque le programme ne limite les relations en une certaine codimension ¢ qu’a un sous-espace
de possibles relations (par exemple pour (d,p) = (6,13) et ¢ = 2,3 ou 4), on peut réutiliser les
méthodes de la sous-section 3.3.3 pour affiner 1’étude.

(a)

On peut notamment utiliser la méthode qui consiste a faire agir par pull-back les 0% + o ~*
sur les relations. Avec celle-ci, on peut par exemple espérer montrer que s’il existe une
droite de relations, alors il existe au moins un plan vectoriel de relations. Pour cela, il
suffirait de constater que I’action pull-back de I'un des o 4+ o ~* sur une relation en fournit

une autre linéairement indépendante.

Dans le méme ordre d’idées, on peut rappeler que toute relation R¥ entre les w; dont on
disposerait pour une certaine codimension k se répercuterait immeédiatement en codimen-
sion supérieure : les relations en codimension k + [ contiennent la composante (k + 1)-
codimensionnelle de I'idéal engendré par la relation RF. Pour illustrer ceci avec le cas
précédent (d,p) = (6,13), une meilleure connaissance des relations en codimension 2 par
exemple permettrait d’exclure certains sous-espaces de relations en codimension 3 ou 4 :
tous ceux qui ne contiendraient pas les composantes 3 et 4-codimensionnelles de 'idéal
engendré par les relations en codimension 2.

La derniére section de ce chapitre pourra étre mise de cété lors d’une premiére lecture. Elle vient
compléter I’étude des relations menée jusqu’a présent en détaillant certains cas particuliers et en
justifiant certains faits remarqués dans les exemples.

3.5 Compléments concernant I’étude des relations entre les w;

3.5.1 Retour sur les relations R, (%% n)

Nous avions constaté sur les exemples 3.3.39, 3.3.40 mais aussi 3.3.41 que les expressions des
relations R,(c%*, 1) et Rgd_q(0'2k,’f]) étaient les mémes. Le premier complément que I'on apporte
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dans cette partie est de justifier cette remarque. Ce sera chose faite dés que nous aurons démontré
la proposition 3.5.2.

Revenons tout d’abord sur la proposition 3.3.36 qui avait introduit les relations Rq(c, H) et
regardons la forme que prend celle-ci lorsque o*H = H.

Corollaire 3.5.1 - On reprends les hypothéses et notations de la proposition 3.53.36 et on suppose
de plus que H est invariant par o, c¢’est-a-dire o*H = H. Alors pour tout entier q € [[0,2d],

13)
EQd q(a) 1 22: d deg <H2i+d7q X Da(H)qui)
deg H4 ) —2ii+d—gq

i= maX(Oq d

1 q—21 d '
— -9 q—2z—ud Hd—u_ N*HY) .
deg H Z Z(zuq—Zz—uz—i—d q>( ) eg( (a+1) )

1=max(0,q—d) u=0
Démonstration. Si a*H = H, alors on a par définition de Dy (H) :
Do(H) = (o + 1)*H — 2H.

En utilisant la formule du bindme de Newton, il vient pour tout entier g € [0, 2d]

[

(WS
—

1 d , .
ZQd—(I _ d H21+d—q . Da o q—21
@ deg H? | (i,q—2i,i+d—q> g ( (H)"™)
i=max(0,q—d)
1 S d 2i+d 2%
= — . o deg (H*1979. (a + )*H — 2H)™ %
deg Hd imaxZ(oﬂ_d) (’L, q—2ii+d— C]) ( (( ) ) )
L5] - .
1 d q—2i Coiu d . i
S ddl Z( Caag) ()R e (e oyt
& i=max(0,q—d) u=0 q
1 l%] q—21 d )
- 9 q—2i—u H —u 1 *Hu )
deng (l,U,QQZu,2+dq)< ) deg( (Oé+ ) )

i=max(0,q—d) u=0

O]

Proposition 3.5.2 - On garde les hypothéses de la proposition 3.3.36 et on suppose de plus que
o*H = H. Les relations Rq(o, H) sont symétriques par rapport a q dans le sens ou

Ry(o, H) = Rag—q(a, H).

De plus, on a ausst la relation

ng_q(a) = X9(a)
sans hypothése supplémentaire sur a autre que o*H = H.

Démonstration. Soit g € [d, 2d]. Il s’agit de montrer que les expressions de Rog—q(cv, H) et Ry(cr, H)
sont les mémes. On s’intéresse donc a la relation Rog—q(cr, H) et plus particuliérement a la somme
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dans cette relation. En utilisant le fait que ¢ € [d, 2d] (et donc que d — ¢ < 0), on a

2d—q
li | d deg (H2i+d—(2d—Q) .D (H)(Qd—q)—2i>
i=max(0,(2d—q)—d) i,(2d — Q) —2i,i+d—(2d —q) o
2d—gq
1751 i | |
= Z <i7 9 —q—2i,i—d+ q) deg (HQZ—d+q . Da(H)2d_q_2Z) .

=0
En effectuant maintenant le changement d’indice j = ¢ —d+ ¢, on obtient la combinaison équivalente
suivante

[ng_qj_d""q d ‘ )
2 (j fd—q.q—2 j) dog (170 D).
j=q—d ’ i -

N~

termes apparaissant dans la somme de Rq(a,H)

Pour conclure, il nous reste a vérifier que les bornes de sommation sont bien celles de la relation
Ry(cv, H). Puisque par hypothése ¢ € [d,2d], la somme sur ¢ apparaissant de la relation R,(c, H)
débute a l'indice max(0,q — d) = ¢ — d et se finit & U'indice [%J Par ailleurs, on a immédiatement

I’égalité
q 2d—qJ
2| = —d+q.
4] (2452 o9

On vient donc de montrer que les sommes apparaissant dans les relations Rq(c, H) et Rog—q(cor, H)
sont les mémes. Par conséquent, on en déduit que
1 l%J d . .
EQd*q(a) _ Z < > deg <H21+d7q . Da(H)qu)
)

Ry(o,H) deg H i—man(0.q—g 1,q—2i,1+d—q

d
D T
\—d) i,(2d —q) —2i,i+d

deg J2itd—(2d—q) Da(H)(Qd—q)—Qi
it=max(0,(2d—q (2d - Q)> ( )

= Y
,R«deq(a’H) ( )

et par suite les relations Ry(a, H) et Rog—q(cv, H) sont les mémes. O
Si a*H = H, il est donc suffisant de calculer les relations Ry (e, H) pour ¢ € [0,d] ou si I'on

préfére g € [d, 2d].

Remarque 3.5.3 :

1. La symétrie ¥279(a) = %9(a) se traduit par une symétrie des coefficients du polynome ca-
ractéristique de a.

2. Si 'on n’a plus l'égalité a*H = H, la proposition précédente n’est plus vraie en général.
Cependant, on peut appliquer le méme raisonnement et ainsi montrer que l'on garde tout de
méme une symétrie au niveau des coefficients dans la somme. Précisément, si on écrit

b
Rola, H): £279(H) = Y 6, deg (H - Do (H)T2 . a*H”d*q) -0
1=a

pour certains scalaires 3; € Q, alors la relation Rag_q(a, H) est simplement donnée par

b
Roi—qla, H):  SU(H) — ) fideg <a*H" - Dy (H)1% . H”d_q) —0.

111



Chapitre 3. Anneaux tautologiques sur les variétés de Prym généralisées associées
aux revétements Galoisiens n-cycliques par une courbe hyperelliptique

Appliquant la proposition 3.5.2 avec a = 0** et H = 7, on obtient finalement le résultat suivant :

Proposition 3.5.4 - Soit C' une courbe complexe projective lisse munie d’un automorphisme o
d’ordre fini. Soit q € [0,d]. On dispose des relations suivantes dans A(Z) :

l%J q—21
d .
R 2k : 4 2kN, d 2 : E _9 q—2i—u, d—u u _ 0.

Ces relations se réécrivent aussi

S

g %3
d .
R 2k . Y4 2kN, d -9 q—2i—u, d—u u _ (.
T T R b i (RN (S D ¥,

Démonstration. La proposition découle du corollaire 3.5.1 appliqué avec a = 02* et H = 1. On a
bien le résultat car (o + 0=%)*n = (1 + o%*)*n puisque 7 est invariant par pull-back par ¢ (puisque
6 l'est). La seconde formulation de ces relations découle de ce que

max(0,q —d) <i < [%J max(0,q —d) <i < l%J
<
O<u<qg—2 0<u<q-—2max(0,q—d).

En particulier, si on se restreint & ¢ € [0, d] (ce que 'on peut faire sans perte de généralité de part
la symétrie des relations obtenues), alors max(0,q — d) = 0 et on a le résultat annoncé. O

Remarque 3.5.5 : Plus |(2d — ¢) — d| = |d — q| est petit, plus la relation R,(c2*,n) est complexe
a calculer. On le constatera clairement avec la proposition 3.5.8.

Donnons une expression encore plus explicite des relations obtenues en utilisant le lemme suivant :

Lemme 3.5.6 - Soit u € [0, q]. Alors

lgj ( d )(_2)q—2i—u _ 2(=1)7tud!(2d — 2u — 1)!

= \bug—2i—ui+d—gq ul(q —u)!(2d — q—u)/(d —u— 1)

Démonstration. Ce calcul de somme a été effectué a ’aide de Maple en se rappelant les formules
suivantes concernant la fonction I' d’Euler :

I(n)T <n + ;) _ 912 /2 (2n)
I'(n+1)=nl

Par exemple, lorsque ¢ = 2a et u = 2b sont pairs, Maple fournit la seconde égalité ci-dessous :

2 ' i » B (_2>q7227u _ Z ' i » B (_2)2a72172b
= \iu,q 2t —u,i+d—q = 1,2b,2a — 20 — 2b,i + d — 2a
B (—1)27 216 4T (d+ DT (d—2b+3)  (=1)77167°4%dIT (d — u + 3)
- T(2b+ 1DI'(2a — 20+ 1)y/a0(2d —2a —2b+1)  wul(q —u)y/7(2d — ¢ — u)!
_ (—D)ru16—badqit =240 aT(2(d — w)) 2(—1)atd!(2d — 2u — 1)!
ul(q —u)l/m(2d — q —u)!T(d—u)  ul(qg—u)!(2d—q—u)(d—u—1)
Les autres distinctions de cas fournissent les mémes formules relativement a g et w. O
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Finalement, si on rassemble les résultats précédents, on aboutit au théoréme suivant :

Théoréme 3.5.7 - Soit C une courbe compleze projective lisse munie d’un automorphisme o d’ordre
premier p > 2. Soit q € [0,d]]. On dispose des relations suivantes dans A(Z) :

0 4 (=1)0udl(2d — 2u — 1)) o
Rq(o,1) : (Eq((’) - (_1)q< q )) “b= 2, ul(q —(u)!)(2d— ((1 —u)l(d - “)— 1)!w5’ R

u=1

ot le coefficient X(o) peut étre calculé explicitement et vérifie en particulier pour q € [0,p — 1],

2d

2(0) = (—1)4 <p_1 +qq - 1>.

Démonstration. La premiére assertion est une synthése entre la proposition 3.5.4 et le lemme 3.5.6.
Il n’y a que le coefficient devant wg dont on n’a pas encore donné une expression littérale simplifiée.
D’aprés la proposition 3.5.4, ce coefficient est égal a

2(—1)110d1(2d —2x 0—1)! 2(—1)4d!(2d — 1)!
0/(q —0)!(2d —q—0)!(d —0—1)! q'(2d — q)!(d — 1)!

Eq(O,Zk) _ 2‘1(02’“) _

Par ailleurs, les lemmes 3.3.33 et 3.3.35 permettent non seulement de montrer que X9(0?%) = ¥9(0)
(ici on utilise I'hypothése p > 2) mais aussi de calculer ce coefficient. En effet, le lemme 3.3.35
montre que Tr(o?) = Tr(o) = _z%dl pour tout i € [1,p — 1] et Tr(c*) = Tr(1z) = 2d si p divise i.
En complément, le lemme 3.3.33 prouve que pour tout (i, k) € [1,p — 1]?

t 1 0 0
] t 2
$4(o') = (o) = o 0
k—1
t t t
ot := —[%dl. En développant ce déterminant par rapport & la derniére colonne, on obtient la formule
de récurrence suivante :
t 1 0 0 t 1 0 0
t 2 t i 2
k (1) (k- 1) (—1)%
¥o) = A 0 1" 0
: k-2 : e k=2
t t - t t t t .- t t
1—k t t—(k—1
G L U )

Comme Y (o) =t = & H?:o (t — i), une récurrence immédiate montre que le résultat est vrai pour
tout 1<k<p—1:
k—1
. 1 2d
Ek ) Ek I _ 9
(%) = S(0) k'Ho< i)
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Puisque par convention X°(c) = 1, ceci est aussi vrai pour k = 0. On a donc le résultat annoncé :

~1)F 2 4 k—1)! 9d g
o ) B )

O]

On en déduit la proposition suivante qui exprime de maniére explicite les relations Rq(a%,n)
obtenues dans le théoréme 3.5.7 pour de petits indices q.

Proposition 3.5.8 - On dispose des relations suivantes dans A(Z) :

1. Sid=0etp=3, Ro(c* 1) = Roa(c®*,n) :
wf)l — wg =0.

2. Sid=1etp=3, Ri(c?,n) = Rog_1(c*,n) :

2d
<—p_1 + 2d> wg - dwgflwk =0.

3. Sid=1etp=3, Ra(c?* 1) = Rog_2(c?,1n) :

d(2d -1 )
<((p+_li)2) —d(2d — 1)) wf +2d(d — 1wy eop = 5d(d — D22 — 0.
4. Sid=2etp=5, Ry(02,1m) = Rog_s(0?,1) :

di2d—3) .,
(d—2)l(2d — a)1 0 “k

~2d(2d+p-1)(d+p—1)
3 (p—1)>
g9 o 1 d g3

(d—3) 0 Yk TG @_g) o “k

+ éd(Qd —1)(2d — 2)) wd —

n — 0.

5. 8id=2etp=5, Ra(o®,1) = Roaa(c®,n) :

<1d(2d+p— D(d+p—1)(2d+3p—3)

6 1) - %d(Zd —1)(2d —2)(2d — 3)) w

d! i3 3 1 d d—4 4

1
* 3[d_a“0 YT @

d@2d-3) 1 di2d—5) 4,
0

1 2
3d—2)12d 51" “* T —3)l@d—61 0 kT

Remarque 3.5.9 : La condition de validité sur d pour ces relations est imposée par 2d > g, c’est-
a-dire d > [%] Celle sur p est imposée par l'inégalité ¢ < p — 1.

Cette proposition nous permet notamment de retrouver les exemples 3.3.39, 3.3.40 et 3.3.41.

3.5.2 Retour sur le degré des monémes de la forme wi “w!

Nous avons déja expliqué dans la sous-section 3.3.4 de quelle maniére on peut se servir des
relations Rq(P(az),n) pour calculer le degré des cycles qui s’expriment comme des monémes de

114



3.5. Compléments concernant 1’étude des relations entre les w;

degré d en les w;. Nous revenons a présent sur ce fait en nous intéressant plus particuliérement aux

relations Rq(a% ,m) et leur utilisation dans le calcul des degrés des cycles wg a Z

Le théoréme 3.5.7 montre que les relations R, (0¥, 1) avec q € [1, d] se présentent sous la forme

. (d\ a4
Ry, n) : Z Au,qawd YWl = <q>w0 1wl

pour certains rationnels A, 44 € Q que 'on peut calculer explicitement. En particulier les relations
Rq(0? 1) forment un systéme triangulaire (ou quasi-triangulaire) entre les wg “wi. On est donc
certain quel que soit le couple (d,p) de pouvoir calculer de proche en proche le degre de chaque

g 9wl en exprimant a chaque étape ¢ le terme wg_qwg en fonction des autres wl “w pour u < g.
On obtient ainsi le résultat suivant en nous appuyant plus directement sur les formules obtenues dans

la proposition 3.5.8. Ce résultat fournit des formules fermées pour deg wg_qwg lorsque g € {0, 1, 2, 3}.

Proposition 3.5.10 - Pour tout entier 1l <k <p—1, on a
1. sid=0etp=3, degwo—d' (n),
2. sid>=1etp=3, degwd lwk = ﬁ(p— 2)(d —1)x(n),

d—2 92 _ 2(11p+2dp?—8dp—3p*+8d—8)d!
117 (),
4(dp—2p—2d+2)(2dp? —5p® —8dp+21p+8d—16)d!
2@ D1 x()-

S
2
QL
\%
o
I

=
\%

Nt
Q.
)

(e}
&

(e)
&

Ed

Il

N
&
SH
\%
w
S

3
\%
“
o
@

o
€

Sy

w
€

W

|

Démonstration. Soit 1 < k <p—1.
1. degwd = d'x(n) : c’est la proposition 3.3.14.
2. La relation Ry (%%, 7) affirme que

2d
<—_1 + 2d> dwg_lwk =0.

Puisque degwd = d'x(n), il vient

d—1 2d d!x(n) 2d
=[——="_ 419 =——(p—2)(d-1)! .
degwy ~wp ( P +2d ] » 1(29 )(d —1)!x(n)

3. La relation Ro(0%*,n) affirme que

d2d+p—1) _ 1
(@_1)2 —d(2d — 1)) wd +2d(d — 1w wy, — Sd(d— Dwi—2w? = 0.
En isolant wi %w? et en utilisant que degwd = d!x(n) et degw ‘wy, = pQle(p— 2)(d—1)!x(n),
il vient
~ 2 d2d +p—1) 2
d—2, 2
- —d(2d—1))d 2d(d — 1 —2)(d—1)!
dege 2t = 22 (B2 —dgea— 1) ainto) + 200 - )2 - 20 - i)
~ 2(11p + 2dp* — 8dp — 3p* + 8d — 8)d!X(n)
(d=1)(p—1)? '

4. La relation R3(c?*,n) affirme que

(_;d@d + p(;)l(;i; p—1) + %d(Qd —1)(2d - 2)) wl —

d\ g9 o 1 db g
@3 kG “k=0

di(2d—3)! .,
(d—2)!(2d — 4)1“0

Wk

+
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En isolant & nouveau wg_?’wg et en utilisant
d_ o d—1 2d |
degwg = d'x(n), degwi "wy = E(p —2)(d—1)!x(n)
_ 2(11p + 2dp? — 8dp — 3p* + 8d — 8)d!
et degwg Qw,% = d—D(p-1)72 x(1),

il vient aprés quelques calculs

deg wi—3w? = w ((—gd@d * p(;_l)l(;ij r=b . %d(Qd —1)(2d - 2)) dix(n)

dl(2d — 3)! 2d | d' 2(11p + 2dp? — 8dp — 3p* + 8d — 8)d!
- 2id—aip—1 P A= LX)+ T d—1(p-1)7? x(n)
~ 4(dp—2p—2d + 2)(2dp? — 5p? — 8dp + 21p + 8d — 16)d!X(

(d=2)(d-1D(p-1)°

O

A partir de ¢ = 4, les relations deviennent trop longues et encore moins éclairantes pour étre
données explicitement et de maniére générale pour d = 1 et p > 2 quelconques.

Remarque 3.5.11 :
1. Pourd > 1 et p = 3, d! # 0, de sorte qu’on a toujours wg # 0.
2. Pourd>=1letp>=3, pz—_dl(p —2)(d —1)! # 0. Ainsi on a toujours wd lw; # 0.

3. D’aprés Maple, la seule solution entiére de I’équation
11p + 2dp® — 8dp — 3p* +8d —8 =0

est (d,p) = (1,0). Par suite, on a toujours wd 2w? # 0.
4. De méme, si p = 5, on a wg_3w§ # 0.

Ces calculs fournissent donc des exemples ol la proposition 3.3.48 s’applique.

Nous avions également observé sur les exemples 3.3.44, 3.3.45 et 3.3.46 une symétrie au niveau
des degrés des cycles wg_qwg dans le cas d’un automorphisme d’ordre p = 5. La proposition suivante
précise ce fait.

Proposition 3.5.12 - Si p = 5, alors pour tout q € [0,d] et tout k € {1,2},

q q

d—q, q q d—
degwy “w; = degwyw, .

Démonstration. Montrons le résultat pour & = 1. L’autre cas se traite de la méme maniére. Si
p =5, alors (0 + 0717l = —(02 + 072) € Aut(Z). Puisque les pull-backs commutent au produit
d’intersection, on a donc

1wl = deg nd_q (o + 0_1)*17q
= deg(a2 + 0_2)* (nd_q (o + J_l)*nq)
= deg(o? + o H)*pd=a. (—1)* ¢

)'n
= deg(0? + 07270

deg wg -

— d—q, 9 _ q, ,d—q
= degw, "wy = degwyws
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car on a aussi (—1)*n = n. Comme

g, ,d—=q _ q,,d—q
degwyw, * = degwyw;

d— L . . . .
car les wy ™ “w! vérifient la méme relation Rq(0'2, n) pour tout 1 <i < p—1, on a bien :
d—q, q _ q, d—q
degw, "w] = degwyw) .
D’otut la proposition. O

qwg en notant que pour p = 5 on peut aller

. ) d— . . . i
encore un peu plus loin : on peut calculer les degrés deg wy qwz avec ¢ impair connaissant les degrés

Terminons cette étude des degrés de la forme deg wgf

de wf)l*iw,i pour i = 0,...,q — 1. Ceci repose sur le résultat suivant :

Proposition 3.5.13 - On suppose dans cette proposition que o est un automorphisme d’ordre 5.
Soient q € [0,d] et k € {1,2}. On note pour tout entier i € [0,d], a; := degwl ‘wi. Alors

q
- q
ag = 39F(—1)k )
q Z (-1) <k> ag
k=0
En particulier, si q est impair

199 q
ag = 5 > 3q—k(—1)k<k)ak.
k=0

Démonstration. On a déja remarqué que les entiers a; ne dépendent pas de l'entier k car les relations
Rq(a%,n) qui permettent de les calculer ne dépendent pas de k. Par ailleurs, grace a l'égalité
1+ 0+...40*=0y, on apumontrer dans le lemme 3.3.4 que

—3wp + w1 + w2 = 0.

Par suite,

q
aq = deg wgqug = degwgfq (Bwp —w1)? = Z 31k (—1)* (Z) degwgqugfkwf
k=0

= é?ﬂ"“(—l)k (Z) ay = g?ﬂ_k(—l)k (Z) ag + (—1)%aq.

Dans ce cas, si ¢ est impair, (—1)¢ = —1 et on a I’égalité annoncée

S —k k(4
ag =5 Z 3175 (—-1) <k>ak.

k=0
O

Exemple 3.5.14 : On suppose que p = 5 et donc d = 2. On sait que ag = degwg = d!x(n), alors
par la proposition précédente :

3 3
a1 =500 = id!X(U)
et on retrouve le résultat de la proposition 3.5.10. Cette méme proposition montre que as =

19414 g1y (1)), Par suite,

d'x(n)

1 3 9d — 14)d! 93d -8
a3—2(27~d!x(77)—27-2dlx(n)+9-() ( )) = —

4(d —1) S 8d-1

et 1a encore on retrouve le résultat annoncé dans la proposition 3.5.10.
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On peut espérer généraliser cette méthode pour p > 2 quelconque & condition de connaitre les
d—ni—...—np, n1 ng

degrés des cycles wy w;,' w; . En effet, pour p quelconque, la relation du lemme 3.3.4

contient plus de termes : il faut donc utiliser la formule du multinéme au moment d’utiliser la relation
p=3
2
w1 = (p—2)wo — Z:lwz
1=

3.5.3 Retour sur les relations R, (0% + 0%, 1)

Les relations R, (%, 1) ne font apparaitre que des monémes de la forme wgqug. C’était suffisant
pour étudier Panneau tautologique R, (1z,C;Z) dans le cas p = 5 car celui-ci est engendré par
seulement wy et wj. En revanche pour p > 7, on a (& priori) au moins trois générateurs; a savoir

Wo, W1, - - -, wp-s. Ceci a motivé 1'étude des relations plus générales de la forme R,(P(c?),n). On
2

revient dans cette sous-section sur le cas P(0?) = 0% + o%.

Proposition 3.5.15 - Soient A une variété abélienne de dimension d sur un corps k (de caracté-
ristique 0) et H € NS(A) la classe d’un diviseur ample. Soient «, 5 € End(A) tels que a*H = H et
B*H = H. Alors pour tout entier q € [0,2d], on a :

4]
1 d . . .
Y 2d=q - — H' - Dqy(H)T 2. * ritd—gq
@+ h) deg H4 i=max% —d) (i,q—2z’,z’+d—q> deg ( +8(H) (@+5) )
1 2] ; | |
G Hl 2 2 J‘”"”( ) (B (o 1Y (54 7 (a4 5 HT).
q—21

i,i+d—q,u,v,w
i=max(0,q—d) utv+w= i + q,u,v,

w,v,w=0
Démonstration. On a grice au lemme 3.2.1

Dyip(H)=(a+B+1)*H — (a+pB)*H - H
=(a+1)*H+B+1)*H+ (a+B)*H—-1"H—o*H - B*H — (a + B)*H — H
= (a+1)*H + (B+1)*H — 4H.

On applique ensuite le résultat de la proposition 3.3.36 avec 'endomorphisme « + 3 € End(A) pour
obtenir :

L5

1 d : . ,
n2d-a = — deg (H' - Doyp(H)" 2 - *Hitda
S dengimme(OQ—d) (i,q—zz',z'+d—q> s ( +p(H) (o +5) )

1 w d 1+w * rru * v * rri+d—q
) PINNCE) < _ )deg(H o+ DFH" - (B+1)*H® - (a + B) H™H71)
degH i=max(0,q—d) utv+w=qg—2i Gy d qu, v, w

u,v,w=0

O

En particulier, on obtient le théoréme suivant qui nous intéresse :

Théoréme 3.5.16 - Soit C' une courbe complexe projective lisse munie d’un automorphisme o
d’ordre premier p > 2. Soient q € [0,2d] et a,b deuz entiers tels que 1 < a,b < p— 1. On dis-
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pose des relations R,(0?* + 0°,n) suivantes dans A(Z) :

; d
»2 (o™ + Uzb)w(c)l = Z 2 (—4)* (30a,p + 1)”'17‘1 <Z it de o w) w6+wwuwgw(zl+c}l) q
i=max(0,q—d) utv+w=g—2 ) q,u,,
u,v, w>0
4] q—2i q—2i—u p
= (_4)q—2z—u—v(35a7b + 1)1+d—q<. ' ) )wg U—v— zwuwbw;-q-(li) q
i=max(0,g—d) u=0 v=0 Z»Z+d—q,u,v,q—2z—u—v

ot 0,3 désigne le symbole de Kronecker et ou le coefficient »24=4(g2 4 52) peut étre calculé
explicitement grice au lemme 3.3.33.

Démonstration. On a immédiatement
(0* +1)"n = (0" + 0~ ) " =i wa
(% +1)*n = (6" + o7 0)*n = wy
4wy sia=b,

(02 + o2)*n = (097 + o=@y = (36,4 + 1)wa_p = { .
Wq—p sinom.

En appliquant ensuite le résultat de la proposition 3.5.15 avec o = 6%, 8 = 020 et H = 1, il vient

LZ]

, d
»2=4 (g2 4 o) = Z Z (—4)“ (364, + 1) w6+ww“wgw;+% 1
. . i,t+d—q,u,v,w
i=max(0,q—d) u+?f1q=>%*21
L%J —2iq—2i—u d
_ q 2i—u—v 35 +1 i+d—q wq U—v— zwuwuwz+d a
. Z=: g (8% +1) iyi+d—quv,q—2i—u—v) ° b¥a=b

O]

On en déduit immédiatement le corollaire suivant qui explicite les relations obtenues pour g =
2d —1et q=2d—2.

Corollaire 3.5.17 - On reprend les hypothéses du théoréme précédent.
1. Pourq=2d—1etl<a,b<p—1 on ala relation

4d(p — 2
]Sp_ 7 )wg — dwf)l*lwa — dwgflwb = 0.

2. Pourq=2d—2 eta+b=p, on a la relation

<2d(4d +3p—2—1p?)
(p— 1)

1
= 5d(d— 1w d22—7d(d Dwd™2w? — d(d — 1)wi%wawp, = 0.

— 8d(d — 1)> wd + 4d(d — 1)wi w, + 4d(d — Dwi ™ wy, — dwd wa

3. Pourq=2d—2eta+b+#p, ona

Ad(2 -1
(Cl((d*f)z) — 8d(d — 1)) w + 4d(d — 1wl w, + 4d(d — 1wl wp — g(36as + Dwl ™ wars
p [e—
1
= 5d(d = 1) d=2 Q—fd(d Dwd 2w — d(d — 1)wd2wawp = 0.
Démonstration.
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Casq=2d—1: Sidz1l,p>2,1<a,b<p—1etqg=2d—1, ona d’aprés les lemmes 3.3.33 et

3.3.35
4d
Yo% + 0%) = Tr(6®* + 0?) = Tr(6??) 4 Tr(0?) = 2 Tr(0) = ———7
p J—

On obtient ainsi la relation

4d
- wff—d(wg wa+wgl —4w6l)=0,
p
c’est-a-dire

4d(p — 2
ng - dwg_lwa — dwg_lwb = 0.
p—1
Casqg=2d—2: Sid=21l,p>2,1<a,b<p—1etqg=2d—1,on adapréslelemme 3.3.33

¥2(g2 1 o) = % <(Tr(02a + o))~ Tr((0% + 02b)2)>

% ((Tr(JQa) + TI"(O'%))Q o Tr(a4a) _9 Tr(UQ(a-i-b)) o Tr(a4b)>

= 2Tr(0)* — Tr(0) — Tr(c***?)
% si pla+b, ie.sia+b=p,
% sinon.
Par conséquent, sil<a<p—-1,1<b=p—a<p—1letp>2 alorsa#betdonc3ip,+1=1.

On obtient de cette maniére la relation

<2d(4d +3p—2-p?
(p—1)?

1
—Qd(d—l)d22—7d(d Dwd=2wZ — d(d — 1)wd2wawp, = 0.

— 8d(d — 1)) wd +4d(d — Dwi w, + 4d(d — 1w wp — dwd wa s

De méme, sil <a,b<p—1,a+b+#petp>2 on obtient la relation

4d(2d +p—1
<((+f)2) — 8d(d — 1)> wh + dd(d = 1wf ™ wa + dd(d — wg ™ wy — d(30a, + 1)wf ' wap
-

1
= 5d(d = 1) d=2,2 _ fd(d Dwd 2w — d(d — 1)wi2wawp = 0.
O

On donne a présent des exemples de relations Rq(azi + 0%,n) pour p = 3,5,7 toujours dans
I’idée d’en déduire des informations quant aux degrés des différents monoémes qui interviennent.

Exemple 3.5.18 (p = 3, (a,b) = (1,2)) : Dans ce premier exemple, on suppose que p = 3 et
(a,b) = (1,2). 11 vient :
1. Pour ¢ =2d — 1,
2w0 — wg lwl — wf)l 1w2 =0,
ce qui est trivialement vrai car lorsque p = 3, Wo = wg Ly = wg Ly. Ces cycles sont tous de
degré d!x(n).
2. Pour ¢ = 2d — 2,
f(6d77)w3+(4d75)w3_1w1+4(d71)wg_1w27%(dfl)wg”wff%(dfl)wg_ Wi —(d—1)wi2wiwy = 0,

ce qui est & nouveau parfaitement cohérent avec les égalités wg zwk = wg Qwiwj = wg.
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Exemple 3.5.19 (p = 5, (a,b) = (1,2)) : Sip =5, (a,b) = (1,2) et d = 2 (nécessairement), on
obtient :

1. Pour ¢ =2d — 1,

Swg — wgflwl — wgflwg =0.

2. Pour ¢ = 2d — 2,
3 1 1
75(5d76)wg+(4d—5)wg_lw1+4(d—1)wg_lw2—§(dfl)wg_%uff5(d—l)wg_2w§—(dfl)wg_%ulwg =0.
On vérifie alors qu’en remplagant wo par we = 3wy — wy (relation donnée dans le lemme 3.3.4),
ces deux formules obtenues sont compatibles avec les degrés des wgquz obtenus dans les parties
précédentes. En fait, si p = 5, la relation we = 3wy — w1 permet de calculer directement les degrés

de tous les wél*“*bw%wg en exprimant wsy en fonction de wy,wi, puis en utilisant la bilinéarité du

produit d’intersection et enfin en utilisant les expressions connues des degrés de wg_qw‘f.
Si (d,p) = (4,5), on montre de cette maniére que
(1) degwiwiws = degwdwi(Bwp — w1) = 3degwiws — degwiw? = 3 x 36x(n) — 44x(n) = 64x(n),

(ii) degwowiwi = 96x(n),

deg wowiws = 96x(n),
(v) degwiws = 204x(n),
(vi) degwiws = 84x(n).

(iv

)
)
(iii) degwiws = 84x(n),
)
)
)

Revenons enfin sur le cas (d,p) = (3,7); premier cas a étudier ou les relations de la forme
Rq(am + 0% ) apportent de réelles informations supplémentaires que nous ne pouvions pas avoir
avec les relations R, (c%*, 7). Nous retrouvons de cette maniére les valeurs numériques données dans
I’'exemple 3.3.47.

Exemple 3.5.20 ((d,p) = (3,7), (a,b) = (1,2)) : Sous ces hypothéses, on a a # b et a +b # p. On
obtient ainsi les relations suivantes :

1. Pour g =2d—1=5":
IOwS’ - Sw(%wl - 3w§(,u2 =0.

2. Pour ¢ = 2d — 2 = 4, on obtient une relation encore inconnue jusque-la :
—44w8 + 21w8w1 + 24w§w2 — 3wow% — 3w0w§ — bwowiws = 0.

3. Pour ¢ = 2d — 3 = 3, en utilisant le fait que
(a) Tr(o? + 01) =2Tr(0) = -2,
(b) Tr((e? + 01)?) = Tr(o* + 20° + %) =4 Tr(0) = —4,
(c) Tr((o? + 0%)3) = Tr(o% + 30% + 3010 + 012) = -8,

on peut calculer le coefficient $3(0? + 04) & I'aide du lemme 3.3.33 et ainsi obtenir la relation
56w8 — 24w§w1 — 48w8w2 + 6w0w% + 12w0w§ + 18wowiws — w% — 3(,0%(4)2 — 3w1w§ — w% = 0.
4. Pour ¢ = 2d — 4 = 2, on utilise aussi que
Tr((0? + o)) = Tr(o® + 400 + 6012 + 40 + 01%) = 12Tr(0) +4Tr(17) = 12+ 4 x 6 = 12.
On obtient alors la relation

9w — 48wiw + 2lwow? + 24wewiwg — 3w? — bwwy — 3wiws = 0.
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5. Pour ¢ = 2d — 5 = 1, on vérifie de méme que Tr((o? + 04)%) = 38. Tous calculs menés, on
trouve la relation
—4wg’ + 12w0w% — 3wi)’ — 3w%w2 =0.

2k

En se rappelant des relations de la forme R,(c°",n) avec k = 1,2 (cf. Exemple 3.3.41), on a obtenu

pour (d,p) = (3,7) les relations suivantes

BwS’ — Swgwk =0
—14w8 + 12w§wk — 3w0w,2 =0
19w§ — 18wiwy, + bwowi — wi =0
10wg’ — 3w3w1 — 3w8wz =0
—44w8 + 21w§w1 + 24w8w2 — 3w0w% — 3w0w% — bwowiws =0
56wi — 24wdw — 48wiws + bwow? + 12wow3 + 18wowiws — Wi — 3wiws — 3wiws — w3 =0
QwS’ — 48w§w1 + 21w0w% + 24wowiwe — Swi)’ — 6&)%&.)2 — 3w1w§ =0
L—4w8 + 12wow? — 3w} — 3wws = 0.

On retrouve alors les degrés annoncés dans 'exemple 3.3.47 en résolvant simplement ce systéme
linéaire, en se rappelant que degwi = 6x(n).

Signalons enfin que 'on peut déduire le degré de wlwg connaissant celui de w%wg, et réciproque-
ment. Voyons de quelle maniére. Supposons connu que deg w3ws = 34x(n) et considérons 1’'endomor-
phisme 1 := 02 : ¢’est un automorphisme de C' d’ordre 7 encore et il définit la méme sous-variété
Z < J que o car ®7(c?) = ®7(c). Notons, par analogie avec les cycles w; correspondant & I’auto-
morphisme o, les cycles k; := (u' + p=*)*n pour i € [1,6] et kKo = n. On a alors

1. deg roki = 12x(n),

2. deg i = 6x(n),

3. deg r2K2 = 34x(n) (de par notre hypothése),
4. et aussi la relation —bkg+ k1 + k2 + k3 = 0 d’aprés le lemme 3.3.4 appliqué a I'automorphisme
1.
Par suite, on a les égalités suivantes :

degwlwg = deg(o + 0_1)*17 . (02 + (7_2)*772

= deg(u® + p %) n - (w+p"H*n
= deg ki3 = deg ki (5ko — K1 — K2)

2

= Hdeg /ﬁofﬁ% — deg H:{’ — deg /ﬁ%/@g
=5 x 12x(n) — 6x(n) — 34x(n) = 20x(n)

comme prévu.

Remarque 3.5.21 :

1. On observe sur ce dernier exemple qu’il n’y a plus de symétrie évidente pour les relations
Rq(0? + 0%, n) comme on pouvait en avoir pour les relations Ry (0%, 1) = Rag—q(0?',n) (cf.
Proposition 3.5.2). En effet, les relations Rq(a% + 0%, n) font intervenir du w;, du wj mais
aussi un terme supplémentaire : w;_; = w;j_;. Ceci se traduit par une dissymétrie au niveau

des degrés des cycles wrwI=F et wd=Fwk,

1] i J
2. Les calculs nécessaires pour étudier le cas d’un automorphisme d’ordre 7 commencent déja a
étre assez lourds, méme en petite dimension. Ceci renforce l'intérét d’utiliser un logiciel de

calcul tel que Sage.
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3.5.4 Retour sur 'obtention des structures de Q-algébre de R, (v 7.C;Z)

Terminons ce chapitre en donnant des preuves des résultats annoncés dans la sous-section 3.3.6.
Le but de cette partie est de venir illustrer par 'exemple les résultats de la partie 3.3.5 mais aussi,
et surtout, de comparer ces résultats avec ceux des sous-sections 3.3.2 et 3.3.3.

Le cas (d,p) = (2,5)

Proposition (3.3.62) - Soit f : C — C' ~ C/{c) un revétement Galoisien cyclique de degré 5 avec
C hyperelliptique. On suppose que dim Z = 2. Alors

RU(wZ*C; Z) = Q[w07 wl]/(wgv W(Q) - w%v 3‘“‘)[% — 2wowi, w%)
Démonstration. D’apreés la proposition 3.3.5, Ry (12+C; Z) est engendré en tant que Q-algébre pour

le produit d’intersection par wg et wi. Reste a déterminer explicitement les relations entre ces deux
classes.

Relations en codimension > 2 Les relations en codimension > 2 = d := dim Z sont trivialement

engendrées par

whwt =0 pour k+1>2=d.

Relations en codimension maximale d = 2 Les relations en codimension 2 sont entiérement
déterminées par les degrés de wg, wow et wi. Ces degrés ont été calculés grace aux relation Rq(az, n)
(cf. Exemple 3.3.44). Les relations obtenues sont :

SwS — 2wowy =0 et w% —wi=0.

Relations en codimension 1 On cherche des relations sous la forme :
awy + bwy = 0, (a,b) € Q%

En intersectant cette relation avec wy et wy successivement, on obtient le systéme suivant de relations
en codimension maximale :

awd + bwowy = 0

awowi + bw? = 0.

Connaissant les degrés de tous les cycles de ce systéme depuis I'exemple 3.3.44, on obtient au coef-
ficient pres x(n) # 0 le systéme équivalent suivant :

2a+3b=0
! :
s {3a+2b=0

dont la seule solution est la solution triviale (0,0). Il ne peut donc pas exister de relation non triviale
en codimension 1 entre wg et wy.

Conclusion de la preuve Finalement, les relations obtenues sont engendrées par :
Wi =0, W1 =0, wwi=0, wi=0 wi—w?=0, 3w} 2w =0
et méme plus simplement par
wg =0, wg—w% =0, 3w8—2w0w1 =0, w=0.

D’ou la proposition. O
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On retrouve en particulier les résultats annoncés concernant la dimension des Q-sous-espaces RY.
Cette proposition 3.3.62 montre que

1. R% ~ Vectg([Z]) est de dimension 1,
2. R' ~ Vectg(wp,w:) est de dimension 2,
3. R? ~ Vectg(w3, wowi,w?)/ Vectg(wi — wi, 3wd — 2wowi) est de dimension 3 — 2 = 1.

On notera au passage qu’il n’existe pas de relation non triviale entre wp, w; en codimension < % =1
et que dimg Ry (¢z+C; Z) = 4.

Le prochain cas a étudier est obtenu dans le cas hyperelliptique pour (d,p) = (4,5).

Le cas (d,p) = (4,5)

Proposition (3.3.63) - Soit f : C — C' ~ C/{c) un revétement Galoisien cyclique de degré 5 avec
C' hyperelliptique. On suppose que dim Z = 4. Alors l'anneau tautologique Ry (v z+C;Z) est de la
forme Qwo,w1]/1s5 o Iy 5 est Uidéal des relations entre wy et wy. Cet idéal est engendré par les
relations suivantes

1. wy "Wl =0 pourie0,5],
2. 3wi —2wiwy =0, 1lwf —6wiw? =0, 3wj—2wowi =0, wi—wi=

3. Wi — 3wow? + 3wi =0, 3wiwi — Jwow? + 8w} = 0.

Démonstration. D’aprés la proposition 3.3.5, R, (¢z+C; Z) est encore engendré par wy et wy. Etu-
dions les relations entre ces deux générateurs.

Relations en codimension > 4 = d :=dim Z Celles-ci sont clairement engendrées par les wgfiwi
pour i € [0, 5].

Relations en codimension maximale d = 4 Les relations en codimension maximale sont en-
gendrées par les relations Rq(0'2,’l7) qui nous ont permis de déterminer les degrés des wéqui} (cf.
Exemple 3.3.45). On obtient ainsi les relations

36wi — 24wiwy = 0, 4dwi — 24wiw? =0, 36wy — 24wows =0, 24wy — 24w] = 0.

En divisant par le pged des coefficients on trouve le second type de relations données par la propo-
sition.

Relations en codimension 1 Vérifions qu’il n’existe pas de relation non triviale en codimension
1. Si une telle relation existait, elle serait de la forme

awp + bwy = 0, avec (a,b) € Q2.

En intersectant successivement avec wg’, w%wl, wow% et wi)’, on en déduit grace a 'exemple 3.3.45 le
systéme de relations en codimension maximale suivant :

awé + bwgwl =0 24a + 36b =0
w1 + bwjwi = 44b =
awgw; + wowé 0 — (2%4 5)) : 36a + 0
awjwy + bwowy = 0 ’ 44a + 36b = 0
awow$ + bwi = 0. 36a + 24b =0

dont on vérifie que la seule solution est une fois encore (a,b) = (0,0).
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Relations en codimension 2 De méme, on montre qu'’il n’existe pas de relation (non triviale)
en codimension 2. En effet, une telle relation serait de la forme

awd + bwowy + cw? =0, avec (a, b, c) € Q3.

En intersectant cette fois-ci avec w%, wow1 et w?, on obtient les systémes linéaires suivants

awg + bwiwr + cwdw? =0 24a + 360 + 44c = 0
awdwy + bwiw? + cwow? =0 = (2%475)) : 36a + 44b 4+ 36c =0
awiw? + bwow? + cwi =0 44a + 36b + 24c = 0

dont le seul triplet solution est (a,b,c) = (0,0,0).

Relations en codimension 3 FEn codimension d—1 = 3, il y a moins de contraintes. Une relation
en codimension 3 est de la forme

aws + bwiwi + cwowi + dwi =0, avec (a,b,c,d) € Q.

Pour augmenter la codimension jusqu’a son maximum, on peut ici intersecter par wg ou par w;
uniquement. On n’obtient donc que deux relations (alors qu'on a 4 parameétres) :

awg + bwiwy + cwdw? + dwow? = 0 — (. 24a + 360 + 44c + 36d = 0
awdwr + bwdw? + cwpw? + dwt = 0 (457" 36a + 44b + 36¢ + 24d = 0,

ce qui était prévu puisque les systémes (2?4 5)) et (2%4 5)) sont transposés 1'un de lautre grace au
lemme 3.3.57. Les solutions de ce systéme linéaire (2%4 5)) forment un Q-sous-espace vectoriel de

dimension 2 de Q*. Par suite, on obtient une famille de possibles relations paramétrées par deux
paramétres (u,v) € Q2 :

uwy + 3vwjws — (3u + 9v)wowi + (3u + 8v)wi = 0.

Notez que les systémes (2%475)), (2%475)) et (2?4’5)) sont de rang maximal ce qui nous a permis de
montrer qu’il n’existe pas de relations en codimension < 2 = % et, grace au théoréme 3.3.58, on en
déduit aussi que chaque membre de cette famille de possibles relations est effectivement une relation
dans R3. Une base des relations en codimension 3 est donc obtenue en considérant deux couples
(u1,v1) et (ug,ve) formant une base de Q2. Par exemple, en choisissant les couples (1,0) et (0,1),
on obtient comme base de relation en codimension 3 la suivante :

Wi — Bwow? + 3w =0 et 3wiw — Ywow? + 8w = 0.
D’ou la proposition. ]

Cette proposition 3.3.63 montre en particulier que

1. dimg R® =1
R° ~ Vectg([2]),

2. dimg R' =2
R' ~ Vectg(wo, w1),

3. dimg R? =3 :
R? ~ Vect@(wg,LquM%)»
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4. dimg R3=2:
R3 ~ Vectg(w§, wawr, wow?, wi)/ Vectg (wi — 3wow? + 3w?, 3wiwr — Jwow? + 8wd),
5. dimgR' =1
R* ~ Vectg(wg, wiwr, wiw?, wow?, wi)/ Vectg(3wg —2wiwr, 11wg —6wiw?, 3ws —2wow?, wg—wi).

On retrouve donc la symétrie R? ~ R%~9 et les dimensions annoncées de ces espaces. En particulier,
on obtient dimg R, (1z+C; Z) = 9. Par ailleurs, remarquez qu’en utilisant 1’action des o + o~ ! sur
la relation obtenue par la transformée de Fourier (cf. Section 3.3.3), nous avions déja obtenu dans
Pexemple 3.3.27 une famille de dimension 2 de relations en codimension 3 engendrée par :

8wg’ — ngwl + BwOw% =0 et 3wgw1 - 9w0w% + 8‘*’? = 0.

Avec les notations de la démonstration précédente, cette premiére relation est obtenue en considé-
rant le coupe (u,v) = (8,—3) et la seconde pour (u,v) = (0,1). Par conséquent, sur cet exemple,
I'argument de dimension utilisé pour I’étude des relations en codimension 3 n’était pas nécessaire
puisqu’on avait déja vérifié que tout élément dans la famille de « possibles » relations était bel et
bien déja réellement une relation.

Le cas (d,p) = (3,7)

Proposition (3.3.65) - Soit f : C — C' ~ C/{o) un revétement Galoisien cyclique de degré T avec
C' hyperelliptique. On suppose que dim Z = 3. Alors l'anneau tautologique Ry (1z+C;Z) est de la
forme Qlwo, w1, w2]/I37 0w I3 7 est l'idéal des relations entre wy, wi et wy. Cet idéal est engendré par
les relations suivantes
1. wg_i_jwll'w% =0, pouri,je[0,4] aveci+ j <4,
2. wi—wi =0, wi—wi=0, B5wd—3wiwi =0, 5wi—3wiws=0,
2w8 — wow% =0, 2w8 — wow% =0,
19w3 — 6wowiwe = 0, 1798 — 3wiws =0, 10wi — 3wiw3 = 0,
3. w% + 2wows — 2wiwe + w% =0, 2wowi + 20wowe — 16wiws + 7w§ =0,

26wows + w% — 20wiwo + 9w§ = 0.

Démonstration. D’aprés la proposition 3.3.5, Ry (1z.C; Z) est encore engendré par wg, w; et we. On
étudie de la méme maniére qu’avant les relations entre ces trois générateurs.

Relations en codimension > 3 = d := dimZ Celles-ci sont engendrées par les mondmes
4—i—j 4 4 .o . , . . .
wy ' ’wiw) pour i, des entiers naturels vérifiant i + j € [0, 4].

Relations en codimension maximale d = 3 Comme toujours, les relations en codimension

maximale sont entiérement déterminées par les degrés des wé_zwiw% ; degrés que 'on connait grace

a 'exemple 3.3.47.

Relations en codimension 1 En codimension 1, il n’y a pas de relation non triviale. En effet
une telle relation générale est de la forme

awo + bwi + cwe = 0, avec (a,b,c) € Q3.

126



3.5. Compléments concernant 1’étude des relations entre les w;

En intersectant successivement par wg, wow1, Wows2, w%, wiws et w%, on obtient les six conditions
nécessaires sur a, b, ¢ suivantes :

awg + bwiwy + cwdws =0 (60 + 106 + 10c = 0
awgwl + bwow% + cwowiwe =0 10a + 12b+ 19¢ =0
awgwg + bwowiws + Cwow% =0 1 10a + 196+ 12¢ =0
1 2 3 2, _ — (2(377)) : _
awowi + bwy + cwjws =0 12a + 6b + 34c =0
awowiwsg + bw%wg + cwlw% =0 19a + 34b + 20c =0
kao.zoo.:% + bwiws + cwd =0 12a + 20b + 6¢c = 0

et ce dernier systéme (2%377)) n’admet pour seule solution que le triplet (a,b,c) = (0,0,0).

Relations en codimension 2 En codimension 2, on obtient une famille & 3 paramétres de relations
possibles. En effet, une relation en codimension 2 est de la forme

awg + bwowy + cwowsa + dw% + ewjws + fw% =0, avec (a,b,c,d,e, f) € Q.
En intersectant successivement par wp, wi,ws, on obtient le systéme suivant :

awg’ + bw%wl + cwgwg + dwow% + ewpwiws + fwow% =0
aw%wl + bwow% + cwowiwsg + dwif + 6(.«)%(02 + fwlwg =0

awdws + bwowiws + cwow? + dwiws + ewrwi + fwi =0

6a + 10b + 10c + 12d + 19e + 12f =0
—  (Zho): 10a + 12b + 19¢ + 6d + 34e + 20f = 0
10a 4 19b + 12¢ 4 34d + 20e + 6f = 0.

La résolution de ce systéme (2%3 7)) = t(E%?) 7)) (considérant a,b,c comme des paramétres) nous
donne la famille de possibles relations suivantes :

13uw? +26vwow; +26wwows +(—u—10v+w)w? — (6u+8v+20w)w we + (4u+v+9w)ws = 0, ot (u,v,w) € Q3.

Puisque (2%3’7)
de cette famille est une relation dans R?. Une base des relations en codimension 2 est donc obtenue
en considérant par exemple les triplets (1—13, 0, —1—13), (0, 1—13, %) et (0,0,1). On obtient alors comme
base de relation en codimension 2 les trois relations annoncées :

) est de rang maximal 3, le théoréme 3.3.58 nous assure a nouveau que chaque élément

w(z) + 2wows — 2wiwe + w% =0, 2wowi + 20wowe — 16wiwsy + 7w% =0
et 26wows + wi — 20wiws + 9ws = 0.
D’otut la proposition. O

Si (d,p) = (3,7), alors grace a la proposition 3.3.65 on vérifie & nouveau les résultats obtenus
concernant les dimensions des sous-espaces R? puisque

1. dimg R® =1,

2. dimg R' = 3,

3. dimg R? =6 — 3 = 3,
4. dimg R®*=10-9 = 1.
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En particulier, dimg Ry (¢2+C; Z) = 8. Notez 1a encore que dans l'exemple 3.3.28 nous avions déja
obtenu par une méthode directe trois relations linéairement indépendantes en codimension 2 :

19(4}(2) — 10wow1 — 10wgws + 2&)% + 2wiws + 2(4)% =0,
74w(2) — B8wow1 — 42wpws + 15w% + 16wiws + 6w§ —0,

14w% — 18wow; + dwowa + 6w% — dwqwa + 5w% =0.

En termes de triplets (u,v,w), ces trois relations correspondent respectivement a la base de Q3

suivante :
19 5 5 74 29 21 14 9 2
137 13’ 13)° 137 13’ 13 137 13713/ °

Les différentes approches pour étudier les relations sont donc une fois encore cohérentes les unes par
rapport aux autres.

Les exemples traités jusqu’a présent réglent complétement I’étude de la structure de I'anneau
Ry (z+C; Z) lorsque d < 4. Et comme on l'a signalé, pour ces petites dimensions il nous a été
possible d’étudier directement certaines relations en manipulant convenablement la transformée de
Fourier et l'action des End(Z) sur Ry (1z.C; Z). Sur ces exemples, il se trouve qu’on obtenait avec
ces méthodes « directes » toutes les relations. L’exemple suivant se passe en dimension supérieure.
Dans ce cas, chaque résultat théorique développé dans la sous-section 3.3.5 sera incontournable ; ce
qui permettra de se rendre compte de l'efficacité de la méthode.

Le cas (d,p) = (6,5)

Proposition (3.3.64) - Soit f : C — C' ~ C/{o) un revétement Galoisien cyclique de degré 5 avec
C' hyperelliptique. On suppose que dim Z = 6. Alors l’anneau tautologique Ry (v z+C;Z) est de la
forme Q[wo,w1]/1s5 ot I 5 est l'idéal des relations entre wy et wy. Cet idéal est engendré par les
relations suivantes
1. wg_iwi =0 pourice[0,7],
2. 3wl —2ww1 =0, 2wS —wiw? =0, w§ —4wiw =0, w§—uwl =0,
3wl — 2wow? =0, 2w —wiwi =0,
3. wh — Bwowt + 6w) =0, wiwr — bwow] + Tw) =0, 2wiw? — 1lwow] + 12wF = 0,
2wiw} — bwow} + Hw? = 0,

4. wi — 6wiw? + 12wew? — 8wt =0, dwdwr — 18wiw? + 32wow? — 21wf = 0.

Démonstration. D’apreés la proposition 3.3.5, Ry (¢2+C; Z) est engendré par wy et w;. Etudions les
relations entre ces deux générateurs.

Relations en codimension > 6 = d := dimZ Celles-ci sont engendrées par les wg_iw’i pour
i€ [0,7].

Relations en codimension maximale d = 6 Les relations en codimension maximale sont ob-
tenues comme d’habitude & partir des calculs menés dans 'exemple 3.3.46. On obtient ainsi les
relations

1080w — 720wiwy = 0,  1440w§ — 720wiw? = 0, 1620ws — 720wiw? = 0, 720wl — 720ws = 0,
1080w§ — 720wow; = 0,  1440w§ — T20wiw] = 0.

Puis en divisant par le pged des coefficients on trouve le second type de relations données par la
proposition.
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Relations en codimension 1 Vérifions qu’il n’existe pas de relation non triviale en codimension
1. Si une telle relation existait, elle serait de la forme

awg + bwy = 0, avec (a,b) € Q2.

En intersectant cette relation générale avec wg’ , wéwl,wg’w%, w%w%, wowil et wi’, on en déduit grace a

I’exemple 3.3.46 le systéme de relations suivant :

awl + bwiw = 0 (7204 + 10806 = 0
awgy1 + bwiwi =0 1080a + 1440b = 0
J 1440a + 16206 = 0
awd; + bwiwi = 0 1620a + 1440b = 0
awivt + bwow? = 0 1440a + 1080b = 0

awpy; + bw§ = 0 1080a + 720b = 0
\ \

4.2 3.3 —
awyyi + bwywi =0

dont on vérifie que (a,b) = (0,0) est la seule solution.

Relations en codimension 2 De méme, on montre qu'’il n’existe pas de relation (non triviale)
en codimension 2. En effet, une telle relation serait de la forme

awd + bwowy + cw? =0, avec (a,b,c) € Q.

En intersectant cette fois-ci avec wé‘, wg’wl, w%w%, wowi)’ et w%, on obtient le systéme linéaire suivant

(aw§ + bwiw; + cwiw? = 0 ((720a + 1080b + 1440c = 0
awiwy + bwiw? + cwiw? = 0 1080a + 1440b 4+ 1620c = 0

{ awigw? + bwdw? + cwdwi =0 = (2%6’5)) : 4 1440a + 16200 + 1440c = 0
awiw? + bwiwt + cwow = 0 1620a + 14400 + 1080c = 0

awdw] + bwow] + cwl = 0  1440a + 10800 + 720c = 0

dont le seul triplet solution est (a, b, c) = (0,0, 0).

Relations en codimension 3 En codimension 3 < g = %, il n’y a toujours pas de relation. En
effet, une relation en codimension 3 est de la forme
awg + bwgwl + cwow? + dw? =0, avec (a,b,c,d) e Q.

Pour augmenter la codimension jusqu’a son maximum, on peut ici intersecter par wg, w%wh wow%

ou par w} uniquement. On n’obtient donc que quatre relations. Comme avant, on a
aw§ + bwyw + cwiw? + dwiw? =0 720a + 1080b + 1440¢ + 1620d = 0
awdwy + bwiw? + cwiw? + dwdwt = 0 1080a + 1440b + 1620c + 1440d = 0

— (2?6 5))
awjw? + bwgw? + cwdwi + dwow? = 0 ’ 1440a + 1620b + 1440c + 1080d = 0
awpw} + bwiw! + cwow? + dwl = 0 1620a + 14400 + 1080c + 720d = 0,

systéme qui 14 encore n’admet pour seule solution que le quadruplet (0,0, 0,0).
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Relations en codimension 4 = d — 2 Une relation en codimension 4 est de la forme
awg + bwiwy + cwdw? + dwow? + ew] = 0, avec (a,b,c,d,e) € Q°.

Grace au lemme 3.3.57, on sait immédiatement que le systéme linéaire (2?6 5)) est obtenu en trans-

posant (2%675)) ;

720a + 1080b + 1440¢ + 1620d + 1440e = 0
(Zlss): 4 1080a + 1440b + 1620 + 1440d + 1080e = 0
1440a + 1620b + 1440¢ + 1080d + 720e = 0.

La résolution de ce systéme (2?6 5)) = t(E%(). 5)) (considérant a, b comme des parameétres) nous donne
la famille de possibles relations suivante :
duwg + dvwiwy — (24u + 18v)wiw? + (48u + 320)wow? — (32u + 21v)wi = 0, avec (u,v) € Q.

Puisque (E‘(lﬁ 5)) est de rang maximal, le théoréme 3.3.58 prouve que chacune de ces possibles relations
est effectivement une relation de R*. En particulier, une base des relations en codimension 4 est
donnée pour (u,v) = (3,0) et (0,1) par exemple :

wy — 6wiw? 4 12wow? — 8wi =0 et 4wdwr — 18wiw? + 32wew? — 21w] = 0.

Relations en codimension 5 = d —1 Une relation en codimension 5 est de la forme
awy + bwgw + cwiw? + dwdw? + ewowi + fwd =0, avec (a,b,c,d,e, f) € Q°.

Grace au lemme 3.3.57, on sait que le systéme linéaire (2?6’5)) est obtenu en transposant (2%675)) :

S RY 720a + 1080b + 1440c + 1620d + 1440e + 1080f = 0
(6:5) 1080a + 1440b + 1620c¢ + 1440d + 1080e + 720f = 0

La résolution de ce systéme (E? )) = t(Z%G 5)) nous fournit la famille de possibles relations suivante :

2uw) + 2vwawr + 2wwiw? + 2xwiw? — (10u + 120 + 1w + 62)wow; + (12u + 14v + 12w + 52)wi = 0,

avec (u,v,w,r) € Q* et puisque (2?6 5)) est de rang maximal, le théoréme 3.3.58 prouve a nouveau
que chacune de ces possibles relations est effectivement une relation de R°. En particulier, une
base des relations en codimension 5 est obtenue par exemple en prenant (u,v,w,z) = (%,0,0,0),
(0,3,0,0), (0,0,1,0) et (0,0,0,1) :

5 — 5cuocuil + 6w} =0, wéwl — Gw()cuil + 7w} =0,

2w0w1 llwowl + 12w1 =0, 2w0w1 6w0w1 + 5w1 =0.
D’out la proposition. O
Dans ce cas 1a, 'anneau tautologique R, (1z.+C; Z) est de dimension
dimg Ry (¢2+:C;Z) =14+2+3+4+3+2+1=16.

On voit bien sur cet exemple 'intérét de la méthode :

1. En codimension 5, on vérifie que la relation obtenue & l'aide de la transformée de Fourier
correspond au quadruplet (120, —%, 135, —45). Toutefois rien ne garanti qu’on aurait pu
trouver 3 autres relations linéairement indépendantes de celle-ci en faisant agir des polyndmes
en ¢ sur cette relation.

2. Aucune des relations en codimension 4 n’aurait été trouvée en utilisant juste la transformée de
Fourier et 'action de End(Z) sur I'algébre engendrée par les w; puisque déja aucune relation
non triviale n’était connue en codimension 2.
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CHAPITRE 4

Sous-variétés spéciales des variétés de Prym généralisées associées aux
revétements Galoisiens n-cycliques

4.1 Introduction

Dans ce dernier chapitre, on précise le lien entre certains systémes linéaires complets sans point de
base sur des courbes quotients et les anneaux tautologiques sur les variétés de Prym généralisées. Pour
cela, on considére dans tout ce qui suit un revétement Galoisien n-cyclique étale f : C' — C' ~ C/{o)
de degré n > 2 entre courbes complexes projectives lisses de genre respectif g = g(C) et ¢ = g(C’) =
1. On rappelle (cf. Chapitres 1 et 2) que I'on dispose d’un morphisme Ny : J = J(C) — J' = J(C")
(le morphisme d’Albanese induit par f), mais aussi d’un morphisme f := f*:.J’ — J, ainsi que de
deux sous-variétés abéliennes complémentaires dans .J ; & savoir la sous-variété Y := Im(f) isogéne
a J' et la variété de Prym généralisée Z déterminée par le revétement.

On rappelle aussi que
Z =Ker(Ny)? =Ker(l+ o+ ...+ 6" 1’ =Im(1 — 0);

cette derniére égalité pouvant se justifier par un argument de dimension en notant que Z est le
complémentaire de Y = Ker(o—1)". Par ailleurs, de par la formule de Hurwitz, on a 2g—2 = n(2g'—2)
de sorte que

dmZ=g-¢ =n(gd -1)+1—¢ =n-1)(¢ —1).

Puisque f est cyclique étale de degré n > 2, l'isogénie j := f : J' — Y est de degré n et
son noyau est isomorphe a Z/nZ. Par dualité, il vient que le noyau de Ny admet n composantes
connexes disjointes notées Z = Zy = Ker(Ny)? et Z1,..., Z,—1 (cf. [BLO4, Proposition 12.6.1] pour
le cas n = 2) :

Ker(Ny) ~ Z x Z/nlZ.

Ces composantes Z; sont des translatées les unes des autres.

Dans tout ce chapitre, on se donne un systéme linéaire complet g sur C’ de degré d et de
dimension projective r tel que
(i) 0 <d < 2¢,
(ii) le g}, contient un diviseur réduit (ou de maniére équivalente grace au théoréme de Bertini
dont on dispose en caractéristique 0, le g/, n’a pas de point de base de multiplicité > 2).
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Avant de poursuivre, faisons quelques remarques sur cette hypothése (i) et tirons-en tout de suite
quelques conséquences :

1. D’apres le théoréeme de Clifford [ACGHS85, p107-108] I'hypothése 0 < d < 2¢’ implique que
2r < d sauf dans deux cas :

(a) le g} est le systéme canonique 939112 sur ',
(b) C” est hyperelliptique et le g7} est un multiple de I'unique g3 de C’.

2. Dans la suite, on sera effectivement amené & faire I’hypothése 2r < d. Celle-ci implique que
d < 2¢'. En effet, supposons par I'absurde que d > 2¢’. Alors tout diviseur de degré d sur C’
est non-spécial. Dans ce cas, le théoréme de Riemann-Roch fournit I’égalité r = d — ¢’. Par
conséquent, l'inégalité 2r < d se traduit par 2d — 2¢’ < d, c’est-a-dire d < 2¢’; ce qui est en
contradiction avec l'inégalité d > 2¢g’.

3. L’hypothése 0 < d < 2¢’ implique en particulier que ¢’ > 1 et donc on a grace a la formule de
Hurwitz

g+1l=2+n(gd—1)=24g".
Par conséquent, on a aussi 0 <d <2¢' < g+ 1,puis0<d<g.

Notons ensuite f(@ : C(@ — '@ le morphisme induit par f sur les puissances symétriques
des courbes C' et C’. On fixe aussi un diviseur D’ € g/, et on choisit un diviseur D sur C' tel que
D' = f4(D). On note

Y :i=¢p o@D g et Q= Qpr O
les applications habituelles des puissances symétriques des courbes dans leur jacobienne, définies par

o(F):= Lc(E—D)ePic®(C) et  @(F):=Lc(E' — D) e Pic’(C)

oil E (resp. E') est un point de C@ (resp. C'@) vu comme un diviseur effectif de degré d sur C
(resp. C"). On a donc le diagramme commutatif suivant :

o _% . g

ol COp—— [
s

On considére maintenant le systéme g}, comme partie de '@ (isomorphe a P"). On pose
S = (FDY~ (g et V= ¢(S) c Ker(Ny) c J.
Autrement dit, S est 'ensemble des diviseurs effectifs £/ de degré d sur C' tels que fF € g);. Posons

également V; :=V nZ; € Z; et S; := (pfl(VZ-). Puisqu’a translation prés, les sous-variétés V; sont
des sous-variétés de Z = Zj, ces variétés V; sont appelées sous-variétés spéciales de Z.

Remarque 4.1.1 :
1. Un choix différent de diviseur D ne fait que translater la variété V' (et donc aussi les V;).

2. Les variétés V; et S; n’ont & priori pas de raison d’étre connexes.
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Notez que I'hypothése (ii) sert a s’assurer que les sous-variétés S et V' sont réduites. En effet,
puisque f est étale (c’est-a-dire o est sans point fixe sur C) I'hypothése (ii) entraine que le g} n’est
pas contenu dans le lieu de ramification de f (@) . ce qui entraine que S est une sous-variété réduite de
C@ et que les composantes de S sont de dimension r. Par ailleurs, répétons aussi |[Bea82, Remarque
1]). Si E est un diviseur de S, alors ¢~ !(p(E)) s’identifie a4 I'espace projectif |E|. En particulier,
¢ : S; — V; est un isomorphisme si ses fibres sont de dimension 0; c’est-a-dire si h’(E) = 1 pour tout
E € S;. Autrement dit, si S’ est une composante irréductible de S, le morphisme ¢ : S" — p(S") = V
est birationnel si et seulement si ses fibres sont génériquement de dimension 0 si et seulement si ¢(S”)
est une composante irréductible de dimension r de V. Ceci justifie que dans la suite on se restreint &
I’étude des classes de cycles déterminées par les composantes de V' de dimension » modulo équivalence
cohomologique (Section 4.2) et modulo équivalence algébrique (Section 4.3). Pour plus de clarté, on
notera par [V] I'union de ces composantes de dimension  de V' ainsi que la classe de cycle associée
(attention a ne pas confondre cette notation pour V' avec celle des précédents chapitres désignant
simplement le cycle déterminé par la sous-variété V « en totalité »). De méme, on se restreint a
I’étude des composantes de dimension r des V;. Celles-ci seront également notées [V;], de sorte que

[V]=[Vo] +[Vi] + ...+ [Va1l]

Remarque 4.1.2 : En adaptant Uargument de |Bea82, Remarque 2| au cas d’un automorphisme
d’ordre n = 2 quelconque, on montre que les composantes de V' sont de dimension entre r et r—n+1.

4.2 Classes de cohomologie de [V] et des [V;] dans H29~9~")(Z)

Pour une variété complexe X, on notera simplement dans tout ce qui suit H(X) = H(X,Z)
la cohomologie entiére de X. L’objectif de cette partie est d’étudier les classes de cohomologie
des composantes de dimension r de V et des V; dans H2(9_9l_”)(Z). Rappelons également que la
cohomologie d’une variété abélienne X est sans torsion. Par suite, toute relation dans H' (X, Q) entre
classes de cycles a coefficients entiers est déja valable dans H'(X,Z). Enfin, dans toute cette partie,
on notera encore 6 et € les classes de cohomologie des diviseurs Theta sur .J et J’ respectivement.
De méme, on notera n := 150 € H2(Z).

4.2.1 Classe de [V] dans H2979'~")(Z)

La proposition suivante vient généraliser [Bea82, Proposition 2].

Proposition 4.2.1 - La classe du cycle [V] = [Vo] + [Vi] + ... + [Vi_1] dans H29=9'-7)(Z) est

o 779—9’—7"
cAg([V]) =nd-9—r+1__L
vy (g—9g =)
ce qui se réécrit encore sous la forme
, (n=1)(¢'=1)—r
Clz([V]) _ nd—g —r+1 n

(n=1)(g 1) =r)t"

La démonstration de ce résultat repose sur celle donnée par Beauville dans le cas particulier des
variétés de Prym.

Démonstration. On rappelle (cf. Preuve du théoréme 2.6.1 — Step 4 ou encore [BL04, Proposition
12.3.4]) que ces cycles sont reliés par la formule
7 2
e(Z2)%0 = e(n)N]’fG/ +5n.
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Considérons encore kK € H2(Cl(d)) la classe de I'image de C'@~1 dans C'@ par le plongement :

Aty e+ a2l + P

ot P’ est un point rationnel quelconque fixé sur C’. Rappelons que cet élément est caractérisé par
la propriété suivante : pour tout k = 0 et tout diviseur effectif E’ de degré k, ¥ est la classe de
I'image de C'(d=F) par le plongement

i+t e+ + EL

On pourra se référer a [Mac62| ou [ACGHS85, Chapitre VIII| pour plus de détails a ce sujet. En
particulier, en prenant E' = D' = f(@(D) (cf. Section 4.1 pour l'introduction des diviseurs D et
D'), on a pour tout k = 0

9’ k—d+g

~ ~k
Pkl =

En effet, il s’agit essentiellement des formules de Poincaré dont on dispose au niveau des classes de
cohomologie (cf. [BL04, Formule 11.2.1 p322]). Si on note  I’élément analogue de H2(C(%), on a de
meéme

gk—d+g 6k7d+n(g/fl)+1

k:_ ==
P T e —dr gl (h—d+nlg -1+ D

Remarquez aussi que la caractérisation de K et k rappelée précédemment implique que pour tout
k=0
FDrgk ko

puisque f est de degré n et tous les points de C' sont algébriquement équivalents entre eux.

Passons a présent au ceeur de la preuve. D’apreés la formule de Macdonald [Mac62] ou [ACGHS5,
Lemma VIIL.3.2 p342|, la classe de cohomologie du g); dans C'? est la composante de degré 2d — 2r
de (1 + R)&r—9'e?*0" .

., d—r—g\., 5"
Aew(gh) = ), < N >/<3 B

a+B=d-r

* a,.x

En appliquant f(®* et en utilisant que N fop=gof (@) of fld*ge — page on en déduit que la

classe de S dans H24=27(C(4)) est

K

r d—?’—g, a agp*N*glﬁ
cow(S) = f(d)*clc,/(d) (9q) = Z ( o >n K T{
a+pB=d-r ’

Ensuite, pour obtenir la classe [V] de V' dans H2(g_gl_r)(J ), on applique @, et on utilise en méme
temps la formule de projection ainsi que les égalités rappelées précédemment :

d—r 9\ o aNj9” d—r—g\ , @9 NpoP
-3, (e (e

a+pB=d—r a+fB=d—r

Puis en remplacant e(Z)%6 par @N ]’f ¢ + %n, et en développant avec la formule du binéme de
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Newton, il vient successivement :

. d—r—g ne (LLENTO 4 gyt NGO
(VD)= )] a o(Z)2a—d+g) (a—d+g) il

a+p=d—r
Z azdjrg (d—r _ )(a —d+g> no (7)) N;fg//\Jrﬁ prpe—d+e=A
athmd—r A A e(Z)2e—d+tg) Bl (a—d+g)!
_ ggfﬁ d—r—g\[(g—r—-p nd—r—=B-A N}‘H”\W qp;ng—r—ﬁ—k
B d—r—8 A e(Z)2g=r=F=% Bl (g—r—p)!
—rg-—r—p d—r— g/ nd—r—B8-2X N}‘Q/AJFﬁ w}ngfrfﬁf)\
d—r—p)e(Z)2g—r=B=2  BIN  (9—r—3—N)!

_ d—r— g"\ =g NFOAP g pu
d—r—0)e(Z)** BN ul

‘A
o (e T
—r— 2p I\ |
S T e(2) BIAL !

ou la somme est prise sur les triplets d’entiers naturels 5, A, u tels que 8+ A+ p =g —r.

Identifions (par translation) chaque V; a une sous-variété de Z = Zy. Comme ¢z 01z = e(Z), on

& n—1 n—1
e(2)7 Y dz([Vi]) = e(2)« Y, cz([Vi]) = ¥zutzeclz([V]) = $zacls ([V])
=0 i=0

de sorte que
D1 elz([Vi]) = e(Z) > Yzucl 1 (V).
i
Il reste & calculer cette derniére expression. Pour des raisons de degré, I’homomorphisme

VzeNF HE(T) = B2 (2)
est nul pour tout k # 2¢’ tandis que pour k = 2¢’ (ie. en degré maximal), on a
bzeNjely (o) = Pz (Z ch(ZZ-)> = n-deg(e(Z) - Idy) =n-e(Z2)2979) = n . e(2)2—Dld' 1)

ou ¢l j(0') est la classe d’un point quelconque o’ € J'. Autrement dit, on a montré que

" N*ﬁ— 0 pour k # ¢,
2 g n-e(2)2979) = p.e(2)2-DE' D pour k = ¢

Il s’ensuit & nouveau grace a la formule de projection que

A8 %
—2rd— -r- n NO Yz
2.l ([V) = e gg ( )<z>¢ (w 4l
i 1
~ord—g Z —r— nt ¢Z*N}‘9/A+5f
—r—3/)e(Z) BIN! !

o dg Z —r— nd=—9-r  n. 6(2)2(9—9’) ANl
—r— 6(2)2(9‘9"’”) Bllg =B (g—g —1)!
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car ici seuls les termes de la somme avec X\ + 3 = ¢’ sont non nuls, auxquels cas y = g—r—3—\ =
g — g’ — r. Plus simplement, il vient

g 779 g A (A= =4\ (g
cz([Vi]) = nd=9—+1 ( > < .
Or Z (Cfi o %’) (%/) = 1. En effet, ce coefficient est celui de t4~" dans le développement du produit
(1+ t)d =914 t)9 = (1+t)4". Don
L ng—9'=r
dz([V]) =D clz([Vi]) = n 9 ——
(V1) = X etz e
ce qui prouve la proposition. ]

Exemple 4.2.2 (Le cas n = 2) : Si n = 2, 1) est le double d’une polarisation principale £ sur Z. La
variété (Z,€) est une variété de Prym. Dans ce cas,onag—¢ —r=¢g —1—ret

/

'—1—7r g —1—r

, g g —1—r
ClZ([V]) _ 2dfg —r+1 Ui _ od—2r Ui _ od—2r f

(¢ —1—r)! (¢ —1—r)-29-1-r (¢ —1-=r)"

Ainsi, on retrouve bien le résultat de Beauville [Bea82, Proposition 2].

4.2.2 Classe des [V;] dans H29=9'-7)(Z)

On veut a présent étudier la classe [V;] des composantes de dimension 7 des sous-variétés spéciales
p— /_ 7 .
V; dans H2(9—9 ’”)(Z ). Pour cela, on commence par caractériser les composantes Z; en termes de
faisceaux inversibles sur C.

Lemme 4.2.3 - Soit L € J tel que N¢(L) = O¢ (ie. L € Ker(Ny) = Z;). Alors
LoMRQc*MY

pour un certain M € Pic(C) de degré k € [0,n — 1].

Démonstration. La démonstration est identique a celle de [Mum71, Lemma 1] donnée dans le cas
particulier ot n = 2 (ou encore celle de [LO16, Lemma 3.1] lorsque n = 7). La seule différence est que
les fibrés M peuvent étre choisis de degré k € [0, — 1] puisqu’on travaille avec un automorphisme
d’ordre n quelconque. Précisément, quitte a remplacer M par M® f* N’ pour un certain N’ € Pic(C")
on peut toujours a se ramener & un faisceau de degré k € [0,n — 1]. En effet,

M®c* MY ~ (M f*N') @ " (M® f*N')"
car o* f*N' ~ f* N’ puisque foo = f. O
On déduit de ce lemme la proposition suivante :
Proposition 4.2.4 - Quitte a réindexer les Z; pour i€ [0,n — 1], on a
Zi={M®oc*M"eJ| degM=imodn} ={MRoc*M"eJ| degM =i}

et toujours Z = Zy = Ker(Nf)O. En particulier, st M ® oc* MY € Z;, alors pour tout entier j on a
M®@aI* MY € Zij mod n -
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Démonstration. 11 s’agit essentiellement de montrer que pour tout i € [0,n — 1] la sous-variété
M®c* MY e J| degM =i}  Ker(Ny)

est connexe. Soit k € N tel que i + kn > g. Considérons un point M ® c* MY de J ou deg M = i.
Comme on vient de le remarquer, il existe un faisceau inversible N € Pic(C) de degré i + kn > g tel
que

MRo*MY ~ NQo*NV.
En effet, il suffit pour cela de considérer le fibré N := M ® f*L(kP') ot P’ est un point rationnel
sur C’ fixé quelconque. Or par le théoréme de Riemann-Roch,

Par suite, il existe un diviseur effectif £ sur C' de degré i + kn tel que Lo (E) ~ N. Autrement dit,
le point N ® o* NV (et donc aussi M ® 6*MY) appartient a 'image de la variété CU+HE?) par le
morphisme

Fe Ok o Lo(F)Qo*Lo(F)Y.

Cette variété image est donc exactement la variété {M®o* MY € J | deg M = i} qui nous intéresse
ici. Comme C+F") est connexe, {M ® 0* MY € J | deg M = i} l'est aussi.

L’ensemble des sous-variétés connexes {M ® c*M" € J | degM = i} pour i € [0,n — 1] doit
donc coincider avec I'ensemble des composantes connexes de Ker(Ny); a savoir {Zo, Z1,..., Zn—1}.
Comme tous les Z; sont non vides, les {M®c* M"Y € J | deg M = i} correspondent nécessairement
a des composantes Z; distinctes. Ceci fournit la premiére partie du résultat quitte a réindexer les
Z;. La seconde en découle immédiatement puisque

] 7j—1 7—1
M@U]*Mv ~ ® (O_k*M®U(l€+1)*Mv) ~ ® (Ek’@O-*E]\{;/)
k=0 k=0

avec Ly, := o¥* M € Pic(C) qui est de degré i = deg M puisque o € Aut(C). Autrement dit,
M® Uj*Mv € Zij mod n»
ce qui est exactement le résultat annoncé. O

Pour compléter cette proposition, portons un point de vue sensiblement différent sur les compo-
santes Z;. On a déja signalé que Ker(Ny) ~ Z x Z/nZ. Considérons alors une composante connexe
Zy de Ker(Ny) correspondant a un générateur o de Z/nZ. D’aprés le lemme 4.2.3 précédent, les
éléments de Z, sont de la forme M ® oc* M"Y pour certains fibrés M € Pic(C) de degré constant
(modulo n) k, € [0,n — 1]. Notez que par connexité ce degré k, ne dépend effectivement que de la
composante Z,. A ce moment, on peut énoncer le fait suivant :

Fait 4.2.5 : Le caractére générateur de la composante Z, se traduit par le fait que k, est premier
an.

Démonstration. Justifions cette assertion.

(=) : On veut obtenir ici que pged(kq,n) = 1 & partir de la seule hypothése que Z,, est générateur.
Pour cela, on commence par fixer un point M ® c*M" € Ker(Ny) avec deg M = 1. Puisque Z, est
générateur, il existe un point N ® c*N'V € Z, tel que

MM =~ (NQo*NY) 2= N'® c* N~
pour un certain i € [1,n]. Comme deg N = ik, le fait que A" ® o*N ™" appartienne a la méme

composante connexe que M ® c* MY signifie que ik, = 1 mod n; auquel cas n et k, sont bien
premiers entre eux.
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(<) : Réciproquement, on suppose que k, et n sont premiers entre eux et il s’agit de voir que Z,, est
bien générateur. En détail, on commence par considérer un point arbitraire M ® o*M" € Ker(Ny)
avec deg M = 3 € [0,n — 1]. Deux cas se présentent :

1. soit B = 0 et on peut écrire 8 = ik, — In avec (i,1) = (n, kq) # (0,kq);

2. soit € [1,n — 1] n’est pas divisible par n. Dans ce cas, puisque k, et n sont premiers entre
eux, il existe une relation de Bézout de la forme § = ik, — In pour certains entiers i,[ avec
1 # 0.
Quelle que soit la situation qui se présente, on peut en utilisant les mémes arguments que d’habitude
supposer que M est de degré 5+In = ik, avec ¢ # 0. Pour un point rationnel P € C' fixé quelconque,
on introduit alors le fibré M’ := M(—ik,P) € Pic’(C). La variété abélienne J étant divisible et i
étant non nul, il existe un point A" € Pic?(C) tel que M’ ~ N, 1l s’ensuit que

M = M (ikoP) ~ N'® Lo (ikaP) ~ (N (ko P))" .
Autrement dit, en posant £ := N (ko P) qui est de degré k,, on a

MRIFMY ~LLRQo* LT~ (LR*L).
Z
€Za

Finalement le point de Ker(/Ny) défini par le fibré M ® 0*M" est bien un multiple d'un point de
Zq. Ceci étant vrai pour n’importe quel point M ®o* MY de Ker(Ny), on a montré que Z, est bien
une composante génératrice de Ker(Ny). O

Remarque 4.2.6 :

1. Remplacer o par une puissance ok

avec pged(k,n) = 1 ne change pas la variété Z = Zj car
l4o4... 40" =1+0"+.. oD,

En revanche, les composantes Z;, Zo, ..., Z,_1 sont permutées.

2. Misapart Z = Zy = Ker(Nf)O, il n’y a pas de maniére canonique de différencier Z1, Zs, ..., Z,_1.

A partir de cette proposition 4.2.4, on peut également décrire 'action de ’automorphisme sur
les points des variétés S;. C’est 'objet du prochain corollaire.

Corollaire 4.2.7 - Soit x1 + ... +xq € S;. Alors

1+ ...+ 231+ 0(xq) € Sit1modn-
Plus généralement, pour tout entier j, on a

1+ .+ 241 + 07 (2a) € Sitj mod n-

Démonstration. Identifions dans cette preuve le diviseur x1 + ... + x4 avec le fibré L := Lo(z1 +
...+ z4). Alors

o(L) =Lco(x1 + ...+ 24— D) € p(S;) = V; < Z; < Ker(Ny).
Par conséquent, la proposition 4.2.4 montre qu’il existe M € Pic(C') de degré i tel que
(L) >~ M@c* M.
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Ainsi, on a

o (Lo(xr+ ... +xg-1 +0(2q)) ~ Lo(z1+ ...+ x4-1 + 0(xq) — D)
~Lo(x1+ ...+ x4-1 + 29— D) ® Lo(o(xq) — z4)
~ M®o* MY Q Lo(o(xq) — x4)
~ MM QLo (o(zq) — o (o(z4)))
=~ M(o(za)) ® 0" (M(o(za)))"-

Puisque deg M (o (x4)) = degM +1 =i+ 1, on en déduit que
o(L(o(xq) —xq)) =@ (Lo(xr + ... +xg—1 +0(24))) € Zit1 mod n-
Notons par ailleurs que L(o(zq) — z4) € S := (f(@)7(g}). En effet,

F D+ .tz +0(xa) = f(@)+. .+ f(@ar) + flo(zq) = f@1)+...+ flza1) + f(zq) € 9]
car par hypothése L = Lo(z1 + ... + x4) € S. Finalement,
L(o(za) = xa) € S 0 o~ (Zig1) = Siy1-

La seconde assertion se déduit facilement de la premiére en utilisant le méme argument que dans la
preuve de la proposition 4.2.4. ]

Ce corollaire 4.2.7 étant démontré, nous pouvons obtenir la proposition suivante en reprenant
quasiment mot pour mot les arguments de |Bea82, Proposition 1.

Proposition 4.2.8 - Si 2r < d, les sous-variétés S; ont méme classe de cohomologie dans C9 . De
méme, les [V;] ont meéme classe dans H29=9'-7)(Z).

Démonstration. Soit s : C* — C(@ le morphisme naturel de projection. D’aprés [Mac62, (4) p
322| Papplication s* : H(C@) — H(C?) est injective. Il suffit donc de montrer que les sous-
variétés T; := s~1(S;) sont homologiquement équivalentes dans C?. Posons T := s71(S) = |JT; et
considérons la projection p : C% — C%1 donnée par

p(x1, ..., xq) = (T1,...,T4-1).

Soit pp : T — p(T) Papplication induite. Etant donné (x1,...,24-1) € p(T), il existe un unique
point y € C’ tel que
fl@)+ ...+ f(@a—1) +y € g5

(car sinon il existerait deux points sur C’ rationnellement équivalents, et on aurait donc nécessaire-
ment ¢’ = 0; ce qui est impossible dés lors que n > 2).

Si f~Y(y) = {y1,...,9n}, la fibre pfl(xl,...,xd_l) se compose des n points (x1,...,2T4-1,Y;)
que l'on peut supposer appartenir a 7; (quitte a réindexer les y;). Cela signifie d’aprés le corollaire
4.2.7 que p induit un isomorphisme entre chaque T; et p(T'). En particulier, on obtient

Vi e [1,n], pxcloa(T;) = clga-1(p(T)).
Posons m := 2d — 2r et considérons deux indices i, j € [1,n]. Notons
t = clea(T;) — clea(Tj) € H™(CY)
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de sorte que pst = 0. On considére la décomposition de Kiinneth suivante (C? = C4~1 x O) :
Hm(Cd) ~ [Hm—2(cd—1) ®H2(0)] e [Hm—l(cd—l) ®H1(C)] @ [Hm(cd—l) ® HD(C)] )

Aprés identification H2(C) ~ Z, ’homomorphisme p, : H™(C?) — H™2(C%1) s’identifie a la
projection sur le premier facteur de cette décomposition. Par conséquent, la relation p,t = 0 montre
que dans la décomposition de Kiinneth

H'(C) > @ HNC) @ ®H(C)

al+...tag=m
0<a,;<2

<
toutes les composantes t, de t pour lesquelles ag = 2 sont nulles.

Plus généralement, en reprenant le méme raisonnement avec chacune des d différentes projections
C?% — €91 on obtient que toutes les composantes to de t pour lesquelles I'un au moins des «; est
égal & 2 sont nulles. Or d > 2r par hypothése, ou de maniére équivalente m > d. Donc tout d-uplet
(a1,...,0q) avec Y. a; = m comporte au moins une composante «; > 1. Ceci montre que chaque
to = 0, auquel cas t = 0, ce qui signifie que

cleu(Ty) = clea(T))

et donc ¢l (S;) = clo (Sj) comme annoncé.

Ainsi gyl (Si) = pxclea (S5). Or, comme rappelé en introduction, s clo) (Sk) est la somme
des classes des composantes de dimension r de Vj; & savoir clj([Vk]). Autrement dit, si on note
encore Ly : Z — J le plongement naturel, on a

vzxclz([Vi]) = 1zuclz([V;]) € H2O97)(Z).

Par ailleurs, on considére encore le morphisme ¢z € Hom(J,Z) tel que Nz = 1z o 1z. Puisque
Ny iz = e(Z), on a gz oy = e(Z). Appliquant enfin ¢z, a 'égalité 1z.clz([Vi]) = tz«clz([V;]), on
obtient

e(2)*clz([Vi]) = e(Z) ¥ elz([V4])

d’ou 'on tire I'égalité clz([V;]) = clz([V;]) puisque H (Z) est sans torsion. O

En mettant bout & bout les propositions 4.2.1 et 4.2.8, on obtient le théoréme suivant (générali-
sation de [Bea82, Théoréme 1]) :

Théoréme 4.2.9 - Si 2r < d, alors pour tout i € [0,n — 1] la classe dans H*9=9=7)(Z) de la
sous-variété spéciale [V;] associée au systéme linéaire complet gl est

o pggT

Iz([Vi]) =n® 9 " —
N Vsl

ce qui se Téécrit encore
n(n—l)(g/—l)—T

(=1 = 1) =)

Les classes de cohomologie des sous-variétés spéciales [V;] et [V] dans Z sont donc intimement
liées & la polarisation induite n = ¢560. La partie suivante poursuit cette étude de la classe de [V'] pour
I’équivalence algébrique. Plus spécifiquement, il va s’agir d’étudier la décomposition de Beauville de
[V] dans A9=9'~"(Z).

clz([Vi]) = n=9~"
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4.3 Classe d’équivalence algébrique de [V] dans A9=9~"(Z)

On généralise dans cette partie le résultat de la partie 4 de [Aral2] et on fait le lien avec les
anneaux tautologiques introduits dans les chapitres précédents.

4.3.1 Notations

On continue de supposer que f : C — C’ ~ C'/{o) est un revétement galoisien n-cyclique étale
avec n > 2. On fixe des entiers r,d vérifiant 0 < 2r < d < 2¢’. On considére les sous-variétés
spéciales V; dans Z quitte a effectuer une translation et on note encore V' (et V;) les classes de cycles
déterminées dans A(Z).

Etant donné un r-uplet n = (n1,...,n,) d’entiers naturels strictement positifs, on note
T r 1
(=)™
n|:= n; t = .
‘7| Z ) € Hn 1_[ n
i=1 j=1 J

Notons aussi

Tra:={n=(ni,...,n,) eN" | 1<my <...<n, et |n|<d}

n—1 n—1
ATL,S = m17m27"'7mn7178_2mk2 e N" | ka<8 :
k=1 k=1

Le sous-groupe P, c &,, engendré par la permutation cyclique (1,2,3,...,n) agit naturellement sur
I'ensemble A,, ;. On considére le quotient

Bnﬁ::-Anﬁ/ﬁ%

et on fixe une fois pour toute un systéme C, s de représentants pour ce quotient. Pour ce faire, on
peut fixer un ordre ('ordre lexicographique par exemple) et choisir le représentant minimal dans
chacune des classes. Ensuite, on considére la projection sur les n —1 premieres composantes de C,, s :

Dn,s = pl,...,’n—l(cnﬁ) c NTL—]..

Exemple 4.3.1 (n = 2) : Dy, = [0, 5].

Exemple 4.3.2 (n =3) :
1. D31 = {(0,0)}.
2. D32 ={(0,0),(0,1)}.
3. D33 ={(0,0),(0,1),(0,2),(1,1)}
4. D34 = {(0,0),(0,1),(0,2),(0,3), (1,1)}
5. D35 = {(0,0),(0,1),(0,2),(0,3),(0,4),(1,1),(1,2)}.
Enfin, pour tout n = (ny,...,n,) € Z, 4, on pose

Trnn = | [ Dnm; < (NP1
j=1
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Les éléments de J,,.n sont donc des r-uplets de (représentants de classes modulo permutations
cycliques de) (n — 1)-uplets

m = ((Mm1,1,M12, -, M1n—1)s -5 (M1, M2, ooy Mi1))

vérifiant la condition )
e

Viell,rl, > mjx<
k=1

Continuons avec quelques notations qui interviendront dans la suite. Soient n € Z, 4 et m € J; n n-
Pour chaque entier [ > 1, on note ¢(I) le nombre de n; qui sont égaux & [. Supposons donc que
nj, =mnj, =...=n;,, =1 On pose alors

(Ln,m) = {#{permutations du g(I)-uplet ordonné de (n — 1)-uplets (mj, —,mj, —,...,m; )} siq(l)#0,
1 si q(l) = 0.

On peut enfin définir

d—r+1
U lnm

Exemple 4.3.3 :
1. Sir=1,onavy,=1.
2. Sir =2 vym =73 si(n1 =n et mi_ #my_) et vy, vaut 1 sinon.
On définit maintenant le coefficient

T .
U

Onm ‘= Vn,m ( )
= = M1 MG 2y s T 15 T — D, M

J=1

ot les coefficients multinomiaux ont déja été rencontrés précédemment (cf. Définition 3.3.32). Puis

on considére le rationnel suivant
— o d—ln] d
)\ﬂ,2 =n PnOn,m .

il
Ensuite, soient eq,...,e; des entiers qui comptent le nombre de répétitions dans la séquence de
paires
(nh (m1,17 R ml,nfl)) geeeeee ’ (nT‘a (mT‘,la s 7m7‘,n71)) .
On pose
dﬂg = eqleg! el

Exemple 4.3.4 : Si cette séquence est
(4,(0,0,1)),(4,(0,0,1)),(4,(1,0,1)), (5,(2,0,0)), (6, (0,3,0)), (6, (0,3,0)),

alorse; =2, ea=1,e3=1,e4 = 2.

Remarque 4.3.5 :

1. On peut choisir d’ordonner cette séquence selon 'ordre lexicographique par exemple mais ici
I’ordre n’a aucune importance.
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2. Si 'on n’avait pas fixé un systéme de représentants modulo permutations cycliques, il aurait
fallu compter les répétitions & permutations cycliques prés.

Et pour en terminer avec les principales notations, définissons encore les endomorphismes suivants

n—1 n—1
Vie [1,r], hj(n,m,o) :=n;j — Z m; g + Z mj,kak € End(J).
k=1 k=1

4.3.2 Théoréme principal
Le cas généraln > 2, r > 1
On dispose & présent de tous les outils et notations nécessaires pour énoncer et démontrer le

théoréme suivant qui vient généraliser (et corriger) [Aral2, Theorem 6].

Théoréme 4.3.6 - Soit 0 < 2r < d < 2¢' et V. =|JV; lunion des sous-variétés spéciales vues dans
Z associées & un systéme linéaire complet sans point de base g7 sur C'. Alors la classe de [V] dans
AI7"(J) est donnée par la formule suivante :

vi-y Y o

n,m
d 7h1(ﬂvﬂ70)*c**hT(ﬂamao-)*C
ﬂezr,d gejﬁn,g n,m

En particulier, la composante homogeéne de la classe de [V'] dans AI™"(J) ) est donnée par

Anm
Vin= 2, 2 D 7 m, 0):Cay) * - % by (12,1, 0)4Ca,)

ﬁEI’I‘,El mejr,n,ﬂ 0Sa1,.,_7a,’, RAZLAL
- ay+...+ar=t

et la composante homogéne de la classe de [V] dans Ag_gl_’"(Z)(t) est donnée par

)\n,m
Vip=e2)>" > > 2 M )bz Clayy - (11, 0) a2 Clay

n€L, g METrn,n 0<a1,....ar =
- ay+...tar=t

Par conséquent, les [V]) sont des cycles tautologiques appartenant a Ry (C;J) ou Ry (vz+C; 2Z)
selon que 'on considére V. comme sous-variété de J ou de Z.

Démonstration. La stratégie générale de la preuve repose sur celle de [Aral2, Theorem 6] qu’il nous
faut adapter au cas d’'un automorphisme d’ordre n > 2. On rappelle que 'on note encore gj; le
systéme linéaire donné sur €’ vu comme sous-variété de C'@ isomorphe & P”. Etant donné un
r-uplet fixé d’entiers naturels n = (n1,...,n,), on considére la diagonale généralisée

/
5/Q3= {Tllw'l +n2:v/2 +...+nrx;n ] a:'l,...,a:;, EC’} - C'(In),

Soit D' € g, un diviseur effectif fixé dont le support consiste en d points distincts. D’aprés [Her07,
Theorem 3 (ii) p888|, la classe [g7j] dans CHY™"(C"(9) du systéme linéaire est donnée par

l97] = > pnl6y + 0f + .. + o],

/
.0}

ol la somme est prise sur

1. les r-uplets d’entiers naturels n € Z, 4 tels que s := s(n) =d — |n| >0
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2. et les sommes (non-ordonnées) o/,

dans le support du diviseur D’.

:= 0} + ...+ 0}, obtenues en choisissant s points distincts

Pour calculer la classe de S = f(d)*[gg] e A“"(C@), on commence par introduire pour tout
m € Jrnn les diagonales généralisées modifices suivantes

r n—1
On,m = {Z ((n] - ij,k)xj + Z mj,kak(xj)> ‘ Xly..., Ty € C’} c D),
j=1 & k=1

ce qui peut se réécrire avec un léger abus de notation

On,m 1= { hj(n, m,o)(x;) ’ xl,...,mreC} = ¢,
=1

J

En comptant bien les points, on arrive a I’égalité suivante

f(d)*[5’2+o’1+...+o;] — Z Cnm[Onm + w1 + .o U]

mus
ou la somme est prise sur
L. les r-uplets de (n — 1)-uplets m € Jr.nn
2. et les sommes (non-ordonnées) us = u1+...+u, avec des u; € f_l(og-) = {0j,0(0/),...,0" 1(0;)}.

En effet, pour comprendre le passage de 0], & d,,,, on peut raisonner de la sorte : pour chaque j fixé
et pour chacun des n; points x}, il faut choisir une correspondance entre les n éléments de la fibre au-
dessus de 2 (ie. les ok (zy)) et le n-uplet (mj1,mj2,...,mjn_1,n;—> mjx). Concrétement, une fois
fixés les choix correspondants aux o pour k = 1,...,n — 1, tout est fixé. Ceci justifie I'introduction
des coeflicients multinomiaux dans le coefficient o, ,. Comme dans [Aral2], le coefficient vy, ,,, vient
corriger une redondance qui pourrait apparaitre si certains des n; sont égaux. o

Remarque 4.3.7 : Notez que c’est & ce moment 1a qu’il est intéressant de considérer des classes de
multiplets sous ’action des permutations cycliques; tout ceci afin d’éviter de compter plusieurs fois
la méme diagonale : remplacer x; par un O’k(ﬂj‘j) revient & effectuer une permutation cyclique des
coefficients m; 1, M2, ..., Mjn—1,15 — Do Mij k-

En passant & 'équivalence algébrique, c’est-a-dire dans A(C®), la formule pour le pull-back
d’une diagonale généralisée devient

FO o+ o+ + 0= > ntay, [Snm + (d — |n|)o]

gejr,n,g

car pour chacun des s = d — |n| points u; & choisir, il y a n choix possibles; chacun de ces choix
fournissant un point algébriquement équivalent & un point quelconque noté ici o € C. Il vient alors

S = f(d)*[gg] = Z an(d)*[élg +op+... o= Z Zﬂﬂndim‘a@,g[éﬂ,g + (d — |n|)o]

n,0% n,0% m

- Y X s () Ja + @ laD] = ¥ X Anlbu + (@ lalo

Eezr,d gejr,n,@

(d> - <d —d|n|> B (|Z|>
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sommes non-ordonnées o/, formées a partir de s = d — |n| points distincts a choisir parmi les d points
distincts du support du diviseur D’.
Notons ensuite d; le degré du morphisme

hj(n,m,o): C = J — hj(n,m,o)(C) < J,
de sorte qu’en termes de classes de cycles, on a pour tout j ’égalité
hj(n,m,a)«C = dj[hj(n, m,o)(C)].
Le morphisme ¢ : C¥ — J induit donc un morphisme de degré dids - - - d, de 8,m + (d — |n|)o sur

un translaté de la variété image 3;;_; hj(n,m,0)(C) < J; ce qui signifie dans A(J) :

vﬂ%m+M—WM=m@~MlZ%mmwM®

Remarque 4.3.8 : Bien que le morphisme ¢ : C@ — J définit un morphisme birationnel sur son
image [Mil86, Theorem 5.1 (a)] car d < g, celui-ci restreint & une sous-variété propre ne l'est plus
forcément.

Or le degré du morphisme d’addition

[ [7i(m,0)(C) — ), hyj(n,m,o)(C),
j=1 j=1

est le coefficient d,, ,, vu dans la partie Notations. En effet, le nombre d’antécédents d'un point géné-
rique de }7._; h; (@@, 0)(C) (c’est-a-dire un point de la forme >7_; hj(n, m, o)(z;) avec des z; € C
distincts) dépend fondamentalement du nombre de fois que chaque endomorphisme hj(n,m,o) se
répete (étant entendu que génériquement des endomorphismes h; distincts déterminent des variétés
images indépendantes). Par conséquent, il vient par définition du produit de Pontryagin

[h1 (12, m, o) (C)] # [ha(n, m, o) (C)] ... # [hr (0, m, 0)(C)] = dnm [Z hj(n,m,o)(C)
j=1

Finalement, on obtient

P« [0nm + (d — |n|)o] = didy -+ - dy [Z hj("%m?U)(C)]

=1
_didg - dy

dﬂ@

[h1 (n, m, 0)(C)] * [h2(n, m, 0)(C)] * . ... # [he (0, m, 0) (C)]

1
=3 hi(n,m,0)+C % ha(n,m,0).C % ... * hy(n,m,0).C.

n,m

Par conséquent, on a dans A97"(.J)

[V]= SO*f(d)*[gfl] = Z Z An,mPs QQ + (d — n[)o]

’VLGIT d me\]r n,n

Z Z d h1 (n,m,0)+C ... % hp(n,m,0).C.

neLy q meJT n.n

145



Chapitre 4. Sous-variétés spéciales des variétés de Prym généralisées associées aux
revétements Galoisiens n-cycliques

Comme ¥z commute aux polynémes en o, on obtient

wZ*SO*[ n,m + (d— |ﬂ|0)] = hi(n, @70)*wZ*C oLk hr(ﬂa@: 7)Y zxC

dn.m

En se rappelant que sur Z, ¢z = e(Z), il vient alors que la classe de [V] dans A9=9'=7(Z) vérifie

e(2)«[V] = Yzxpef Z Z

nEIr d meJr n,n

hl (n,m, 0)s1pz:C % ... % hp(n,m, 0)x7:C

Il ne reste plus qu’a projeter les précédentes égalités sur AI™"(J)q et AdimZ=r(7 )(+) pour obtenir
les formules de [V](;) annoncées. Faisons-le en détails pour la formule sur Z (I'autre s’obtient encore
plus facilement de la méme maniére). Pour cela, il suffit de se rappeler que

1. B(Z)*[V](t) _ 6(Z)2dimZ—Q(dimZ—r)-i-t[V](t) _ 6(Z)2r+t[V](t),
2. Aa(Z)(u) % Ab(Z)(U) c Aa+b_dimZ(Z)(u+v),
3. sihe HOHI(J, Z), h*Agil(J)(t) e AdlmZ*I(Z)(t).

Décomposons donc C' = Cg) + Cqy + ... + C(y_1) avec C(;) € Ag_l(J)(i). Alors pour tout entier
0<t<dimZ-1,e~Z )2’"+t[V](t) est la composante homogéne de degré ¢ apparaissant dans la
somme

dim Z—1 dim Z—1

) IED I

QEIr,d mejr,n,ﬂ a1=0 ar=0

“E hi(n,m,0)5825Clay) * -+ * ho(n,m, 0) 40 24C(a,)-

dﬂ@

En conclusion, on a dans AQ*QI*T(Z)(t)

)\n,m
Vg =e(2)>" > )] > 7 M m, 0):¥z:Cay) * - % (0,1, 0)40h 24 C

neZTdmejrnn0<a1, LA =
ay+...+ar=t

Le cas des variétés de Prymn =2, r > 1

Pour n = 2, cas des variétés de Prym, on obtient une forme sensiblement plus simple du théoréme
4.3.6.

Théoréme 4.3.9 (Lecasn =2, r > 1) -Soit 0 < 2r < d < 29 et V = Vi u Vo lunion des
sous-vari€tés spéciales vues dans Z associées a un systeme linéaire complet sans point de base g, sur
C'. Alors la composante homogéne de la classe de [V] dans Agfglfr(Z)(t) est donnée par la formule
sutvante

Vg =223 % 5 [ 2m) 20y o s

QEZT’dmg% 0<ai,..,ar I j_ 1
ay+...+ar=t

ot l'on précise les différentes notations utilisées ici avec n = 2 :

1. la somme sur m est prise sur les r-uplets d’entiers naturels m := (my,ma,...,my) € Jr2n,
c’est-a-dire vérifiant la condition pour tout j € [1,r], m; < %,

2 dum =2 () (I 5= () (T )
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En particulier, les [V](t) sont des cycles tautologiques sur Z dans Ry(17+C;Z). De plus, sit est
impair, alors [V]) = 0.

Démonstration. C’est une conséquence directe du théoreme 4.3.6. En effet, si n = 2, alors 017 =
—1z7 € End(Z) car Z = Ker(1+ ). On a aussi e(Z) = 2. En effet, rappelons que e(Z) divise I'ordre
de o qui ici vaut 2 (cf. Sous-section 2.3.1, point (3)) et e(Z) = e(Y) # 1 car o est non trivial et
C/{c) # P! puisque dans tout ce chapitre le revétement f : C — ' ~ C/{c) est supposé étale
(cf. Lemma 2.3.11, point 3). On peut également rappeler (Lemme 2.6.5) que dans ce cas tous les
¥ z+C2i41) sont nuls ce qui justifie la derniére assertion puisque si t est impair, alors chaque terme
de la somme apparalt avec au moins un des a; impair. O

Cet énoncé permet de retrouver et corriger [Aral2, Theorem 6]. Bien que la démonstration donnée
par Arap soit correcte, ’énoncé de ce dernier ne 'est pas en général sauf si» =1 out = 0,1. La
« subtilité » se situe a la toute fin de la démonstration du résultat : la composante d’indice (t)
d’un produit de Pontryagin n’est pas le produit de Pontryagin des composantes d’indices (). Quoi
qu’il en soit les exemples [Aral2, Example 1] (cas r = 1) et [Aral2, Example 2| (formule obtenue
directement en reprenant la derniére étape correcte de la preuve du théoréme) donnés par Arap
restent valides. En revanche, sa derniére assertion (qui est cette fois-ci difficilement vérifiable pour
ne pas dire invérifiable) concernant la non-nullité de [V'] ) avec r = 2,3 semble compromise.

4.3.3 Formules particuliéres pour [V]; lorsque r = 1
Le cas particulier des g} (cas ol la courbe C” est d-gonale) mérite lui aussi d’étre mis en avant :
Proposition 4.3.10 (Lecasn > 2,r =1) - Soit 2 <d < 2¢' et V =] Vi Uunion des sous-variétés

spéciales vues dans Z associées a un systéme linéatre complet sans point de base gé sur C'. Alors la
composante homogéne de la classe de [V]| dans Ag_gl_l(Z)(t) est donnée par la formule suivante

6 L/d B
[V](t) = —2t Z Z n - a4 (5) <m> h(ﬁ,m, U)*wZ*C(t) € Ro(¢Z*C§ Z)
B8=1meD,, B —
ot la somme sur m est prise sur les (n — 1)-uplets d’entiers naturels m := (my, ma,...,Mp_1) €

Jinpg = Dpp et avec

B B
(m) . (ml,...,mn_hﬂ—zkmk) “ B m, ) = f - Z e Z o

k=1

Regardons encore le cas plus particulier ot (n,r) = (2,1). On retrouve la formule obtenue par
Arap [Aral2, Example 1].

Corollaire 4.3.11 (Lecasn =2, 7 =1) - Soit 2 < d < 2¢' et V = JV; lunion des sous-variétés
spéciales vues dans Z associées a un systeme linéaire complet sans point de base gé sur C'. Alors la
composante homogeéne de la classe de [V] dans Ag_gl_l(Z)(t) est donnée par la formule suivante

[V](t) =C21,4dt '(Z}Z*C(t) € Ry(¢Yz+C; Z)

ol

. Zdl [gJ (—1)f—1od=p=2-t <g) <Ti> - Qm)“t,
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En particulier, st t est impair ou si ca 1,44 = 0, alors [V](t) = 0. Par conséquent, si les ca 1 42¢ sont
tous non nuls, alors l'anneau tautologique Ry (1z+C; Z) est engendré pour le produit de Pontryagin

par les [V] -

4.3.4 Formules particuliéres pour [V] lorsque r > 1

Plus généralement, il est intéressant de regarder ce qu’il se passe pour r > 1, mais il faut alors ne
considérer que le cas t = 0 si I'on espére trouver des formules plus simples que celles déja obtenues
dans le théoréme 4.3.6 (a cause des sommes sur a). Ceci étant fait, nous pourrons notamment
recouper nos résultats avec celui de la proposition 4.2.1. Pour motiver davantage 1’étude de [V](O),
signalons enfin la proposition suivante :

Proposition 4.3.12 - Soit 0 < 2r < d < 2¢' et V = |JV; Uunion des sous-variétés spéciales vues
dans Z associées o un systéme linéaire complet sans point de base gl sur C". Si C' est hyperelliptique,
alors [V] = [V]) € Ag_gl_T(Z)(o). Sin = 2, il suffit de supposer que C est hyperelliptique ou
trigonale pour avoir la méme conclusion.

Démonstration. Si C est hyperelliptique, C' = C(y € A(J), de sorte que tous les ¥7.C(;) sont nuls
dans A(Z) pour tout 7 > 1. Le théoréme 4.3.6 montre donc que chaque [V]) = 0 pour ¢ > 1. D’ot
le résultat. Si n = 2, on a ¥z+C2;,1) = 0 pour tout i (Lemme 2.6.5). Dans ce cas, on a le méme
résultat en supposant C' trigonale car sous cette hypothése C;) = 0 pour tout i > 2 (cf. [Bea04,
Section 5]). O

Lecasn=2

La proposition suivante vient compléter le théoréeme 4.3.9. Il s’agit d’exprimer explicitement
[V]) pour n =2et r > 1.

Proposition 4.3.13 (Lecasn=2,7r>1,t=0) - Soit 0 < 2r <d < 2¢' et V.= JV; l'union des
sous-vari€tés spéciales vues dans Z associées a un systeme linéaire complet sans point de base gj; sur
C'. Alors la composante homogéne de la classe de [V] dans Ag_gl_”(Z)(O) est donnée par la formule
sutvante

Vo) = c2rd0 (¢Z*C(0))*T

avec
A T
. o—2r 7,1 2
c2,’l",d,0 T 2 Z d (nj - 2m])
neZ, gm<2 M j=1
ot la somme sur m est prise sur les r-uplets d’entiers naturels m = (mi,ma,...,m;) € Jron,

c’est-a-dire vérifiant la condition pour tout j € [1,r], m; < %’ Plus simplement, on a

dim Z—r
Vo) = Crdo v
Vo O (dim Z — r)!
ou
= . 2r—g'+1,.) —g'+1,.) )‘ﬂ,m - 2
C2,r.d0 += 2 rleapao =271y 3 = [ [(nj —2my)*.
n M =1

ms<

w3
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4.3. Classe d’équivalence algébrique de [V] dans A9~9~"(Z)

Démonstration. D’aprés le théoréme général obtenu pour n =2 et r >

lo =25 3 322 [Ty -2

n m§§

1, on a immeédiatement

1/12*0 )

Par ailleurs, notons toujours 7 := 56 € A*(Z). On rappelle (cf. Preuve du théoréme 2.6.1 — Step 1)
que

¥z:Clo) = (1) 4y Fz ().
Ainsi, en utilisant [Bea83, Proposition 5|, on a

i i (—1)dimZ=1  pdimZ—1

— _1 —dim — _1 —daim .
P74 C 0) (—1) 1/Jn*fZ(77) (-1) Vs P x(n) (dim Z — 1)!
Comme ), 0 @, = e(Z) = 25 par définition de ¢, et 1, (cf. Sous-section 2.3.1), il vient

1 ndimZ—l o dim 7 ndlmZ—l 4o ng’—?
Vz:C0) = Samz 2+ g =2 o |
2 (dim Z — 1)! (dim Z — 1) (¢ —2)!
car X(n) = 24ImZ 1y

puisque 7 est le double d’une polarisation principale sur la variété de Prym Z. 11
s’ensuit en utilisant [Bea83, Corollaire 3] que

im Z— *T
(wz*c 0 )*T _ 2r(27dim Z) 77d 71
© (dim Z — 1)!

_ 9r(2—dim2), (pyr—1 < rdimZ —r(dimZ — 1)

nr(dimel)f
dimZ — (dimZ —1),...,dim Z — (dim Z — 1)> (r(

(r—1)(dim Z)

dmZ —1)— (r—1)dim 2Z)!
:2r(2—dimZ)+(r—1)dimZ r ndimZ—r 227 —dim Z | ndimZ—r 227 g’ +1 | Ugl_l_T
1, (dim Z — r)! (dim Z — r)! (¢ —1—r)"
D’ou
5 )\nm r 500 ”_ ndlmZ—T‘
Vley=2""" == n; — 2m;)* 2% "9 thpl
Vi) Z dpm (n; 2 (dim Z — r)!
nomg<y o J=1
, A r ,’7d1m Z—r
=279+l L n; —2m
Z L dym (n; 2 (dim Z —r)!
n om<g T J=1
O
Corollaire 4.3.14 - Avec les notations de la proposition 4.5.13, on a
I 1 2d73r
Corao=279"""F et Cardo = -
Par conséquent, sin =2, on a
dim Z— d—3
[V = 2% 7+ T - 2

(dim Z — r)! T (¢Z*C(0))

ce qui se Téécrit aussi en notant £ la polarisation principale de la variété de Prym telle que n = 2€




Chapitre 4. Sous-variétés spéciales des variétés de Prym généralisées associées aux
revétements Galoisiens n-cycliques

Démonstration. La précédente proposition 4.3.13 montre que [V]qgy < AglflfT(Z )(0) est de la forme

dim Z—r —1—r
”79

= C2,r.d,0 (

[Vl = €2rd0 ( G —1=n

dim Z — r)!
Par ailleurs, en projetant cette égalité dans H(Z), en notant encore n = clz(n) € H?(Z) et en
utilisant la proposition 4.2.1, on a

g'—1—r —1-r

1 CZZ([V](O)) =cz([V]) = 9d—g'—r+1 Ui

= . I A— & I S VA
62,7"7(170 (g/—l—T’), (g/—l_/,’)' € ( )

2 . ~ —_ /— LN 2 3 3 2 L3 2z L3
On en déduit que 3,40 = 24=9'=r+1 Enfin, la derniére égalité découle immédiatement de :

, 9
(wz*C(o))*T = 2%r—9 +1T!777.

Lecasn=3

Cherchons a obtenir une formule analogue lorsque n = 3, 7 = 1 et t = 0. Comme on 'a déja vu,
le cas n = 3 n’est pas beaucoup plus compliqué que le cas n = 2 donc cette étude semble raisonnable
& priori.

Proposition 4.3.15 (Lecasn=3,7r>1,t=0) - Soit 0 < 2r <d < 2¢' et V = JV; l'union des
sous-vari€tés spéciales vues dans Z associées a un systeme linéaire complet sans point de base gj; sur
C’. Alors la composante homogéne de la classe de [V] dans Ag_gl_r(Z)(O) est donnée par la formule
sutvante

V1) = s a0 (¥2:Cloy) ™

avec

Card0 =37 >, D, ﬂg a;(n, m)

neI}d7n€J}3n
ot on a posé pour tout j € [1,7],
aj(n,m) :=n3 +3(m3, +mj1mj2 +m3y) — 3nj(m,1 +m;2)
g\ T8 ) - = T 5,1 3,17705,2 5,2 15,1 3,2 )
Plus stmplement, on a

dim Z—r

[V] (0) = €3,r,d,0 m

avec

TLm
C3,r.d,0 = 3% g+1r‘03Td0—3 9+1r‘2 Z Ha] (n,m)
n m< j

Mm

Démonstration. D’aprés le théoréme principal 4.3.6, on a

[ 327"2 Z

nGI d7n€J;3n —

hl (n,m, 0):0z+Coy * ... % hp(n,m, 7)1 74 C )
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4.3. Classe d’équivalence algébrique de [V] dans A9—9 - (2)

Par ailleurs, I’action de I'involution de Rosati sur les h; est la suivante :
R(hJ (ﬂa 23 U)) = h] (ﬂa @a 0_1>'
Alors pour tout j
By, m, ) st Cloy = (— 1)1 2 Fy (1 h (nm, 0 )*6).

Etudions plus précisément le diviseur

2 2 *
hj(n,m, o hH*g = (nj — 2 mj g + Z mj7k0_k> 6 e AL(J).
k=1 k=1

Pour ce faire, une premiére méthode consiste a utiliser directement le lemme 3.2.1. Une seconde
(sensiblement équivalente) consiste a utiliser la bijection entre NSg(J) et End(®)(J), puis a raisonner
directement sur les polynémes en o. Pour changer, utilisons cette seconde méthode et pour alléger
les formules suivantes, notons m; o := n; — Zzzl mjk € N. Le diviseur

- — — *
hj(n,m,o Dy*g = (mjp +mj0 Ly m;jio 2) 0
correspond alors & I’endomorphisme symétrique

R(hj (ﬂv m, 071)) © hj (@’ m, 071) = hj (ﬂ’ m, J) © hj (Q’ m, 0'71)
= (mjo +mj10 +mj20°)(mjo+mji1o " +mjs0 )
= miO + m]%l + m?’Q + mjpmj’la_l + mjjomjvga_z + mjom;10 + mjjlmjvga_l + 771]'70Tnj720'2 + mj1m; 20
=mio+miy +miy+ (mjomj1 +mjimga +mjamio)(o” +o0?)
= mio + mil + miQ + (mj’()ij +mj1m;j2 + mjgmj,()) ((U + 0_1)2 — 2) .
Ainsi,
hj(n,m, o h*g = (mjz,o + m]z,l + m?,Q — 2(mjomj1 + mjimja + mjamjo)) 0
+ (mjomja +mjimja +mjam;o)(o + o ')*0.
Il s’ensuit que
hj(n,m, 0)«z2:Clo) = (M3g +m3, +m3q — 2(mjomj1 + miimsa + mjam;o)) ¥z+Coo)
+ (mj,Omj,l +mj1m;2 + mjgmj,())(U + 0_1)*¢Z*C(0)

2 2 2
= (mfo+m3, +miy— (mjomy1 +mjimjz +mjamyo)) hz«Co)

car o étant d’ordre 3,
Z = Ker(Ny)? = Ker(1 + o + 02)°,

auquel cas ¢ + 0! = 0 + 02 = —17 dans End(Z) et
(0 + 0 )uthz:Cl0) = (—1)xt02+C0) = Yzx(—1)xCl0) = 1¥2+C(0)-
Plus explicitement encore, on a en revenant a la définition de m; :

hj(n, m, J)*d’Z*C(O) = (mio + m?,l + m§,2 — (mjomj + mjamy + mj,2mj70)) TbZ*C(O)

(n3 +3(m3, + mjimj2 +m3,) — 3nj(mj1 + m;2)) 1z:Clo).
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Chapitre 4. Sous-variétés spéciales des variétés de Prym généralisées associées aux
revétements Galoisiens n-cycliques

Notons enfin
aj(n,m) :=n3 +3(m3 | + mjimja +m3,) — 3nj(m;1 +mj2)

de sorte que
h’] (ﬁa m, U)*wZ*C(O) = aj (27 @)"/}Z*C(O) .
On a donc obtenu la formule suivante :

Vi =37 2 > nml_[aj(n@)(%c(o))*r

neIrdmej'r‘3n 77.j:1

Puis, comme dans la proposition précédente on a les égalités

32r ndim Z—r 327“ dim Z—r dim Z—r

o r—1. _ " =g+l
(¥2+C0)) x(n)" ! @mZ =] X(U)T' (@mZ 1)l 3 7! @mZ =]

car x(n) = 39~ (Proposition 3.3.14), on aboutit &

2 Z Z 3 or gy, mEmZT
[ _3_ T aj(ﬂ,m)B r—3g '7
TLEIT d mejT 3,n 7— j 1 (dlm Z — 7")
dim Z—r
— 379+, Z Z Hajnm)ni'
neZ, gmeTrsn L j=1 (dim Z — r)!
ce qu’il fallait démontrer. -

Comme conséquence directe de cette proposition, on obtient :

Corollaire 4.3.16 (Le casn = 3, r =1, ¢t =0) - Soit 2 < d < 2¢ et V = |JV; Uunion des
sous-variétés spéciales vues dans Z associées & un systéme linéaire complet sans point de base gcll sur
C'. Alors la composante homogeéne de la classe de [V] dans Ag_gl_l(Z)(o) est donnée par la formule
sutvante

[V]o) = 3,1,4,0 ¥7+C(0)

ol

d _
- a—pa (=11 (d B
a0 Z Z ’ &) B) \mi,ma, 8 —my —my alf,m)

[3:1 (ml,mz)epg’g

avec
a(B,m) := 5%+ 3(m? + mima + m3) — 36(m1 + mo).

A l'instar du cas n = 2, on obtient aussi le corollaire suivant :

Corollaire 4.3.17 - Avec les hypothéses de la proposition 4.5.15, on a

N o 3d—3r
Ca a0 =379 et Cardo ="
Par conséquent, sin =3, on a
dedl i1 77dirn Z—r 3d—3r o
— —g - —
[V](O) =3 (dim Z — r)! Y (wZ*C(O))
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4.3. Classe d’équivalence algébrique de [V] dans A9—9 - (2)

Démonstration. La démonstration est analogue au cas n = 2 :

dim Z—r
Vo) = B0 .
Wlor = B0 tgimz — 1
égalité que 'on compare &
ndimZ—r ded i1 ndim Z—r 9 (dim Z—r)
C3.,d,0 T = ¢l =cl —gd—g—rtl 1 2dimZ-n) 7y
Chrd (i 7 — 1)) cz([V])) = clz([V]) =3 @mZ -1 (2)

pour en déduire le résultat 3,40 = 34=9'=r+1 1 autre égalité est obtenue en se rappelant que

dim Z—r
n

¥ o2r—g'+1
(Vz:Co))™ =377 7Q!(dimZ—r)!'

4.3.5 Exemples

Terminons ce chapitre par quelques illustrations numériques des formules obtenues. On commence
par s’intéresser au cas n = 2, puis on passera au cas n = 3.

Le cas n =2

Exemple 4.3.18 (c21,4:) : D’aprés [Aral2, Example 1], lorsque n = 2 et = 1, on a la formule
suivante :
(457" = 1)Bosia gd—2

s+1

€2,1,d,2s =

ot B, est le m® nombre de Bernoulli défini par etil = Z;Ojo Bm%. En particulier, on obtient

comme annoncé par le corollaire 4.3.14 :

d-3
c21,40 = 2" ".

On a alors par exemple dans le cas d'un g3
2130=1, ¢2132= 3

de sorte que [V] = [V]) + [V]2) = ¥2+Cl0) — 3%2+C2) € Ro(12+C; Z).

Exemple 4.3.19 (c2,,40) : Plus généralement, on a vu dans le corollaire 4.3.14 1'égalité

2d—37‘

C2r.d0 = T
7!
résultat que 'on peut vérifier en utilisant directement la définition du coefficient ¢y, 40 donnée dans

la proposition 4.3.13. On vérifie par exemple les affirmations suivantes :

1

1
c2130=1, c2140=2, c2150=4, c2250=~ et c2370= 7
4 24
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Chapitre 4. Sous-variétés spéciales des variétés de Prym généralisées associées aux
revétements Galoisiens n-cycliques

Le cas n =3
Exemple 4.3.20 (c31,4,0) : En utilisant la définition des coefficients 31 40 obtenue dans la propo-

sition 4.3.15 ou plus directement le corollaire 4.3.16, on peut vérifier par un calcul direct que

2,
c3130=1, ¢3140=3, c3150=3%

ce qui est le résultat attendu depuis le corollaire 4.3.17. Plus généralement, pour d > 3, on a bien

les égalités :
2(g'—1)—1
d—g "1 d—3
Vo =3 gy -1 =% = Cor

Exemple 4.3.21 (c3250) : On vérifie également par un calcul direct que

1
3,250 = 6;

résultat qui est bien celui annoncé par le corollaire 4.3.17 :

1 35—3-2
6 2
Aussi, on a les égalités :
, pRle D=2 1

Vg =3"7 (¥2+C(0))™ -

20 -1-2! 6

Exemple 4.3.22 (c337,0) : Tous calculs effectués, on trouve

1

33,70 = ¢4
ce qui est bien en accord avec le corollaire 4.3.17 :

1 3733

54 3l
Autrement dit, on a :

2(g'—1)-3

Vo) = 359/M = 5%1 (¥2:C0))™ -

Au-dela des valeurs numériques obtenues dans ces différents exemples, il est toujours intéressant
(et rassurant) d’avoir pu les retrouver d’au moins deux maniéres bien distinctes.
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De maniere générale, on étudie dans cette thése les cycles algébriques sur les
variétés Jacobiennes de courbes complexes projectives lisses qui admettent des auto-
morphismes non triviaux. Il s’agit plus précisément d’introduire et d’étudier de nouveaux
anneaux tautologiques associés a des groupes d’automorphismes de la courbe. On
montre que ces Q-algébres naturelles de cycles algébriques sur les Jacobiennes se
restreignent en des familles de cycles sur certaines sous-variétés spéciales de la
Jacobienne et que celles-ci méritent encore le nom d’anneaux tautologiques sur ces
sous-variétés. On étudie en détail le cas des courbes hyperelliptiques ; situation dans
laquelle les algébres introduites admettent un nombre fini de générateurs, et en parti-
culier sont de dimension finie. On peut alors étre tres précis dans I'étude des relations
entre ces générateurs. Enfin, on montre que ces anneaux tautologiques apparaissent
naturellement dans un autre contexte : celui des systémes linéaires complets sans point
de base.
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