Adaptive Rules Model : Statistical Learning for Rule-Based Systems

par Olivier Wang

Thèse de doctorat en Informatique

Sous la direction de Leo Liberti.

Soutenue le 28-06-2017

à Paris Saclay , dans le cadre de École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne) , en partenariat avec Laboratoire d'informatique de l'École polytechnique (Palaiseau, Essonne) (laboratoire) , École polytechnique (Palaiseau, Essonne) (établissement opérateur d'inscription) et de Laboratoire d'informatique de l'École polytechnique [Palaiseau] / LIX (laboratoire) .

Le président du jury était Ioana Gabriela Manolescu Goujot.

Le jury était composé de Leo Liberti, Claudia D'ambrosio, Catherine Faron-Zucker, Nicolas Ke.

Les rapporteurs étaient Adrian Paschke.

  • Titre traduit

    Modèles de Règles Adaptatifs : Apprentissage Statistique pour les Systèmes à Base de Règles


  • Résumé

    Les Règles Métiers (Business Rules en anglais, ou BRs) sont un outil communément utilisé dans l’industrie pour automatiser des prises de décisions répétitives. Le problème de l’adaptation de bases de règles existantes à un environnement en constante évolution est celui qui motive cette thèse. Des techniques existantes d’Apprentissage Automatique Supervisé peuvent être utilisées lorsque cette adaptation se fait en toute connaissance de la décision correcte à prendre en toute circonstance. En revanche, il n’existe actuellement aucun algorithme, qu’il soit théorique ou pratique, qui puisse résoudre ce problème lorsque l’information connue est de nature statistique, comme c’est le cas pour une banque qui souhaite contrôler la proportion de demandes de prêt que son service de décision automatique fait passer à des experts humains. Nous étudions spécifiquement le problème d’apprentissage qui a pour objectif d’ajuster les BRs de façon à ce que les décisions prises aient une valeur moyenne donnée.Pour ce faire, nous considérons les bases de Règles Métiers en tant que programmes. Après avoir formalisé quelques définitions et notations dans le Chapitre 2, le langage de programmation BR ainsi défini est étudié dans le Chapitre 4, qui prouve qu’il n’existe pas d’algorithme pour apprendre des Règles Métiers avec un objectif statistique dans le cas général. Nous limitons ensuite le champ d’étude à deux cas communs où les BRs sont limités d’une certaine façon : le cas Borné en Itérations dans lequel, quelles que soit les données d’entrée, le nombre de règles exécutées en prenant la décision est inférieur à une borne donnée ; et le cas Linéaire Borné en Itérations dans lequel les règles sont de plus écrite sous forme Linéaire. Dans ces deux cas, nous produisons par la suite un algorithme d’apprentissage basé sur la Programmation Mathématique qui peut résoudre ce problème. Nous étendons brièvement cette formalisation et cet algorithme à d’autres problèmes d’apprentissage à objectif statistique dans le Chapitre 5, avant de présenter les résultats expérimentaux de cette thèse dans le Chapitre 6.


  • Résumé

    Business Rules (BRs) are a commonly used tool in industry for the automation of repetitive decisions. The emerging problem of adapting existing sets of BRs to an ever-changing environment is the motivation for this thesis. Existing Supervised Machine Learning techniques can be used when the adaptation is done knowing in detail which is the correct decision for each circumstance. However, there is currently no algorithm, theoretical or practical, which can solve this problem when the known information is statistical in nature, as is the case for a bank wishing to control the proportion of loan requests its automated decision service forwards to human experts. We study the specific learning problem where the aim is to adjust the BRs so that the decisions are close to a given average value.To do so, we consider sets of Business Rules as programs. After formalizing some definitions and notations in Chapter 2, the BR programming language defined this way is studied in Chapter 3, which proves that there exists no algorithm to learn Business Rules with a statistical goal in the general case. We then restrain the scope to two common cases where BRs are limited in some way: the Iteration Bounded case in which no matter the input, the number of rules executed when taking the decision is less than a given bound; and the Linear Iteration Bounded case in which rules are also all written in Linear form. In those two cases, we later produce a learning algorithm based on Mathematical Programming which can solve this problem. We briefly extend this theory and algorithm to other statistical goal learning problems in Chapter 5, before presenting the experimental results of this thesis in Chapter 6. The last includes a proof of concept to automate the main part of the learning algorithm which does not consist in solving a Mathematical Programming problem, as well as some experimental evidence of the computational complexity of the algorithm.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : École polytechnique. Bibliothèque Centrale.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.