Development of multi-physics and multi-scale Best Effort Modelling of pressurized water reactor under accidental situations

par Alexandre Targa

Thèse de doctorat en Mécanique des matériaux

Sous la direction de Patrick Le Tallec.

Soutenue le 07-07-2017

à l'Université Paris-Saclay (ComUE) , dans le cadre de École doctorale INTERFACES : approches interdisciplinaires, fondements, applications et innovation (Palaiseau, Essonne ; 2015-....) , en partenariat avec Laboratoire de mécanique des solides (Palaiseau, Essonne) (laboratoire) , École polytechnique (Palaiseau, Essonne) (établissement opérateur d'inscription) et de Laboratoire de mécanique des solides (laboratoire) .

Le président du jury était Jean-Jacques Marigo.

Le jury était composé de Patrick Le Tallec, Jean-Charles Le Pallec, Cheikh M'Backé Diop, Katherine Nkonga, Nordine Kerkar.

Les rapporteurs étaient Ivanov Kostadin, Pablo Rubiolo.

  • Titre traduit

    Développement de modélisations multi-physiques Best Effort pour une analyse fine des réacteurs à eau pressurisée en conditions de fonctionnement accidentel


  • Résumé

    L’analyse de sûreté des réacteurs nucléaires nécessite la modélisation fine des phénomènes y survenant et plus spécifiquement ceux permettant d’assurer l’intégrité des barrières de confinement. Les outils de modélisation et codes actuels favorisent une analyse fine du système réacteur par discipline dédiée, et couplée avec des modèles simplifiés. Néanmoins, le développement depuis plusieurs années d’une approche dite « Best Estimate », basée sur des calculs multiphysiques et multi-échelle, est en cours de réalisation. Cette approche permettra d’accéder au suivi et à l’analyse détaillée de problèmes complexes tels que l’étude des Réacteurs nucléaires en situation standard et accidentelle. Dans cette approche, les phénomènes physiques sont simulés aussi précisément que possible (selon la connaissance actuelle) par les modèles couplés. Par exemple, des codes disciplinaires existent et permettent la modélisation précise de la neutronique, de la thermohydraulique du cœur du réacteur ou de la thermohydraulique sur l'ensemble du système, de la thermomécanique du combustible ou des structures. Une approche « Best Estimate » consiste à coupler ces modèles afin de réaliser une modélisation globale et précise du système de réacteur nucléaire. Cette approche nécessite de bien définir les modèles qui sont utilisés afin de préciser exactement leurs limites, et donc préciser les incertitudes des résultats des modèles couplés afin de les assumer et de les optimiser.C’est dans ce contexte de travail que s’inscrit cette thèse. Elle consiste dans le développement d'un couplage multiphysique et multi-échelle « Best Estimate » afin d'obtenir une analyse précise des Réacteurs à Eau Légère en situations normale et accidentelle. Elle a consisté principalement en l’analyse des modèles et de leurs interactions et à la mise en œuvre d'un algorithme de couplage multiphysique entre une neutronique et une thermohydraulique exprimées à l'échelle du réacteur, ainsi qu’avec une thermomécanique fine à l'échelle élémentaire du crayon combustible. En outre, un travail spécifique a été effectué afin de préparer ou d'améliorer l’accés à l'information physique locale nécessaire à la mise en œuvre de modélisations couplées multi-échelles, à l'échelle du combustible.


  • Résumé

    The safety analysis of nuclear power plants requires a deep understanding of underlying key physical phenomena that determine the integrity of the physical containment barriers. At the present time, cutting edge models focus on a single aspect (discipline) of the physical system coupled with rough models of the other aspects needed to simulate the global system. But, safety analyses can be carried out based on Multiphysics and Multiscales modelling. This Best Effort approach would give a full and accurate (High Fidelity) comprehension of the reactor core under standard and accidental situations. In this approach, the physical phenomena are simulated as accurately as possible (according to present knowledge) by coupled models in the most efficient way. For example, codes exists that are accurate modellings of Neutronics, or modellings of thermal fluid mechanics inside the core, or modellings of thermal fluid mechanics over the whole system, or modellings of thermal mechanics of the fuel pin or over the whole device structure. A Best Estimate approach would couple these models in order to realize a global and accurate modelling of the Nuclear reactor. This approach requires to define well the models that are used in order to exactly specify their limits, and hence, specify uncertainties of the coupled model results in order to assume and optimize them.It is in this context that this PhD thesis work is being under taken. It consists in the development of a Multi-physics and multi-scale Best Estimate modelling in order to obtain an accurate analysis of Pressurized Water Reactor under standard and accidental operating situations. It mainly involves the understanding of each model and their interactions, followed by the implementation of multiphysics algorithms coupling Neutronics and Thermohydraulics at reactor scale to an accurate Thermomechanics at the elementary scale of the fuel pin. In addition, a work project has been carried out in order to prepare or improve the access to the local physical informations that are needed for the implementation of multiscale coupling scheme, at the elementary scale of the fuel pin.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : École polytechnique. Bibliothèque Centrale.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.