Per Instance Algorithm Configuration for Continuous Black Box Optimization

par Nacim Belkhir

Thèse de doctorat en Informatique

Sous la direction de Marc Schoenauer.

Le président du jury était Sébastien Verel.

Le jury était composé de Marc Schoenauer, Sébastien Verel, Frédéric Saubion, Thomas Stützle, Emmanuel Vazquez, Johann Dréo, Amir Nakib.

Les rapporteurs étaient Frédéric Saubion, Thomas Stützle.

  • Titre traduit

    Paramétrage automatisé d'algorithme par instance pour l'optimisation numérique boite noire


  • Résumé

    Cette thèse porte sur la configurationAutomatisée des algorithmes qui vise à trouver le meilleur paramétrage à un problème donné ou une catégorie deproblèmes.Le problème de configuration de l'algorithme revient doncà un problème de métaFoptimisation dans l'espace desparamètres, dont le métaFobjectif est la mesure deperformance de l’algorithme donné avec une configuration de paramètres donnée.Des approches plus récentes reposent sur une description des problèmes et ont pour but d’apprendre la relationentre l’espace des caractéristiques des problèmes etl’espace des configurations de l’algorithme à paramétrer.Cette thèse de doctorat porter le CAPI (Configurationd'Algorithme Par Instance) pour résoudre des problèmesd'optimisation de boîte noire continus, où seul un budgetlimité d'évaluations de fonctions est disponible. Nous étudions d'abord' les algorithmes évolutionnairesPour l'optimisation continue, en mettant l'accent sur deux algorithmes que nous avons utilisés comme algorithmecible pour CAPI,DE et CMAFES.Ensuite, nous passons en revue l'état de l'art desapproches de configuration d'algorithme, et lesdifférentes fonctionnalités qui ont été proposées dansla littérature pour décrire les problèmesd'optimisation de boîte noire continue.Nous introduisons ensuite une méthodologie générale Pour étudier empiriquement le CAPI pour le domainecontinu, de sorte que toutes les composantes du CAPIpuissent être explorées dans des conditions réelles.À cette fin, nous introduisons également un nouveau Banc d'essai de boîte noire continue, distinct ducélèbre benchmark BBOB, qui est composé deplusieurs fonctions de test multidimensionnelles avec'différentes propriétés problématiques, issues de lalittérature.La méthodologie proposée est finalement appliquée 'àdeux AES. La méthodologie est ainsi, validéempiriquement sur le nouveau banc d’essaid’optimisation boîte noire pour des dimensions allant jusqu’à 100.


  • Résumé

    This PhD thesis focuses on the automated algorithm configuration that aims at finding the best parameter setting for a given problem or a' class of problem. The Algorithm Configuration problem thus amounts to a metal Foptimization problem in the space of parameters, whosemetaFobjective is the performance measure of the given algorithm at hand with a given parameter configuration. However, in the continuous domain, such method can only be empirically assessed at the cost of running the algorithm on some problem instances. More recent approaches rely on a description of problems in some features space, and try to learn a mapping from this feature space onto the space of parameter configurations of the algorithm at hand. Along these lines, this PhD thesis focuses on the Per Instance Algorithm Configuration (PIAC) for solving continuous black boxoptimization problems, where only a limited budget confessionnalisations available. We first survey Evolutionary Algorithms for continuous optimization, with a focus on two algorithms that we have used as target algorithm for PIAC, DE and CMAFES. Next, we review the state of the art of Algorithm Configuration approaches, and the different features that have been proposed in the literature to describe continuous black box optimization problems. We then introduce a general methodology to empirically study PIAC for the continuous domain, so that all the components of PIAC can be explored in real Fworld conditions. To this end, we also introduce a new continuous black box test bench, distinct from the famous BBOB'benchmark, that is composed of a several multiFdimensional test functions with different problem properties, gathered from the literature. The methodology is finally applied to two EAS. First we use Differential Evolution as'target algorithm, and explore all the components of PIAC, such that we empirically assess the best. Second, based on the results on DE, we empirically investigate PIAC with Covariance Matrix Adaptation Evolution Strategy (CMAFES) as target algorithm. Both use cases empirically validate the proposed methodology on the new black box testbench for dimensions up to100.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.