Transport branché et structures fractales

par Paul Pegon

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Filippo Santambrogio.

Soutenue le 21-11-2017

à Paris Saclay , dans le cadre de École doctorale de mathématiques Hadamard (Orsay, Essonne) , en partenariat avec Université Paris-Sud (établissement opérateur d'inscription) et de Laboratoire de mathématiques d'Orsay (laboratoire) .

Le président du jury était Jean-Michel Morel.

Le jury était composé de Filippo Santambrogio, Jean-Michel Morel, Simon Masnou, Benedikt Wirth, Séverine Rigot, Jean-François Babadjian.

Les rapporteurs étaient Simon Masnou, Benedikt Wirth.


  • Résumé

    Cette thèse est consacrée à l’étude du transport branché, de problèmes variationnels qui y sont liés et de structures fractales qui peuvent y apparaître. Le problème du transport branché consiste à connecter deux mesures de même masse par le biais d’un réseau en minimisant un certain coût, qui sera pour notre étude proportionnel à mLα afin de déplacer une masse m sur une distance L. Plusieurs modèles continus ont été proposés pour formuler le problème, et on s’intéresse plus particulièrement aux deux grands types de modèles statiques : le modèle Lagrangien et le modèle Eulérien, avec une emphase sur le premier. Après avoir posé proprement les bases de ces modèles, on établit rigoureusement leur équivalence en utilisant une décomposition de Smirnov des mesures vectorielles à divergence mesure. On s’intéresse par la suite à un problème d’optimisation de forme lié au transport branché qui consiste à déterminer les ensembles de volume 1 les plus proches de l’origine au sens du transport branché. On démontre l’existence d’une solution, décrite comme un ensemble de sous-niveau de la fonction paysage, désormais standard en transport branché. La régularité Hölder de la fonction paysage, obtenue ici sans hypothèse de régularité a priori sur la solution considérée, permet d’obtenir une borne supérieure sur la dimension de Minkowski de son bord, qui est non-entière et dont on conjecture qu’elle en est la dimension exacte. Des simulations numériques, basées sur une approximation variationnelle à la Modica-Mortola de la fonctionnelle du transport branché, ont été effectuées dans le but d’étayer cette conjecture. Une dernière partie de la thèse se concentre sur la fonction paysage, essentielle à l’étude de problèmes variationnels faisant intervenir le transport branché en ce sens qu’elle apparaît comme une variation première du coût d’irrigation. Le but est d’étendre sa définition et ses propriétés fondamentales au cas d’une source étendue, ce à quoi l’on parvient dans le cas d’un réseau possédant un système fini de racines, par exemple pour des mesures à supports disjoints. On donne une définition satisfaisante de la fonction paysage dans ce cas, qui vérifie en particulier la propriété de variation première et on démontre sa régularité Hölder sous des hypothèses raisonnables sur les mesures à connecter.

  • Titre traduit

    Branched transport and fractal structures


  • Résumé

    This thesis is devoted to the study of branched transport, related variational problems and fractal structures that are likely to arise. The branched transport problem consists in connecting two measures of same mass through a network minimizing a certain cost, which in our study will be proportional to mLα in order to move a mass m over a distance L. Several continuous models have been proposed to formulate this problem, and we focus on the two main static models : the Lagrangian and the Eulerian ones, with an emphasis on the first one. After setting properly the bases for these models, we establish rigorously their equivalence using a Smirnov decomposition of vector measures whose divergence is a measure. Secondly, we study a shape optimization problem related to branched transport which consists in finding the sets of unit volume which are closest to the origin in the sense of branched transport. We prove existence of a solution, described as a sublevel set of the landscape function, now standard in branched transport. The Hölder regularity of the landscape function, obtained here without a priori hypotheses on the considered solution, allows us to obtain an upper bound on the Minkowski dimension of its boundary, which is non-integer and which we conjecture to be its exact dimension. Numerical simulations, based on a variational approximation a la Modica-Mortola of the branched transport functional, have been made to support this conjecture. The last part of the thesis focuses on the landscape function, which is essential to the study of variational problems involving branched transport as it appears as a first variation of the irrigation cost. The goal is to extend its definition and fundamental properties to the case of an extended source, which we achieve in the case of networks with finite root systems, for instance if the measures have disjoint supports. We give a satisfying definition of the landscape function in that case, which satisfies the first variation property and we prove its Hölder regularity under reasonable assumptions on the measures we want to connect.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.