Architecture des plans de clivage pendant l'embryogenèse : une approche quantitative

par Anaëlle Pierre

Thèse de doctorat en Sciences de la vie et de la santé

Sous la direction de Nicolas Minc.

Soutenue le 07-03-2017

à Paris Saclay , dans le cadre de École doctorale Structure et Dynamique des Systèmes Vivants (Gif-sur-Yvette, Essonne ; 2015-....) , en partenariat avec Institut Jacques Monod (Paris) (laboratoire) et de Université Paris-Sud (établissement opérateur d'inscription) .

Le président du jury était Nadine Peyriéras.

Le jury était composé de Nicolas Minc, Nadine Peyriéras, Julien Dumont, Pierre-François Lenne, François Nédélec, Jenifer Croce.

Les rapporteurs étaient Julien Dumont, Pierre-François Lenne.


  • Résumé

    Les cellules positionnent leur plan de division de manière précise et prévisible. En particulier au tout début de l’embryogenèse, la cellule-œuf suit un patron de clivage extrêmement reproductible, mais néanmoins sensible aux perturbations (manipulation de la forme de la cellule,…), ce qui suggère une plasticité intrinsèque du système. Au cours de ma thèse, je me suis intéressée aux signaux qui déterminent la position des plans de division embryonnaires, et à leur compétition. Dans un premier temps, j’ai développé un modèle pour prédire le positionnement du plan de division à partir de la forme de la cellule, et de la présence éventuelle de polarité maternelle à la membrane ou d’une distribution inhomogène de yolk/organelles dans le cytoplasme. Ce modèle est basé sur les forces de traction exercées par les microtubules des astres interphasiques sur le fuseau mitotique/noyau. Sous l’hypothèse que ces forces dépendent de la longueur des microtubules (dynéine dans le cytoplasme) et sont modulées par la polarité membranaire, il est alors possible de trouver la position d’équilibre du fuseau, qui détermine le futur plan de division. J’ai également reproduit les formes et réarrangements des cellules (blastomères) dans l’embryon après la division, à l’aide d’un programme (The Surface Evolver) qui minimise l’énergie de surface sous différentes contraintes : ici les volumes, tensions de surface et éventuels confinements. En bouclant la génération des formes des blastomères avec la prédiction de leurs divisions (les formes permettent de prédire la division, qui permet de générer les formes des cellules filles, etc…), j’ai pu reproduire de manière quantitative quatre patrons de clivage représentatifs (poisson-zèbre, xenope, oursin, ascidie), jusqu’au stade 8 à 16 cellules, in silico. J’ai également testé le modèle sur des expériences classiques de perturbation dans ces quatre systèmes (Hertwig, Hörstadius, ablation de la polarité,…), et reproduit les observations de la littérature. Cette première partie suggère que ces systèmes sont auto-organisés et que la détermination du plan de division dépend principalement d’un nombre restreint de signaux. Dans un second temps, j’ai cherché à caractériser la compétition entre les signaux de forme et de polarité maternelle chez l’embryon d’oursin, de manière quantitative. Ce projet comprend une part importante d’imagerie 3D (position des centrosomes et division, polarité, forme des blastomères), ainsi que des expériences visant à tester le rôle de la forme/taille des blastomères et de la polarité (séparation des blastomères, microchambres de différentes formes, inhibition de la polarité,…). Les résultats obtenus sont comparés aux prédictions du modèle, cette fois basées sur la forme imagée des blastomères. Ces résultats expérimentaux confirment les hypothèses de l’étude in silico, et permettent d’évaluer la robustesse du système biologique pour affiner le modèle.

  • Titre traduit

    Cleavage pattern architecture in early embryos : a quantitative approach


  • Résumé

    Cells position their cleavage plane in a precise and predictable way. In particular, during the early embryogenesis, the cleavage pattern of the egg cell is extremely reproducible, yet sensitive to perturbation (shape manipulation,…), which suggests an intrinsic plasticity of the system. My PhD project is about the signals that determine the positions of the cleavage planes in the embryo, and their competition. First, I developed a model to predict division plane positioning from cell shape and possible additional cortical maternal polarity or inhomogeneous yolk/organelles distribution within the cytoplasm. This model is based on pulling forces exerted by interphase astral microtubules on the mitotic spindle/nucleus. Under the hypothesis that these forces depend on microtubule lengths (dynein in the cytoplasm), and are modulated by cortical polarity, it is then possible to find the equilibrium position of the spindle, that sets the future division plane. In addition, I reproduced the shapes and rearrangement of cells (blastomeres) within the embryo, with a program (The Surface Evolver) that minimizes surface energy under various constraints : here cell volumes, surface tensions and possible confinements. The modeling framework I used consisted in a loop between cell shape generation and division plane prediction (cell shape allows to predict cell division, that gives the daughter cells volumes and positions to generate the next cell shapes, and so on…). I could quantitatively reproduce four representative cleavage patterns (zebrafish, xenopus, sea urchin, ascidian), up to the 8 to 16-cell stage, in silico. I also tested the model on classic perturbation experiments in these four systems (Hertwig, Hörstadius, polarity ablation,…), and reproduced the observations of the literature. This first part suggests an auto-organization of these systems, and that the determination of the cleavage plane mainly depends on a limited number of signals. Second, I aimed at characterizing the competition between shape and maternal polarity cues, in a quantitative manner. This project comprises 3D imaging (positions of the centrosomes and division planes, polarity, blastomere shape), as well as experiments assessing the roles of blastomere shape/size and of polarity (blastomere separation, microchambers of different shapes, polarity inhibition,…). The results are compared to the predictions of the model, that now inputs the imaged blastomere shapes. These experimental results confirm the hypotheses of the in silico study, and allow assessing the robustness of the biological system to refine the model.

Accéder en ligne

bibliorespect


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.