Etude des fluctuations quantiques du courant aux fréquences optiques dans une jonction tunnel

par Pierre Février

Thèse de doctorat en Physique

Sous la direction de Marco Aprili.

Soutenue le 09-02-2017

à Paris Saclay , dans le cadre de École doctorale Physique en Île-de-France (Paris) , en partenariat avec Laboratoire de physique des solides (Orsay, Essonne) (laboratoire) et de Université Paris-Sud (établissement opérateur d'inscription) .


  • Résumé

    A forte polarisation (V >1V), une jonction tunnel planaire peut émettre de la lumière dans le domaine optique à des fréquences f<eV/h ~ 10¹⁴Hz. Cette émission résulte du rayonnement de plasmons-polariton de surface, générés par le bruit de grenaille dans la jonction. La densité spectrale de rayonnement dP/df est alors directement reliée à la densité spectrale des fluctuations du courant SII via une simple impédance de rayonnement: dP/df = R × SII. De la même manière, la densité spectrale de rayonnement du corps noir est reliée aux fluctuations thermiques du courant dans un conducteur ohmique via le théorème fluctuation-dissipation (TFD). Il semble alors naturel de décrire le rayonnement d'une jonction tunnel par la relation fluctuation-dissipation, dérivée par Scalapino et Rogovin [Annals of Physics 1974], généralisant le TFD aux conducteurs hors équilibre (V≠0). Nous avons étudié cette relation dans un régime où la jonction tunnel est fortement hors équilibre, lorsque eV ~1eV est de l'ordre de la hauteur de la barrière tunnel. La RFD est vérifiée à fréquence nulle (MHz), mais est violée de manière flagrante à fréquence finie (10¹⁴Hz). Nous attribuons cette violation à la non linéarité intrinsèque de la jonction. Nous dérivons une nouvelle expression pour la puissance émise, à partir de l'approche quantique de Landaueur-Büttiker du transport électronique. L'émission est alors interprétée en terme de recombinaison électron-trou dans les électrodes et rend compte d'une accumulation de charges dans la barrière. L'efficacité du couplage électron-photon est évaluée quantitativement via l'impédance de rayonnement de la jonction. Ce travail de thèse s'adresse à deux communautés, celle de la physique mésoscopique étudiant les mécanismes du transport électronique, et celle des opticiens voulant comprendre et optimiser l'émission de lumière dans ces systèmes.

  • Titre traduit

    Quantum current fluctuations in a tunnel junction at optical frequency


  • Résumé

    In a strongly voltaged biased tunnel junction, optical photon emission occurs at frequencies below the threshold f<eV/h ~ 10¹⁴Hz, mediated by the shot-noise-generated surface plasmon-polaritons. The spectral power density dP/df depends only on the current fluctuation spectral density SII and a radiation impedance: dP/df = R × SII . This expression is analogous to the relation between the power spectral density of a black body and thermal current fluctuations in a ohmic conductor, via the fluctuation-dissipation theorem (FDT). Therefore, it seems natural that the optical power emitted by a tunnel junction be given by the fluctuation-dissipation relation (FDR) derived by Scalapino and Rogovin [Annals of Physics 1974], which extends the FDT to out-of-equilibrium conductors (V≠0). When the junction is far-from-equilibrium, i.e. when eV ~1eV is of the order of magnitude of the tunnel barrier height, our experiments show that the FDR holds at zero frequency (MHz), but breaks down at finite frequency (10¹⁴Hz). We attribute the discrepancy between the FDR and our measurements to the junction's intrinsic current-voltage non-linearity. We derive a new expression for emitted optical power, based on the Landauer-Büttiker formalism for quantum electronic transport. Light emission from the junction can then be interpreted as due to electron-hole recombination processes in the electrodes. This expression also account for charge accumulation in the tunnel barrier. The resulting estimate of the junction's radiation impedance is a measure of the electron-photon coupling e_ciency in our device. This work should be of interest to both mesoscopic physicists studying electronic transport mechanisms, and those of optics community studying light emission in microstructures.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.