Récupération d’énergie pour système intégré moteur roue, application au véhicule électrique

par Khaled Itani

Thèse de doctorat en Génie électrique

Sous la direction de Zoubir Khatir et de Alexandre de Bernardinis.

Soutenue le 03-07-2017

à Paris Saclay , dans le cadre de Electrical,Optical,Bio: PHYSICS_AND_ENGINEERING , en partenariat avec Ecole normale supérieure Paris-Saclay (établissement opérateur d'inscription) et de Systèmes et applications des technologies de l'information et de l'énergie (Paris) (laboratoire) .


  • Résumé

    Le sujet de thèse aborde la quantification du flux de puissance parcourant les différents systèmes de conversion d'énergie statiques et dynamiques pour aboutir aux éléments de stockage de nature chimique / électrostatique / mécanique lors d'un freinage hybride récupératif brusque issu d’un véhicule électrique à traction avant. Le véhicule électrique est équipé de deux ensembles intégrés moteur-roues indépendants. Le côté commande des convertisseurs et des machines électriques sera aussi traité. La problématique concernera les cas de freinage régénératif brusque imposant des contraintes électriques et mécaniques élevées aux éléments de conversion d'énergie et de stockage. L'outil de simulation adopté est le logiciel Matlab/Simulink®. Un modèle assez fin du véhicule électrique utilisé sera développé afin de pouvoir simuler le comportement du véhicule conformément à la distribution des forces de freinage délivrée par le système de répartition et de quantification des forces de freinage. Une étude de la cinématique et de la dynamique du véhicule selon les différents états de route sera aussi examiné. Cette étude sera utilisée à posteriori dans la formulation des lois de distribution des forces de freinage. Les moteurs utilisés sont de type synchrones à aimants permanents intérieurs. L'objectif est d'assurer un couple électrique de freinage élevé à hautes vitesses de conduite du véhicule. A cette fin, la commande optimale de ces moteurs sera basée sur une nouvelle méthode de génération des courants de références assumant ainsi un couple régénératif élevé et donc une amélioration de l'énergie récupérée. Le système de stockage sera mixte et comportera une batterie Li-Ion et des cellules de supercondensateurs afin de réduire les contraintes sur la batterie et prolonger ainsi sa durée de vie. La structure de puissance de ce système sera analysée ainsi que le système de commande proposé du hacheur à 3 niveaux interfaçant l'ultracapacité avec le bus DC. Une résistance de freinage commandée par un régulateur pseudo-cascade sera aussi intégrée afin de réduire, si nécessaire, les contraintes sur la batterie. L'évaluation et la répartition des forces de freinage sur les quatre roues du véhicule en fonction de l'état de la route sont des éléments clés pour la stabilité du véhicule lors du freinage. La méthode de distribution et de quantification des forces de freinage proposée devra maintenir cette stabilité, répondre aux normes internationales et tirer profit de la présence des moteur-roues à l'avant du véhicule afin de maximiser l'énergie récupérée. Les travaux ont été étendus pour inclure une étude comparative avec un système de stockage contenant un élément de stockage à énergie cinétique comme source d'énergie secondaire pour un véhicule en opération de freinage et de traction. La thèse est le point de départ d'une collaboration de recherche entre l'IFSTTAR /Satie et le département de Génie Electrique du Cnam - Liban, centre associé au Conservatoire National des Arts et Métiers (Paris - France).

  • Titre traduit

    Energy recovery for integrated wheel-motor, electric vehicle application


  • Résumé

    The thesis will address the quantification of power flow going through the different energy static and dynamic conversion systems to attain the chemical / electrostatic / mechanical storage elements during a hybrid regenerative brutal braking of a front-wheel driven electric vehicle. The electric vehicle is equipped by two integrated wheel-motors independent sets. The control of the converters and electrical machines is also treated. The problematic concerns the brutal regenerative braking case imposing high electrical and mechanical constraints on energy conversion and storage elements. The simulation tool adopted is Matlab/Simulink®. A detailed model of the used electric vehicle has been developed in order to be able to simulate the vehicle behavior with respect to the braking forces distribution delivered by the repartition and quantification of braking forces system. A study of the kinematics and dynamics of the vehicle according to different road types will be also considered. This study will be used retrospectively in the formulation of the braking forces distribution laws. The motors used are interior permanent magnet synchronous type. The objective is to ensure high electrical braking torque at high driving speeds of the vehicle. To this end, the optimal control of these motors will be based on a new current references generation method assuming then a high regenerative torque and therefore an improvement in the recovered energy. The hybrid storage system includes a Li-Ion battery and supercapacitors cells to reduce stress on the battery and to extend its life. The power structure of the system will be analyzed as well as the 3-level DC/DC converter interfacing the ultracapacitor with the DC bus proposed control system. A braking resistor controlled by a pseudo- cascaded controller will also be integrated to reduce, if necessary, the constraints on the battery. The evaluation and distribution of braking forces on the four wheels depending on road conditions are key elements for the stability of the vehicle during braking. The method of distribution and quantification of braking forces proposed should maintain this stability , meet international standards and take advantage of the presence of wheel motors in the front of the vehicle to maximize the energy recovered. The work has been extended to include a comparative study with a system containing a kinetic energy storage element as a secondary energy source for a braking and traction vehicle operation. The thesis is the starting point of a research collaboration between IFSTTAR / Satie and the Electrical Engineering Department of Cnam- Liban, associated center of the Conservatoire National des Arts et Métiers ( CNAM ), Paris, France.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : École normale supérieure. Bibliothèque.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.