Contributions statistiques aux prévisions hydrométéorologiques par méthodes d’ensemble

par Marie Courbariaux

Thèse de doctorat en Statistiques appliquées

Sous la direction de Éric Parent.

Soutenue le 27-01-2017

à Paris Saclay , dans le cadre de École doctorale Agriculture, Alimentation, Biologie, Environnement, Santé (2015-.... ; Paris) , en partenariat avec Laboratoire Mathématiques et Informatique Appliquées (Paris) (laboratoire) , Université Paris-Saclay (établissement opérateur d'inscription) et de Mathématiques et Informatique Appliquées (laboratoire) .


  • Résumé

    Dans cette thèse, nous nous intéressons à la représentation et à la prise en compte des incertitudes dans les systèmes de prévision hydrologique probabilistes à moyen-terme. Ces incertitudes proviennent principalement de deux sources : (1) de l’imperfection des prévisions météorologiques (utilisées en intrant de ces systèmes) et (2) de l’imperfection de la représentation du processus hydrologique par le simulateur pluie-débit (SPQ) (au coeur de ces systèmes).La performance d’un système de prévision probabiliste s’évalue par la précision de ses prévisions conditionnellement à sa fiabilité. L’approche statistique que nous suivons procure une garantie de fiabilité à condition que les hypothèses qu’elle implique soient réalistes. Nous cherchons de plus à gagner en précision en incorporant des informations auxiliaires.Nous proposons, pour chacune des sources d’incertitudes, une méthode permettant cette incorporation : (1) un post-traitement des prévisions météorologiques s’appuyant sur la propriété statistique d’échangeabilité et permettant la prise en compte de plusieurs sources de prévisions, ensemblistes ou déterministes ; (2) un post-traitement hydrologique utilisant les variables d’état des SPQ par le biais d’un modèle Probit arbitrant entre deux régimes hydrologiques interprétables et permettant ainsi de représenter une incertitude à variance hétérogène.Ces deux méthodes montrent de bonnes capacités d’adaptation aux cas d’application variés fournis par EDF et Hydro-Québec, partenaires et financeurs du projet. Elles présentent de plus un gain en simplicité et en formalisme par rapport aux méthodes opérationnelles tout en montrant des performances similaires.

  • Titre traduit

    Statistical contributions to hydrometeorological forecasting from ensemble methods


  • Résumé

    In this thesis, we are interested in representing and taking into account uncertainties in medium term probabilistic hydrological prediction systems.These uncertainties mainly come from two sources: (1) from the imperfection of meteorological forecasts (used as inputs to these systems) and (2) from the imperfection of the representation of the hydrological process by the rainfall-runoff simulator (RRS) (at the heart of these systems).The performance of a probabilistic forecasting system is assessed by the sharpness of its predictions conditional on its reliability. The statistical approach we follow provides a guarantee of reliability if the assumptions it implies are complied with. We are also seeking to incorporate auxilary information to get sharper.We propose, for each source of uncertainty, a method enabling this incorporation: (1) a meteorological post-processor based on the statistical property of exchangeability and enabling to take into account several (ensemble or determistic) forecasts; (2) a hydrological post-processor using the RRS state variables through a Probit model arbitrating between two interpretable hydrological regimes and thus representing an uncertainty with heterogeneous variance.These two methods demonstrate adaptability on the various application cases provided by EDF and Hydro-Québec, which are partners and funders of the project. Those methods are moreover simpler and more formal than the operational methods while demonstrating similar performances.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.