Phénomènes de propagation de champignons parasites de plantes par couplage de diffusion spatiale et de reproduction sexuée
Auteur / Autrice : | Valentin Doli |
Direction : | François Castella, Frédéric Hamelin |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques et applications |
Date : | Soutenance le 22/12/2017 |
Etablissement(s) : | Rennes 1 |
Ecole(s) doctorale(s) : | École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes) |
Partenaire(s) de recherche : | ComuE : Université Bretagne Loire (2016-2019) |
Laboratoire : Institut de recherche mathématique (Rennes ; 1996-....) - IRMAR |
Mots clés
Résumé
On considère des organismes qui mixent reproduction sexuée et asexuée, dans une situation où la reproduction sexuée fait intervenir à la fois de la dispersion spatiale et de la limitation d'appariement. Nous proposons un modèle qui implique deux équations couplées, la première étant une équation différentielle ordinaire de type logistique, la seconde étant une équation de réaction-diffusion. Grâce à des valeurs réalistes des différents coefficients, il s'avère que la deuxième équation fait intervenir une échelle de temps rapide, alors que la première fait intervenir une échelle de temps lente. Dans un premier temps, on montre l'existence et l'unicité de solutions au système original. Dans un second temps, dans la limite où l'échelle de temps rapide est considérée infiniment rapide, on montre la convergence vers une dynamique réduite d'état d'équilibre, dont les termes correctifs peuvent être calculés à tout ordre. Troisièmement, en utilisant des propriétés de monotonie de notre système coopératif, on montre l'existence d'ondes progressives dans une région particulière de l'espace des paramètres (cas monostable).