Methods to evaluate accuracy-energy trade-off in operator-level approximate computing

par Benjamin Barrois

Thèse de doctorat en Traitement du signal et télécommunications

Sous la direction de Olivier Sentieys.

  • Titre traduit

    Méthodes d'évaluation du compromis précision-énergie pour le calcul approximatif niveau opérateur


  • Résumé

    Les limites physiques des circuits à base de silicium étant en passe d'être atteintes, de nouveaux moyens doivent être trouvés pour outrepasser la fin de la loi de Moore. Beaucoup d'applications peuvent tolérer des approximations dans leurs calculs à différents niveaux, sans dégrader la qualité de leur sortie, ou en la dégradant de manière acceptable. Cette thèse se concentre sur les architectures arithmétiques approximatives afin de saisir cette opportunité. Tout d'abord, une étude critique de l'état de l'art des additionneurs et multiplieurs approximatifs est présentée. Ensuite, un modèle de propagation d'erreur virgule-fixe mettant en œuvre la densité spectrale de puissance est proposée, suivi d'un modèle de propagation du taux d'erreur binaire positionnel des opérateurs approximatifs. Les opérateurs approximatifs sont ensuite utilisés pour la reproduction des effets de la VOS dans les opérateurs arithmétiques exacts. Grâce à notre outil de travail open-source ApxPerf et ses bibliothèques synthétisables C++ apx_fixed pour les opérateurs approximatifs et ct_float pour l'arithmétique flottante basse consommation, deux études consécutives sont proposées, basées sur des applications de traitement du signal complexes. Tout d'abord, les opérateurs approximatifs sont comparés à l'arithmétique virgule-fixe, et la supériorité de la virgule-fixe est soulignée. Enfin, la virgule fixe est comparée aux petits flottants dans des conditions équivalentes. En fonction des conditions applicatives, la virgule-flottante montre une compétitivité inattendue face à la virgule-fixe. Les résultats et discussions de cette thèse donnent un regard nouveau sur l'arithmétique approximative et suggère de nouvelles directions pour le futur des architectures efficaces en énergie.


  • Résumé

    The physical limits being reached in silicon-based computing, new ways have to be found to overcome the predicted end of Moore's law. Many applications can tolerate approximations in their computations at several levels without degrading the quality of their output, or degrading it in an acceptable way. This thesis focuses on approximate arithmetic architectures to seize this opportunity. Firstly, a critical study of state-of-the-art approximate adders and multipliers is presented. Then, a model for fixed-point error propagation leveraging power spectral density is proposed, followed by a model for bitwise-error rate propagation of approximate operators. Approximate operators are then used for the reproduction of voltage over-scaling effects in exact arithmetic operators. Leveraging our open-source framework ApxPerf and its synthesizable template-based C++ libraries apx_fixed for approximate operators, and ct_float for low-power floating-point arithmetic, two consecutive studies are proposed leveraging complex signal processing applications. Firstly, approximate operators are compared to fixed-point arithmetic, and the superiority of fixed-point is highlighted. Secondly, fixed-point is compared to small-width floating-point in equivalent conditions. Depending on the applicative conditions, floating-point shows an unexpected competitiveness compared to fixed-point. The results and discussions of this thesis give a fresh look on approximate arithmetic and suggest new directions for the future of energy-efficient architectures.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?