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Introduction in Français

La Computation Aproximée fournit un cadre de réflexion qui nous permet de
raisonner sur l’exactitude en tant que ressource qui peut être exploitée. Les besoins
en ressources informatiques sont constants dans tous les domaines de l’informatique.
Cependant, les processeurs plus rapides et les dispositifs de stockage plus gros coûtent
plus cher, consomment plus d’énergie et dissipent plus de chaleur. C’est pourquoi les
idées d’Approximate Computing séduisent les concepteurs d’une large gamme de plates-
formes, des systèmes embarqués aux grands superordinateurs.

De nombreux domaines informatiques sont de nature approximative. Le traitement
numérique du signal est un domaine où la précision est perdue dès que le signal est
numérisé. Dans le Machine Learning, il n’ y a généralement pas de bons ou de mauvais
résultats, mais plutôt des résultats plus ou moins précis. L’analyse de Big Data utilise des
méthodes statistiques qui tolèrent les imprécisions dans des éléments de données indivi-
duels. Les applications dans ces domaines contiennent de nombreuses Zones de Pardon
qui peuvent endurer des imprécisions, offrant de nombreuses opportunités d’exploiter la
précision en tant que ressource. Néanmoins, les développeurs s’efforcent généralement
de rendre les programmes plus précis que nécessaire, en gaspillant des ressources qui
pourraient être allouées efficacement ailleurs.

Les zones de pardon sont l’élément clé de la Computation Aproximée. Ces zones sont
des parties d’un système (code, fils, composants de hardware, données d’entrée/sortie,
accès mémoire) qui peuvent subir un certain degré d’approximation.

Contributions Cette thèse propose trois contributions dans le domaine de l’Approxi-
mate Computing (i) une optimisation approximative du compilateur, (ii) un outil pour
mesurer automatiquement la performance des petits segments de code et (iii) un mé-
canisme de compression de code qui considère les programmes comme des données de
perte.

Approximate Loop Unrolling
Approximate Loop Unrolling est une nouvelle optimisation qui utilise les idées de la

Computation Aproximée pour réduire les temps d’exécution et la consommation d’éner-
gie des boucles. L’optimisation combine l’analyse statique et les transformations de code
afin d’améliorer la performance des boucles en échange de faibles pertes de précision.

i



ii

Approximate Unrolling repose sur l’observation que les données telles que les séries
temporelles, le son, la vidéo et les images sont souvent représentées comme des tableaux
où les emplacements contigus contiennent des valeurs similaires. Comme conséquence
de cette similitude voisine, les calculs produisant ces données sont généralement des
fonctions lisses localement. En d’autres termes, les calculs produisant ou modifiant des
valeurs de tableaux proches représentant ces types de données, produisent souvent des
résultats similaires.

Notre technique exploite cette observation en cherchant des boucles où les fonctions
sont mappées à des places de tableaux contiguës dans chaque itération. Si le calcul de
la fonction est coûteux, nous la remplaçons par des interpolations moins coûteuses des
valeurs assignées aux valeurs du tableau voisin. En échange de cette perte de précision,
nous obtenons une boucle plus rapide et moins consommatrice d’énergie.

Nous modifions le code source du compilateur C2 d’OpenJDK pour inclure Approxi-
mate Unrolling. Nous avons réalisé une série d’expériences avec cette implémentation et
un ensemble soigneusement sélectionné de bibliothèques Java du monde réel.

Nos résultats montrent qu’Approximate Unrolling est capable de réduire le temps
d’exécution et la consommation d’énergie du CPU pour le code généré d’environ 50%
à 110% tout en maintenant la Qualité de Service (QoS) à des niveaux acceptables.
Comparativement à la Perforation de Boucle (l’état de l’art de la technique de calcul
approximatif pour l’optimisation de boucles), Approximate Unrolling a mieux préservé
la précision dans 76% des cas et a soulevé moins d’exceptions fatales.

Primer

Les techniques de compression de code ont un effet positif dans des domaines éco-
nomiques importants tels que les systèmes embarqués et Internet of Things/Wireless
Sensor Networks (IoT/WSN). Une taille de code plus petite réduit les besoins en mé-
moire des systèmes embarqués. Cela se traduit par des économies considérables en termes
de consommation d’énergie et de coûts de fabrication. La compression du code permet
également de réduire le trafic réseau, ce qui représente une consommation d’énergie
énorme pour les périphériques IoT/WSN. Par conséquent, lors de la reprogrammation
à distance de dispositifs IoT/WSN, un système efficace de compression de code pour le
code est considéré comme bénéfique ou même nécessaire.

Cette thèse présente Primer, le premier (à notre connaissance) algorithme de com-
pression lossy pour les instructions de l’assembleur ARM. Primer est basé sur deux
observations. La première observation est que si certains bits d’un programme sont sup-
primés, ils peuvent être déduits en retour, en sachant comment un programme doit se
comporter. La deuxième observation est l’existence de zones de pardon dans les pro-
grammes. Primer va exploiter les zones de tolérance pour compresser les programmes
d’une manière lossy : le programme décompressé peut contenir un certain degré de dégra-
dation sous forme de flips bit sur ses instructions assembleur et terminer son exécution
correctement.
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Primer fonctionne en enlevant jusqu’ à 20% du total des bits du programme. Cette
suppression est faite en utilisant une stratégie soigneusement conçue basée sur l’Algo-
rithme d’Emballage Successif (SPA), qui sélectionne les bits à enlever d’une manière
qui maximise les chances de récupérer les bits manquants. Résultat de la suppression
des bits, il y a maintenant 2k combinaisons de valeurs possibles. Ensuite, Primer trie
toutes les combinaisons de valeurs possibles par leur probabilité d’être la combinaison
présente dans le programme original. La position dans cet ordre est utilisée pour encoder
chaque combinaison. L’intuition ici est que la combinaison du programme original aura
un petit numéro de encodage, nécessitant moins de mémoire pour représenter. Jusqu’ à
cette phase, Primer est un algorithme sans perte et peut être interrompu ici. Si l’algo-
rithme est autorisé à continuer, il utilise une fonction d’évaluation de la qualité de service
(QoS) pour déterminer quelles encodages plus petites (codage de programmes similaires)
peuvent être utilisées sans affecter la QoS. Notez que les encodages plus petites exigent
moins de mémoire, donc l’utilisation d’un programme similaire au lieu de l’original peut
entraîner une compression supplémentaire.

Nous avons évalué Primer en utilisant GZip comme base de référence. Nos expériences
ont consisté à comprimer un ensemble de programmes 32 bits ARMv5 en utilisant GZip
comme base de référence et à comparer les taux de compression avec ceux obtenus en
utilisant Primer. Nos résultats montrent que Premier a amélioré jusqu’ à 10

AutoJMH
La plupart des auteurs du domaine de l’Approximate Computing utilisent des bench-

marks tels que SPEC, SciMark et PARSEC pour évaluer les gains d’accélération obtenus
avec leurs techniques. Les benchmarks sont la façon la plus simple de tester les perfor-
mances. Elles sont déjà construites ; elles sont entretenues et révisées par des spécialistes
de la performance, ce qui facilite la répétition des expériences. C’est pourquoi les tests
de référence sont largement acceptés par la communauté scientifique. Cependant, les
benchmarks sont de grands programmes avec des milliers ou des millions de lignes de
code. Par conséquent, lorsque des optimisations sont appliquées à certaines parties de
ces programmes, l’accélération perçue des performances dépend fortement de l’impact
de la zone optimisée sur le système, plutôt que de l’effet de la technique elle-même. Pour
étudier l’impact d’une technique indépendamment d’un système, les ingénieurs en per-
formance de l’industrie ont proposé une technique différente (et complémentaire) appelée
Microbenchmarks. Ce type d’essais de performance permet d’effectuer les meilleurs tests
de performance du grain (p. ex., essai de la performance d’une boucle unique ou d’une
assignation variable).

Cependant, le développement des microbenchmarks reste encore un métier que seuls
quelques experts maîtrisent. En particulier, le manque de soutien des outils empêche
une adoption plus large du microbenchmarking. Les ingénieurs qui conçoivent des micro-
benchmark font très souvent deux erreurs : ils oublient de concevoir les essais d’une ma-
nière qui empêche le JIT d’effectuer l’élimination des codes morts et les plis/propagations
constantes (CF/CP). Par conséquent, le microbenchmark est soumis à des optimisations
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différentes de celles du segment d’origine analysé et le temps mesuré ne reflète pas la
prise en compte de ce segment dans le contexte de l’application plus large.

Dans cette thèse, nous proposons de générer automatiquement des microbenchmarks
Java à partir d’un segment spécifique d’une application Java. Les tests générés sont
garantis exempts de code mort et empêchent les CF/CP.

Nous évaluons la qualité des microbenchmarks générés automatiquement en recréant
des microbenchmarks manuscrits par des experts en performance. Les microbenchmarks
générés automatiquement mesurent les mêmes temps que les microbenchmarks écrits par
les experts de l’HJM. De plus, nous demandons aux ingénieurs Java professionnels sans
expérience en évaluation de performance de construire des microbenchmarks. Tous ces
tests conduisent à des mesures faussées dues à des décisions naïves lors de la conception
des benchmarks, alors que celles générées par notre outil ont permis d’éviter toutes ces
erreurs.

Conclusions et Travaux Futurs
La Computation Aproximée est un vaste champ d’études qui propose un nouveau

point de vue sur l’exactitude. Cette thèse proposait trois contributions au domaine (i)
Approximate Unrolling : une optimisation de compilateur indépendant de la machine,
(ii) AutoJMH : un outil pour mesurer l’accélération des segments de code faisant l’objet
d’une approximation et (iii) Primer : le premier algorithme de perte pour les instructions
d’assembleur.

Notre travail futur consistera à ajouter à l’implémentation d’Approximate Unroroll
un moyen de prédire les pertes de précision. L’implémentation est actuellement capable
de prédire seulement quelles boucles obtiendront des gains d’accélération grâce aux trans-
formations. Une autre direction est AutoJHM. Bien qu’AutoJMH est capable d’éviter
plusieurs erreurs courantes commises par des ingénieurs sans expérience en microbench-
marking, il est encore loin d’être capable d’automatiser complètement toutes les situa-
tions potentielles qui peuvent survenir lors de la conception d’un test. Par conséquent,
nous envisageons d’ajouter la prise en charge d’une gamme plus large de pièges de micro-
benchmarking, ce qui rend l’outil plus intelligent. Enfin, bien que Primer est capable de
fournir des taux de compression prometteuses, nous croyons qu’il reste encore beaucoup
à explorer dans cette nouvelle direction. En outre, des questions telles que la vitesse de
compression et la consommation d’énergie de l’algorithme sont restées inexplorées.





Chapter 1

Introduction

1.1 Context

Approximate Computing provides a thought framework that allow us to reason about
accuracy as a resource. This clever view produces yet another insight: just like any asset,
accuracy can be traded in exchange for other resources. Indeed, previous works in the
area show promising results, as they obtain considerable improvements in execution
times [SDMHR11], memory usage [FRPVTCS13] and energy consumption [SDH+14] in
exchange for small imprecisions in programs. These works have discovered the existence
of Forgiving Zones where accuracy can be tunned to make a program faster or more
energy-efficient.

Many computational domains are approximate in nature. Digital Signal Processing
is a field where precision is lost as soon as the signal is digitalized. In Machine Learning
there are usually no right or wrong outputs, but rather more or less accurate ones.
Big Data analysis uses statistical methods that tolerate imprecisions in single elements
of data. Applications in these domains contain numerous Forgiving Zones that can
endure inaccuracy, providing numerous opportunities to exploit accuracy as a resource.
Still, developers usually strive to make programs more accurate than required, wasting
resources that could be efficiently allocated elsewhere.

On the other hand, a proper analysis on accuracy requirements might lead to better
application capabilities. An example of this are sensors networks that only report data
diverging from predicted models, extrapolating the rest [ACDFP09]. Giving up some
accuracy, the sensor network extends considerably the life of its power source.

The need for computational resources is constant in all fields of computer science.
Yet, faster CPUs and larger storage devices cost more money, consume more energy and
dissipate more heat. Hence, the ideas of Approximate Computing are appealing to de-
signers of a wide range of platforms, from embedded systems to large super-computers.
Embedded designers are constantly pushing towards better battery life (i.e. energy
consumption), lower device cost (which increases profit) and lower operational tem-
peratures (which limits device’s location). In the field, these factors are frequently of
greater concern than accuracy. On the side of the computational spectrum, the explo-
sion in information generated by the industry has forced mayor companies to constantly
invest in more data centers, making the energy bill a cost to consider. The storage re-
quirements [GR11] and energy consumption [Del15] forecast by 2020 has led authors
[Mit16, SJLM14] to consider approximation as an alternative, questioning whether buy-
ing more data centers alone will cope with the projected space and processing require-
ments.

9
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Forgiving Zones Forgiving Zones are the key enabler in Approximate Computing.
Such zones are parts within a system (code, wires, hardware components, input/output
data, memory accesses) that can endure some degree of approximation. During the
rest of this report we will use the concept repeatedly and referring to a broad set
of elements, such as loops [SDMHR11, BC10], circuit components [RRV+14], input
parameters [HSC+11], variables types [BM99, BMM14] and memory access [TZW+15],
among others.

1.2 Contributions

This thesis proposes three contributions to the field of Approximate Computing (i) a ap-
proximate compiler optimization, (ii) a tool to automatically measure the performance
of small code segments and (iii) a code compression mechanism that sees programs as
lossy data. The two first contributions (Approximate Unrolling and AutoJMH) are re-
lated to programming with approximation, providing a way to approximate and a way
to measure the performance impact of approximation, respectively. The third contribu-
tion is a compression algorithm that goes beyond the traditional believe that programs
must be compressed in a lossless way, showing that lossy techniques can be used to
compress program instructions as well.

1.2.1 Approximate Unrolling

To effectively program with approximation, developers must be given language, runtime
and compiler support. Ideally, an approximating compiler would be equipped with a
large toolbox of machine-independent and machine-dependent approximate optimiza-
tions that exploit accuracy-as-a-resource in the widest possible range of situations. This
is justified as approximation techniques address only specific forgiving zone types. Un-
fortunately, the optimization available today to approximate compilers are limited to a
tiny set of situations [SBR+15] when compared with traditional optimizing compilers.

This thesis increases the amount of forgiving zones approximating compilers can
handle by presenting Approximate Unrolling, a scalar loop optimization that reduces
execution time and energy consumption of counted loops mapping a function over the
elements of an array. Approximate Unrolling transforms loops similarly to Loop Un-
rolling. However, unlike its exact counterpart, our optimization does not unroll loops
by adding exact copies of the loop’s body. Instead, it adds code that interpolates the
results of previous iterations.

Approximate Unrolling was implemented in the OpenJDK Hotspot C2 Compiler.
Using this modified version of the industry standard compiler, a series of experiments
in four real-world, popular Java libraries from various domains were performed. The
results show that Approximate Unrolling increased performance and energy savings
(110% to 200%) while keeping results within acceptable accuracy bounds. Approxi-
mate Unrolling is also compared to Loop Perforation, the state of the art approximate
loop approximation. The findings are (i) both optimizations are best used in different
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scenarios (ii) when both optimizations could be applied, Approximate Unrolling pre-
served accuracy better in 76% of the cases (iii) Approximate Unrolling is safer, as it
caused the programs in our dataset to crash only twice, vs. seven crashes caused by
Loop Perforation.

1.2.2 Automatic generation of Java Microbenchmarks

Approximate Computing has two opposing goals: (i) to improve on resource consump-
tion at the expenses of accuracy and (ii) do so while maintaining programs’ Quality of
Service (QoS). Several works address the problem of measuring QoS [RSA+15, MSHR10,
SPM+14]. However, to the best of our knowledge, there is no tool that can automate
large scale suites of performance benchmarks.

The thesis contributes AutoJMH, a tool able to create such suites, by generating
automatically a suite of performance tests know as Microbenchmarks. Such tests eval-
uate, in isolation, the execution time of small code segments that play a critical role in
large applications. The accuracy of a microbenchmark depends on two critical tasks: to
wrap the code segment into a payload that faithfully recreates the execution conditions
of the large application; and to build a scaffold that runs the payload a large number of
times to get a statistical estimate of the execution time. While recent frameworks such
as the Java Microbenchmark Harness (JMH) address the scaffold challenge, developers
have very limited support to build a correct payload.

AutoJMH provides the automatic generation of payloads, starting from a code seg-
ment selected in a large application. Our generative technique prevents two of the most
common mistakes made in microbenchmarks: dead code elimination and constant fold-
ing. A microbenchmark is such a small program that it can be “over-optimized” by
the JIT and result in distorted time measures, if not designed carefully. Our technique
automatically extracts the segment into a compilable payload and generates additional
code to prevent the risks of “over-optimization”. The whole approach is embedded in a
tool called AutoJMH, which generates payloads for JMH scaffolds.

The capabilities of AutoJMH were validated, showing that the tool is able to process
a large percentage of segments in real programs. We also show that AutoJMH can match
the quality of payloads that are handwritten by performance experts and outperform
those written by professional Java developers without experience in microbenchmarking.

1.2.3 Lossy Compression of Programs

Image and sound are approximate by nature, while source code and assembler instruc-
tions have been traditionally considered to be strictly exact data. Recent research
reports two phenomena that challenges the idea of code as exact data: Forgiving Zones
[Mit16, XMK16] and Program Diversity [BM15, BAM14]. Forgiving zones are areas
of the program that can endure some level of approximation and still produce good
results. Program diversity occurs when two programs that were implemented in two
distinct ways, seem to be the same to an observer. Like two different images perceived
as the same by a user, if program A can produce the same results as program B, we
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can say that A is an approximation of B. This example proves that the areas where
Approximate Computing can be used are far from being exhausted.

Based on the idea that programs are in fact approximate data, this thesis intro-
duces Primer, the only (to the best of our knowledge) lossy compression algorithm for
ARM assembler instructions. Primer exploit forgiving zones and diversity to compress
programs in a lossy matter: the decompressed program might contain some degree of
degradation in the form of bit flips on its assembler instructions and still complete its
execution correctly. Our experiments show that by losing information, Primer is able
to improve on the state-of-the-art code compression methods by a 10%.

1.3 Outline

This thesis is organized as follows.
Chapter 2 presents the state of the art. This chapter surveys existing techniques to

identify forgiving zones, enumerate a large part of the existing techniques for approxi-
mation and then it goes into details on how the resource gains and accuracy losses are
measured.

Chapter 3 presents the first contribution of this thesis, Approximate Unrolling.
There we explain the syntax and semantics of the loops targeted by the optimization.
Its implementation on the OpenJDK compiler is also described in detail and finally,
a thorough evaluation is presented, where the execution times and energy consump-
tion reductions and accuracy losses obtained as results of using the optimization are
evaluated.

Chapter 4 illustrates AutoJMH. Initially, a introduction on microbenchmarking (as
well as the challenges to it) is presented. The chapter divides microbenchmarking
into scaffolding and payload. The scaffolding part is constructed using previous works,
while a novel method for generating payloads is described. The chapter also shows
the experiments conducted to evaluate AutoJMH, where it was shown that the tool
outperformed Java Engineers without experience in microbenchmarking.

Chapter 5 describers Primer. Initially, the chapter illustrates in-depth the founda-
tions for a code recovery mechanisms that allows Primer to compress the ARM instruc-
tions. Secondly, we explain the basis for the lossy part of the algorithm, which exploits
forgiving zones to compress the information a lossy way. The chapter finishes showing
the evaluation of the tool, which is able to improve by 10% the current state of the art
algorithms for code compression.

Chapter 6 concludes the thesis, providing a summary of its contributions and out-
lining our future work in Approximate Computing.



Chapter 2

State of the Art
Employing the imprecise nature of data to obtain CPU time or storage space is not a
new idea. Approximation has been exploited, pretty much ad-hoc, for quite some time
now. In some fields, approximation is natural (video, sound) or even inevitable (floating
point operations). Traditionally, it has been considered a factor to deal with.

The novelty of Approximate Computing lies in the mental shift that goes from using
only those imprecisions that came naturally (or avoiding it altogether), into actively
seeking new approximation opportunities. Practitioners of the field consider accuracy
not a goal, but a resource. Hence, approximation becomes an opportunity rather than
a problem.

Figure 2.1: Approximate Computing Field map. Each bubble represent a technique
described in this chapter. Rows divide techniques by the challenge being addressed,
while columns indicate whether the technique is designed for Software or Hardware.
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This chapter provides a survey of the Approximate Computing’s field. It begins by
mentioning other surveys in the field that can help the reader widen their perception
of the state of the art. Afterwards, the chapter details challenges faced by Approxi-
mate Computing practitioners, such as defining a Quality of Service metric, identifying
Forgiving Zones and measuring accuracy losses and resource gains.

Addressing Approximate Computing’ challenges are the driving factor for most re-
searchers in the field and clearly divide the area in research directions, providing initial
classification criteria. The other two criteria used in the chapter are (a) software/hard-
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ware techniques and (b) its field of application. These criteria allow to build a field’s
map like the one shown in Figure 2.1, which in turn serves as guidance to describe the
numerous works in the area.

This chapter ends by discussing how each individual contribution advances Approx-
imate Computing as a whole.

2.1 Related Surveys

Other authors have proposed surveys on Approximate Computing. The most up to date
and complete one is authored by Mittal [Mit16]. This review shows the many strategies
for identifying forgiving zones, mentions a large group of techniques for approximation
and enumerates the hardware components targeted by each technique.

While some works in the area are software-only, the bulk of strategies for Approx-
imate Computing exploits opportunities in hardware. Hence, another survey worth of
mention is the one by Xu et al. [XMK16]. This review, while being less exhaustive
than Mittal’s, provide a much more in-depth vision of hardware techniques. This focus
is also shared by the survey of Han et al. [HO13] which also gives special attention to
hardware.

The body of work related to Approximate Computing is considerable. Some areas
are large enough to deserve surveys of their own. Jian presented a comparative study
on approximate arithmetic units [JLL+17] and then another on approximate multipliers
[JLM+16], while Dutt [DNT16] proposed a survey on approximate adders only.

Outside academic publications, Sampson maintains a web on-line survey [Sam17]
adding entries as the field progresses. While not quite in-depth, this website is the field’s
most exhaustive survey, freed from the space restrictions imposed to publications.

Contributions of this Review Besides the required mention of the techniques to
first identify and then approximate forgiving zones, this chapter contributes to the ex-
isting reviews a detailed enumeration of the strategies used to evaluate the accuracy
losses and resource gains, which the previous surveys tend to somewhat overlook. The
importance of this is that while the works on Approximate Computing presents remark-
able savings in performance and energy by relaxing accuracy requirements, the way
these gains are measured remains in the background. As example, energy consumption
in nano-scale circuits is obtained using models [YFE+07] and simulations [GMP+11],
while performance can be notoriously difficult to measure properly [Ale14a]. Under-
standing how results are obtained provides a novel and complementary point of view
on the field that has not been explored before.

2.2 Challenges to Practitioners

Current results in the area are very promising. Yet, effectively using accuracy as a
resource is by no means an easy task. This requires practitioners to (i) use existing
domain-specific knowledge to choose a Quality of Service metric to rule whether the
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system still produce acceptable results, (ii) identify the system’s forgiving zones, (iii)
select or design suitable approximation strategies and finally, (iv) evaluate both the
functional (correctness, safety) and non-functional (performance, energy consumption)
system’ requirements. While this chapter’s novelty lies in the enumeration and analysis
of existing measurement techniques, we address all challenges for the sake of complete-
ness.

Challenge #1: Selecting a proper Quality of Service Metric QoS metrics
encode the domain-specific knowledge needed to determine if a technique maintains
the system within tolerable accuracy boundaries. Being domain-specific, there is no
one-size-fits-all QoS. Instead, a specific QoS must be selected for each application. For
example, works that apply approximation in the area of Signal Processing often use the
Signal to Noise Ratio (SNR) of the produced signal as QoS [SLJ+13, RRWW14], while
works on Machine Learning uses classification errors [MRCB10]. A proper selection of
the QoS is of vital importance, since it plays an important role in identifying forgiving
zones and evaluating the approximate system [CCRR13].

Challenge #2: Identifying Forgiving Zones. The fact that not every part of an
artifact can be approximated has been repeatedly observed by individual researchers
in the area, which have reported ‘approximable’ [ESCB12], ‘relaxable’ [YMT+15] and
‘forgiving’ [VCC+13] zones, as opposed to ‘strict’ [YMT+15] ‘sensitive’ [CCRR13] or
‘precise’ [SDF+11b] parts.

Identifying parts amenable for approximation is required since most approximate
techniques are unable to discover such amenable parts without guidance. Most approx-
imate techniques are unsound in nature and require some human guidance or dynamic
analysis to ensure correctness. For example, a situation in which Loop Perforation
[SDMHR11] works best, is loops improving an already good value through successive
iterations. Even assuming that is possible to detect such loops, the ‘good’ value cannot
be known simply by analyzing the code. Some extra mechanism is needed from the
programmer (a QoS function or annotations) to specify or detect such values. Another
example: in the Parapprox’s [SJLM14] stencil pattern, energy savings are obtained by
skipping memory addresses in images, using neighboring values instead. This only works
if neighboring pixels are indeed similar. Is possible to dynamically determine that this
condition holds by accessing those skipped pixels. However, this will obviously nullify
the savings, requiring human analysis.

These examples prove that mechanisms to detect approximate parts of a system
are needed, whether they are automatic analyses or manual annotations. Section 2.3
describe the works providing such detection instruments.

Challenge #3: Provide approximation strategies for the system After For-
giving Zones have been detected, a number of approximation techniques can be used to
trade-off accuracy for performance, storage or energy.
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There seems to be no universal approximate technique that can be always applied
with good results. Some techniques are designed for hardware systems [SDMHR11,
BC10, VPC+15], while others for software [GMP+11, JLM+16, VRRR14]. Also, not all
techniques trade accuracy for the same purpose. Most importantly, each approximate
technique has known situations and domains in which it works best. Using an approx-
imate technique without a proper analysis of whether it will fit a particular scenario,
can have null or even adverse results such as loss of performance or unacceptable levels
of imprecision. A careful study of available techniques is required to determine those
providing the best result for a particular application.

This chapter provides an extensive survey of existing techniques for approximation
in Section 2.4.

Challenge #4: Evaluating an Approximate System As mentioned, Approxi-
mate Computing has the opposing goals of improving on some resource efficiency at the
expense of accuracy while maintaining imprecision to an acceptable level. These two
objectives constantly in tension adds complexity to the evaluation and testing of an
approximate system. Approximate systems must be not only proven correct, but also
must be evaluated w.r.t reductions in some resource consumption to justify the loss in
accuracy. The nature of some approximate techniques creates stochastic or probabilistic
systems [SPM+14] forcing designers to come up with new ways of testing. Also, when
legacy systems are being made approximate, it can occur that the existing test suite is
not designed with approximation in mind, which forces a redesign of the system’s test
[BARCM15b].

2.3 Identifying Forgiving Zones

This section presents several approaches to identify forgiving zones in a system. Previ-
ous research has presented frameworks [BC10], language support [SDF+11b, MCA+14,
PEZ+15] or annotations [VPC+15] to manually specify forgiving zones in a program.
Some other techniques [RRWW14] propose an automated process, relieving the pro-
grammer from analyzing the system. On hardware, Forgiving Zones are found using
Quality Control Circuits [LEN+11, RRV+14, VSK+12]

This section tries to prioritize those works that contribute mainly to identify for-
giving zones. Notice that early papers describing approximate techniques such as
[SDMHR11, RGNN+13] usually proposed some way of detecting the forgiving zone they
addressed as well. This was done precisely due to the lack of work explicitly targeting
this challenge.

2.3.1 Automated Approaches

Alter and Test. The general idea behind most fully automated approaches to dis-
cover forgiving zones, is to alter all potentially forgiving zones of the system in some
way. Then, several tests are performed on the modified system to see if the QoS criteria
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are met If so, the zone is marked as forgiving. The output of these automatic tools is
a group of forgiving zones existing in the program.

In [RRWW14] variable values are randomly altered to discover which variables have
little impact in the program’s QoS and therefore can be approximated. The ARC
[CCRR13] framework also modifies variable values to discover resilient code segments
and then tries several approximation strategies to determine not only the existence of a
forgiving zone, but also the best strategies to use in each zone. DynamicKnobs [HSC+11]
discovers the system’s input parameters having an impact in the QoS-performance trade-
off using a training phase in which the program is run multiple times with different input
values. A Quality of Service profiler is presented in [MSHR10] where Loop Perforation
is used to approximate candidate zones and report QoS results back to the developer.

On Hardware Systems the alters and test methodology is also used. Probabilistic
Pruning [LEN+11] is a method that models a circuit as a graph (wires are edges and
nodes components). The method then iteratively removes edges and nodes. If the circuit
does not meet the QoS after some node or edge is removed, the removal is reverted
and another component is tested. The ASLAN framework replaces exact adders and
multipliers in sequential circuits by approximate ones and then uses a Quality Evaluation
Circuit to determine if such replacement affects the QoS to acceptable levels. A similar
idea is presented in other works as well [VSK+12].

Interestingly enough, the alter and test approach is also used to find forgiving zones
for purposes other than (but highly related to) approximate computing, such as error-
resilience and diversity [BAM14]

Static Analysis. A number of works in the area of fault tolerance uses static analysis
to detect critical regions of code that must be protected in order to ensure correctness.
These approaches are interesting for Approximate Computing practitioners, since those
results can be used to narrow down the search for forgiving zones.

Critical Instruction Analysis and Protection [CG11] is a method that uses static
analysis to separate critical from non-critical operations. Related to this is SJava, a
language that can be used to discover errors that only disrupt the program for a limited
execution time. In [HMS+12] a methodology is proposed that maps circuits to higher
abstractions allowing to perform static analysis. This is done to distinguish critical
components such as those controlling the execution flow or handling memory addresses
from others that can be approximate.

2.3.2 Manually Identifying Forgiving Zones

While automated approaches can discover forgiving zones without human intervention,
they require lengthy trial and error training phases and the forgiving zones discovered
are usually limited to those resilient to a particular set of approximation techniques.
Such tools are also unable to detect all zones identified by humans (for example, ASAC
[RRWW14] detects 86%). Sometimes the lengthy training phases can be avoided since
a forgiving zone can be self-evident for an expert or the zone is omitted by the tool,
therefore a way to allow human intervention to identify forgiving zones is needed.
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Fortunately, there is quite some work addressing this issue. Several languages to
work with approximation have been proposed [SDF+11b]. Others authors propose an
OpenMP-style of annotations to work with approximation [VPC+15]. Another approach
is to create types that expose the semantics of data approximate in nature [BMM14,
SMR15].

Language Support. Approximate Languages are languages that allow the program-
mer to deal with approximation. Several approximate languages rely on adding support
to existing languages in the form of annotations to identify forgiving zones [CZSL12,
ENN13]. EnerJ [SDF+11b] allows to annotate variables in Java program whose values
can be approximate. The same approach is followed by Chisel [MCA+14] for C, also
allowing to annotate operations and to specify the permitted approximation level. The
authors of FlexJava [PEZ+15] claim that their language allows the programmer to write
considerably fewer annotations than preceding approximate languages. In hardware,
Axilog [YMT+15] is a set of language extensions for Verilog that provide approximate
support for hardware design.

The Eon language [SKG+07] follows the Domain Specific Language (DSL) path,
completely defining a new language. Eon allows programmers of embedded devices
to explicitly define several equivalent ‘flows’ (i.e. sequences of operations) to execute
depending on the varying levels of energy available to the device. Another accuracy
aware DSL is SLax, that is used to define latency, loss and value-deviation tolerances
of data acquired by sensors [SMR15]. The DSL is used in conjunction with LAX, a
C/C++ API that allows reading sensor data values specifying the range of accuracy
the caller can tolerate.

Precompiler Directives Rahimi et al. [RMGB13] propose a multicore cluster con-
taining floating point units (FPU) allowing several levels of accuracy. They used
OpenMP-like extensions to identify the approximable parts of a program that could
be executed using lower levels of accuracy in the accuracy-configurable FPU units of
their architecture. Precompiler directives are also used by Vassiliadis et al. [VPC+15]
to allow programmers express the impact of computations on the QoS and to specify
several alternative implementations to the same computation with different levels of
accuracy and energy consumption.

Explicit Approximate API Another approach to identify forgiving zones is to use
data types having a known approximate nature. Uncertain<T> [BMM14] is a .NET
type for uncertain data supporting various non-deterministic operations. The type is
used to express that some value exists in a range with a given probabilistic distribution.
Another example is CES, an extension to C/C++ [Thr00] that introduces probabilistic
types such as prob<int>. LAX [SMR15] is a C API to obtain readings from sensors.
It exposes the approximate nature of sensors in the sense that readings are explicitly
known to be approximate.
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2.4 Strategies for approximation

Approximation techniques exploit opportunities in both hardware and software to trade-
off accuracy for energy or performance. Works in the field propose to reduce compu-
tation precision, drop tasks or memory accesses in software and exploit inexact/faulty
hardware. This section enumerates the many techniques for approximation existing
today.

2.4.1 Hardware Techniques

Approximate techniques oriented to hardware employ accuracy-configurable floating
point units, approximate adders, and faulty memory banks. Also, authors have proposed
to automatically synthesize approximate circuits.

Precision Scaling Precision scaling techniques employ the numerical requirements of
some applications to reduce the number of bits needed to represent values. Using fewer
bits yields fewer active components in circuits, hence reducing energy consumption. In
[TNR00] a number of ways to reduce bitwidth in floating point (FP) operations for
healthcare applications are presented, resulting in no QoS losses. A similar idea is
presented in [YFE+07] for physics simulations with similar results.

Integer Precision Scaling has been also explored, Brooks [BM99] achieved up to 50%
reduction in energy by noticing that benchmarks in SPECint95 and MediaBench rarely
used more than 16 bits for integer operations.

ApproxMA [TZW+15] is an approximate memory access framework that uses pre-
cision scaling to save energy, by means of reducing communications between chips and
surrounding off-chip components, showing that the energy required to fetch data from
off-chip memory is higher than that needed to perform on-chip computations.

Approximate Functional Units A considerable number of papers have proposed
faster/energy efficient approximate adders and multipliers, becoming an area worthy of
surveys of its own [DNT16, JLM+16, JLL+17]. Here we present some representative
works.

IMPACT [GMP+11] presents an adder that consumes only the 60% of its precise
counterpart, having only one-third of the size. This is achieved by removing transistors
from the adder cells. As result, the adder produces incorrect results in a small number
of cases. In [DVM12] an approximate adder is proposed based on the observation that
carry chains in random additions are always shorter than the total number of bits being
added. Hence, the addends are divided into segments having a high probability of being
longer than the carry chain. The segments are then added in parallel without any carry
bit, since there is a high probability that no carry bit between sub-adders is needed.
This increases the operation speed by means of parallelization.

Accuracy-configurable adders [YWY+13, SAHH15] also work by subdividing the
addends into segments and adding them in parallel using sub-adders. The difference is
that consecutive sub-adders are connected by multiplexers that may or may not allow to
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pass the carry bit. Turning these multiplexers on/off the accuracy level can be tunned,
in contrast with static adders. If a multiplexer is configured to forbid passing the carry
bit to the next sub-adder, the adder uses some prediction function, which could be a
constant {0, 1} or ands with the first bit from the previous segment.

Other approximate functional units such as multipliers have been proposed [JLM+16].
These designs propose strategies such as using approximate adders and truncate or ap-
proximate intermediate results in the multiplication.

Automatic Generation of Approximate Circuits The techniques presented so
far propose circuit designs that have been manually designed. Several authors [LEN+11,
RRV+14, VSK+12] have proposed synthesizing/modification techniques that automat-
ically generate or modify circuits to exploit the accuracy trade-off. These techniques
start with an accurate circuit that iteratively approximated while some QoS criteria are
met Resulting from the transformations, reductions in energy consumption and circuit
size are obtained.

Examples of these works are the previously mentioned Probabilistic Pruning [LEN+11]
and ASLAN [RRV+14]. The former automatically approximate a circuit design by re-
moving components and connections, while the later exchanges precise units by approx-
imate ones. SALSA [VSK+12] proposes a general framework to approximate circuits
by exploiting the existence of ‘Don’t Cares’ i.e. bits of the output that do not care for
some bits in the input. Miao et al. [MGO14] propose an Approximate Logic Synthesis
framework that automatically generates approximate logic units ensured to deviates
from precise answers only by a design-specified margin and where wrong results are
produced with a frequency below a specified value.

Memory Design A special kind of circuits, memory have received quite some atten-
tion from the Approximate Computing community. The common driver for all approxi-
mate techniques addressing memory designs is to reduce the amount of energy required
to store or retrieve data [Sam17]. Chen et al. [CYQ+16] proposes a multilevel accuracy
memory circuit which is composed of several banks with varying degrees of accuracy.
They present a data-significance circuit that matches data and banks depending on the
significance of the data (i.e. the more significant data are stored in the most accurate
banks). This approach can result in up to 60% savings. A similar idea is proposed by
[RSJR17] to propose an accuracy-tunable system for DRAM banks, which needs to be
refreshed frequently to keep data integrity and each refresh cost energy. This approach
also divided the memory in banks with different levels of accuracy. By tunning the
refresh rate of a DRAM bank, its accuracy-energy trade-off can be configured as less
accurate banks are refreshed less frequently, hence requiring less energy.

In storage units that can wear out such as Flash or PCM memories, approximate
techniques can increase the chip’s lifetime. Sampson et al. [SNSC13] proposes to store
approximate data in faulty memory banks that have exhausted their error correction
budget, preserving those who have not. Their simulations indicate that this would
improve memory lifetimes by 23%. SoftPCM [FLL12] increases the life expectancy
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of PCM memories allowing only those write operations in which the old data being
overridden is dissimilar from the new data being stored. Their simulations indicate
that around 22% of the write operations can be avoided.

Load Value Approximation Other authors have proposed to reduce the memory-
wall (i.e. the difference between the CPU and memory speeds) approximating the data
obtained from memory accesses rather than performing the full access.

Rollback-Free Value Prediction (RFVP) [YTE+16] is a technique that predicts ap-
proximate values that miss in the cache. RFVP avoids checking or retrieving (i.e. drops)
from memory a number of such approximate missed values. The number of dropped
values can be adjusted to tune the accuracy trade-off. San Miguel et al. [MBEJ14] pro-
poses a load value approximation technique that exploits value locality (the fact that
in many application values stored nearby are similar) to predict cache misses. Contrary
to RFVP, the actual value is indeed fetched from the next level, however, the CPU uses
the approximate value, avoiding the stall. The accurate value is then used to train the
predictor. Dissimilar values decrease prediction confidence. When confidence goes too
low, values stop being predicted.

Doppelgänger [MAMJ15] is a cache design that groups similar values into a single
one, reducing the amount of data stored in the cache. The authors report up to 2.5x
improvements in energy efficiency.

Hardware-Accelerated Neural Networks Neural Networks (NNs) are highly par-
allel and can be accelerated by specific hardware (called Neural Processing Units),
providing a general-purpose, superior-performance way of doing computations. Es-
maeilzadeh et al. presented in [ESCB12] an approach where a NN learned the behavior
of program segments. Later on, a NPU is designed to hardware-accelerate such network
and the compiler is modified to replace the code being approximated by calls to the
NPU. This resulted in performance and energy efficiency improvements. In [ERZJ14] is
proposed the usage of hardware NNs implemented in Verilog1 to replace a small set of
the GNU C library (glibc) functions, i.e. sin, cos, log. They reported considerable
improvement in energy consumption and performance. Other authors have proposed
similar methods, also with good results.

Inspired by the success of previous works to approximate programs using NNs, some
authors have proposed an even more aggressive method, which is to approximate the NN
itself. In [VRRR14] a method is proposed that identifies the network nodes influencing
the classification the least and selectively approximate those by implementing them
in less accurate but cost-effective hardware. Similarly to this, [ZPL14] proposes to
approximate an NN replacing exact arithmetic units by inexact ones. The accuracy
levels of the newly obtained approximate NN are increased by repeating the original
training phase (retraining). As result, energy savings between a 40% and a 60% are
obtained with acceptable losses in precision.

1http://www.verilog.com/

http://www.verilog.com/
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2.4.2 Software Techniques

Approximate techniques in software automatically modify algorithms to drop task or
memory accesses, propose unsound parallelization or provide multiple versions of the
same program. This section expands on these ideas.

Dropping tasks and memory access Loop Perforation [SDMHR11] is a technique
that skips iterations in loops. This idea can be successfully applied in loops iteratively
improving an already good result, searching/ filtering values or finding the median for
an array of numbers with uniform distribution, among others. Vassiladis [VPC+15]
proposes a general programming model and a runtime to selectively drop tasks in a
program.

ApproxHadoop [GBNN15] proposes to approximate the Map-reduce framework by
sampling (i.e., skipping some) input values and dropping tasks. Parapprox [SJLM14]
is a framework that presents several ideas specifically tailored to common patterns in
parallel such as using memoization to map atomic functions with similar parameters,
skipping nearby memory accesses in video or sound applications since the values are
likely to be similar or reducing the parameter number passed to a function by taking
only those affecting most the output and providing default values for the rest.

Software Memoization Memoization has been also used in software-only systems
to approximate hardware. The general idea is also to return the cached value of similar
computations instead of performing the complete computation. Agosta et al. [ABCF11]
proposed a software memoization framework for financial applications, while Parapprox
uses approximate memoization to approximate the map pattern.

Synchronization Elision A series of papers have explored the idea of reducing syn-
chronization between parallel threads to speed up computations. Synchronization Eli-
sion can improve performance by means of reducing wait operations and off-chip memory
accesses.

Meng et al. [MRCB10] proposes to drop task causing large off-chip traffic both in
terms of data accesses and coherence, but having little effect on the accuracy of the
task being performed. The authors report speedups ranging from 4X to 8X using this
technique reducing the QoS to acceptable levels.

HOGWILD! [NRRW11] proposes a parallelization scheme for Stochastic Gradient
Descent algorithms that reduces lock rate and increases performance by allowing multi-
ple processors to share memory. This introduces the possibility of two such processors
destroying each other’s works. However, in the cases when this is infrequent, the authors
show considerable performance gains up to 7X.

Renganarayana et al. [RSNP12] propose a general framework to relax synchro-
nization in programs by allowing programmers to specify non-synchronizing versions of
functions. In their experimental dataset, speedups of up to 13X are obtained without
noticeable QoS reduction.
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Using multiple approximate versions Several works have proposed ways to allow
the programmer to supply multiple approximate versions of the same program. Petra-
Bricks [ACW+09] presents a language and compiler that emphasizes in the ability to
select between multiple algorithms for one same task. Beside algorithmic choice, the
language features different levels of choice granularity, automatic consistency checks and
specifying several executive orders.

Baek proposes Green [BC10], a framework that allows a programmer to specify
multiple approximate implementations. The framework produces a QoS model from
several training runs, exploring the different combinations of approximate implementa-
tions. Then, this model is used to dynamically select from different implementations
upon varying requirements of energy consumption and performance.

Venkataramani [VRLS15] proposes to match the complexity of Machine Learning
classifiers to the simplicity of the problem at hand. In other words, simpler problems
should be solved using less complex classifiers (which should be faster and less energy
hungry) leaving the more sophisticated for harder problems only.

ViRUS [WS14] propose to select from multiple virtual functions to match energy
and performance requirements at runtime. SAGE [SLJ+13] provides a framework for
graphics engines that combines a compiler that automatically generates several kernels
with varying values of accuracy/performance. The framework also provides a runtime
able to select between those kernels when the performance requirements vary.

Lossy Compression Formats Lossy compression formats are among the most straight-
forward version of approximate computing. They exist long before the coining of the
‘Approximate Computing’ term. Perhaps that is the reason most surveys in the field
do not include them. Industry standard such as JPEG [Wil93], AAC2 and MPG3 are
well known file formats exploiting approximation to reduce storage space requirements.

Approximating Compilers Approximating Compilers exploits unsound (approxi-
mate) techniques to improve some aspects of a program, just like Optimizing Compilers
optimize a program using sound (exact) transformations. Examples of already men-
tioned works proposing approximate compilers are PetraBrik and SAGE. Other works
[SDMHR11, SDF+11b, MCA+14] modify or propose a compiler to demonstrate the
feasibility of a technique by experimentation.

ACCEPT [SBR+15], deserves special attention, as it is the compiler having the
largest toolbox of approximate techniques. ACCEPT features Loop Perforation, Neu-
ral Acceleration, Synchronization Elision and Approximate Strength Reduction, which
replaces arithmetic operations with lest costly shifts and masks that may not produce
exactly the same result.

2https://en.wikipedia.org/wiki/Advanced_Audio_Coding
3https://en.wikipedia.org/wiki/MPEG-1

https://en.wikipedia.org/wiki/Advanced_Audio_Coding
https://en.wikipedia.org/wiki/MPEG-1
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2.5 Evaluation of an approximate system

Properly evaluating an Approximate System, demands an assessment of both functional
and non-functional requirements. Just like any other system, an approximate system is
expected to successfully perform a series of task. However, since the system has been
approximated, there is an expected gain in some resource resulting from relaxing the
correctness requirements, which must be also measured to justify the accuracy losses.

Not every work in approximate computing trades accuracy for the same purposes.
Table 2.1 resumes the expected gain of the proposed techniques of this survey. The
most common targets are energy efficiency and performance. However, other resources
such as storage space, circuit area and memory lifetime are also targeted.

We now provide some background on how approximate systems are evaluated. We
describe the tools used for this purpose, the QoS metrics employed, the different re-
sources gains for which accuracy is relaxed and how such gains are measured.

Table 2.1: Different resource gains expected of the works presented in this survey

Expected Gain How is Measured or Esti-
mated

Example Works

Performance Speedups Simulations Approx. Load Value [TPY+14],
NPUs [ESCB12]

Microbenchmarks Approx. Adders [DVM12]

Benchmarks Tasks Drops [SDMHR11]

Wall Clock Task Drops [GBNN15], Sync.
Elision [MRCB10]

Energy Savings Simulations Approx. Adders [GMP+11]
Approx. Synthesis [LEN+11,
RRV+14], NPUs [ERZJ14]

Energy Models Precision Scaling
[YFE+07, TZW+15], NPUs
[ESCB12, VRRR14]

Measurements Memory Design [RSJR17]
Storage Space File size that
Memory lifetime Simulations Solid State Memory Design

[SNSC13, FLL12]
Circuit area Estimations Precision Scaling [YFE+07],

Approx. Synthesis [RRV+14]

Measurements Approx. Addders [GMP+11]

2.5.1 QoS metrics

As mentioned, QoS metrics play a central role in approximate systems. They encode
all domain knowledge needed to determine where and to which extent the system can
be approximated. Automatic detection of forgiving zones uses the metric to detect the
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Table 2.2: Some of the most frequent QoS metrics used to evaluate Approximate Com-
puting techniques.

QoS Workload Type Example Works
Error Rate Monte-Carlo Simulations,

Speech Recognition
Precision Scaling [TNR00],
Approx. Arithmetic Units
[SAHH15, DVM12]

Error/Relative Error Dis-
tance

Image Processing Approx. Synthesis
[RRV+14] ,

Dice Metric Img. Processing Precision Scaling [DVM12]
Normalized Root Mean
Square Error

SPEC CPU 2000/2006 Approx. Load Value
[TPY+14]

PSNR Signal Processing (Image,
Video, Sound), Games

Task Drop [SJLM14] Ap-
prox. Adders [GMP+11],
Synthesis [RRV+14], Mem-
ory Designs [RSJR17], Mul-
tiple program versions

Clustering Errors k-means and k-nearest clus-
tering,

Precision Scaling [TZW+15],
Synthesis [RRV+14]

Correct/Incorrect Classifica-
tions

ML Object Recognition Memory Designs [RSJR17],
NPUs [VRRR14], Sync. Eli-
sion [MRCB10]

Ranking Accuracy Document Search, Super-
vised Semantic Indexing k-
means

Multiple program versions
[BC10], Sync. Elision
[MRCB10]

approximable system parts. In techniques where accuracy can be dynamically adjusted,
the QoS is used as a limit indicating where accuracy losses cannot be tolerated any
further.

Table 2.2 shows some of the QoS metric used by the surveyed authors. Column
‘QoS’ shows the QoS metric used, column ‘Workload Type’ the type of workloads on
which this QoS metric is used and ‘Example Works’ shows some of the works that used
this QoS metric to evaluate the proposed technique.

The list of metrics in the table is not exhaustive, yet it illustrates some of common
QoS metrics found in our survey. Among those metrics are the Error Rate, which is the
probability of an operation yielding an incorrect value. Error Distance is the absolute
distance between precise P values and approximate ones A (ED = |P − A|). The
relative Distance is the Error Distance divided by the precise value RD = ED/P . The
Dice metric returns the ratio of different elements in two sets (i.e. pixels in images).
The Signal To Noise Ratio (SNR) is a metric to measure the level of noise in a given
signal. The Ranking Accuracy is a metric that compares two lists. It highly rewards
elements with the same index in both lists. Lesser rewards are given to elements with
different orders in both lists. Elements not in both lists are penalized.
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2.5.2 Evaluating Accuracy Losses

Most authors perform accuracy loss measurements simply by comparing the approxi-
mate system’s output against its precise counterpart using the QoS metric. Nevertheless,
a relevant body of work targets building tools specifically to evaluate the QoS of approx-
imate systems, such as profilers [MSHR10], debuggers [RSA+15], assertion frameworks
[SPM+14] and monitors [GR14]. This section illustrates some of the existing tools
specially meant to evaluate accuracy loss.

Off-line Tools Misailovic [MSHR10] proposed a Quality of Service profiler. The
profiler transforms a group of loops using the Loop Perforation [SDMHR11] technique
and reports the QoS loses resulting from such transformations to the programmer. While
the profiler is limited to the usage of a single technique, it would be possible to extend
the idea to other approximation strategies as well.

Ringenburg [RSA+15] proposed a QoS debugger which works by taking into account
number of times a particular operation is executed as compared to the number of times
it produces an incorrect result. It also observes a number of approximate operations
that converge in a particular segment to highlight zones heavily affected by accuracy.

A probabilistic assertion framework was proposed in [SPM+14], allowing developers
to write assertions that test the probability of a value existing in a given range with a
given confidence. The framework is meant to test programs running on inaccurate or
faulty hardware for which the functional requirements must be relaxed.

On-line tools Grigorian and Reinman [GR14] propose Light-Weight Checks (LWC)
based on the observation that while obtaining a solution could be difficult, checking its
quality could be simple. A LWC inspects the computation’s outputs against a user-
provided QoS function and reruns those computations for which the QoS is not meet

Ringenburg et al. [RSA+15] also introduced a QoS monitor. A monitor is an on-line
tool meant to be used while the system is in production to automatically adjust accuracy
parameters. The monitor compares results of a precise operation sample set with their
approximate counterparts. At runtime, the system administrator could control the
frequency of those checks to reduce their impact on performance. Verification was
performed using programmer-provided verification functions and Fuzzy Memoization
[ACV05] that compares recorded values from similar operations to those obtained by
the approximate ones.

Rumba [KZSM15] is a framework that proposes to monitor the output of hard-
ware accelerators such as the one for Esmailzadeh [ENN13] using LWCs. When the
accelerator is being built, a hardware error model of the accelerator is created. The
resulting model is then used to continuously monitor the accelerator’s output. The
novelty of their approach is that they propose to do so continuously, as opposed to
others [RSA+15, GR14] , which only do so for a subset of the computations.

Quality Control Circuits (QCCs) While no author in our survey discusses QCCs
in isolation, they are worth mention. These circuits are hardware tools solely aimed at
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monitoring the QoS of an approximate hardware system and several authors [LEN+11,
RRV+14, VSK+12] use them to control the QoS of their designs. The way QCCs works
is by receiving digital signals from two different circuits and comparing them. If the
difference is below a given threshold an ‘accepted’ signal is output.

2.5.3 Evaluating Performance Gains

This section provides a very condensed view of Performance Engineering methodologies
and tools with a focus on their usage by an Approximate Computing practitioner.

Profilers Profiling is a well-established technique having commercial tools such as
YourKit4 and JProfiler,5 which allows to observe programs as a whole and determine
the program parts where most of the execution time is spent. While not used to measure
performance gains per-se, profilers have found use in approximate computing to detect
system parts where most of the execution time is spent.

As example, Chippa [CCRR13] uses profilers to determine the runtime fraction used
by the forgiving zones of the benchmarks used for experimentation, while Sidiroglou
[SDMHR11] uses profilers to detect the program loops responsible for at least 1% of the
execution time and then performs experiments over this subset

Benchmarking Performance Benchmarking is a measurement technique that exe-
cutes a computational intensively workload with a given set of inputs and then measures
the time it requires to execute. Commercially available benchmarks such as SPEC 6,
SciMark 7, PARSEC 8 and others, are maintained by a team of dedicated experts.

This measurement strategy is frequently used by Approximate Computing prac-
titioners since it is primarily meant for comparison purposes. Also, benchmarks are
publicly available and are constantly revised and maintained, allowing to reproduce
and compare results easily. Depending on their technique’s design, authors use SPEC
[SNSC13, RRWW14], SciMark 9 and PARSEC [SDMHR11, MSHR10] or a combination
of them [SDF+11b, MSHR10]. Some others even use their own [MCA+14].

The benchmarks reviewed vary in size, some require repetitive executions to observe
speedups, while other (mostly in large-scale data [GBNN15] and document search/in-
dexing [BC10] applications) have workloads with execution times large enough to be
measured in seconds. The execution times in these systems are large enough that they
can be measured in one run simply by using the system timers.

Microbenchmarks Microbenchmarking is related to Benchmarking. This measure-
ment methodology is used when the workload’s execution is extremely short (nano and

4www.yourkit.com/
5www.ej-technologies.com/products/jprofiler
6www.spec.org
7math.nist.gov/scimark2/
8parsec.cs.princeton.edu
9http://math.nist.gov/scimark2

www.yourkit.com/
www.ej-technologies.com/products/jprofiler
www.spec.org
math.nist.gov/scimark2/
parsec.cs.princeton.edu
http://math.nist.gov/scimark2
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milliseconds lapses must be observed), as opposed to larger workloads in the previ-
ous paragraph. Microbenchmarking works by repeatedly running a tiny workload (a
variable assignment, a method call) in isolation for a fixed amount of time. Through
repetition, otherwise imperceivable delays are accumulated. Then, knowing the number
of times the snippet was run, is possible to estimate, (with a given confidence margin)
the time needed to run it once. Microbenchmark’s adoption is somehow hindered by
the high level of expertise required to properly design a test and then interpret the
obtained results [Ale14a]. Commercial tools for microbenchmarkings are JMH10 and
Google Caliper.11

As example of microbenchmarking usage, Du [DVM12] used a C++ program running
a Monte Carlo simulation with 10 million unsigned random inputs to evaluate their
approximate adder.

Simulation Hardware systems use simulation extensively to measure performance
gains. The advantage of simulation is that it allows faster cycles of research and de-
velopment. Tools commonly used for performance simulation are MARSSx86 12 and
Synopsys PrimeTime VX 13. As an example, Thwaites [TPY+14] uses the MARSSx86
simulator to measure the reduction in the memory wall. This tool is also used to
measured the speedups obtained by using the Parrot transformation [ESCB12], which
employs NPUs to gain performance. Rahimi [RMGB13] uses the PrimeTime VX simu-
lator to do timing analysis on their shared FPU designs.

2.5.4 Evaluating Energy Consumption

Determining the energy consumption of a particular component is by no means an
easy task. In many systems, energy consumption varies depending on many factors
such as temperature and workload, so repeatability is challenged. It might also be the
case that the power requirements of a component must be estimated since it is only
possible to measure the power supply of the entire circuit (for example, estimating the
consumption of nano-scale approximate adders in a CMOS circuit). In software, energy
measurements can be even more difficult as power consumption is distributed around
many components, CPU, memory, storage, etc. Also, in most modern computers there
are many software systems running concurrently.

Simulation Energy consumption is frequently obtained using simulations in hard-
ware systems. When the system under study is well known and understood, it can
be simulated with a high degree of confidence. This provides a representation of the
circuit’s consumption that is less costly and faster to obtain than actual measurements.
Known disadvantages of simulation are that it requires a detailed specification of the
expected inputs and the activity of the circuit. Najm [Naj94] describes this as the

10http://openjdk.java.net/projects/code-tools/jmh/
11https://github.com/google/caliper
12http://marss86.org/~marss86/index.php/Home
13https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html

http://openjdk.java.net/projects/code-tools/jmh/
https://github.com/google/caliper
http://marss86.org/~marss86/index.php/Home
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html


Evaluation of an approximate system 29

pattern-oriented simulation problem. In other words, the simulations are only accurate
for the pattern of circuit’s inputs and operations being simulated and by no means for
all possible operational states and inputs.

Authors in this survey [dP11, YMT+15, RMGB13], use tools such as Synopsys
Compilers 14, SystemC 15 and FloPoCo [dP11] to simulate energy consumption. Yaz-
danbakhsh et al. [YMT+15] use the Synopsys Design Compiler to measure the energy
consumption of the circuits developed using their Axilog language. Other authors use
a combination of tools; in [RMGB13] the SystemC is used to model a set of FPU units
whose register-transfer-level design is made using FloPoCo.

Power Models A Power Model estimates energy consumption as a function of an
already known parameter, such as the components present in a circuit or the number
of instructions executed by a program. Different Power Models are used by the authors
surveyed in this chapter to estimate power consumption. Power Models can be part of
simulations. Also, they are used as stand-alone tools to estimate power. These models
have varying degrees of accuracy. Models can be highly accurate if the system is well
understood or somewhat coarse when the system is not so well understood or simplified
on purpose to ease the calculations.

Works in this survey utilize different Power Models. Yeh et al. [YFE+07] uses the
PowerTimer [BBS+03] power model to estimate the energy consumption of approximate
adders. PowerTimer consists of a set of functions derived from empirical experiments
or pure analytical equations to estimate the power consumption of basic components or
a hierarchy of them. [TZW+15] Uses the CACTI power model [NNR09] to measure the
energy savings of the ApproxMA approximate memory system. On software, several
authors [VPC+15, MCA+14] use the number of CPU instructions executed by the pro-
grams in their benchmark to estimate power consumption. Sampson et al. [SDF+11b]
built their own model based on previous power estimations studies.

Measurements The most straightforward way of determining the power requirements
is by using a consumption measurement tool. As mentioned before, this might be
not always possible. In the reviewed literature in this survey, such measurements are
made when the differences between precise and approximate systems are relatively large
[GBNN15] or when the consumption of a whole macro component (such as a memory
board) was being measured [RSJR17].

2.5.5 Evaluating Circuit Area & Memory Lifetime

Circuit Area Some works relax accuracy in exchange for circuit area [YFE+07,
GMP+11, DVM12]. Gupta et al. [GMP+11] actually built the circuit and performed
measurements. Other works base their results on estimations. This is done since hard-

14https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/
design-compiler-graphical.html

15http://www.accellera.org/downloads/standards/systemc

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
http://www.accellera.org/downloads/standards/systemc
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ware is difficult and expensive to fabricate. Yeh et al. [YFE+07] use data from previous
works to estimate circuit area .

Memory lifetime Expectancy Memory lifetime in solid-state memories is yet an-
other resource traded for accuracy. This kind of memories can be written only a limited
number of times, (i.e. have a limited lifetime). All authors in this surveys perform
extensive simulations to estimate memory lifetime. Actually measuring lifetime will
require to wear out physical circuits to perform experiments, therefore, simulation is
the most reasonable alternative.

As an example, Sampson et al. [SNSC13] build a statistical lifetime model observing
the number of writes to memory of the applications in their workload when fed with
different inputs. On the other hand, to evaluate SoftPCM [FLL12], the authors use
a fixed set of inputs and applications (video compression methods). There, instead
of a statistical model, the authors use the exact number of writes performed by their
workload to estimate the lifetime savings of the proposed technique.

2.6 Applications of Approximation

In this section we describe the domains of application of Approximate Computing. Cur-
rently, the techniques of the field are applied heavily in Machine Learning, Multimedia
processing, Search Engines and others. Table 2.3 classifies the works surveyed in this
chapter by the application domain their target

Table 2.3: Domain of Application of Approximate Computing

Application Domain Example Works
Media (Sound, Image, Video) processing Synthesis [RRV+14], Memory Design

[RSJR17]
Object Recognition Memory Design [RSJR17], NPUs [VRRR14],

Sync. Elision [MRCB10]
Clustering algorithms (K-Mean, K-Nearest) Precision Scaling [TZW+15], Synthesis

[RRV+14], Memory Design [RSJR17]
Big Data Processing Task Drop [GBNN15]
Document Search and Indexing Sync. Elision [MRCB10]
Machine Learning Multiple Implementations [VRLS15]

2.7 Advance the State of The Art

This section discusses how the contributions of this thesis advance the State of the Art.
Initially, we discuss our vision for a universal approximating compiler. Secondly, we
advance the types of data that can be considered approximate. Finally, we describe
how to help lower the entry bar to Microbenchmarks.
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2.7.1 Towards an Approximating Compiler

Implementing a compiler optimization is costly for every organization, both in financial
and in human resource terms, so every optimization is carefully weighed before being in-
cluded. Even so, commercial compilers are equipped with large optimization toolkits to
maximize the number of situations they can optimize. According to [AJ09] the Hotspot
compilers C1 and C2 are armed with nearly 75 different optimization strategies, while
the GCC compiler website [GCC17] indicates that at least 78 distinct optimizations can
be turned on/off with compilation parameters. In comparison, ACCEPT [SBR+15], the
approximating compiler having the largest approximation toolkit is packed with a mea-
ger number of 6 approximate techniques.

While it is true that the number of optimizations included in an optimizing compiler
gives only a rough, high-level idea of the number of situations the compiler can handle,
it is certainly an illustrative comparison.

Advance the State of The Art In this thesis we propose a compiler-ready approx-
imate optimization, broadening the set of cases that can be improved by an approxi-
mating compiler. Our optimization exploits data locality (a common situation in time
series) to improves upon the existing state of the art by reducing accuracy losses and
program crashes while still producing similar speedup gains.

2.7.2 Discovering new species of Approximate Data

The novelty of Approximate Computing lies in a mental shift that goes from dealing
only with natural or unavoidable approximation to actively seeking approximation op-
portunities. Yet, most of the works in Approximate Computing today still address the
so-called ‘low hanging fruits’ by targeting data for which their tolerance to approxima-
tion is well known. Mittal [Mit16] mentions this, saying that one of the challenges of
the field is ‘its limited applicability’.

Advance the State of the Art. We use the mental shift proposed by Approximate
Computing to experiment with a type of data traditionally considered among the most
exact ones: Assembler Instructions. This pushes the boundaries on data types consid-
ered amenable for approximation outside the traditional ‘low hanging fruits’, actively
finding new opportunities and increasing the field’s applicability as a whole.

2.7.3 Lowering the Nanosecond Entry Bar

Many authors [SNSC13, HSC+11] of software approximate computing perform speedup
experiments using existing benchmarks. Then, the execution times for both benchmark
programs (precise and approximate) are compared. This approach has advantages, is
simple and universally accepted. Also, carefully crafted, publicly available benchmarks
allow reproducing results better.

Unfortunately, many workloads are complete programs on their own. Therefore, the
benchmarking method ends up measuring the forgiving zone’s impact on the workload,
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rather than the optimization’s impact on the forgiving zone. If a particular zone has
little impact on the system’s performance, the speedups provided by the approximation
technique would go undetected, even if the optimization yielded high speedups on it.
The opposite also holds, if the zone has a huge impact on the system’s performance,
large speedups will be reported in the benchmark test, even if little improvement is
obtained on the forgiving zone itself.

The way researchers cope with this concern is to limit the applicability to zones abid-
ing to some criteria, usually to the most performance-critical forgiving zones [SDMHR11].
This suffices to demonstrate the feasibility of the technique but also has drawbacks:

• It reduces applicability by forcing dynamic analyses to discover performance-
critical zones (i.e. it forbids ahead-of-time compilation).

• Leaves unanswered the question of how much a technique impacts its target, as
only the zones’ impact on the system is measured.

• Forbids to observe the effect of small tweaks and improvements.

One might argue that there is no point in optimizations having no significant impacts
on the system. This makes sense for engineers building a single system. Yet, developers
working on compiler and libraries cannot afford to think this way (and indeed, they do
not [Ale13b]), as their code will be used in a myriad of different applications.

Enters Microbenchmarking Microbenchmarking is a complementary technique to
benchmarking that tests a zone in isolation. It allows assessing the optimization ef-
fect on the zone, independently of the system. We claim that Microbenchmarking is
complementary (not necessarily better) to benchmarking as it answers a different set
of questions. Microbenchmarking is not without disadvantages, the most notorious one
being how difficult is to properly design a microbenchmark test [Cli10, Ale15, Jul14b].

Advance the State of the Art We advance the State of the Art presenting a tool
to construct microbenchmarks automatically. This tool is able to avoid common pitfalls
and errors common to inexperienced designers. This approach lowers the entry bar to
microbenchmark usage, yielding a more comprehensive assessment of the approximate
technique’s impact on performance.
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Approximate Loop Unrolling
This chapter describes Approximate Unrolling, a novel optimization that uses the ideas
of approximate computing to reduce execution times and energy consumption of loops.

The key motivation behind Approximate Unrolling relies on the following observa-
tion: data such as time series, sound, video and images are frequently represented as
arrays where contiguous slots contain similar values. As a consequence of this neighbor-
ing similarity, computations producing this data are usually locally smooth functions.
In other words, computations producing or modifying nearby array values representing
these kinds of data frequently yield similar results. Our technique exploits this obser-
vation by searching for loops where functions are mapped to contiguous array slots in
each iteration. If the function’s computation is expensive, we substitute it by less costly
interpolations of the values assigned to nearby array values. In exchange for this loss
in accuracy, we obtain a faster and less energy consuming loop.

Approximate Unrolling combines static analysis and code transformations in order
to improve performance in exchange for small accuracy losses. Static analysis has two
objectives: first, determine if the loop has a structure that fits our transformations
(counted loops mapping computations to consecutive arrays slots); second, a policy
estimates if the transformation could actually provide some performance improvements.
To transform the code we investigate two possible strategies. One that we call Nearest
Neighbour (NN), which approximates the value of one array slot by copying the value
of the preceding slot. The other strategy, called Linear Interpolation (LI) transforms
the code so that the value of a slot is the average values of the previous and next slot.

We modify the OpenJDK C2 compiler’s source code to include Approximate Un-
rolling. We do so to avoid phase ordering problems, reuse internal representations that
we needed for our analysis and to obtain guarantees that Approximate Unrolling can
actually improve the performance of a highly optimized code created by a production-
ready compiler.

We experimented with this implementation using a carefully selected set of real-
world Java libraries. The objectives of our experiments were (i) to learn whether Ap-
proximate Unrolling is able to provide a good performance vs. accuracy trade-off; (ii)
to understand the situations where Approximate Unrolling is best applied; (iii) to learn
the impact of substituting more or fewer operations with interpolations; (iv) to com-
pare Approximate Unrolling with Loop Perforation [SDMHR11], the state of the art
approximate computing technique for loop optimization.

Our results show that Approximate Unrolling is able to reduce the execution time
and CPU energy consumption of the x86 code generated by 75% to 40% while keep-
ing QoS to acceptable levels. We also learned the situations on which Approximate
Unrolling works best. Compared with Loop Perforation, Approximate Unrolling pre-
served better accuracy in 76% of the cases and raised fewer fatal exceptions than Loop

33
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Perforation (2 vs. 7).
The contributions of this chapter are:

• Approximate Unrolling, an approximate loop transformation

• An efficient implementation of Approximate Unrolling inside the OpenJDK Hotspot
VM.

• An empirical assessment of the effectiveness of Approximate Unrolling to trade
accuracy for time and energy savings.

• An empirical demonstration of Approximate Unrolling’s novel contribution to the
state of the art, as an effective complement to loop perforation

The rest of the chapter is organized as follows, in Section 3.1 we describe our opti-
mization and its scope. We then detail our implementation in section 3.2, our evaluation
in section 3.3 and discuss results in section 4.3. Section 4.4 describes how Approximate
Unrolling compares with other approximate computing techniques and finally, section
3.5 concludes.

3.1 Approximate Unrolling

In this section we describe the main contribution of the chapter, which is the Ap-
proximate Unrolling loop optimization. Initially, we use the example of Listing 3.1 to
illustrate the kinds of loops targeted by the optimization as well as the process for the
approximate transformation.

In the second part of the section, we formally characterize these intuitions. Since we
implemented the optimization in a Java compiler, the formalization and examples will
focus on the Java language. However, Approximate Unrolling is not language-specific.
It can be used in any language featuring counted loops, statements, array assignments
and boolean operations. The grammar and semantic rules given in this chapter can be
adapted with little effort to a large family of widely used languages containing these
constructs, such as C#, C++ or Python.

3.1.1 Illustrating the Approximation Process

Approximate Unrolling works by replaces the unrolled iteration’s original instructions
by others that interpolate results. We perform this transformation in such way that
error does not accumulate as the loop runs. We currently implement two interpolation
strategies: Linear Interpolation (LI) and Nearest Neighbor (NN). A policy determines
which strategy to use in each loop.

Algorithm 1 summarizes the approximation process. It takes as input a program P , a
loop L in this program, as well as an approximation ratio (i.e., approximate x iterations
out of y). The algorithm first determines if the loop has the proper syntactical and
semantical structure that will allow Approximate Unrolling to approximate it (line 1).
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Data: P an original program, L a loop in P , (x, y) determine the approximation
ratio of x iterations out of y

Result: P ′ a version of P with an approximate version of L
1 if is_syntax_semantic_fit(L) then
2 Γ ← policy()
3 if Γ 6= ∅ then
4 unroll(L,y)
5 approx_array(Γ, x)
6 dead_code_elimination()
7 end
8 end

Algorithm 1: Approximate unrolling transformation process

If it does, then the algorithm proceeds in a sequence of three steps: (i) use a policy to
determine which approximation strategy fits best (line 2, we present two strategies later
in this section), (ii) unroll the loop y times (line 4), (iii) transform x assignments to an
array assignment (line 5), (iv) remove code that has become dead code as a consequence
of the approximation (line 6). In the following paragraphs we discuss each step. We
illustrate the transformation process where we approximate 1 iteration out of 2 (i.e.,
(x, y) = (1, 2)).

Step 1. Loop Structure: The first step determines if a loop has the right syntax
and semantics that allows Approximate Unrolling to optimize it. We consider ‘for’
loops that (i) have an induction variable incremented by a constant stride, (ii) contain
an array assignment inside their body, and (iii) the indexing expression of the array
assignment is value-dependent on the loop’s induction variable.

Listing 3.1 gives an example of such loops. The example is a ‘for’ loop where (i)
the induction variable ‘i’ is incremented by a constant stride, i.e. ‘i++’. (ii) ‘A[i]’ is
an array assignment inside the loop’s body and (iii) the indexing expression of ‘A[i]’
is value-dependent on the induction variable ‘i’.

Step 2. Approximation Strategy Policy: The policy determines the approximation
strategy to use, if any. It performs the following analysis: say |O| represents the num-
ber of instructions that can be removed from the original code, while |LI| and |NN |
represent the number of instructions needed to perform the LI and NN interpolations
respectively. If |O| > |LI| (i.e. more instructions will be removed that inserted using
the LI interpolation), resp. |O| > |NN |, the policy indicates that LI, resp. NN, should
be used to approximate the loop. It is possible for a loop’s body to be so small that
both |O| < |LI| and |O| < |NN |, meaning that the loop will in fact execute more
instructions if approximated. In this case, the policy indicates that the optimization
should refrain from optimizing the loop at all.

Notice that if both |O| > |LI| and |O| > |NN | are true, LI is preferred since it is
more accurate in 70% of the cases in our dataset.

Step 3. Loop Unrolling: If the policy predicts that the loop will gain performance,
the optimization unrolls the loop, just like a regular optimizing compiler would perform
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for (int i = 0; i < N; i++) {
phase = phase + phaseInc;
double v = Math.sin(phase) *

ampl;
A[i] = v; }

Listing 3.1: Illustrative Example: A
loop mapping a sine wave into an array.

for (int i = 0; i < N; i+= 2) {
phase = phase + phaseInc;
double v = Math.sin(phase) *

ampl;
A[i] = v;
// UNROLLED ITERATION:
phase = phase + phaseInc;
double v1 = Math.sin(phase)*

ampl;
A[i + 1] = v1; }

Listing 3.2: Approximate Unrolling
first unroll the loop as Loop Unrolling
would normally do. In this listing, the
Illustrative Example is unrolled using
Loop Unrolling.

Loop Unrolling. The parameter y of the algorithm determines the number of times the
loop is unrolled. For y = 2, this results in the loop of Listing 3.2 (an intermediate step
we show for clarity).

Step 4(A). Approximating the loop with linear interpolation: If the policy deter-
mines that LI should be used, Approximate Unrolling adds code to the loop’s body that
interpolates the computations of the odd iterations as the mean of the even ones. Thus,
the computations of iteration one are interpolated using the results of iterations zero
and two, computations of iteration three are interpolated using the results of two and
four and so on. Initially, Approximate Unrolling peels iteration zero of the loop. Then,
it modifies the initialization and updates the statements to double the increment of the
loop’s counter variable. The approximate loop is terminated earlier and a guard loop
is added to avoid out-of-bounds errors. Listing 3.3 shows the example loop using linear
interpolation. Notice that some computations have been deleted. This is actually done
in Step 5.

Step 4(B). Approximating the loop with nearest neighbor: If the policy determines
that NN should be used, Approximate Unrolling modifies the update statement to
double the increment of the loop’s counter variable. It also adds code with the nearest
neighbor interpolation at the end of the loop’s body. The loop is also terminated earlier
and a guard loop is also added to avoid out-of-bounds errors. Listing 3.4 shows the
loop interpolated using nearest neighbor. Again, some computations are removed in
the example, as discussed in the next step.

Step 5. Dead code removal: Once the approximate transformation is performed,
some code is left dead (i.e. its computations are not longer used). In our example,
the computation of the sine (‘v1=Math.sin(phase)*ampl’) is no longer needed in the
interpolated iteration once the interpolation code is added. This last transformation step
removes this unused code. The expected improvement in performance comes precisely
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// Initial iteration peeled:
phase = phase + phaseInc;
double v0 = Math.sin(phase) *

ampl;
A[0] = v0;
int i = 1
if ( N > 2 )

for (i = 2; i < N - 1; i += 2
) { // <-- Main Loop

phase = phase + phaseInc;
//v=Math.sin(phase)*ampl;

<-- CODE REMOVED
//Exact iteration:
phase = phase + phaseInc;
double v = Math.sin(phase) *

ampl;
A[i] = v;
// Approximate iteration:
A[i - 1] = (A[i] + A[i-2]) *

0.5f; }
// Guard Loop:
for (j = i; j < N; j++) {

phase = phase + phaseInc;
double v = Math.sin(phase) *

ampl;
A[i] = v;}

Listing 3.3: After unrolling, our
optimization approximates
the unrolled iteration. The loop of
Listing 3.2 is shown here, transformed
by Approximate Unrolling using Linear
Interpolation.

for ( i = 0; i < N - 1; i += 2 )
{

phase = phase + phaseInc;
double v = Math.sin(phase) *

ampl;
A[i] = v;
phase = phase + phaseInc;
//v1=Math.sin(phase)*ampl; <--

REMOVED
A[i + 1] = A[i]; }

// Guard Loop:
for (j = i; j < N; j ++) {

phase = phase + phaseInc;
double v = Math.sin(phase) *

ampl;
A[i] = v;}

Listing 3.4: The loop of listing 3.2,
transformed using nearest neighborg
interpolation

from this removal, as less code is executed. After code removal, the example loop
transformed using linear interpolation looks like the one in Listing 3.3, while the same
loop approximated with nearest neighbor looks like the one in Listing 3.4. The output
of these three loops is depicted in Figure 3.1.

Note on error accumulation: Is important to notice that only dead code result-
ing from the approximation is removed. Therefore, loop-carried dependencies are not
removed, since their values are needed in the following iteration. This provides a guar-
antee that the exact iteration of the loop will always produce precise results. Therefore,
error does not accumulate as the loop executes in the approximate iterations.
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Figure 3.1: Sine waves generated by the motivation examples. The upper wave is
generated by the loop of Listing 3.1, while the middle and lower ones are generated by
loops of Listing 3.3 and 3.4, respectively.

3.1.2 Target Loop’s Syntax

Approximate Unrolling targets the subset of ‘for’ loops that (i) have an update ex-
pression that increments or decrements a variable by a constant value (ii) contain an
array assignment inside its body and (iii) that have an indexing expression of the array
assignment that is value-dependent on the loop’s update expression.

We now use Backus-Naur form to formalize the syntax of the loops abiding to (i)
and (ii), while (iii) is formalized using operational semantics in 3.1.3. For the sake of
simplicity, we only show the case in which the variable is being incremented. It should
not be difficult for the reader to derivate these rules for the case in which the variable
is being decremented.

〈target_for〉 ::= ‘for’ ‘(’ 〈expression〉 ‘;’ 〈expression〉 ‘;’ 〈update_expr〉 ‘)’ 〈t_body〉

〈update_expr〉 ::= 〈identifier〉 ‘+=’ 〈integer〉 | 〈identifier〉 ‘++’

〈t_body〉 ::= ‘{’ 〈statement〉 〈array_assign〉 〈statement〉 ‘}’

〈array_assign〉 ::= 〈expression〉 ‘[’ 〈expression〉 ‘]’ ‘=’ 〈expression〉

Grammar 3.1: Grammar of for loops targeted by Approximate Unrolling

Grammar 3.1 shows the BNF rules defining the loops Approximate Unrolling can
target. In the grammar, the non-terminal rules 〈expression〉, 〈identifier〉, 〈integer〉
and 〈statement〉 define the Java expressions, identifiers, integer literals and statements
respectively. Rule 〈target_for〉 describes the loops targeted by Approximate Unrolling.
The rule introduces two other non-terminals. The first non-terminal: 〈update_expr〉
designates the update expression of the loop, consisting of a variable being incremented
by a literal value, while 〈t_body〉 designates a list of statements containing at least one
array assignment, which is defined with the 〈array_assign〉 non-terminal.
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i, n ∈ Z B ∈ {expression} [[B]] ∈ {true, false} t_body = C

I0, C ⊂ {statement} ξ = 〈B, i := i+ n,C〉

Ai = {a ∈ array_assign | ∈ REACH(i := i + n)} ΓN (C)→ R ΓL(C)→ R

Figure 3.2: Common definitions and rules used by both linear and nearest neighbor
transformations

ForL
(ΓL(C) > 0)⇒ true (C ∩Ai 6= ∅)⇒ true

(ForL(I0, B, i := i+ n) C, σ)→ (I0; if (B)Pre(ξ) else SKIP, σ)

ExL
(ExL(ξ), σ)→ (i := i+ 2 ∗ n; if (B)C;AprxL(ξ) else Post(ξ), C, σ)

AprxL
(AprxL(ξ), σ)→ (a[i− n] := (a[i] + a[i− 2 ∗ n]) ∗ 0.5;ExL(ξ), σ)

Pre
(Pre(ξ), σ)→ (C;ExtL(ξ), σ)

Post
(Post(ξ), σ)→ (i := i− n; if (B)C; i := i+ n; else SKIP, σ)

Figure 3.3: Small step SOS of Approximate Unrolling using linear interpolation

3.1.3 Operational Semantics of Approximate Unrolling

Figures 3.3 and 3.4 show the operational semantics for Approximate Unrolling in small
step operational style. The rules in Figure 3.3 specify the transformations for the
linear interpolation, while the rules in Figure 3.4 specify the transformations for the
nearest neighbor. Figure 3.2 provides a group of rules and definitions used by both
transformations. As with the syntactic part, to keep the rules simple, we only describe
the case in which the variable is incremented.

As defined in Figure 3.2, B is a boolean Java expression and I0, C are sets of
Java statements. I0 represents the initialization statements, while C represents the
loop’s body. The tuple ξ is a syntactical sugar to make the rules more compact. Also,
REACH(X) is the reaching definitions set data-flow equation for a given expression
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ForN
ΓL(C) > 0)⇒ false (ΓN (C) > 0)⇒ true (C ∩Ai 6= ∅)⇒ true

(ForN (I0, B, i := i+ n) C, σ)→ (I0;ExN (ξ), σ)

ExN
(ExN (ξ), σ)→ (if (B)C;AprxN (ξ), else SKIP, σ)

AprxN
(AprxN (ξ), C, σ)→ (i := i+ n; if (B)a[i] := a[i− 1]; i := i+ n;ExN (ξ) else SKIP, σ)

Figure 3.4: Small step SOS of Approximate Unrolling using nearest neighbor

[CT05]. Functions ΓL(C) and ΓN (C) are implementation-specific functions that tell us
if there is going to be any gain from transforming the loop using the linear or nearest
neighbor interpolations respectively. These functions are the representation of the pol-
icy in the formal rules. We define these functions for our implementation in section 3.2.
Finally, a is an array assignment statement conforming to the 〈array_assign〉 syntac-
tical rule and Ai is the set of array assignment expressions contained in the reaching
definitions set of the update expression of the loop (i.e. REACH(X)). We use the
common definitions for rules SKIP, ASSIGNMENT, SEQUENCE and IF.

3.1.3.1 Rules For the Linear Transformation

In this subsection we describe the semantic rules of the linear transformation as follows:
ForL. The ForL rule interprets a loop using linear interpolation. The rule reduces

to the interpretation of the loop’s initialization statement I0. If predicate B holds, rule
Pre is interpreted. The rule reduces only if the gain function is positive (ΓL(C) > 0)
and the body C of the loop contains an array assignment being indexed by the loop’s
induction variable (i.e. C ∩Ai 6= ∅).

Pre. As shown in Listing 3.2 the loops approximated using linear interpolation have
iteration zero peeled. This rule represents such initial peeled iteration. It reduces to
the interpretation of the loop’s body once, without any modifications. Then, the exact
part of the loop (described by rule ExtL) is called.

ExtL. This rule represents one loop’s exact iteration. The odd iteration is skipped
by doubling the incrementing of the counter variable (i := i + 2n), then if predicate
B still holds, an exact iteration of the loop is executed. Next, the code approximating
intermediate values is called in rule AprxL.

AprxL. Approximates the value of odd arrays slots. The approximation is found as
the mean of the previous and following values of the approximate slot, the value of the
even iteration array slot is calculated as:

a[i− n] := (a[i] + a[i− 2n]) ∗ 0.5.
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Notice that the counter’s variable i was incremented twice to skip the approximate
iteration in the exact one, therefore the odd slot must be accessed now using index i−n
and the previous even slot using index i− 2n.

Post As the initial iteration is peeled and the counter’s variable value is doubled to
unroll the loop, if the number of iterations in the original loop is even, the last iteration
of the loop is not executed. To solve this, one last iteration is peeled and appended
after the loop.

3.1.3.2 Rules For the Nearest Neighbor

Similarly to what we did for the linear transformation, in this section we describe the
semantic rules for the nearest neighbor transformation.

ForL. The ForL rule transforms a loop using nearest neighbor interpolation. The
rule can be reduced to the execution of the initialization statements I0, followed by
the execution of ExN . The rule reduces only if the gain function is for the linear
interpolation is negative (ΓL(C) ≤ 0), the gain function for the nearest neighbor is
positive (ΓL(C) > 0) and the body C of the loop contains an array assignment being
indexed by the loop’s induction variable (i.e. C ∩Ai 6= ∅).

ExN This rule executes an exact iteration of the loop if the predicate B holds, then
it calls AprxN .

AprxN The rule increments the counter variable, approximates one array slot by
setting its value equal to the one calculated before and then it increments the variable
again. Finally ExN is called. Unlike linear interpolation, the rule is supposed to
approximate the value of the array assigned in the even iteration.

3.2 Implementation

This section describes our experimental implementation of Approximate Unrolling in
the C2 compiler of Hostpot. The Hostpot V.M. is used by billions of devices today.
It come packed with two compilers: C1 (or Client) and C2 (or Server). We chose to
implement Approximate Unrolling directly in the C2 compiler to avoid phase ordering
problems, to reuse the C2’s value dependency graph that we needed for our analysis and
to obtain guarantees that Approximate Unrolling can actually improve the performance
of a highly optimized code created by production-ready compiler. Also, by implementing
the optimization in C2, we provide support for other JVM languages such as Scala.

3.2.1 Approach Overview

Approximate Unrolling is a machine-independent optimization. This kind of optimiza-
tion operates by reshaping the Ideal Graph, which is the internal representation (IR) of
the C2 compiler.

In short, our implementation works as follows: the Ideal Graph contains nodes
representing operations very close to assembler instructions. Nodes are linked by edges
representing data dependencies. There is a node type called Store that represents
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a storage to memory. Our transformation is performed after the compiler performs
the ‘regular’ Loop Unrolling. During the unrolling, each node in the loop’s body gets
duplicated, resulting in one extra node for each unrolled iteration. Let us consider
StoreA, a node representing a value storage into memory owned by an array. Before
the unrolling, there is only one node StoreA. After the unrolling, there are two nodes:
StoreA and StoreB. If we find nodes like StoreA and StoreB in a loop body, we say
that the loop has the correct structure and we pass it to the policy function.

If the policy recommends Nearest Neighbor, we disconnect one of the Store nodes
(say StoreA) of all its value-dependencies and connect to the value-dependencies of the
other (say StoreB), resulting in both Store storing the same value in two different array
slots.

If the policy recommends Linear Interpolation the process is very similar to Nearest
Neighbor, the only difference is that some nodes representing the mean computation
are added to the input of StoreA to perform the mean calculation.

Once we finish transforming the graph, we delete of all nodes on which StoreA
was originally value-dependent, removing most computations of one of the two unrolled
iterations.

In the rest of the section we expand on this process. First, we describe the Ideal
Graph, the internal representation of the C2. Then, we go into the details of our
implementation and exemplify it using a toy loop. Our modified version of the Hostpot
JVM is available on the webpage of the Approximate Unrolling project 1

3.2.2 The Ideal Graph

The Ideal Graph (IG) [CP95] is a Program Dependency Graph [FOW87]. All C2’s
machine independent optimizations work by reshaping this graph. In the Ideal Graph,
nodes are objects and hold metadata used by the compiler to perform optimizations.
Nodes in this graph represent instructions that are as close as possible to assembler
language (i.e. AddI for integer addition and MulF for float multiplication).

The IG metamodel has nearly 380 types of nodes. In this section, we deal with five
of them to explain our technique: Store, CountedLoop, Phi, Add and Mul. Store nodes
represent storages into memory. They contain metadata indicating the type of variable
holding the memory being written, making it easy to identify Store nodes writing to
arrays. The Ideal Graph is in Static Single Assignment (SSA) form and the Phi nodes
represent the φ functions of the SSA. CountedLoop represents the first node of all the
loops that Approximate Unrolling can target. The CountedLoop type contains two
important metadata for our implementation: a list of all nodes representing the loop’s
body instructions and a list with all nodes of the update expression. Finally, Add and
Mul nodes represents the addition and multiplication operations.

Nodes in the IG are connected by control edges and data edges. Yet, data edges are
the most important ones for our implementation, and we will refer to this kind of edges
exclusively, unless noted otherwise. Data edges describe value dependencies, therefore

1https://github.com/approxunrollteam

https://github.com/approxunrollteam
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the IG is also a directed Value Dependency Graph [AKPW83]. If a node B receives a
data edge from a node A, it depends on the value produced by A. Edges are pointers to
other nodes and contain no information. Edges are stored in nodes as a list of pointers.
The edge’s position in the list usually matters. For example, in Div (division) nodes
the edge in slot 1 points to the dividend and the edge in slot 2 points to the divisor.

The Store requires a memory address and a value to be stored in the address. The
memory edge eM is stored at slot 2 and the value edge eV at slot 3 of the edge’s list.
Edge eM links the Store with the node computing the memory address where the value
is being written, while eV links the Store with the node producing the value to write.

Let us consider the very simple example of listing 3.5,. The resulting IG for this
loop is shown in figure 3.5. In the figure, the StoreI represents the assignment to A[i],
the MulI node represents the i*i expression. The address is resolved by the nodes in
the Cluster A (containing the LShift node).

for ( int i = 0; i < N; i++ )
A[i] = i * i;

Listing 3.5: Example loop for the implementation

3.2.3 Detecting Target Loops

Sections 3.1.2 and 3.1.3 formally described the shape of loops targeted by the proposed
optimization. This section describes how our implementation detects them in the IG.

Section 3.1.2 defined the loops Approximate Unrolling can target. Fortunately, Java
for loops having a constant-increment update expression are also the target of other well
known optimizations such as Range Check Elimination and Loop Unrolling. Therefore,
the C2 recognizes them and marks their start using CountedLoop nodes. When our
optimization starts, the compiler has already marked the loops with CountedLoop nodes,
recognized the nodes belonging to the update expression and the ones belonging to the
loop’s body. The compiler does this using the work described in [Cli95, Vic94, Tar].
Figure 3.5 shows the CountedLoop recognized by the C2 for the loop in listing 3.5. The
nodes in the graph are those listed in the CountedLoop metadata. This metadata also
indicates that the update expression contains solely the AddI node (in gray).

Once the loops with constant-increment update expression are detected, the next
step consists in determining if there is an array whose index expression value depends
on the loop’s update expression. As we mentioned, the CountedLoop node maintains a
list of all the nodes in its body. To determine if there is an array assignment within the
loop, we search this list looking for a Store writing to memory occupied by an array.
In the example of figure 3.5 we find the StoreI node (in gray).

Finally, we check if the array index expression value depends on the loop’s update
expression. As the IG is a Value Dependency Graph, we look for a path of data edges
between the Store node representing the array assignment and any node belonging to
the loop’s update expression. In the example of Figure 3.5 this path is highlighted using
bold gray edges. Thanks to the metadata stored in CountedLoop, we know that the



44 Approximate Loop Unrolling

Figure 3.5: The ideal graph of the example loop of listing 3.5. Dashed arrows represent
control edges and solid arrows represents data edges.

update expression only contains the AddI node. Therefore, in the example, the path
is composed of the following nodes: AddI → Phi → CastII → ConvI2L → LShiftL
→ AddP → AddP → StoreI.

3.2.4 Unrolling

Our implementation piggybacks in two optimizations already present in the C2 compiler:
Loop Unrolling and Range Check Removal. At the point Approximate Unrolling begins,
the compiler has already unrolled the loop and performed Range Check Removal.

While unrolling, the compiler clones all the instructions of the loop’s body. Figure
3.6 shows the IG once the loop of listing 3.5 has been unrolled. The cloning process in-
troduces two Store nodes: StoreI and StoreI-Cloned. Due to C2’s design, the cloned
nodes belong to the even iteration of the loop. Once the loop is unrolled, Approximate
Unrolling reshapes the graph to achieve the interpolated step by modifying one of the
two resulting iterations. Nearest Neighbor modifies the even iteration, while Linear
interpolation reshapes the odd iteration.

3.2.4.1 Nearest Neighbor Interpolation

As mentioned in section 3.2.2, a Store node takes two input data edges eM and eV .
Edge eM links with the node computing the memory address, while eV links with node
producing the value to write.
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Figure 3.6: The ideal graph for the unrolled loop of listing 3.5 before approximating.
Solid arrows represent data edges.Notice nodes MulI-Cloned and AddI-Cloned, which
produces the even iteration’s value. Edge eV connects these nodes with StoreI-Cloned.

Figure 3.7: The ideal graph for the unrolled loop of listing 3.5 after Approximate Un-
rolling has modified the graph using nearest neighbor interpolation. Notice the removal
of the MulI-Cloned and AddI-Cloned nodes. These nodes will not translate into as-
sembler instructions anymore. Also, data edge eV now connects StoreI-Cloned with
the same Phi node that produces a value for StoreI, meaning that the same value is
going to be stored in two different locations.
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Approximate Unrolling performs nearest neighborhood interpolation by disconnect-
ing the cloned Store node from the node producing the value being written (i.e. it
deletes eV ). In figure 3.6 this means to disconnect node MulI-Clone (in gray) from
node StoreI-Clone by removing edge eV .

This operation causes the node producing the value (in the example MulI-Clone)
to have one less value dependency and potentially become dead if it has no other de-
pendencies. A node without value dependencies means that its computations are not
being consumed and therefore becomes dead code. In this case, the node is removed
from the graph. We recursively delete all nodes that do not have dependencies any-
more, until no new dead nodes appear. In figure 3.6, we delete MulI-Cloned and then
AddI-Cloned. This simplification of the IG translates into fewer instructions when the
IG is transformed in assembler code.

After the removal, Approximate Unrolling connects the node producing the value
for the original Store into the cloned Store. Figure 3.7 shows the shape of the IG after
Approximate Unrolling has approximated the graph using nearest neighbor. Note that
MulI-Clone and AddI-Clone are deleted and that Store-Clone is connected by ev to
the same node as StoreI. The nodes producing the address remain different.

Listing 3.6 shows the code generated by C2, without performing Approximate Un-
rolling: the compiler has unrolled the loop twice, generating four storages to memory
(lines 2, 3, 9, 10) and four multiplication instructions (imull, lines 5, 8, 12, 17). Listing
3.7 shows the code generated for the same loop using our transformation: there are still
four storages (lines 4, 5, 9, 10), but only two multiplications (Lines 8, 13).

B8: #
movl [RCX + #16 + R9 << #2], R8
movl R9 , R10 # spill
addl R9 , #3 # int
imull R9 , R9 # int
movl R8 , R10 # spill
incl R8 # int
imull R8 , R8 # int
movl [RCX + #20 + R10 << #2],

R8
movl RDI , R10 # spill
addl RDI , #2 # int
imull RDI , RDI # int
movl [RCX +#24+R10 << #2], RDI
movl [RCX +#28+R10 << #2], R9
addl R10 , #4 # int
movl R8 , R10 # spill
imull R8 , R10 # int
cmpl R10 , R11
jl ,s 7

Listing 3.6: Assembler code generated
for the example loop without using
Approximate Unrolling

B7: # B8 <- B8 top -of-loop
Freq: 986889

movl RBX , R8 # spill
B8: #
movl [R11 +#16 + RBX <<#2], RCX
movl [R11 +#20 + R8 <<#2], RCX
movl RBX , R8 # spill
addl RBX , #2 # int
imull RBX , RBX # int
movl [R11 +#24+R8 <<#2], RBX
movl [R11 +#28+R8 <<#2], RBX
addl R8, #4 # int
movl RCX , R8 # spill
imull RCX , R8 # int
cmpl R8, R9
jl ,s B7

Listing 3.7: Assembler code for
the example loop using Approximate
Unrolling. Notice the consecutive movl
instructions storing the same value to
consecutive addresses
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3.2.4.2 Linear Interpolation

To unroll using linear interpolation, Approximate Unrolling needs the first and last
iteration of the loop peeled. Fortunately, this is also a requirement of other optimizations
such Range Check Removal and we exploit this feature to peel the first and last iterations
of the loop. The current implementation of the Range Check Removal creates two guard
loops, one before the main loop and other after. These guard loops ensure that the main
loop will not go out of bounds on the array being assigned. We exploit these two guard
loops for the linear interpolation.

Approximate Unrolling performs the LI interpolation following a process similar to
nearest interpolation. The differences are that it disconnects the value data edge ev
from the original Store, rather than the cloned Store. This is because C2’s design
implies that the cloned nodes belong to the even iteration, but linear interpolation
approximates odd iterations. After the value data edge is disconnected, some nodes
become dead. Here we use the same process to remove unused nodes. Finally, the
interpolation is performed in the following way: (i) a Add node is created that receives
as input the output of the cloned Store and a Phi node representing merge between
the previous odd iteration of the loop and the current one (ii) a Mul node is created to
multiply the result of this addition by 0.5 and this node is connected to the the original
Store effectively interpolating the loop’s even iteration.

Data: store is the IG node representing the storage to an approximate array slot
Result: A value indicating whether to approximate this loop or not.

1 |O| ← 0
2 rem.pushAll(store.incoming_nodes())
3 visited.addAll(store.incoming_nodes())
4 while ¬ rem.empty() do
5 n← rem.pop()
6 out← n.outgoingEdgeCount() −1
7 if ¬ (n ∈ visited ∨ out > 0) then
8 rem.pushAll(n.incomingNodes())
9 visited.add(n)

10 |O| ← |O|+ weight(n)
11 end
12 end
13 if |LI| < |O| then
14 return use_LI
15 end
16 if |NN | < |O| then
17 return use_NN
18 end
19

20 return use_NONE
Algorithm 2: Selection mechanism
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3.2.5 Strategy Policy implementation

Approximate Unrolling uses a policy to determine which approximation strategy use to
each loop. The policy uses three cost variables: |O| represents the cost of executing the
loops original’s instructions, while |LI| and |NN | represents the cost of running the LI
and NN approximation respectively.

Algorithm 2 shows how our policy’s implementation works in the C2 compiler. Each
node in the IG has a fixed cost weight defined manually by us. The amount and types of
nodes inserted using LI and NN are fixed: three nodes (Mul, Add, Store) for LI and one
node (Store) for NN. Therefore, we know beforehand the |LI| and |NN | interpolation’s
costs. We are only missing the cost |O| of the original code. To compute this we begin
with |O| = 0. We then perform a depth-first-search (DFS) in the IG starting from the
Store node representing the array slot receiving the approximate value. For each node
encountered during the DFS we compute a value out equal to the number of outgoing
data edges minus one. Outgoing data edges represents value-dependencies in the IG.
Since the original value will not be used in the approximate loop, the node will have one
less value-dependency if the loop is approximated. Therefore, if out − 1 = 0 it means
that the node will have no data-dependencies (i.e. will become dead code) and can be
deleted in the approximated loop. If this is the case, we add the node’s weight w to
|O| and we continue the DFS from this node traveling into its incoming edges. This is
done because a node that becomes dead code can also cause other nodes to turn dead.
On the contrary, if out > 0 then the node cannot be deleted, we do not add its weight
to |O| and we do not pursue the DFS from this node.

When the DFS is over, we have computed the value of |O|. Then, the policy will
indicate that LI should be used if |LI| < |O|, that NN should be used if |LI| < |O| ∧
|NN | > |O|, or that Approximate Unrolling should not optimize the loop if |LI| >
|O| ∧ |NN | > |O|.

If the policy recommends not to optimize the loop, the optimization stops and no
further transformation of the loop is performed.

3.3 Evaluation

The objective of our evaluation is to assess whether Approximate Unrolling can provide
a satisfactory trade-off that maximizes performance gain and energy efficiency while
minimizing accuracy losses. Besides, we want to know if the selection mechanism can
determine the approximation strategy providing optimal results for each loop. We also
expect to gain insights on the types of patterns on which Approximate Unrolling works
best, and the impact of perforation ratio in performance and accuracy. Finally, we
compare our optimization with Loop Perforation [SDMHR11], which is a state of the
art loop approximation technique that works by completely skipping iterations of the
loop. We investigate these aspects through the following research questions:

RQ1: Can Approximate Unrolling provide a satisfactory accuracy/energy-performance
trade-off?
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Figure 3.8: The figure shows our evaluation’s overall process. Each program was op-
timized using three strategies. Then, the results obtained with each strategy were
compared with those obtained using the program without approximation

If the accuracy losses are unacceptable, there is no point in making calculations
faster. On the other hand, without significant increments in speed and energy effi-
ciency, reducing accuracy may not pay-off. To answer this question, we use a set of
microbenchmarks to measure speedups for each of the loops in our dataset. We then
observe the energy consumption of these microbenchmarks to evaluate energy reduc-
tions. Finally, we evaluate accuracy losses using one specific accuracy metric for each
project in our dataset. The metric used for each project is described in section 3.3.1.

RQ2: How does Approximate Unrolling compare with loop perforation?

Loop Perforation [SDMHR11] is a state-of-the-art approximate loop optimization.
Hence, we compare our work with it. Our intuition is that these two optimizations
are complementary and work best in different situations. To learn more about this, we
compare both in terms of speed gain, energy efficiency, accuracy loss and trade-off.

RQ3: How does the ratio of approximation influence the trade-offs?

Approximate Unrolling can use different ratios of approximation. In the examples,
formalization and the explanation of the implementation, we show approximation in
1 out 2 iterations. However other ratios are also valid and we must understand the
approximation ratio’s impact on the approximation’s quality.

RQ4: What are the situations in which Approximate Unrolling works best?

To further understand what are the loops that can benefit from Approximate Un-
rolling and how our approach could be applied beyond the four case studies analyzed
here, we perform a qualitative classification of the loops that we approximate.
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Table 3.1: Case studies for our experiments

Case Study Domain Workload Accuracy
Metric

Loops Approximable

OpenImaJ Multimedia analysis Face
Recog-
nition
System

Dice 118 16

Jsyn Musical Synthesizers 3xOsc syn-
thesizer
clone.

PEAQ
[ŠBD05]

8 8

Lucene Text search engine Text
Search
Applica-
tion

Baek
[BC10]

151 9

Smile Machine Learning ZipCode
digit
classifier

Recall 73 12

3.3.1 Case Studies

To evaluate our approach we use four libraries belonging to different domains: Open-
ImaJ [HSD11], Jsyn[Bur98], Apache Lucene[MHG10] and Smile[Hai17].

We chose libraries from multiple domains (video and sound processing, search en-
gines and machine learning) in which performance played an important role. Other
parameters we considered when selecting our case studies was the codebase’s size, the
test suite’s quality and the project’s popularity. Therefore, all projects in our dataset
are large, well tested and popular (as measured in Github stars).

We evaluate OpenImaJ using a workload that performs real-time face recognition
in videos featuring people of different sex, age and ethnicity speaking directly to the
camera. Jsyn is a framework to build software-based musical synthesizers. The workload
to evaluate Jsyn builds a clone of the popular 3xOsc2 synthesizer and use it to render
a set of scores into WAV sound files. Lucene 3 is a text search engine written entirely
in Java. Lucene’s workload indexes a set of text files and then returns the results of
multiple text search performed over these files. Smile 4 is a machine learning library.
The workload to assess Smile consisted in a classifier that was able to learn and then
recognize a dataset of handwritten zip-codes digits.

Table 3.1 shows for all case studies in our dataset, their domain and workload. The
table also shows the number of ‘for’ loops covered in each library by the workload
(‘Loops’) and the subset of these loops Approximate Unrolling can target (Approx-
imable). In the table, column ‘Accuracy Metric’ shows the metric we used to measure
accuracy losses, we expand on these metrics in 3.3.3.

2https://www.image-line.com/support/FLHelp/html/plugins/3x%20OSC.htm
3https://github.com/apache/lucene-solr
4http://haifengl.github.io/smile/

https://www.image-line.com/support/FLHelp/html/plugins/3x%20OSC.htm
https://github.com/apache/lucene-solr
http://haifengl.github.io/smile/
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3.3.2 Methodology

Column ‘Approximable’ of Table 3.1 shows the number of loops that Approximate
Unrolling could target in a case study that were also covered by the workload’s execution.
For each of these loops we measured performance, energy consumption and impact
on application’s accuracy. We repeated the same observations for the approximated
versions of all loops. This was done using both approximation strategies (LI and NN).

Performance was measured using microbenchmarks. This technique allows observing
the loop’s performance improvement caused by our optimization in isolation, without
the added noise of the rest of the program. Also, microbenchmarks are widely used
by the authors of the C2 to measure their own optimizations [Ale13b], as shown by
the Oracle’s bug database5. Determining whether there is an effective gain in terms of
performance is a challenging task in Java [Ale13b]. We run our microbenchmarks using
a statistical methodology [GBE07] to ensure that the measurements of each run were
consistent. All runs were performed in an Intel i7 i7-6600U CPU, 2.60GHz with 16GB
RAM running Linux Ubuntu 16.04.

Energy was assessed by estimating the total CPU energy consumption of our mi-
crobenchmarks using JRALP [LPYD15], a Java library that exposes to Java programs
the Intel’s Running Average Power Limit (RAPL) Technology 6

Finally, we observed each loop’s impact on its respective application’s accuracy.
To do so, we first ran the workload without any approximation to obtain an output
that we use as reference. In a second step, we ran several times the same workload
approximating only one of the N approximable loops covered by the workload each
time. For all loop we repeated this process three times, each time using a different
approximation strategy: Nearest Neighbor, Linear interpolation and Loop Perforation.
This yielded N ×3 different outputs for a given workload that we then compare against
the reference output using a metric specific to the application’s domain.

These experiments were made overriding the default’s Approximate Unrolling strat-
egy selection policy. By overriding the policy we forced the optimization to use the
LI, NN and Loop Perforation strategies one after the other in all cases to observe their
respective impact in all the loops of our dataset.

3.3.3 Metrics

3.3.3.1 Trade-off metric

In order to objectively assess the speedup-energy/accuracy trade-off we must quantify
it. To do this we define a trade-off metric in Equation 3.1. Variable P is the per-
formance improvement of the loop, measured as the ratio of operations per second of
the approximated loop’s microbenchmark over the operations per second of the precise
loop’s microbenchmark; ||L|| is the normalized value in the range [0..1] of the accuracy
metric’s value L for each application. Finally, E is the ratio of energy consumption
of the precise loop’s microbenchmark over the approximate loop’s microbenchmark.

5http://bugs.java.com. Bugs ids: 8152910, 8050142, 8151481 and 8146071
6https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl

http://bugs.java.com
https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl
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ACCEPTABLE(x) is a function that returns true if the losses are acceptable and
false otherwise.

T (P,L,E) =

{
P+E
2 × (1− ||L||), if ACCEPTABLE(L)

0 otherwise
(3.1)

The metric rewards performance improvements and penalizes accuracy losses and
energy consumption. It gives no reward to a loop if accuracy losses are not acceptable.
We assume that some accuracy reduction can be tolerated, but only to some degree.
That is why the metric is divided in two cases, one for when the accuracy losses are
acceptable and another for when it is not. If the losses are acceptable, we ideally want
our approximate loops to increase performance and energy efficiency the most, while
giving away as little accuracy as possible. Performance and energy values are weighted
to compensate for the fact that these two parameters are highly related to the same
variable, which is the amount of instructions executed. This metric allows us to reason
about how good is the trade-off. For a non-approximate (precise) loop T (1, 0, 1) = 1.
Therefore we consider a trade-off good only if T > 1 for a particular loop, since this
means that we have increased performance to a higher degree than we have decreased
accuracy.

3.3.3.2 Speed-up

In order to quantify the speedup, we use microbenchmarks to measure the number of
operations per second (ops) of a particular piece of code. The speedup metric is defined
as the ratio of operations per second of the optimized code over the original code as
measured by a microbenchmark:

P (original, optimized) =
ops(optimized)
ops(original)

3.3.3.3 Energy consumption efficiency gain

We also use use microbenchmarks to measure the CPU energy consumption in opera-
tions per Joule (opJ). We then define the energy efficiency gain as the ratio of operations
per Joule of the original code over the optimized code:

E(original, optimized) =
opJ(original)
opJ(optimized)

3.3.3.4 Accuracy metrics

Like other studies in Approximate Computing [SDF+11a, BC10], we use a different
metric L for each case study to improve the relevance of our observations. The reason
for this is that in each domain the result’s quality is perceived differently. Also, the
degree of tolerance w.r.t. accuracy loss varies from case to case. Therefore, is not
possible to choose a one-size-fits-all metric and we decided to provide one specific way
of measuring accuracy in each application.
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Jsyn Accuracy Metric: To pairwise compare the audio files produced by the opti-
mized versions of the synthesizer with those produced using the unoptimized version,
we use the Perceptual Evaluation of Audio Quality (PEAQ) [ŠBD05] metric. This is a
standard metric designed to objectively measure the audio quality as perceived by the
human ear. PEAQ takes one reference and one test file and compares them. It assigns
a scale of continuous values to the to the test audio, depending on how well it matches
the reference: 0 (non audible degradation), -1 (audible but not annoying), -2 (audible
slightly annoying), -3 (annoying) -4 (completely degraded). The acceptable function is
defined then as

ACCEPTABLE(x)→ x < −2.5

.
OpenImaJ. Accuracy Metric: We use the Dice metric: D(A,B) = 2∗|A∩B|

|A|+|B| to com-
pare the pixel’s set inside the rectangle detected by the application without approxima-
tion against the pixel’ set obtained with the approximated version of the face recognition
application. Dice is a set comparison metric with continuous values between 1 and 0,
where 1 means identical sets and 0 means completely different sets. For most segmen-
tation algorithms that use Dice, 0.85 is an acceptable value, therefore we define the
acceptable function for this application as

ACCEPTABLE(x)→ x > 0.85

Lucene Accuracy metric: We use a similar metric to the one used in [BC10] to evalu-
ate the impact of approximate loops in the Bing7 search engine. We give 1 point to each
hit that the approximate engine returned in the same order as the non-approximated
one, 0.5 points if the hit is returned but in a different order and 0.0001 points if the hit
is not in the original version. The metric’s value is the average of all hits or 0.0 points
if the program crashes. We define the acceptable function as

ACCEPTABLE(x)→ x > 0.95

Smile Accuracy metric: We use the classification’s recall (i.e. the number of properly
classified elements over the total number of elements). According to [Has] a 2% error is
a good value for this dataset, so we define acceptable as

ACCEPTABLE(x)→ x > 0.98

3.4 Results

Figures 3.9 to 3.20 show the performance, energy and accuracy results of our experi-
ments. In all figures, each loop is represented using three bars that show (from left to
right) the results obtained using Nearest Neighbor (NN) with ratio 1/2, Linear Interpo-
lation (LI) with ratio 1/2 and Perforation (PERF). Figures 3.9, 3.10, 3.11, 3.12 show the

7http://www.bing.com/

http://www.bing.com/
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Figure 3.9: JSyn performance improvements
Figure 3.10: Lucene. Performance improvement

Figure 3.11: OpenImaJ. Performance improve-
ment

Figure 3.12: Smile. Performance Improvements

Figure 3.13: JSyn energy reductions Figure 3.14: Lucene. Energy consumption

Figure 3.15: OpenImaJ. Energy consumption Figure 3.16: Smile. Energy consumption
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Figure 3.17: JSyn Accuracy metric
Figure 3.18: Lucene. Accuracy metric’s value
(Higher is better, zero means crash)

Figure 3.19: OpenImaJ. Accuracy metric’s value Figure 3.20: Smile. Accuracy metric’s value

performance gains for each loop in our dataset. Figures 3.13, 3.14, 3.15, 3.16 represent
the percent of energy consumption w.r.t to the precise version of the loop. Figures 3.17,
3.18, 3.19, 3.20 show the impact of each loop in its host application’s accuracy. In the
performance graphs, the Y axis represents the percent of gain w.r.t to the original loop.
For example, a 200% value means that the approximate version of the loop run twice as
fast. The same applies to energy consumption, a 50% value means that an approximate
loop needs only half of the energy to finish than its precise counterpart. In the accuracy
graphs, the Y axis represents the accuracy metric’s value.

In Section 3.1.1, we illustrate how the policy recommends the approximation strategy
to approximate a loop. The policy can also suggest not to optimize the loop at all.
Stripped bars represents the strategy recommended to approximate a particular loop.
For example, Figure 3.9 shows that the strategy proposed for loop J0 is NN while for
loop J1 is LI. The policy also indicated not to approximate some loops in our dataset,
for example, Figure 3.10 shows that this is the case for loops L2 and L8 (no striped
bars). We include all loops in our dataset in the plots, even those rejected by policy.
We do so to learn about the policy’s quality and to observe the optimization’s impact
in all cases.

Tables 3.2 and 3.3 summarize the data presented in the figures. Table 3.2 shows
the numbers of loops that improve performance and energy efficiency, while table 3.3
shows energy reductions and impact on accuracy of the loops in our dataset. In table
3.2, column ‘Loops’ show the number of loops amenable for Approximate Unrolling
in our dataset, while columns ‘Speedup’ and ‘Less Consumption’show the number of
loops that actually improved speed and consume less energy respectively. Column ‘Rec.’
shows the number of loops the policy recommended to optimize and ‘Rec. Speedup’ how
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Table 3.2: Performance and Energy Improvements for the loops of our dataset

Project Loops Speedup % Less
Con-
sump-
tion

% Rec. Rec.
Speedup

% Rec.
Less
Con-
sump-
tion

%

JSyn 8 7 87.5 8 100 7 7 100 7 100
OpenImaJ 16 9 56.2 8 50 8 7 75 7 75
Lucene 9 6 66.6 6 66.6 6 6 100 6 100
Smile 12 5 41.7 6 50 5 4 100 4 100
Total 45 27 60 28 60 26 24 92 24 92

Table 3.3: Impact in accuracy of the loops in our dataset

Project Loops Accept % Crash% Rec.
Loops

Rec.
Ac-
cept

% Rec.
Crash

%

Jsyn 8 8 100 0 0 6 6 100 0 0
OpenImaJ 16 10 62.5 0 0 8 8 100 0 0
Lucene 9 7 77.7 2 22.2 6 5 83.3 1 16.6
Smile 12 10 83.3 0 0 5 5 100 0 0
Total 45 35 78 2 4 26 24 92 1 2

many among these loops actually improved performance and energy efficiency. Table 3.3
shows for how many loops accuracy looses were acceptable. It also shows the amount of
crashes caused by approximate loops. Column ‘Accept’ shows the number of loops with
acceptable performance, while ‘Rec. Accept’ indicates how many recommended loops
reduced the accuracy of the application to acceptable levels. Column ‘Crash’ show how
many loops crashed the application and ’Rec. Crash’ how many recommended loops
made the application crash. This data tell us that most of the loops approved by the
policy have also acceptable accuracy losses.

3.4.1 RQ1: Can Approximate Unrolling Provide Satisfactory
Accuracy/Energy-Performance Trade-offs?

In this section we evaluate whether Approximate Unrolling is able to provide a satis-
factory trade-off for the loops it approximates.

We defined the trade-off metric T in Section 3.3.3, Equation 3.1. Trade-off is con-
sidered good when T (P,L,E) > 1, in other words, when the loops gains performance
and energy efficiency while reducing the application’s accuracy only to acceptable lev-
els. Table 3.4 shows the amount of loops in our dataset separated by projects. Column
‘Good’ show for how many loops the trade-off was good, while column ‘Rec. Good’
indicates the number of loops recommended by the policy that improved the trade-off.
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The key insight we gain from the figures the table 3.6, is that Approximate Unrolling
can improve the speed-energy/accuracy trade-off in 92% of the cases in our dataset.

Table 3.4: Trade-off results for the loops of our dataset

Project Loops Good % Rec.
Loops

Good %

Jsyn 8 7 87.5 7 7 100
OpenImaJ 16 7 43.8 8 7 75
Lucene 9 5 55.6 6 6 100
Smile 12 5 41.7 5 5 100
Total 45 24 53.3 26 24 92

3.4.1.1 Policy’s Quality

Approximate Unrolling is a combination of a policy and approximation strategies. In
order to better grasp the policy’s role in result’s quality, Tables 3.2, 3.3 and 3.4 are
divided into two segments. The left segment shows the improvements without any
policy, while the right segment shows a full fledge Approximate Unrolling working with
all its components. This shows that for a random loop in our dataset there is a 53.3%
chance of trade-off improvement. However, if the policy recommends the loop, there is
a 92% chance of gain.

The policy indicated two false positives (O1 and O10) that failed to gain performance
in our dataset. This was due to Approximate Unrolling’s C2 implementation inhibiting
Loop Vectorization in later phases of the compiler. The policy had a 96% recall, this
means that only one case was not recommended and still gained speed (loop J6). This
occurs since the current implementation is conservative w.r.t. branching and always
assume the worst case.

Answer to RQ1: Approximate Unrolling is able to provide a satisfactory trade-
off for the 92% of the loops it approximates.

3.4.2 RQ2: Approximate Unrolling vs. Loop Perforation

Loop Perforation [SDMHR11] is a state-of-the-art approximate loop optimization. Hence,
we compared our optimization with it. The comparison is done using our Loop Perfo-
ration’s implementation on the C2 compiler. We compare both optimizations in four
key aspects: scope of application, speedup, energy consumption and accuracy.

Perforation and Approximate Unrolling differs in the transformation made to the
code. The key difference is that Approximate Unrolling replaces instructions in the
approximate iteration, while Perforation skips it completely. If a loop is to iterate 50
times, it will iterate 50 times with Approximate Unrolling and only 25 times (or less)
with Perforation. This means that Perforation does not even preserve the loop-carried
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dependencies. Our intuition is that for the loops it processes, Approximate Unrolling
is less aggressive and preserves accuracy better.

3.4.2.1 Scope of application

Given the different transformation made by both optimizations to loops, our intuition
is that they are best applied in different scenarios. According to previous works in
the subject [SDMHR11], Perforation works better in patterns that can completely skip
some task, like Monte-Carlo simulations, computations iteratively improving an already
obtained result or data enumerations that filter or select elements in a given search
space. On the other hand, we believe Approximate Unrolling will obtain best results in
loops mapping values to arrays and will work well even if no previous value was mapped
before. By construction, it should behave better than Loop Perforation in situations
when no value of the array can be left undefined, such as sets of random numbers that
follow a distribution. Another situation where Approximate Unrolling should work best
is in smooth data that allow some level of granularity, such as sound, video, or word
positions in a text. In these situations, Approximate Unrolling should preserve accuracy
better while still improving speed. Our dataset is composed mainly of loops with these
purposes, so we expect to obtain better accuracy results with Approximate Unrolling
than with Perforation.

3.4.2.2 Performance, Energy, Accuracy & Trade-Off

We optimized all the loops in our dataset using both optimizations to find out which
optimization produced the best results in terms of speedups, energy usage, and accuracy.
Table 3.5 shows the results of this experiment. The table tell us that out of the 45 loops
in our dataset, the accuracy reductions using Approximate Unrolling was smaller in 29
loops vs. being smaller in only nine using perforation. In seven loops there was no
significant difference between the two in accuracy. However, Approximate Unrolling
was able to provide a better performance for 14 of them, while Loop Perforation did so
for 31 of the set’s loops. A similar result was obtained when comparing energy (16 vs
29).

Table 3.5: Approximate Unrolling Vs Perforation

Parameter Approx. Unroll. Tie Perforation
Better Accuracy 29 7 9
Higher speedup 14 0 31
Lower Energy consumption 16 0 29

Figure 3.13 shows that the accuracy obtained using Approximate Unrolling in the
Musical Synthesizer was always higher. This is due to the continuous and smooth
nature of the sound signal, which make it perfect for our optimization. As Approximate
Unrolling does not remove loop carried dependencies, it does not accumulate error.
On the other hand, error accumulation with Perforation caused the frequencies to drop,
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Figure 3.21: Approximation using Near-
est Neighbor.

Figure 3.22: Approximation using Perfo-
ration. Notice the noise added. Also the
frequency change, which causes the user
to perceive a different musical note than
the one expected.

changing the musical note being played. The Perforation strategy also introduced noise.
The effect of both techniques on the sound can be visualized in Figures 3.21 and 3.22.

Figure 3.23: Approximation using
Nearest Neighbor. The face recognition
system is still able to detect the face.

Figure 3.24: Using Perforation. The
image is too noisy image and the algo-
rithm fails to detect the face.

Figures 3.23 and 3.24 that represents the results of applying Nearest Neighbor and
Perforation to a Color Lookup Table in OpenImaJ. The pictures show that the recogni-
tion algorithm fails when using perforation as consequence of the noisy image. Notice
that while 12 out of 15 loops in OpenImaJ lose less accuracy using Approximate Un-
rolling, three loops (O5, O9, and O11) were in fact more accurate using Perforation.
The reason for this is that these loops were updating already good results, a situation
for which Perforation is known to work well [SDMHR11].

In the Lucene use case, Perforation crashed the application running our workload
five times, while Approximate Unrolling only crashed it twice. Every time Approximate
Unrolling crashed the application, so did Perforation. With the Classifier something
similar happened, perforation reduced the accuracy to zero twice, while Approximate
Unrolling did it only once. Again, every time Approximate Unrolling reduced recall to
zero, so did Perforation.
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We were expecting Perforation to be always faster, but is not the case. The perfor-
mance charts of figures 3.9, 3.10, 3.11, 3.12 show that in seven loops the linear interpo-
lation is faster than perforation. The reason is that linearly interpolated loops undergo
the two more optimizations: Loop Fission and Loop Vectorization. This means that the
C2 compiler splits these loop in two and then performs vectorization which uses SIMD.
Also, we notice that Nearest Neighbor can have sometimes the same performance as
Loop Perforation. This is because in the architecture we were running our experiments
Nearest Neighbor introduces only one assembler instruction and when there is no loop
carried dependencies in a loop, all instructions become dead code after the interpola-
tion and can be removed. These results in NN adding only one assembler instruction
more per iteration. These factors allowed Nearest Neighbor to match Loop’s Peroration
performance in 10 cases.

Answer to RQ3: Both optimizations are complementary. However, in the cases
where both optimizations can be applied, Approximate Unrolling provides better
accuracy.

3.4.3 RQ3: Impact of approximation ratio

Approximate Unrolling is able to use different ratios to approximate a loop. So far
we have presented our results using the 1/2 ratio, i.e. we approximate one out two
iterations. Other ratios are possible and in our experiments we also tried three out of
four(3/4) and one out of four 1/4 approximate ratios.

Figure 3.25: Each point represents the
loop’s speedup percentage. Axis X
shows the improvement percentage us-
ing the 1/2 ratio, while axis Y repre-
sents the improvement using the 1/4.

Figure 3.26: Each point represents the
loop’s speedup percentage. Axis X
shows the improvement percentage us-
ing the 1/2 ratio, while axis Y repre-
sents the improvement using the 3/ 4.
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Table 3.6: Reasons for bad Trade-off
Project Loops |NN | |LI| |NN ∪ LI| Bad

Perf. NN
Bad
Perf. LI

Bad Acc.
NN

Bad Acc.
LI

Jsyn 8 5 7 7 1 1 0 0
OpenImaJ 16 7 4 7 5 12 3 5
Lucene 9 5 5 5 3 3 2 2
Smile 12 5 5 5 4 6 2 1
Total 45 23 21 24 13 21 7 8

We have learned from our observations that the approximation ratio’s impact in
performance is roughly proportional to the number of approximate iterations. For
example, if by using a 1/2 ratio we doubled performance, we can expect roughly a
300% improvement in performance using the 3/4 and a 33% improvement using the 1/4
ratio. The opposite also applies, if a loop loses performance with the 1/2 ratio, it will
be even slower as we increase the ratio of approximate iterations. Figures 3.25 and 3.26
shows the relationship between different ratios. We observed similar results with energy
consumption.

Accuracy-wise, we learned that results are more dependent on the context and pur-
pose of the loop and therefore is difficult to generalize conclusions. In our Musical
Synthesizer the accuracy was indeed proportional to the amount of approximation.
This results were similar for the Face Recognition use case, with the exception of the
loops that were updating already good results, which had mixed behaviors. In the Text
Search, many loops were not dealing with signal-like data, therefore the accuracy is
more dependent on strategy than the ratio, having Nearest Neighbor gives better re-
sults that Linear. In the Classifier use case, some loops were extremely forgiving and
had no impact on the classifiers’ recall, while other did not allow for approximation at
all.

Answer to RQ4: The effect in speed and energy in our dataset is proportional to
the ratio. On signal-like data, this is also true for accuracy. In other applications,
accuracy reductions will depend more on the purpose and context of the loop than
approximation’s ratio.

3.4.4 RQ4: Loops that are the best fit for Approximate Unrolling

We have evaluated Approximate Unrolling with libraries from several domains of ap-
plication, showing that Approximate Unrolling can be exploited successfully in many
situations. However, not all loops in our dataset responded equally well to approxima-
tion. Table 3.6 summarizes our findings regarding the type of loop that gains the most
performance with Approximate Unrolling while reducing accuracy only to acceptable
levels. Columns ‘NN’ and ‘LI’ shows the number of loops in our dataset for which
the trade-off is good when using Nearest Neighbor and Linear strategies respectively.
Column ‘|NN ∪ LI|’ indicates how many loops improve the trade-off for at least one
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strategy. The Table 3.6 also shows the amount of loops fo which the trade-off is not
good because they fail to improve performance (‘Bad Perf NN’ & ‘Bad Perf LI’) and the
number of those who fail because accuracy losses are not acceptable (‘Bad Acc. NN’ &
‘Bad Acc. LI’).

The results indicate that while Approximate Unrolling improves the performance-
energy/accuracy trade-off in 24 loops out of 45, it still misses 22. A good trade-off
occurs when there is performance gains and accuracy losses are kept low.

By analyzing our dataset we have learned that the patterns allowing a performance
gain are:

• Approximate Unrolling removes more instructions than the ones it inserts. Per-
formance improvements in our technique come from removing instructions and
inserting others that perform less operations. Listing 3.9 shows a loop that will
gain performance when approximated. The inner ‘for’ loop will be completely
removed from the approximate iteration and comparatively, the instructions in-
serted will be negligible. However, it might also occur that the code removed is
less expensive than the interpolations inserted. This can happen in loops copying
values from one array to another or loops initializing arrays with constant val-
ues. For example, listing 3.8 show a loop performing only constant assignments
and when Approximate Unrolling replace these assignments with interpolations,
performance drops occurs.

It can also occur that the loop has many loop-carried dependencies in its body.
Approximate Unrolling does not remove these to avoid error accumulation. This
causes the approximate iteration to execute a lot of instructions and gain little
performance.

for (i = 49; (i--) > 0;) {
jjrounds[i] = -2147483648;
}

Listing 3.8: An initialization loop from
our dataset. Belongs to Apache Lucene
and is used in the Text Search use case.
This kind of loops does not work well
with Approximate Unrolling.

for (int i = 0; i < N; i++) {
float sum = 0.0F;
for (int j = 0, jj = kernel.

length - 1;
j < kernel.length; j++ , jj

--)
sum += buffer[i + j]) *

kernel[jj];
buffer[i] = sum;}

Listing 3.9: The outter loop belongs
to OpenImaJ and is used by the Face
Detection use case. This loop works
very well with Approximate Unrolling.
The body is computationally intensive
and it has no loop-carried dependencies
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• There is no phase-ordering problems. The current implementation of Approxi-
mate Unrolling change the shape of loops amenable for Loop Vectorization, po-
tentially inhibiting the Vectorization’s implementation from recognizing the loop.
Loop Vectorization is a machine-dependent optimization that takes advantage of
the SIMD architecture present in multiple processors today. SIMD instructions
yields high performance gains, which are lost if the Loop Vectorization’s imple-
mentation in the C2 fails to recognize the loop as vectorizable. This is a typical
phase-ordering problem. The issue is implementation-specific and we will fix in
future work. Approximate Unrolling can be made to cooperate with Loop Vec-
torization using interleaved SIMD instructions. Loop 3.10 shows an example of a
vectorizable loop that loses performance when using the current implementation
of Approximate Unrolling.

for (int l = 0; l < (k); l++)
falseCount[l] = count[l]) -

(trueCount[l];

Listing 3.10: Example of vectorizable
loop. This loops loses performance
when optimized with our current
implementation
of Approximate Unrolling since the
C2 cannot recognize the loop as
vectorizable anymore.

for (int i = 0; i < (imp.
length); i++)

importance[i] += imp[i];

Listing 3.11: This loop updates the
weak learner’s weights in the AdaBoost
algorithm. The weights differs little,
allowing to approximate them with
nearby values. This is an example of
loops working with data other than
sound and images where nearby values
are similar.

Performance is not the only factor required for a good trade-off. We also analyzed
our dataset to discover patterns were accuracy losses remain acceptable and found the
following:

• The data processed is a locally smooth function. Approximate Unrolling works
well with loops dealing with arrays where nearby values are similar and small
imprecisions can be tolerated. This happens naturally in signal-like data such as
sound and images. However, by analyzing our dataset, we have noticed that other
types of data also behaves this way. For example, the loop of Listing 3.11 updates
the weights of the weak learners in the Adaptive Boost algorithm. In our workload,
the differences in the weights are small (in many cases non-existent), which allows
for approximation with good results. Another example is loops mapping array
slots to the position of words in document search. Adjacent array slots contain
contiguous words position in a document, which differ little. Users can usually
tolerate a small offset when pointed the words’ position. In our case, as we were
looking only for documents containing the terms, it did not affect accuracy.
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• The loop belongs to a forgiving zone. Other cases where the accuracy losses
remain acceptable are those for loops located in zones known to be forgiving since
previous studies, such as hash functions and random number generators.

Accuracy behavior varies from application to application. For the Musical Synthe-
sizer, the accuracy loss is very much acceptable for each loop. We believe there are three
reasons for this good behavior (i) the signal generators (sine wave, triangle, square and
sawtooth) are locally smooth functions (ii) Approximate Unrolling does not remove loop
carried dependencies and there is no error accumulation (iii) the effect of accuracy loss
in the synthesizer is a harmonic distortion that is attenuated later by the synthesizer’s
filters. In the Face Recognition application, we also see good results that we attribute
to the algorithms ability to tolerate error such as noisy or low-quality images. The loops
in the Text Search application followed an interesting behavior: they were completely
forgiving (i.e. has no impact in the search’ accuracy) or they crashed. Loops in the
Classifier followed a similar pattern: most were also completely forgiving or reduced
the classifier recall almost down to 0%. In this application however, no approximate
loop crashed the application. These discoveries allows us to determine the situations in
which Approximate Unrolling provides a satisfactory trade-off.

Answer to RQ4: Approximate Unrolling provides a good trade-off in loops with
computational intensive bodies that processes locally smooth data or that are lo-
cated in forgiving zones.

3.5 Conclusions & Future Work

In this chapter we have described Approximate Unrolling, a transformation that ap-
proximates the computation inside certain loops. We formally described the shape of
the loops selected for Approximate Unrolling, as well as a cost function to determine
the opportunity for approximation and the transformations it performs to trade accu-
racy for execution time and energy consumption reductions. We have also proposed an
implementation for OpenJDK Hotspot C2 Server compiler. The empirical assessment
of this transformation demonstrated the ability of Approximate Unrolling to effectively
trade accuracy for resource gains. We also showed that the smoother approach of Ap-
proximate Unrolling compared to Loop Perforation supports a more balanced trade-off
between accuracy and performance. We learned that not all loops respond equally well
to the approximation and we gained some insights on the causes for this. Hence, our
future work will consist in including these findings into the optimization, improving the
detection process using a cost function that favors loops whose bodies (i) contains more
instructions than the ones introduced by Approximate Unrolling (ii) have a minimal
number of instructions depending on a value calculated in a previous iteration (iii) rep-
resents an smooth function. Then, the selection will filter out those loops below a given
threshold of the cost function.



Chapter 4

Automatic Microbenchmark
Generation
Most authors in the Approximate Computing field uses benchmarks such as SPEC,
SciMark and PARSEC to evaluate the speedup gains obtained with their techniques.
Benchmarks are the easiest way to test performance. They are already built; they are
maintained and revised by performance specialists, allows to repeat experiments easier.
This is why benchmark tests are widely accepted by the scientific community. Yet, as
mentioned in Chapter 2, benchmarks are large programs with thousands or millions of
lines of code. Therefore, when optimizations are applied to parts of those programs,
the perceived speedup in performance highly depends on the optimized zone’s impact
on the system, rather than the effect of the technique itself.

To investigate a techniques’ impact independently of a system, performance engi-
neers in industry have proposed a different (and complimentary) technique called Mi-
crobenchmarks. This type of performance tests allow for the finest grain performance
testing (e.g., test the performance of a single loop or a variable assignment). This kind
of test has been consistently used by developers in highly dependable areas such as
operating systems [RCS+11, JBLF10], virtual machines [Cli10], data structures [SV15],
databases [LGI09], and more recently in computer graphics [NZMD15] and high per-
formance computing[RRV+13]. However, the development of microbenchmarks is still
very much a craft that only a few experts master [Cli10]. In particular, the lack of tool
support prevents a wider adoption of microbenchmarking.

Microbenchmarking consists in identifying a code segment that is critical for per-
formance, a.k.a segment under analysis (SUA from now on), wrapping this segment in
an independent tiny program (the payload) and having the segment executed a large
number of times by the scaffold in order to evaluate its execution time. The amount
of technical knowledge needed to design both the scaffold and the payload hinder en-
gineers from effectively exploiting microbenchmarks [Ale14a, Ale14b, Cli10]. Recent
frameworks such as JMH [Ale14a, Jul14b, HLST15] address the generation of the scaf-
fold. Yet, the construction of the payload is still an extremely challenging craft.

Engineers who design microbenchmark payloads very commonly make two mistakes:
they forget to design the payload in a way that prevents the JIT from performing
dead code elimination [Cli10, Jul14b, Bri05, Ale14b] and Constant Folds/Propagations
(CF/CP) [Ale13a, Jul14b]. Consequently, the payload runs under different optimiza-
tions than the original segment and the time measured does not reflect the time the
SUA will take in the larger application. For example, Click [Cli10] found dead code in
the CaffeineMark and ScifiMark benchmarks, resulting in infinite speed up of the test.
Ponge also described [Jul14a] how the design of a popular set of microbenchmarks that
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compare JSON engines1 was prone to “over-optimization” through dead code elimination
and CF/CP. In addition to these common mistakes, there are other pitfalls for payload
design, such as choosing irrelevant initialization values or reaching an unrealistic steady
state.

In this work, we propose to automatically generate payloads for Java microbench-
marks, starting from a specific segment inside a Java application. The generated pay-
loads are guaranteed to be free of dead code and prevent CF/CP. Our technique stati-
cally slices the application to automatically extract the SUA and all its dependencies in
a compilable payload. Second, we generate additional code to: (i) prevent the JIT from
“over-optimizing” the payload using dead code elimination (DCE) and constand fold-
ing/constant propagation(CF/CP), (ii) initialize payload’s input with relevant values
and (iii) keep the payload in steady state. We run a novel transformation, called sink
maximization, to prevent Dead Code Elimination. We turn some SUA’s local variables
into fields in the payload, to mitigate (CF/CP). Finally, we maintain the payload in
stable state by smart reseting variables to their initial value.

We have implemented the whole approach in a tool called AutoJMH. Starting from
code segment identified with a specific annotation, it automatically generates a pay-
load for the Java Microbenchmark Harness (JMH). JMH is the de-facto standard for
microbenchmarking. It addresses the common pitfalls when building scaffolds such as
Loop Hoisting and Strength Reduction, optimizations that can make the JIT reduce
the number of times the payload is executed.

We run AutoJMH on the 6 028 loops present in 5 mature Java projects, to assess its
ability to generate payloads out of large real-world programs. Our technique extracts
4705 SUA into microbenchmarks (74% of all loops) and correctly generates complete
payloads for 3462 (60% of the loops). We also evaluate the quality of the generated
microbenchmarks. We use AutoJMH to re-generate 23 microbenchmarks handwrit-
ten by performance experts. Automatically generated microbenchmarks measure the
same times as the microbenchmarks written by the JMH experts. Finally, we ask 6
professional Java engineers to build microbenchmarks. All these benchmarks result
in distorted measurements due to naive decisions when designing benchmarks, while
AutoJMH prevents all these mistakes by construction.

To sum up, the contributions of the chapter are:

• A static analysis to automatically extract a code segment and all its dependencies
• Code generation strategies that prevent artificial runtime optimizations when run-

ning the microbenchmark
• An empirical evaluation of the generated microbenchmarks
• A publicly available tool and dataset to replicate all our experiments 2

In section 4.1 we discuss and illustrate the challenges for microbenchmark design,
which motivate our contribution. In section 4.2 we introduce our technical contribution
for the automatic generation of microbenchmarks in Java. In section 4.3 we present a

1https://github.com/bura/json-benchmarks
2https://github.com/autojmh

https://github.com/bura/json-benchmarks
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qualitative and quantitative evaluation of our tool and discuss the results. Section 4.4
outlines the related work and section 4.5 concludes.

4.1 Payload Challenges

In this section, we elaborate on some of the challenges that software engineers face
when designing payloads. These challenges form the core motivation for our work. In
this work we use the Java Microbenchmark Harness (JMH) as to generate scaffolds.
This allows us to focus on payload generation and to reuse existing efforts from the
community in order to build an efficient scaffold.

4.1.1 Dead Code Elimination

Dead Code Elimination (DCE) is one of the most common optimizations engineers fail
to detect in their microbenchmarks [Cli10, Jul14a, Bri05, Jul14b]. During the design
of microbenchmarks, engineers extract the segment they want to test, but usually leave
out the code consuming the segment’s computations (the sink), allowing the JIT to
apply DCE. It is not always easy to detect dead code and it has been found in popular
benchmarks [Cli10, Jul14a]. For example, listing 4.1 displays a microbenchmark where
the call to Math.log is dead code, while the call to m.put is not. The reason is that m.put
modifies a public field, but the results of the Math.log are not consumed afterwards.
Consequently the JIT will apply DCE when running the microbenchmark, which will
distort the time measured.

Map <String , Double > m = MapUtils.buildRandomMap ();
@Benchmark
public void hiddenDCE () {

Math.log(m.put("Ten", 10));
}

Listing 4.1: An example of dead code

A key feature of the technique we propose in this work is to automatically analyze
the mircrobenchmark in order to generate code that will prevent the JIT from running
DCE on this kind of benchmark.

4.1.2 Constant Folding / Constant Propagation

In a microbenchmarks more variables has to be explicitly initialized than in the program.
A quick, naive solution is to initialize these fields using constants, allowing the compiler
to use Constant Folding and Constant Propagation (CF/CP) to remove computations
that can be inferred. While mostly considered prejudicial for measurements, in some
punctual cases a clever engineer may want to actually pass a constant to a method in
a microbenchmark to see if CF/CP kicks in, since it is good for performance that a
method can be constant folded. However, when not expected the optimizations causes
microbenchmarks to return deceitfully good performance times.
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Good examples of both DCE and CF/CP optimizations and their impact on the
measurements can be found in literature [Jul14b]. Concrete evidence can also be found
in the JMH examples repository3.

4.1.3 Non-representative Data

Another source of errors when designing payloads is to run a microbenchmark with data
not representing the actual conditions in which the system being measured works.

For example, suppose a maintenance being done over an old Java project and that
different sort methods are being compared to improve performance, one of them being
the Collections.sort method. Suppose that the system consistently uses Vector<T>
but the engineer fails to see this and uses LinkedLis<T> in the benchmarks, concluding
that Collections.sort is faster when given as input an already sorted list. However,
as the system uses Vector lists, the actual case in production is the opposite: sorted
lists will result in longer execution times, as shown in table 4.1, making the conclusions
drawn from the benchmark useless.

Table 4.1: Execution times of Collections.sort

Using a sorted list Using an unsorted list
LinkedList 203 ns 453 ns
Vector 1639 ns 645 ns

4.1.4 Reaching Wrong Stable State

The microbenchmark scaffold executes the payload many times, warming up the code
until it reaches a stable state and is not optimized anymore. A usual pitfall is to build
microbenchmarks that reach stable state in conditions unexpected by the engineer. For
example, if we were to observe the execution time of the Collection.sort while sorting a
list, one could build the following wrong microbenchmark:

LinkedList <Double > m = ListUtils.buildRandomList ();
@Benchmark
public void doSort () {

Collections.sort(m); }

Listing 4.2: Sorting a sorted list in each run

Unfortunately, after the first execution the list gets sorted. In consecutive execu-
tions, the list is already sorted and consequently, we end up measuring the performance
of sorting an already sorted list, which is not the situation we initially wanted to mea-
sure.

3http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/
openjdk/jmh/samples/

http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples/
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples/
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4.2 AutoJMH

AutoJMH automatically extracts a code segment and generates a complete payload
with inputs that reflect the behavior of the segment in the original application. The
generation process not only wraps the segment in an independent program, it also
mitigates the risks of unexpected DCE and CF/CP optimizations and ensures that it
will reach stable state in the same state executed by the SUA during the unit tests.

Test 
suite

Application

instrument and 
execute

Payload

0. check snippet

1. extract 
segment and its 
dependencies

2. sink maximization 

3. CF / CP prevention

4. smart reset

5. generate 
test cases

6. generate 
initialization 

values

reg. test 
cases

Figure 4.1: Global process of AutoJMH for payload generation.

Figure 4.1 illustrates the different steps of this process. If the SUA satisfies a set of
preconditions (detailed in section 4.2.1), AutoJMH extracts the segment into a wrapper
method. Then, the payload is refined to prevent dead code elimination, constant folding
and constant propagation (steps 2, 3), as well as unintended stable state (step 4) when
the payload is executed many times. The last steps consist in running the test suite
on the original program to produce two additional elements: a set of data inputs to
initialize variables in the payload; a set of regression tests that ensure that the segment
has the same functional behavior in the payload and in the original application.

In the rest of this section we go into the details of each step. We illustrate the
process through the creation of a microbenchmark for the return statement inside
the EnumeratedDistribution::value() method of Apache Common Math, shown in
listing 4.3. The listing also illustrates that a user identifies a SUA by placing the
Javadoc-like comment @bench-this on top of it. This comment is specific to AutoJMH
and can be put on top of every statement. The resulting payload is shown listing 4.4.

double value(double x, double ... param) throws
DimensionMismatchException , NullArgumentException {

validateParameters(param);
/** @bench -this */

return Sigmoid.value(x, param[0], param [1]);
}

Listing 4.3: An illustrating example: a SUA in commons.math
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In listing 4.4 we can see that AutoJMH has wrapped the return statement into a
method annotated with @Benchmark. This annotation is used to indicate the wrapper
method that is going to be executed many times by the JMH scaffold. The private static
method Sigmoid.value has been extracted also into the payload, since it is needed
by the SUA. AutoJMH has turned variables x and params into fields and provides
initialization code from them, loading values from a file, which is part of our strategy
to avoid CF/CP. Finally, AutoJMH ensures that some value is returned in the wrapper
method to avoid DCE.

class MyBenchmark {
double [] params; double x;
@Setup
void setup() {

Loader l = new Loader ("/ data/Sigmoid_160.dat");
x = l.loaddouble ();
params = l.loaddoubleArray1 ();

}
double Sigmoid_value(

double x, double lo, double hi) {
return lo + (hi - lo) / (1 + FastMath.exp(-x));

}
@Benchmark
public double payloadWrapper () {

return Sigmoid_value(x, params [0], params [1])}
}

Listing 4.4: An illustrating example: the payload generated by AutoJMH

4.2.1 Preconditions

The segment extraction is based on a static analysis and focuses on SUAs that meet
the following conditions. These preconditions ensure that the payload can reproduce
the same conditions than those in which the SUA is executed in the original program.

1. Initialized variables used by the SUA are of the following types: primitive (int,
double, boolean), their class counterparts (Integer, Double, Boolean), String,
types implementing the Serializable interface, or, collections and arrays of all the
above. Non-initialized variables used by the SUA can be of any public type. This
condition ensures that AutoJMH can store the values of all variables used by the
SUA

2. None of the methods invoked inside the SUA can have a target not supported in
item 1. This ensures that AutoJMH is able to extract all methods used by the
SUA.

3. All private or protected methods used by the SUA can be resolved statically.
Dynamically resolved methods have a different performance behavior than stati-
cally resolved ones [Ale15]. Using dynamic slicing we could make available to the
microbenchmark a non-public dynamic method, but we would distort its perfor-
mance behavior.
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4. The call graph of all methods used by the SUA cannot be more than a user-defined
number of levels deep before reaching a point in which all used methods are public.
This sets a stopping criterion for the exploration of the call graph.

4.2.2 SUA extraction

AutoJMH starts by extracting the segment under analysis (SUA) to create a compilable
payload using a custom forward slicing method over the Abstract Syntax Tree (AST)
of the large application, which includes the source code of the SUA. The segment’s
location is marked with the @bench-this Javadoc-like comment, introduced by Auto-
JMH to select the segments to be benchmarked. If the SUA satisfies the preconditions,
AutoJMH statically slices the source code of the SUA and its dependencies (methods,
variables and constants) from the original application into the payload. Non-public
field declarations and method bodies used by the SUA are copied to the payload, their
modifiers (static, final, volatile) are preserved.

Some transformations may be needed in order to achieve a compilable payload. Non-
public methods copied into the payload are modified to receive their original target in the
SUA as the first parameter (e.g., data.doSomething() becomes doSomething(data)).
Variable and method may be renamed to avoid name collision and to avoid serializ-
ing complex objects. For example, if a segment uses both variable data and a field
myObject.data, AutoJMH declares two public fields: data and myObject_data. When
method renaming is required, AutoJMH uses the fully qualified name.

At the end of the extraction phase, AutoJMH has sliced the SUA code into the
payload’s wrapper method. This relieves the developer from a very mechanical task
and its automation reduces the risks of errors when copying and renaming pieces of
code. Yet, the produced payload still needs to be refined in order to prevent the JIT
from “over-optimizing” this small program.

Preserving the original performance conditions We aim at generating a payload
that recreates the execution conditions of the SUA in the original application. Hence,
we are conservative in our preconditions before slicing. We also performed extensive
testing to be sure that the code modifications explained above do not distort the original
performance of the SUA. These tests are publicly available 4. Then, all the additional
code generated by AutoJMH to avoid DCE, initialize values, mitigate CF/CP and keep
stable state, is inserted before or after the wrapped SUA.

4.2.3 Preventing DCE with Sink Maximization

During the extraction of the SUA, we may leave out the code consuming its compu-
tations (the sink), giving the JIT an opportunity for dead code elimination (DCE),
which would distort the time measurement. AutoJMH handles this potential problem
featuring a novel transformation that we call Sink maximization. The transformation

4https://github.com/autojmh/syntmod

https://github.com/autojmh/syntmod
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appends code to the payload, which consumes the computations. This is done to maxi-
mize the number of computations consumed while minimizing the performance impact
in the resulting payload.

There are three possible strategies to consume the results inside the payload:

• Make the payload wrapper method return a result. This is a safe and time efficient
way of preventing DCE, but not always applicable (e.g., when the SUA returns
void).

• Store the result in a public field. This is a time efficient way of consuming a value,
yet less safe than the previous solution. For example, two consecutive writes to the
same field can make the first write to be marked as dead code. It can also happen
that the payload will read from the public field with a new value, modifying its
state.

• JMH Black hole methods. This is the safest solution, which does not modify the
microbenchmark’s state. Black holes (BH) are methods provided by JMH to make
the JIT believe their parameters are used, therefore preventing DCE. Yet, black
holes have a small impact on performance.

A naive solution is to consume all local variables live at the end of the method
with BHs. Yet, the accumulation of BH method calls can be a considerable overhead
when the execution time of the payload is small. Therefore, we first use the return
statement at the end of the method, taking into consideration that values stored in
fields are already sinked and therefore do not need to be consumed. Then, we look for
the minimal set of variables covering the whole sink of the payload to minimize the
number of BH methods needed.

Sink maximization performs the following steps to generate the sink code:

1. Determine if it is possible to use a return statement.
2. Determine the minimal set of variables Vmin covering the sink of the SUA.
3. When the use of return is possible, consume one variable from Vmin using one

return and use BHs for the rest. If no return is possible, use BHs to consume
all local variables in Vmin.

4. If a return is required to satisfy that all branches return a value and there is no
variables left in Vmin, return a field.

To determine the minimal set Vmin, the AutoJMH converts the SUA code into
static single assignment (SSA) form[TC11] and builds a value dependency graph (VDG)
[WCES94]. In the VDG, nodes represent variables and edges represent direct value
dependencies between variables. For example, if the value of variable A directly depends
on B, there is an edge from B to A. An edge going from one variable node to a phi
node merging two values of the same variable is a back-edge. In this graph, sink-nodes
are nodes without ingoing edges.

Initially, we put all nodes of the VDG in Vmin, except those representing fields
values. Then, we remove all variables that can be reached from sink-nodes from Vmin.
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After doing this, if there are still variables in Vmin other than the ones represented by
sink-nodes, we remove the back-edges and repeat the process.

int d = 0; a = b + c;
if ( a > 0 ) {

d = a + h;
a = 0;

}
b = a;

Listing 4.5: A few lines of code to exemplify Sink maximization

To exemplify the process of finding Vmin within Sink Maximization let us consider
listing 4.5. The resulting VDG graph is represented in figure 4.2. Sink nodes are nodes
d and b1, which are represented as rounded nodes. The links go from variables to their
dependencies. For example, d depends on a0 and h. Since it is not possible to arrive to
all nodes from a single sink d or b1, in the example Vmin = {d, b1}. Consequently both
d and b must be consumed in the payload.

Figure 4.2: VDG of listing 4.5

4.2.4 CF/CP Mitigation

Since all SUA are part of a larger method, they most often use variables defined upfront
in the method. These variables must be declared in the payload. Yet, naively declaring
these variables might let the JIT infer the value of the variables at compile time and
use constant folding to replace the variables with a constant. Meanwhile, if this was
possible in the original system, it should also be possible in the payload. The challenge
is then to detect when CF/CP must be avoided and when it must be allowed to declare
variables and fields accordingly.

AutoJMH implements the following rules to declare and initialize a variable in the
payload:

• Constants (static final fields ) are initialized using the same literal as in the
original program.

• Fields are declared as fields, keeping their modifiers (static, final, volatile) and
initialized in the @Setup method of the microbenchmark. Their initial values are
probed through dynamic analysis and logged in a file for reuse in the payload (cf.
section 4.2.6 for details about this probing process).



74 AutoJMH

• Local variables are declared as fields and initialized in the same way, except when
(a) they are declared by assigning a constant in the original method and (b) all
possible paths from the SUA to the beginning of the parent method include the
variable declaration (i.e. the variable declaration dominates [TC11] the SUA) , in
which case their original declaration is copied into the payload wrapper method.
We determine whether the declaration of the variable dominates the SUA by
analyzing the control flow graph of the parent method of the SUA.

Listing 4.4 shows how the variables x and params are turned into fields and initialized
in the @Setup method of the payload. The @Setup method is executed before all the
executions of the wrapper method and its computation time is not measured by the
scaffold.

4.2.5 Keep Stable State with Smart Reset

In Section 4.1 we discussed the risk for the payload to reach an unintended stable state.
This happens when the payload modifies the data over which it operates. For example,
listing 4.6 shows that variable sum is auto-incremented. Eventually, sum will be always
bigger than randomValue and the payload will stop to execute the return statement.
public T sample () {

final double randomValue = random.nextDouble ();
double sum = 0;
/** @bench -this */
for (int i = 0; i < probabilities.length; i++) {

sum += probabilities[i];
if (randomValue < sum) return singletons.get(i);

}
return singletons.get(singletons.size() - 1);

}

Listing 4.6: Variable sum needs to be reset to stay in the same state

AutoJMH assumes that the computation performed in the first execution of the
payload is the intended one. Hence, it automatically generates code that resets the
data to this initial state for each run of the SUA. Yet, we implement this feature of
AutoJMH carefully to bring the reset code overhead to a minimum. In particular,
we reset only the variables influencing the control flow of the payload. In listing 4.7
AutoJMH determined that sum must be reset, and it generates the code to do so.
@Benchmark
public double doBenchmark () {

sum = sum_reset; //<- SMART RESET HERE!
for (int i = 0; i < probabilities.length; i++) {

sum += probabilities[i];
if (randomValue < sum) return singletons.get(i);

}
return sum;

}

Listing 4.7: Variable sum is reset by code appended to the microbenchmark
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To determine which variables must be reset, AutoJMH reuses the VDG built to de-
termine the sinks in the Sink maximization phase. We run Tarjan’s Strongly Connected
Components algorithm to locate cycles in the VDG, and all variables inside a cycle are
considered as potential candidates for reset. In a second step we build a Control Flow
Graph (CFG) and we traverse the VDG, trying to find paths from variables found in
the branching nodes of the CFG to those found in the cycles of the VDG. All of the
variables that we succesfully reach are marked for reset.

4.2.6 Retrieving Inputs for the Payload

The last part of the microbenchmark generation process consists in retrieving input
values observed in the original application’s execution (steps 5 and 6 of figure 4.1). To
retrieve these values, we instrument the original program to log the variables just before
and after the SUA. Then, we run once the test cases that cover the SUA in order to get
actual values. The user may also configure the tool to use any program executing the
SUA.

To make the collected values available to the payload, AutoJMH generates a specific
JMH method marked with the @Setup annotation (which executes only once before the
measurements), containing all the initialization code for the extracted variables. Listing
4.4 shows an example where the initial values of variables x and params are read from
file.

@Test
public void testMicroBench () {

Loader l = new Loader ();
//Get values recorded before execution
l.openStream ("/ data/Sigmoid_160.dat");
MyBenchmark m = new MyBenchmark ();
m.x = l.readdouble ();
m.params = l.readdoubleArray1 ();
double mResult = m.payloadWrapper ();
//Check SUA ’s output is equal to payload ’s output
l.openStream ("/ data/Sigmoid_160_after.dat");
assertEquals(m.x, l.readdouble ());
assertArrDblEquals(m.params , l.readdoubleArray1 ());
assertEquals(mResult , m.payloadWrapper ());

}

Listing 4.8: Generated unit test to ensure that the microbenchmark has the same
functional behavior than the SUA

4.2.7 Verifying Functional Behavior

To check that the wrapper method has the same functional behavior as the SUA in the
original application (i.e. produces the same output given the same input), AutoJMH
generates a unit test for each microbenchmark, where the outputs produced by the
microbenchmark are required to be equal to the output values recorded at the output
of the SUA. These tests serve to ensure that no optimization applied on the benchmark
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interferes with the expected functional behavior of the benchmarked code. In the test,
the benchmark method is executed twice to verify that the results are consistent within
two executions of the benchmark and signal any transient state. Listing 4.8 shows a
unit test generated for the microbenchmark of listing 4.4.

Table 4.2: Reach of AutoJMH
PROPERTY MATH % VECT % LANG % JSYN % Img2 % Total %
Total Loops 2851 1498 501 306 926 6082
Payloads gener-
ated

2086 73 1377 92 408 81 151 49 683 74 4705 77

Payloads gener-
ated & initial-
ized

1856 65 940 63 347 69 88 29 254 27 3485 57

Microbenchmarks
generated

1846 65 934 62 345 69 84 29 253 27 3462 57

Rejected: 765 26 121 8 93 19 155 50 243 26 1377 23
* Variables un-

supported:
601 21 81 5 53 11 123 40 169 18 1027 17

+ Unsupported
type collection

52 2 12 1 2 0,4 18 6 15 2 99 2

+ Type is not
public

132 5 2 0,1 8 2 23 7 0 - 165 3

+ Type is not
storable

417 15 67 5 43 9 82 27 154 17 763 13

* Invocations
unsupported:

164 6 40 3 40 8 32 10 74 8 350 6

+ Target unssu-
ported

150 5 34 3 37 7,39 28 9 74 8 323 5

+ Levels too
deep

0 0 0 0 2 0,4 0 0 0 0 2 0.03

+ Private con-
structor

3 0,1 3 0,2 0 0 3 1 0 0 9 0.1

+ Protected ab-
stract method

11 0,4 3 0,2 1 0,2 1 0,3 0 0 16 0.3

Test failed 10 0,4 6 0,4 2 0,4 4 1,3 1 0,1 23 0.4

4.3 Evaluation

We perform a set of experiments on large Java programs to evaluate the effectiveness
of our approach. The purpose of the evaluation is twofold. First, a quantitative as-
sessment of AutoJMH aims at evaluating the scope of our program analysis, looking at
how many situations AutoJMH is able to handle for automatic microbenchmark genera-
tion. Second, two qualitative assessments compare the quality of AutoJMH’s generated
microbenchmarks with those written by experts and with those built by expert Java
developers who have little experience in microbenchmarking. We investigate these two
aspects of AutoJMH through the following research questions:

RQ1: How many loops can AutoJMH automatically extract from programs into
microbenchmarks?

In addition to the generation of accurate microbenchmarks, it is important to have
a clear understanding of the reach of AutoJMH’s analysis capacities. Remember that
AutoJMH can only handle those segments that meet certain preconditions. Therefore,
we need to quantify the impact of these conditions when analyzing real-world code.

RQ2: How does the quality of AutoJMH’s generated microbenchmarks compare
with those written by experts?
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Our motivation is to embed expert knowledge into AutoJMH, to support Java de-
velopers who have little knowledge about performance evaluation and who want to get
accurate microbenchmark. This research question aims at evaluating whether our tech-
nique can indeed produce microbenchmarks that are as good as the ones written by an
expert.

RQ3: Does AutoJMH generate better microbenchmarks than those written by en-
gineers without experience in microbenchmarking?

Here we want to understand to what extent AutoJMH can assist Java developers
wanting to use microbenchmarks.

4.3.1 RQ1: Automatic Segment Extraction

We automatically annotate all the 6 028 loops of 5 real Java projects with the @bench-this
annotation to find out to what extent the tool is able to automatically extract loops and
generate corresponding payloads. We focus on the generation of benchmarks for loops
since they are often a performance bottleneck and they stress AutoJMH’s capacities to
deal with transient states, although the only limitations to the slicing procedure are the
ones described in section 4.2.1.

We selected the following projects for our experiments, because their authors have
a special interest in performance: Apache Math is the Apache library for mathematics
and statistics; Vectorz is a vector and matrix library, based around the concept of N-
dimentional arrays. Apache Common Lang provides a set of utility methods to handle
Java core objects; Jsyn is a well known library for the generation of music software syn-
thesizers. ImageLib2 is the core library for the popular Java scientific image processing
tool ImageJ. Exact versions of these projects can be found in AutoJMH’s repository5.

Table 4.2 sumarizes our findings, one column for each project and the last column
shows totals. The row “Payloads generated" shows the number of loops that AutoJMH
succesfully analyzed and extracted in a payload code. The row “Payloads Generated &
Initialized" refines the previous number, indicating those payloads for which AutoJMH
was able to generate code and initialization values (i.e. they were covered with at
least one unit test). The row “Microbenchmarks generated” further refines the previous
numbers, indicating the amount of loops for which AutoJMH was able to generate and
initialize a payload that behaves functionally the same as the SUA (i.e. equal inputs
produce equal results). The rows below detail the specific reason why some loops could
not be extracted. We distinguish between “Variables unsupported" or “Invocations
Unsupported". As we can see, the main reason for rejection are unsupported variables.
Finally, row “Test Failed” shows the number of microbenchmarks that failed to pass the
generated regressions tests. The percentages are overall percentages.

The key result here is that out of the 6 028 loops found in all 5 projects, AutoJMH
correctly analyzed, extracted and wrapped 3 462 loops into valid microbenchmarks.
These microbenchmarks resulted from 3 485 payloads for which AutoJMH was able to
generate and find initialization values and who’s regression test did not fail. In total,

5https://github.com/autojmh/autojmh-validation-data.git

https://github.com/autojmh/autojmh-validation-data.git
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AutoJMH generated the code for 4 705 payloads. The tool rejected 1377 loops because
they did not meet the preconditions.

Looking into the details, we observe that Vectorz and Apache Lang contain rela-
tively more loops that satisfy the preconditions. The main reason for this is that most
types and classes in Vectorz are primitives and serializables, while Apache Lang exten-
sively uses Strings and collections. Apache Math also extensively uses primitives. The
worst results are to JSyn: the reason for this seems to be that the parameters to the
synthesizers are objects instead of numbers, as we initially expected.

The results vary with the quality of the test suite of the original project. In all
the Apache projects, almost all loops that satisfy the precondition finally turn into a
microbenchmark, while only half of the loops of Vectorz and JSyn that can be processed
by AutoJMH are covered by one test case at least. Consequently, many payloads cannot
be initialized by AutoJMH, because it cannot perform the dynamic analysis that would
provide valid initializations.

outer:
for (int i = 0; i < csLen; i++) {

final char ch = cs.charAt(i);
/** @bench -this */
for (int j = 0; j < searchLen; j++) {

if (searchChars[j] == ch) {
if (i < csLast && j < searchLast && Character.isHighSurrogate(ch))

{
if (searchChars[j + 1] == cs.charAt(i + 1)) {

continue outer; }
} else { continue outer; }}}

Listing 4.9: The SUA depends on outer code to work properly

Table 4.2 also shows that some microbenchmarks fail regression tests. A good ex-
ample is the inner loop of listing 4.9, extracted from Apache Common Lang. This loop
depends on the ch variable, obtained in its outer loop. In this case, AutoJMH generates
a payload that compiles and can run, but that does not integrate the outer loop. So
the payload’s behavior is different from the SUA and the regression tests fails.

It is worth mentioning that while AutoJMH failed to generate the inner loop, it did
generate a microbenchmark for the outer one.

Answer to RQ1: AutoJMH was able to generate 3 485 microbenchmarks out of
6 028 loops found in real-word Java programs, and only 23% of the analyzed loops
did not satisfy the tool’s preconditions.

4.3.2 RQ2:Microbenchmarks Generated by AutoJMH vs
Handwritten by Experts

To answer RQ2, we automatically re-generate mircrobenchmarks that were manually
designed by expert performance engineers. We assess the quality of the automatically
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generated microbenchmarks by checking that the times they measure are similar to the
times measured by the handwritten microbenchmarks.

4.3.2.1 Microbenchmarks Dataset

We re-generate 23 JMH microbenchmarks that were used to find 8 documented perfor-
mance regression bugs in projects by Oracle 6 and Sowatec AG [Dmi15]. We selected
microbenchmarks from Oracle, since this company is in charge of the development of
Hotspot and JMH. The flagship product of Sowatec AG, Arregulo 7, has reported great
performance results using microbenchmarks. The microbenchmarks in our dataset con-
tained several elements of Java such as conditionals, loops, method calls, fields. They
where aimed at variety of purposes and met the AutoJMH preconditions.

Follows a small description of each one of the 23 microbenchmarks (MB) in our
dataset:

MB 1 and 2: Measure the differences between the two methods ArrayList.add and
ArrayList.addAll when adding multiple elements.

MB 3 to 5: Compare different strategies of creating objects using reflection, using
as baseline the operator new.

MB 6: Measure the time to retrieve fields using reflection.
MB 7 to 9: Compare strategies to retrieve data from maps when the key is required

to be a lower case string.
MB 10 and 11: Compare the ConcurrentHashMap.get method vs. the
NonBlockingHashMapLong.get method.
MB 12 to 14: See whether BigInteger.value can be constant folded when given as

input a number literal.
MB 15 and 16: Contrasts the performance of Math.max given two numbers vs. a

greater than (a > b) comparison.
MB 17: Evaluate the performance of the Matcher.reset method.
MB 18 to 23: Evaluate the performance of the String.format method using several

types of input (double, long, String).

4.3.2.2 Statistical Tests

We use the statistical methodology for performance evaluation introduced by George
[GBE07] to determine the similarity between the times measured by the automatically
generated microbenchmarks and the handwritten ones. This consists in finding the
confidence interval for the series of execution times of both programs and to check
whether they overlap, in which case there is no statistical reason to say they are different.
We run the experiment following the recommended methodology, considering 30 virtual
machine invocations, 10 of which run for microbenchmarks and 10 warm up iterations
to reach steady state. We select a confidence level of 0,05.

6http://bugs.java.com. Bugs ids: 8152910, 8050142, 8151481 and 8146071
7http://www.sowatec.com/en/solutions-services/arregulo/

http://www.sowatec.com/en/solutions-services/arregulo/
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To determine whether AutoJMH actually defies the pitfalls shown in section 4.1,
we also generate three other sets of 23 microbenchmarks. Each set of microbenchmark
is prone to the following pitfall: DCE, CF/CP and wrong initial values. DCE was
provoked by turning off sink maximization. CF/CP was provoked by inverting the
rules of variable declaration where constants (static final fields) are declared as regular
fields and initialized from file; fields are redeclared as constants (static final field) and
initialized using literals (10, "zero", 3.14f); local variables are always declared as
local variables and initialized using literals. In the third set, we feed random data as
input to observe differences in measurements caused by using different data. Using
these 3 different sets of microbenchmarks, we performed the pairwise comparison again
between them and the handwritten microbenchmarks.

Table 4.3: Comparison of generated vs handwritten benchmarks

# Set Successful tests
1 Generated with AutoJMH 23 / 23
2 DCE 0 / 23
3 CF/CP 11 / 23
4 Bad initialization 3 / 23

Table 4.3 shows the results of this experiment. Column “Successful tests" shows
for how many of the 23 automatically generated microbenchmarks measured the same
times as the ones written by experts. Row 1 shows the set generated with all features
of AutoJMH. Rows 2, 3 and 4 the ones generated with induced errors.

4.3.2.3 Analysis of the Results

The key result of this set of experiments is that all the 23 microbenchmarks that we
re-generated using all the features of AutoJMH measure times that are statistically
similar to those measured by the ones handwritten by experts, while microbenchmarks
with induced errors consistently drift away from this baseline. For us, this is an strong
indication that AutoJMH actually defies the pitfalls of section 4.1.

Row 2 of table 4.3 shows the strong impact of DCE on the accuracy of microbench-
marks: 100% of microbenchmarks that we generate without sink maximization measure
significantly different times from the times of handwritten microbenchmarks. The in-
verted rules for CF/CP take a toll on 12 microbenchmarks, for example the result of
a comparison between two constants is also a constant (MB 15) and therefore there is
no need to perform the comparison. Eleven microbenchmarks generated with wrong
variable declarations still measure similar times, because some SUA cannot be constant
folded (e.g., the Map.get method in in MB 7). Finally, line 5 shows that passing wrong
initial values produces different results, since adding 5 elements to a list takes less time
than adding 20 (MB 1, 2) or converting PI (3,14159265) to string is certainly slower
than an integer such as 4 (MB 18 to 23). The three cases that measured correct times
occur when the fields initialized in the payload are not used (as is the case in MB 5).
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The code for all the microbenchmarks used in this experiment, as well as the program
and the unit test used to rebuild them, can be found in the website of AutoJMH8.

Answer to RQ2: microbenchmarks automatically generated by AutoJMH sys-
tematically perform as good as benchmarks built by a JMH experts with a confi-
dence level of 0.05. The code generated to prevent DCE, CF/CP and initialize the
payload plays a significant role in the quality of the generated microbenchmarks.

4.3.3 RQ3: AutoJMH vs Engineers without Microbenchmarking
Experience

For this research question, we consider 5 code segments, all contained in a single class
and we ask 6 professional Java developers with little experience in performance evalu-
ation to build a microbenchmark for each segment. This simulates the case of software
engineers looking to evaluate the performance of their code without specific experi-
ence in time measurement. This is a realistic scenario, as many engineers arrive to
microbenchmarking due to an eventual need, gathering the knowledge they require by
themselves using available resources as Internet tutorials and conferences.

We provided all participants a short tutorial about JMH. All participants had full
access to Internet during the experiment and we individually answered all questions
relative to better microbenchmarking. Participants were also reminded that code seg-
ments may have multiple performance behaviors and that otherwise noticed, they should
microbenchmark all behaviors they could find.

4.3.3.1 Segments Under Analysis

Each of the 5 code segments is meant to test one different feature of AutoJMH.
SUA 1 in listing 4.10: participants were requested to evaluate the execution time

of the for loop. Here we evaluate a segment which execution time depends on the
different input’s types. The parameter c of addFunction is of type MyFunction, which
is inherited by two subclasses, both overriding the calc method. The calculations
performed by both subclass are different, which required several microbenchmarks to
evaluate all possibilities.

SUA 2 and 3 in listing 4.11: participants were requested to evaluate the time it takes
to add one element into an array list, and the time it takes to sort a list of 10 elements.
Here we wanted to test the participant’s ability at using different reset strategies to
force the microbenchmark reach stable state measuring the desired case. The payload
for SUA 2 must constrain the list size , otherwise the JVM runs out of memory. For
SUA 3 it is necessary to reset the list into an unordered state.

SUA 4 and 5 in listing 4.12: participants were requested to estimate how long takes
the expression to execute. The segments consist of simple mathematical expressions

8https://github.com/autojmh

https://github.com/autojmh
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meant to investigate if participants are able to avoid DCE and constant folding when
transplanting a SUA into a payload.

addFunction(
MyFunction c) {

if (c == null)
c = new FunA();

//SUA #1:
for (int i = 0;

i < 100; i++)
sinSum += c.calc(

i);}

Listing 4.10: SUA 1.
Differents types of ’c’
define performance

appendSorted(
ArrayList <Integer >
a,

int value) {
//SUA #2:
a.add(value);
//SUA #3:
a.sort(new

Comparator <
Integer >() {

compare(Integer
o1 , Integer o2
) {

return o1 - o2
;}});}

Listing 4.11: Segments 2
and 3

//SUA #4
angle += Math.abs(

Math.sin(y)) / PI;

//SUA #5
double c = x * y;

Listing 4.12: SUAs 4 and
5

All microbenchmarks used in this experiment are publicly available in the github
repository of AutoJMH

4.3.3.2 Resulting Microbenchmarks

Figure 4.3 shows the execution times measured by all microbenchmarks. The y-axis
shows execution times in milliseconds (log scale). On the x-axis we show 6 clusters:
MB1a and MB1b for the two performance behaviors of SUA 1 and MB2 to MB5 for
all other segments. Each cluster includes the time measured by the microbenchmarks
designed by the 6 Java developers. In each cluster, we add two microbenchmarks: one
generated by AutoJMH and one designed manually by us and that has been reviewed by
the main developer of JMH. The latter microbenchmark (for short: the expert) is used
as the baseline for comparison. We use the similiraty of execution times for comparison:
the closest to the baseline, the better.

First, we observe that the times for the AutoJMH and the baseline microbenchmarks
are consistently very close to each other. The main differences we can see are located
in SUAs 2 and 3. This is because AutoJMH uses a generic reset strategy consisting
in clearing the list and adding the values, which is robust and performs well in most
cases. However, the expert microbenchmarks and the one made by Engineer 6 for SUA
3 featured specific reset strategies with less overhead. The best strategy to reset in SUA
2 is to reset only after several calls to the add method have been made, distributing the
reset overhead and reducing the estimation error. In the expert benchmark for SUA
3, each element is set to a constant value. A clever trick was used by engineer 6 in
SUA 3 9: the sort method was called twice with two different comparison functions

9https://github.com/autojmh/autojmh-validation-data/blob/master/eng6/src/main/java/fr/inria/diverse/

https://github.com/autojmh/autojmh-validation-data/blob/master/eng6/src/main/java/fr/inria/diverse/autojmh/validation/eng6/TransientStateListSortEng6.java
https://github.com/autojmh/autojmh-validation-data/blob/master/eng6/src/main/java/fr/inria/diverse/autojmh/validation/eng6/TransientStateListSortEng6.java
https://github.com/autojmh/autojmh-validation-data/blob/master/eng6/src/main/java/fr/inria/diverse/autojmh/validation/eng6/TransientStateListSortEng6.java
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(with equivalent performance), changing the correct order in every call. This removes
the need to reset the list, since every consecutive call to sort is considered unordered.

Figure 4.3: Execution times comparison between microbenchmarks generated by Au-
toJMH those manually built by Java developers and one JMH expert

Second, we observe that Java developers build microbenchmarks that measure times
that are very different from the baseline. In order to understand the root cause of
these differences, we manually review all the microbenchmark. Here we observe that
the participants did encounter the pitfalls we expected for each kind of segment: 3
participants fail to distinguish 2 performance behaviors in MB1; 3 participants made
mistakes when initializing MB2 and MB3; we found multiple issues in MB4 and MB5,
where 3 engineers did not realize that their microbenchmark was optimized by DCE,
Engineer 6 allowed parts of its microbenchmark to be constant folded and 3 participants
bloated to some extend their microbenchmark with overhead. An interesting fact was
that Engineer 6 was aware of constant folding, since he asked about it, meaning that a
trained eye is needed to detect optimizations, even when one knows about them.

Answer to RQ3: microbenchmarks generated by AutoJMH prevent mistakes
commonly made by Java developers without experience in microbenchmarking.

4.3.4 Threats to Validity

The first threat is related to the generalizablity of observations. Our qualitative eval-
uation was performed only with 5 segments and 6 participants. Yet, segments were
designed to be as different as possible and to cover different kinds of potential pit-
falls. The quantitative experiment also allowed us to test AutoJMH on a realistic code
base, representative of a large number of situations that can be encountered in Java
applications.

autojmh/validation/eng6/TransientStateListSortEng6.java
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AutoJMH is a complex tool chain, which combines code instrumentation, static and
dynamic analysis and code generation. We did extensive testing of our the whole infras-
tructure and used it to generate a large number of microbenchmarks for a significant
number of different applications. However, as for any large scale experimental infras-
tructure, there are surely bugs in this software. We hope that they only change marginal
quantitative things, and not the qualitative essence of our findings. Our infrastructure
is publicly available on Github.

4.4 Related work

We are not aware of any other tool that automatically generates the payload of a
microbenchmark. However, there are works related to many aspect of AutoJMH.

Performance Analysis The proper evaluation of performance is the subject of a
large number of papers [GBE07, MDHS09, Ale14a, HLST15, Cli10]. They all point out
non-determinism as the main barrier to obtain repeatable measurements. Sources of
non-determinism arise in the data, the code [Jul14b], the compiler[MDHS09], the virtual
machine[GEB08] the operating system [MDHS09] and even in the hardware[CB13].
Various tools and techniques aim at minimizing the effect of non-determinism at each
level of abstraction[MDHS09, CB13, GEB08]. JMH stands at the frontier between
code and the JVM by carefully studying how code triggers JVM optimizations[Ale13a].
AutoJMH is at the top of the stack, automatically generating code for the JMH payload,
avoiding unwanted optimizations that may skew the measurements.

Microbenchmarking determines with high precision the execution time of a single
point. This is complementary to other techniques that use profiling [SLPG15, AAFM10]
and trace analysis [HDG+12, GFX12] that cover larger portions of the program at
the cost of reducing the measurement precision. Symbolic execution is also used to
analyze performance [BJS09, ZED11] however, symbolic execution alone cannot provide
execution times. Finally several existing tools are specific for one type of bug [NCRL15,
ODL15] or even for one given class of software, like the one by Zhang [ZED11] which
generates load test for SQL Servers.

AutoJMH is a tool that sits between profiling/trace analysis and microbenchmark-
ing, providing execution times for many individuals points of the program with high
precision.

Performance testing in isolation Specially close to our work are the approaches
of Horkỳ [HLST15, HLM+15], Kuperberg [KOR] and Pradel [PHG14].

Microbenchmarking, and therefore AutoJMH, evaluate performance by executing
one segment of code in isolation. A simpler alternative favored by industry are perfor-
mance unit tests [CB13, Dav03], which consist in measuring the time a unit test takes to
run. Horkỳ et.al. proposes methodologies and tools to improve the measurements that
can be obtained using performance unit tests uses, unlike AutoJMH, which uses unit
tests only to collect initialization data. Kuperberg creates microbenchmarks for Java
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APIs using the compiled bytecode. Finally, Pradel proposes a test generator tailored for
classes with high level of concurrency, while AutoJMH uses the JMH built-in support
for concurrency. All these approaches warm-up the code and recognize the intrinsic
non-determinism of the executions.

The main distinctive feature of AutoJMH over these similar approaches is its unique
capability to measure at the statement level. These other approaches generate test
execution for whole methods at once. Baudry [BARCM15a] shows that some methods
use code living as far as 13 levels deep in the call stack, which gives us an idea of
how coarse can be executing a whole test method. AutoJMH is able to measure both
complete methods and statements as atomic as a single assignment. During the warm-
up phase the generated JHM payload wrapper method gets in-lined and therefore, the
microbenchmark loop do actually execute statements. Another important distinction if
that AutoJMH uses data extracted from an expected usage of the code, (i.e. the unit
tests). Pradel uses randomly generated synthetic data, which may produce unrealistic
performance cases. For example, JIT in-lining is a very common optimization that
improves performance in the usual case, while reducing it in less usual cases. The
performance improvement of this well known optimization is hard to detect assuming
that all inputs have the same probability of occurrence.

Program Slicing AutoJMH creates a compilable slice of a program which can be
executed, stays in stable state and is not affected unwanted optimizations. Program
slicing is a well established field [Tip94]. However, to the best of our knowledge, no
other tool creates compilable slices with the specific purpose of microbenchmarking.

4.5 Conclusion and Future Work

In this chapter, we propose a combination of static and dynamic analysis, along with
code generation to automatically build JMH microbenchmarks. We present a set of
code generation strategies to prevent runtime optimizations on the payload, and instru-
mentation to record relevant input values for the SUA. The main goal of this work is
to support Java developers who want to develop microbenchmarks. Our experiments
show that AutoJMH does generate microbenchmarks as accurate as those handwritten
by performance engineers and better than the ones built by professional Java developers
without experience in performance assessment. We also show that AutoJMH is able to
analyze and extract thousands of loops present mature Java applications in order to
generate correct microbenchmarks.

Even when have addressed the most common pitfalls found in the current mi-
crobenchmarks today, we are far from being able to handle all possible optimizations
and situations detrimental for microbenchmark design, therefore, our future work will
consist in further improve AutoJMH to address these situations.





Chapter 5

Lossy Compression of ARM
Instructions
Code compression techniques [BFG+03] have a positive effect in important economic
areas such as embedded systems and Internet of Things/Wireless Sensor Networks
(IoT/WSN). Smaller code size reduces memory requirements of embedded systems. In
turn, this translates into considerable savings in energy consumption and manufacturing
costs [LW06, LHW00, LDK99]. Code compression also enables a reduction in network
traffic [ACDFP09], which accounts for an enormous amount of energy consumption in
IoT/WSN devices. Therefore, when remotely reprogramming IoT/WSN devices, an
efficient code compression scheme for code is considered beneficial or even required.

To the best of our knowledge, all existing code compression schemes are lossless. This
somehow limits the ability of a compressor to reduce data size, as the requirement to
maintain all information is enforced. The reason for code compression algorithms to be
lossless is the traditional belief that code cannot be tampered with without unforeseen
consequences. This intuition holds for the most part, however, as discussed in the rest
of this thesis, there exist forgiving zones where some instructions can be exchanged by
others, still allowing the program to execute and maintain its Quality of Service (QoS)
within acceptable levels. The existence of such zones allows the encoder to abandon
the lossless requirement when compressing code. Analogous to image compressors that
exchange pixels’ colors to avoid storing the initial pixel’s value, code compressors can
replace instructions by similar ones to avoid storing the original.

This chapter introduces Primer, the first (to the best of our knowledge) lossy com-
pression algorithm for ARM assembler instructions. Primer is based on two observa-
tions. The first observation is that if some bits in a program are removed, they can be
inferred back, knowing how a program should behave. Using this knowledge it is possi-
ble to design a function to determine the most likely missing bits’ values. We call such
function Heuristic Ranking. The second observation is the existence of forgiving zones.
If instructed by the user, Primer will exploit forgiving zones to compress programs in
a lossy manner: the decompressed program might contain some degree of degradation
in the form of bit flips on its assembler instructions and still complete its execution
correctly.

Primer is designed as a first step in conjunction with another compressing method
(hence its name, referring to primer paint, which improves the lifetime of color coats
if applied previously). This is because Heuristic Ranking is able of high compression
ratios (up to 1:10), but only for a portion of the program. The rest of the program must
be compressed using a third-party algorithm as it is used by the Heuristic Ranking as
context to recover the missing bits’ values. We found that when using GZip to compress
data preprocessed with Primer, the compression ratios improved considerably compared
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with those obtained in unprepared data.
We evaluated Primer using GZip as third party algorithm. Our experiments con-

sisted in compressing a set of ARMv5 32-bit programs using GZip as baseline and com-
pare the compression ratios with those obtained using both Primer + GZip together.
Our results show that Premier improved up to 10% the compression ratios obtained us-
ing GZip alone, while ensuring the decompressed program to execute normally, within
acceptable QoS boundaries.

We choose to implement Primer initially for ARMv5 32-bit instructions as ARM is a
very popular platform for embedded systems. However, we are confident that the ideas
on which Primer is based (Heuristic Ranking and the exploitation of forgiving zones)
are also applicable in other architectures as well.

Briefly, the contributions of this chapter are:

• A heuristic to retrieve missing bits in binary code
• A lossy approach that exploits this heuristic to approximately compress bit se-

quences
• An implementation for ARM
• An evaluation that demonstrates the savings in compression on real world pro-

grams

The rest of this chapter explains Primer in detail. Initially, section 5.1 provides
some background needed to understand the algorithm’s inner working. Primer is then
explained in detail in section 5.2. Later on, we provide our evaluation’s results in Section
5.3. The chapter provides the related work in 5.4 and concludes in 5.5.

5.1 Background

This section provides the notions and concepts needed to understand the design of
Primer. Initially, a brief description of the ARMv5 32-bit Instruction Set Architecture
(ISA) is given. We provide only the notions useful to explain Primer’s inner working,
the complete reference for the ARM assembler language can be found elsewhere [Var17].
Later on, the section introduces two novel concepts specifically designed for Primer:
candidate instructions and solution programs. These are key in Primer’s design. Both
Heuristic Ranking and the Lossy Compression algorithm uses the candidate instructions
and solution programs concepts frequently, hence we seek to introduce them early.

5.1.1 ARM ISA

Each ARMv5 32-bits instruction is encoded in a 32-bit integer as shown in Figure 5.1.1
ARM instructions contain one opcode field, one conditional field and one operand field.
The opcode field defines what the instruction does. The conditional field defines if
the instruction can be executed, which will depend on the value held by the Current
Processor Status Register(CPSR). The exception to this rule is the al conditional, that
makes the instruction execute always. Operands can be one of the following (i) a list of
registers, (ii) a list of constant values or (iii) a list of registers and constant values.
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Figure 5.1: Simplified view of an ARM instruction

opcode_{conditional} {operands}

Examples of valid instructions are:

• b_eq 0x1234: Branches (jumps) to address 0x1234 if bit ‘equals’ (eq) is set in
the CPRS.

• str_ne r13 {r4, r5}: Stores the values of register r4 and r5 into the memory
pointed by register r13 if bit ‘not equals’ (ne) is set in the CPRS.

• mov_al r0, r1: Moves always the content of register r1 to r0. As the conditional
field is ‘al’, this instruction executes always, independently of the value stored on
the CPRS.

• subs_al r0, r0, #1: Subtract always one from r0 and update the CPSR bits
depending on the result of the operation.

To illustrate this within the context of an example, listings 5.1 and 5.2 show, re-
spectively, a simple C++ for loop and its translation to ARMv5 32-bit. (The example
is taken from [Jac14])
for (i = 10; i != 0; i--) {

myMethod ();
}

Listing 5.1: A simple C++ loop

[0x04] mov_al r4 , #10
loop_head_address:

[0x08] bl_al myMethod_address
[0x0C] subs_al r4 , r4 , #1
[0x0F] b_ne loop_head_address

Listing 5.2: The ARM code for the loop in the previous example. The numbers to the
left between brackets are the instructions’ addresses

The code in listing 5.1 requires little explanation, it is simply a for loop that calls
the method myMethod ten times. The code in Listing 5.2 starts by moving the value 10
into the r4 register. Then, it branches into the address of the myMethod method. After
the method returns, the instruction at [0x0C] subtracts one from r4 and updates the
CPSR register. Finally, bne loop_head_address jumps into the loop head if the ‘not
equal’ bit is set, otherwise it is a NOP instruction and the loop terminates.

5.1.2 Candidate Instructions & Solutions

As mentioned earlier, Primer is based on the observation that it is possible to infer
the values of missing bits in the context of a program. Later on, we will see how this
is exploited to compress a program. For now, let us take listing 5.2 and assume that
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some bits’ value has been removed from the code. After bit removal, say we obtain the
(broken) code of Listing 5.3. The ‘??’ characters symbolize the removed parts of the
instructions.

[0x04] mov_al r4 , #10
loop_head_address:
[0x08] bl_al ??
[0x0C] subs_al r4 , ??, #1
[0x0F] b_?? loop_head_address

Listing 5.3: The code on listing 5.2 for the loop in the previous example with some bits
removed.

Candidate Instruction For each address containing instructions that have had some
bits removed (in the example: [0x08], [0x0C] and [0x0F]) we now have 2k possible
instructions, being k the removed bit count. We call such possible instructions candi-
dates. As this list of instructions contains all possible bit value combinations, it will
also contain one special candidate, which is exactly equal to the sequence of bits that
has been removed. We call it the original candidate.

For example, suppose that bit 13 at address [0x0C] has been removed. As result
of this operation, the value of bit 13 is unknown (it can be 1 or 0), therefore, we now
have two possible instructions (or candidates) to fill that particular address. The ARM
encoding indicates that depending on the value of bit 13, the two possible candidates
are subs_al r4,r4,#1 (if the bit is 0) or subs_al r4,r6,#1, (if the bit is 1). The
original candidate of address [0x0C] is subs_al r4,r4,#1, as it is the instruction at
that particular address in the original program. In the next section, we will describe
how Primer is able to discover this using Heuristic Ranking. Notice that no bits are
lost at address [0x04], therefore no candidates spawned here. To generalize this special
case, we say that address [0x04] contains only one candidate: the original candidate.

Solution Program A solution program is one of the many possible programs that
can be formed selecting a single candidate per address. In other words, a solution
program is a program built by selecting one candidate per address.

5.2 Approach

In this section we explain Primer in details. We begin by illustrating the principle on
which Primer is based to compress code using Heuristic Ranking. Then we explain the
algorithm, both compression and decompression schemes. Finally, we go into details
explaining Primer’s components in the following order: (i) Heuristic Ranking function in
5.2.3 (ii) the Successive Packing Algorithm (SPA) [SZ02] in 5.2.4 (iii) lossless encoding
in 5.2.5 and (iv) we conclude this section explaining the lossy encoding in 5.2.6.
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Table 5.1: Using Heuristic Ranking to compress code. The table shows all the candidates
spawning after the removal of 6 bits, the same candidates already sorted by rank and
the rank assigned to each candidate by Heuristic Ranking. Finally, the table also shows
the number of bits required to store the rank.

Candidates spawn after
bit removal

Candidates Sorted by rank Rank Size (bits)

stmdb sp, {r3,lr} push {r3,r8,lr} ← Lossy! 0 0
stmdb sp, {r3,r8,lr} push {r3,lr} ←Original 1 1
stmdb sp, {r3,r9,lr} push {r3,r9,lr} 2 2
stmdb sp, {r3,r8,r9,lr} push {r3,r8,r9,lr} 3 2
ldmdb sp, {r3,lr} stmdb sp, {r3,lr} 4 3
ldmdb sp, {r3,r8,lr} stmdb sp, {r3,r8,lr} 5 3
...

...
...

...
push {r3,lr} ← Original ldmdb sp, {r3,lr} 15 4
push {r3,r8,lr} ldmdb sp, {r3,r8,lr} 16 4
...

...
...

...
push {r3,r8,r9,lr} ldmdb sp, {r3,r8,r9,lr} 30 5
ldmdb sp!, {r3,lr} ldmdb sp!, {r3,lr} 31 5
...

...
...

...
ldmdb sp!, {r3,r9,lr} ldmdb sp!, {r3,r9,lr} 127 6
ldmdb sp!, {r3,r8,r9,lr} ldmdb sp!, {r3,r8,r9,lr} 128 6

5.2.1 Compression’s Principle

Primer compresses a program removing bits from it. As result of this bit removal, we
now have a series of candidates for each address. To recover the original candidate,
Primer uses Heuristic Ranking to rank (sort) all possible candidates by their likelihood
of being the original candidate. The compression in Primer comes precisely from storing
this rank, instead of the removed bits. To better understand this, take the real example
of Table 5.1, obtained from the bitcount program in our dataset. Primer has removed
six bits from instruction push {r3,lr}, yielding 26 = 128 candidates. Afterward, the
Heuristic Ranking is used to sort all candidates. In the example the rank assigned to
the original candidate is 1, a number requiring a single bit to be stored instead of the
original 6 bits.

Lossy Compression Principle The optimal result for Heuristic Ranking is to give
rank zero to the original candidate, effectively requiring no information to retrieve the
removed bits’ values. However, our current implementation is not always able to give
rank zero to the original candidate. This is where the Lossy Phase starts. The Lossy
Phase tries to replace all original candidates in the program by candidates that are better
ranked. The intuition here is that smaller ranks require fewer bits to be represented.
If the program executes successfully using a better ranked instruction, the Lossy Phase
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uses the better rank instead of the original, reducing the number of bits required to store
the program. In the example, if the program still executes normally using instruction
push {r3,r8,lr} instead of push {r3, lr} then no information is needed to represent
the removed bits.

Figure 5.2: Overall view of the compression and decompression schemes of Primer.
In the image’s left side is the compression scheme. Its output is passed to the de-
compressor, which reverts the process and produces a working program.

5.2.2 Algorithm

Figure 5.2 shows the compression and decompression scheme for Primer. As input, the
algorithm receives a program P and a user-defined parameter to set lossy compression
on/off. The compression scheme’s output is a bit stream requiring less storage space
than the original code. In turn, the decompressor’s consumes this bit stream and
produces a working program.

For compression, Primer creates a copy P ′ of P . Then it removes up to 20% of
the bits in P ′. Removed bits are selected using SPA, a strategy that preserves context
to increase Heuristic Ranking’s efficiency. Afterwards, the algorithm employs Heuristic
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Ranking to sort all candidate instructions in each address of P ′ by their likelihood of
being the original instruction for that same address in P . In a later stage, the Lossless
Encoder uses the original program P to determine the index of the original candidates
in the sorted list of candidates produced by Heuristic Ranking. These indexes (or ranks)
are then used to encode the solution. Afterwards, if the algorithm is configured to be
lossy, the Lossy Phase starts, further reducing the encoding size by selecting better
ranked candidate instructions not in the original program. In a final step the remaining
80% of P ′ is compressed using a third party algorithm and stored in a bit stream we call
remainder. The output of the compression scheme is the encoding and the remainder
joined together.

The decompression scheme starts by decompressing the remainder using the third-
party algorithm. This results in an uncompressed bit stream which is still considerably
smaller than the original program, as the bits removed by Primer are still missing. In
a second step, zeros are inserted in the position of each removed bits. This ‘inflates’
the code to its original size. At this stage, the program is still not functional, as all
inserted bits values are zero. In a final step, the Heuristic Ranking Function is invoked
again, all possible solutions are sorted in the decompressor and the encoding is used to
determine which solution is equal to the original program.

5.2.3 Heuristic Ranking Function

Heuristic Ranking is a fundamental part of Primer. The whole algorithm is designed
around this function. Hence, we introduce this concept first and then we go into details
of all the remaining components.

The Heuristic Ranking function ranks (sorts) each candidate instructions by the
candidate’s probability of being the original one. This is done using probabilistic in-
ference with a carefully chosen set of events to determine a candidate’s probability of
being the good one, as shown in Equation 5.1 (being Ikα the k-th candidate at a given
address α.):

ranking(Ikα) = PB + PSL + PT (5.1)

Where:

PB = P (B|Φ, J) PSL = P (SL|Φ, RU, SLP )

PT = P (SL′, B′|Φ, RU,RD) Φ = Cn,Op,Cf

Equation 5.1 is in fact a Bayes Net that scores the candidates based on factors such
as: the expected distribution on a program of Conditional fields (event Cn), Opcode
fields (event Op) and Registers (event RU). It also considers if placing a candidate in
a given address will create weird or exceptional control flow (event Cf) or data flow
(event RD). Finally, memory access (event SLP ) and jumping addresses (event J) are
observed as well.

The equation discerns between branch instructions (PB), Store/Load instructions
(PSL) and anything that is neither branch nor Store/Load (PT ). This is done to exploit
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the knowledge we have on the semantics of each individual classes. We model events
B, SL and SL′ to be mutually exclusive, therefore PB + PSL + PT ≤ 1.

The probabilities of all these events are known by observation in a set of uncom-
pressed programs 1. These values are embedded in Primer and are not transmitted
with the compressed file, except when they diverge from the embedded model by a
value greater than 1/2kα, being kα the candidate count of the address with most can-
didates. Notice that 1/2kα is the probability of any candidate of being the good one in
absence of any other information in address α.

The rest of the section is devoted to expand on these events and the rationale behind
them.

Events Cn, Op and RU (Instruction Distribution) Cn, Op and RU are (re-
spectively) the events of placing a candidate Ikα at address α and having the resulting
solution program maintain the distribution of conditionals, opcodes and registers ini-
tially observed in the uncompressed programs.

Intuition: The distribution of conditionals, opcodes and used registers is observed
in the uncompressed programs, any candidate making the solution fit such initially
observed distribution has a fair amount of chance of being the good candidate and is
rewarded accordingly with a high score.

Event Cf (Good Control Flow) Cf is the event of placing candidate Ikα at address
α and having the formed solution program hold the following conditions: (i) instructions
with same conditionals fields are grouped together (ii) a conditional branch occurs only
shortly after modifying the CPRS register.

Intuition: Programs are constructed by execution blocks. The ARM ISA has two
ways of constructing an execution block: (i) by grouping instructions with same con-
ditionals together or (ii) by having a conditional branch after modifying the CPRS
register. The Heuristic Ranking awards instruction causing the program abide to this
expected behavior with a high score.

Event RD (Good Data Flow) RD is the event of placing candidate Ikα at address
α and having the solution program hold the following: (i) registers are only read after
being written (ii) written registers are read afterward.

Intuition: Reading from registers that have been not written might result in un-
wanted results. Also writing to registers that are not read afterwards is unusual, as
registers are scarce resources. Therefore, the Heuristic Ranking rewards a high score
to candidates that reduce the solution programs’ chance of exhibiting these unexpected
behaviors.

Event J (Good Jumping Addresses) J is the event of selecting a candidate Ikα at
address α and have a resulting solution program hold the following: (i) Ikα is a branch
(ii) the jump address points to the beginning of a function or to an address within the

1All programs in this dataset are described in Section 4.3
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function containing the instruction. (Notice that the beginning and length of a function
are approximated as they are obtained from the ELF symbol table).

Intuition: Branches are used for function calls or to create control flow structures
within a function. Therefore, Heuristic Ranking will favor branches jumping the be-
ginning of a different function (calls) or to the same function (creating control flow).
The Heuristic Ranking will penalize branching to the middle of a different function or
outside the program.

Event SLP (Store Register Pair) SLP is the event of placing a candidate Ikα
at address α and having (i) Ikα is a store/load instruction (ii) if the Ikα is a store, it
writes the registers’ content to memory at the beginning of a function OR if the Ikα is a
load, it reads registers values from memory (iii) if the Ikα is a store writing registers to
memory at the beginning of a function, there is a corresponding load reading them from
memory at the end OR vice-versa, if the Ikα is a load reading registers from memory,
there is a corresponding store writing to memory at the beginning of such function.

Intuition: Depending on the calling convention, the caller or the callee must preserve
the status of registers. In any case, this will result in store/load pairs preserving/recov-
ering the value of registers near a function call. Because of this, the Heuristic Ranking
will reward these store/load pairs with a good score.

5.2.4 Bit Removal

To increase Heuristic Ranking efficacy, bits must be removed scattered around the code.
Heuristic Ranking uses the context surrounding candidates to score them, hence Primer
does its best effort to preserve such context. This is done using a carefully designed bit
removal strategy. To exemplify the previous intuition, we apply three different removal
strategies in the example of listing 5.2.
[0x04] ????????????
[0x08] bl_al myMethod_add
[0x0C] subs_al r4, r4 , #1
[0x0F] b_ne loop_head_address //0x08

Listing 5.4: Bad Strategy 1: Remove bits as a consecutive stream. Preserves no context

Bad strategy of Listing 5.4 removes bits consecutively. As result of this, no infor-
mation regarding the removed instruction is preserved, making almost impossible to
recover it.
[0x04] mov_ ?? r4 , #10
[0x08] bl_ ?? myMethod_add
[0x0C] subs_ ?? r4 , r4, #1
[0x0F] b_ ?? loop_head_address //0 x08

Listing 5.5: Bad Strategy 2: Remove bits at a fixed position. Preserves little context

Bad strategy in Listing 5.5 removes bits always at the same position. In here, all
information regarding the program’s control flow is destroyed, disabling recovery based
on the expected program’s control flow behavior.
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[0x04] ??_al r4 , #10
[0x08] bl_?? myMethod_addrs
[0x0C] subs_al r4, ??, #1
[0x0F] b_ne ?? _head_addrs //0x08? 0x8^32?

Listing 5.6: Good Strategy: Removes bits scattered around the code. Preserves the
most context

This result is better, as it preserves more context. In here, the removed opcode
at address [0x04] can be recovered using the opcode fields expected distribution; the
removed ‘al’ conditional at address [0x08] can be recovered using the intuition of
event Cf : instructions with same conditionals are grouped together; the register lost
at [0x0C] can be recovered knowing that it must have been written earlier (intuition
of event RD) and therefore it must be r4. The higher bits of the jumping address at
0x0F can be recovered by discarding jumping addresses outside the program.

The previous examples motivate the need for a number generator able to generate
uniformly scattered positions, having two consecutive generated positions as distant as
possible from each other. We describe such generator as follows.

The Successive Packing Algorithm (SPA) The Successive Packing Algorithm
(SPA) [SZ02] method was originally designed to interleave 2D images and mitigate
burst errors during network transmissions. The SPA also deals with the problem of
mapping elements of 2D structure into a 1D series (in their cases packets, in ours, the
removed bit list) in such a way that nearby elements in the 2D structure (in their case
pixels in an image, in our case bits in an instruction list) are as distant as possible in
the 1D series.

The original algorithm starts with a 1×1 matrix S0 = [s0], which is then successively
used as input for the next matrix, generated as follows:

Si+1 =

[
4× Si + 0 4× Si + 2
4× Si + 3 4× Si + 1

]
According to the algorithm S0 = [s0], while S1 and S2 are:

S1 =

[
0 2
3 1

]
S2 =


0 8 2 10
12 4 14 6
3 11 1 9
15 7 13 5


We use SPA to create a 32 × 32 matrix S5, where cell S5

ij represents the i-th bit
of the j-th instruction. Obviously, this matrix will cover only the first 32 instructions
of the program. If the program is bigger than that, more matrices are created using
SPA until the whole program is covered, concatenating the newly built matrices’ rows
to form a C × 32 matrix, (where C is the address count). In a final step, the first C/2
even rows are interchanged, so that row i is exchanged with row C/2 + i. This is done
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to further increase the distance between two consecutive positions. The matrix for the
example of listing 5.2 is:

S5 =


0 512 128 . . . 554 170 682

960 448 832 . . . 490 874 362
192 704 64 . . . 746 106 618
768 256 896 . . . 298 938 426


Generating the Sequence of Bits to Remove Armed with the C × 32 matrix
Primer is now able to generate the sequence of bits to remove by looking-up in the
matrix the positions of the first consecutive k numbers, (where k is equal to the 20% of
the total bit count in the program) the column containing the number represents the
bit index to remove and the row represents the instruction from which the bit is going
to be removed.

Knowing the number of bits to remove As mentioned earlier, the Heuristic Rank-
ing is used to obtain a value to encode removed bits. To effectively compress the pro-
gram, this encoding should require less storage space than the removed bits. As we
remove larger amounts of bits, the lack of contextual information causes the Heuristic
Ranking to be less accurate when determining the most likely candidates, increasing
the size of the encoding by means of worse ranks awarded to original instructions. In
the programs used for our evaluation, we discovered that the best trade-off between the
number of bits to remove and the resulting encoding’s size was to remove around 20%
of the program bits.

5.2.5 Encoding

Recall that a solution program is one of the many possibles programs that can be
formed by selecting one candidate per address. Primer encodes the missing bits using
Equation 5.2. In this equation, α is an array containing all instructions’ addresses of P
in consecutive order (i.e. 0x04, 0x08, 0x0C,...) ki is the rank awarded by the Heuristic
Ranking to the original candidate at the i-th slot of α and C is the length of the α array.
Equation 5.2 is nothing but a positional numeral system that uses as base B the largest
rank awarded to a candidate (just like decimal system uses base 10 and the binary uses
base 2) and as digits the ranks awarded to candidates.

E =

C−1∑
i=0

kiB
i (5.2)

Where

ki = HeuristicRank(α[i]) B = max(ki) + 1

We explain now how the original solution is encoded using this equation. To do so,
we use once more the motivating example of listing 5.2. Suppose that Primer removes
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seven bits from addresses [0x04] and [0x08], nine bits from address [0x0C] and eight
bits from address [0x0F]. Notice that 31 bits (the 24.2%) have been removed from the
program. Using Heuristic Ranking, Primer sorts all the candidates by their likelihood
of being the good one. Say the original candidates gets ranked at positions 1, 0, 2 and
2 at addresses [0x04], [0x08], [0x0C] and [0x0F] respectively. The maximal rank
awarded are in addresses [0x0C] and [0x0F] and is equal 2. Hence B = 2 + 1 = 3.
Substituting in 5.2 we have:

E = 1× 33 + 0× 32 + 2× 31 + 2× 30 = 35

The resulting encoding value of the example (35) can be expressed with 6 bits rather
than the 31 bits removed from the program.

Data: G: Dictionary containint the list of candidates per address;
S Dictionary containing the good candidates indexes per address;
PROG Program to be modified
QoS Quality of Service function

Result: A lossy encoding for PROG
1 foreach α ∈ G do
2 foreach k ∈ [0..S[α]] do
3 PROG[α] = k
4 if QoS(PROG) is TRUE then
5 S[α] = k
6 break the loop
7 end
8 PROG[α] = S[α]

9 end
10 end

Algorithm 3: The Primer’s Lossy Phase greedy algorithm

5.2.6 Lossy Compression

The lossy compression in Primer is a greedy algorithm that tries to modify the program
being compressed to make it use a candidate better ranked by the Heuristic Ranking
function in a given address. Smaller ranks require less memory, therefore using better
ranked candidates further reduces the encoding’s size.

In the previous example, say the Lossy Phase discovers that the program can main-
tain its QoS using the candidate sorted at position 0 at address [0x04], then the
encoding will become equal to:

E = 0× 33 + 0× 32 + 2× 31 + 2× 30 = 7

Which reduces to 3 bits the required amount of storage, improving the example’s lossless
solution 57%. Notice that by replacing a single candidate, the Lossy Phase is able to
considerably reduce the amount of information needed to encode the program.
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The method used by the Lossy Phase is shown in Algorithm 3. It takes the following
parameters: a dictionary G containing the list of all candidates per address, where
each list is already sorted using Heuristic Ranking; a dictionary S containing the good
candidate index per address (i.e. the good solution); the program PROG to compress
and theQoS function. The lossy algorithm goes through all the addresses of the program
(line 1), trying to use the best ranked instruction possible. In line 2, the algorithm begins
with the best ranked candidate and tries all instructions up to the good one, which is
stored in S[α]. The way this is done is by overriding the program at address α with the
better ranked candidate. If program complies with the QoS requirements, then such
better ranked candidate is used, the inner loop breaks and the next address is explored.
On the other hand if the modified program’s QoS is not acceptable, the algorithm rolls
back the last change (line 8 and moves on into the next candidate.

The Premier’s lossy compression strategy is greedy. It starts by the most significant
digits of the encoding E, which is always the best solution since:

xBn >

n∑
i=1

yiB
n−i ∀x, yi < B

5.3 Evaluation

Our evaluation has four main objectives. Initially, we seek to evaluate Heuristic Rank-
ing, the main component of Primer and observe how good is the function in terms of
giving the lowest possible ranking to original instructions. Later, we want to understand
the reasons for which the Lossy Phase of Primer is able to further improve compression
ratio without affecting the dataset program’s QoS. Afterwards, we determine whether
Primer can improve over existing compression schemes Finally, we observe the effect of
the lossy phase on the compression ratio of the data. With these objectives in mind,
we propose the following Research Questions:

RQ1: Can indeed Heuristic Ranking provide small ranks to original instructions?
The compression principle of Primer is based on the assumption that Heuristic

Ranking will assign a small rank value to the original candidate. The algorithms then
uses this rank to encode bits removed from the instruction. Smaller numbers require less
storage space, therefore assigning lower ranks values to the original candidates reduces
the number of bits required to store it. We seek to observe whether Heuristic Ranking
can indeed award small ranks to original candidates and also the number of bits required
to store each rank.

RQ2: Why does the Lossy Phase of Primer further reduce file size without affecting
the program’s QoS?

In order to better understand why Primer is able to find equivalent programs, we
wanted to characterize the forgiving zones found. We do so to improve future versions
of the algorithm, by prioritizing zones abiding to patterns known to be forgiving.

RQ3: Can Primer provide better compression ratios than existing industry-standard
algorithms such as GZip?
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This is the main validation of the Algorithm, as the resulting size of the compressed
file is one of the main metrics on which compression algorithms are evaluated. There is
no point in introducing a new algorithm that does not improve upon existing results.

RQ4: What is the impact of Primer’s lossy phase in the compression ratio?
The Lossy phase of Primer modifies the original sequence of instructions, in a way

that loses information. Primer guarantees that the decompressed program executes
normally and that the user-defined QoS metric is met, but admittedly this approach
conveys risks. Therefore, without an improvement in compression, the lossy phase of
Primer lacks in appeal.

Table 5.2: Case studies for our experiments

Program Code Size in Bytes Purpose
sha 3096 Library implementing the Set of Hash Algorithm

(SHA-0)
qsort_small 1076 A Program sorting several vectors using the C

Standard Library function qsort
fft 8356 Library with the implementation of the Fast

Fourier Transform
dijkstra_small 2292 Implementation of the Dijkstra’s Algorithm
crc32 1140 Implementation of the Cyclic Redundancy Check

(CRC) error-detecting codes
bitcount 5880 Test program for bit counting functions
basicmath 7244 Test program with basic computations

5.3.1 Dataset

We compressed individually seven programs from the MiBench suite [GRE+01]. MiBench
is a collection of representative embedded applications and libraries. We selected the
suite since the initial intended usage of Primer is precisely over-air firmware updates of
embedded systems. Table 5.2 shows the programs of our dataset.

All sources for the programs in our dataset were obtained from the MiBench website
2. In a second step, these sources were compiled for the ARMv5 32-bit ISA. We used
Primer in lossless mode to compress the resulting machine instructions. In a second
step, we repeated the compression process using Primer in lossy mode. Finally, we also
compressed all machine instructions using GZip to obtain a baseline that we could use
to compare against Primer.

5.3.2 RQ1: Quality of Heuristic Ranking

The number of bits needed to encode a rank r is equal to log2(r). Candidates awarded
with rank 0 requires zero bits to encode and those awarded with rank 1, require one bit.
The highest rank awarded to a candidate in our dataset was 13. In other words, 4 bits
was the maximal amount of information needed to encode any candidate in our dataset.

2http://vhosts.eecs.umich.edu/mibench/

http://vhosts.eecs.umich.edu/mibench/
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Figure 5.3: Number of bits required to encode original instructions in our dataset. Each
segment represents the percent of instructions requiring from 0 to 4 bits to be encoded.
In our experiments between 6 and 8 bits were removed from each instruction

In our experiments we removed 20% of the bits in all programs of our dataset. This
means that between 6 and 8 bits were removed from each instruction. The number of
bits eliminated per instruction varied since the SPA generator does not assigns an even
quantity of bits to remove at each address.

Figure 5.3 shows the percent of original instructions that the Heuristic Ranking was
able to encode using 0, 1, 2, 3 and 4 bits. The figure shows a bar for each program
in our dataset. In turn, each bar is divided into segments whose length indicates the
percent of instructions that Heuristic Ranking was able to encode using a determinate
number of bits.

The image gives us an idea of the Heuristic Ranking’s performance. In all pro-
grams, at least 40% of original instructions was awarded rank 0. In program qsort
nearly the 80% of original instructions was awarded rank 0. Also, only in programs
fft and basicmath a minor percentage of instructions required 4 bits to encode. This
clearly indicates the Heuristic Ranking’s capacity to determine which is the most likely
instruction to live in a given address.

We believe this good performance is mainly due to the effectiveness of the probabilis-
tic model on which Heuristic Ranking is based. Other factors that we have observed are
the fact that many candidates were not valid ARM instructions and others were simple
to discard, such as branches to invalid addresses, storages without matching loads and
useless computations stored in registers that were never used afterward.

Answer to RQ1: The Heuristic Ranking is able to effectively award near-zero
ranks to original candidates.
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5.3.3 RQ2: Characterization of Forgiving Zones exploited by Primer
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Figure 5.4: Size of forgiving zones all programs in our dataset

Recall that Primer achieves compression by storing the rank assigned to the original
candidate by the Heuristic Ranking function, instead of the removed bits. Smaller ranks
require less memory, therefore Primer’s Lossy Phase tries to store the bests ranked
candidates, independently of whether that candidate is equal to the original instruction
in the program being compressed. By storing a smaller rank, higher compression levels
are achieved. Obviously, this is only possible if the candidate being used allows the
program to execute normally while maintaining its QoS within acceptable bounds.

To better understand why Primer’s Lossy Phase is able to further improve compres-
sion ratio, we now give a closer look to the forgiving zones exploited by Primer. Initially
we provide some insights on the size of such zones. Later on, we show some examples
of instructions exchanged by Primer’s Lossy Phase and comment on the reasons why
substitution works.

Size of Forgiving Zones Figure 5.4 shows which parts of the programs in our dataset
were forgiving. The figure shows one stacked bar per program. Each bar is divided in
four segments ‘Forgiving’, ‘QoS’, ‘Crash’ and ‘Froze’. In turn, each segment represents
a percentage of the program’s instructions that were forgiving, crashed or froze the
program or that produced a different output.

Instructions in the Forgiving Zones were those instructions that could be exchanged
by at least another candidate. The non-forgiving instructions were divided in three
groups ‘Crash’, ‘Froze’ and ‘QoS’. Crash instructions were those that crashed the pro-
gram in most attempts of being exchanged. Similarly, Froze instructions where those for
which a replacement usually prevented the program from exiting at all. Finally, QoS in-
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structions were those that produced a different output in most attempts of replacement.
If an instruction caused more than one type of error, we selected the most common one.
For example, if an instruction was replaced five times and three replacements caused
the program to crash, we placed the instruction in the Crash group.

Figure 5.4 shows that a large portion of the program could be exchanged by at least
another candidate. In four cases (sha, qsort, fft and bitcount) the forgiving zones
accounted for more than 50% of the instructions. The programs with larger forgiving
zones are fft and bitcount. Not surprisingly, those were also the programs for which
the Lossy Phase of Primer improved the compression ratio the most.

Examples of Forgiving Zones Figure shows 5.4 that considerable portions of our
dataset’s programs contain instructions that can be exchanged without affecting the
program’s behavior. Following, we provide some examples of the replacement patterns
that we have observed Primer to perform in the Forgiving Zones.

• Unused or exchangeable conditionals. We have found that some instructions
are conditioned to situations that never occur, like overflow in operations with
bounded values. It can also happen that in a particular context two conditionals
are exchangeable such as ‘minus/negative’ (mi) and ‘signed less than’ (lt), which
are the same if the overflow bit is clear in the CPSR register. Listing 5.7 shows an
example where the conditional of instruction eors_gt and parts of the instruction
strbt_vs can be exchanged without consequences, as no overflow occurs.

// ORIGINAL PROGRAM:
[0 x10d88] eors_mi r0, r6, r0
[0 x10d8c] eors_gt r0, pc, r0
// The following executes only if overflow:
[0 x10d90] strbt_vs r6, [r6], -r6 , ror #12

// MODIFIED PROGRAM:
[0 x10d88] eors_lt r0, r6 , r0 //<-CONDITIONAL EXCHANGED(mi by lt)
[0 x10d8c] eors_gt r0, pc , r0
[0 x10d90] strbt_vs r5, [r6], -r6 , ror #12 //<-REGISTERS CHANGED

Listing 5.7: The original program is on top, while the modified program is at the bottom.

// ORIGINAL PROGRAM:
[0 x10c88] str r3, [fp, #-0x34] // <-- MODIFIED JUMPS HERE
[0 x10c8c] str r4, [fp, #-0x30]
[0 x10c90] mov r2, #0 // <-- ORIGINAL JUMPS HERE
[0 x10c94] ldr r3, [pc, #0x148]
[0 x10c98] sub r1, fp, #0x34

Listing 5.8: Example of a case where two extra instructions were executed by the
modified program without consequences. The original branch transfer execution to
[0x10c90] while the modified program transfered execution to [0x10c88].

• Small variations in branching addresses. If small variations are introduced in the
branching addresses, causing the program to jump into one or two instructions
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before, there is a chance that the extra executed instructions have no impact
in the program. Listing 5.8 shows a part of the program where one of such
modified branch instructions branched to. The original instruction branches to
address [0x10c90] while the modified one branched to [0x10c88]. The two extra
executed instructions stored the value of registers r3 and r4 to memory without
major consequences to the program.

• Store unnecessary register values. Depending on the calling convention the caller
or callee must preserve register values at the beginning of a method and restore
such values at the end of a method’s execution. Sometimes however, preserved
values are unused after the method returns. Therefore, a common substitution
pattern is to replace registers in the list of preserved registers in push or pop
instructions. Listing 5.9 shows one of such exchanges found in basicmath, one of
our dataset’s programs.

// ORIGINAL PROGRAM: // MODIFIED PROGRAM:
[0 x105d0] push {r4, lr} [0 x105d0] push {r1 , r4, lr}
[0 x105d4] blx r3 [0 x105d4] blx r3

Listing 5.9: To the left is the original program, to the right the modified version. The
modified program stores one extra register (r1) to memory.

• Replacement of instructions by equivalent ones. One common pattern found in
Primer’s replacements was instructions whose execution will yield equal results.
Listing 5.10 shows one of those substitutions. In the original program, a constant
value zero is moved into r2, while the modified program subtracted r2 from itself
and store the value in r2, effectively storing the value zero in r2.

// ORIGINAL PROGRAM: // MODIFIED PROGRAM:
[0 x10c6c] mov r2 , #0 [0 x10c6c] sub r2, r2 , r2
[0 x10c70] ldr r3 , [pc, #0xf4] [0 x10c70] ldr r3, [pc , #0xf4]
[0 x10c74] sub r1 , fp, #0x34 [0 x10c74] sub r1 , fp , #0x34

Listing 5.10: To the left is the original program, to the right the modified version.
Primer exchaged an instruction by one yielding the same result.

Answer to RQ2: Primer’s Lossy Phase is able to reduce compressed program’s
size exploiting large forgiving zones found in each program. It also profits from
frequent opportunities to exchange instructions without affecting a program’s QoS.

5.3.4 RQ3: Comparing Primer with Industry Standard GZip

Figure 5.5 shows the results of our experiments comparing GZip with Primer. In the
figure, each program in our dataset is represented by three bars that indicate (from left
to right) the inverted compression ratio (i.e. compressed_size/uncompressed_size)
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Figure 5.5: Compression ratios of Gzip, Lossless Primer and Lossy Primer

obtained using GZip, Primer in lossless mode and Primer in lossy mode, respectively.
As the bar’s height represents the inverted compression ratio, lower is better.

In the experiments, we initially compressed each program with using GZip alone.
The resulting files were used as baseline. Later on, we preprocessed up to the 20% of
each program using Primer Lossless and then Primer Lossy, the remaining 80% of each
preprocessed program was compressed using GZip and appended to Primer’s output to
obtain a compressed file containing the complete program. The size of this compressed
file was then compared with the baseline. The results are shown in Figure 5.5.

The results demonstrate that Primer was able to consistently produce smaller out-
puts. The algorithm was always able to improve the compression ratio obtained using
GZip alone. This is due to the fact that Primer removes a part of the file and com-
presses it using a technique which is better aimed at compressed code than the general
purpose scheme used by GZip. Notice also the different improvement ratios obtained
using Primer. These differences are mainly caused by how much a program abides to
Heuristic Ranking’s probabilistic model. This is somehow expected, the more a program
deviates from the model, the more information is required indicate where and how much
it deviates from such model.

Answer to RQ3: Primer is able to improve the compression ratios obtained with
the industry-standard tool GZip.

5.3.5 RQ4: Lossyness’ Impact on Compression

Primer’s Lossy Phase tries to modify the program being compressed to make it use
candidates having a better rank than the original candidate. This is done by replacing
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candidates instructions and then checking if the modified program still meet the QoS
metric. In our experiments we used a simple QoS metric that consisted in verifying
if the approximated program produced an output equal to the original. Only if both
outputs matched, the QoS was satisfied.

Figure 5.5 shows that the Lossy Phase was able to improve the compression ratio in
six out of seven programs in our dataset. The improvements obtained over the Lossless
phase ranged between 2% and 10%. Programs fft and bitcount received the highest
improvements from the lossy phase. On the other side, programs sha and crc32 received
lesser improvements. Finally, program dijkstra received no improvement at all from
the Lossy Phase.

The improvements on compression ratio yielded by the Lossy Phase of Primer de-
pended mainly on the phase’s ability to find an instruction lying in a forgiving zone of
the program. Forgiving zones’ sizes differ from program to program (as shown in Section
5.3.3). Not surprisingly, the Lossy Phase yielded larger compression ratio improvements
precisely on those programs having the largest forgiving zones.

Another important factor influencing the reduction in size achieved by the Lossy
Phase was the encoding Equation 5.2. Recall that the solution’s encoding consists in a
positional numeral system, where the ranks of the candidates are used as digits. This
means that, like in numeral systems where there are high order and low order digits,
there will be ‘high order’ and ‘low order’ instructions, having high order instructions
larger impact in the encoding’s size. In the example of Section 5.2.6 we saw how the
Lossy Phase made a significant impact in the compression ratio replacing a single high
order instruction. We observed a similar behavior in our experiments. By targeting
always the instruction in the most significant positions of the encoding, the Lossy Phase
was able to significantly reduce encoding size replacing only a few candidates.

Answer to RQ4: The Primer’ Lossy Phase was able to further improve the
compression ratio of six programs (out of seven) in our dataset.

5.3.6 Threats to validity

While the results obtained using Primer show promise, there are some threats to the
validity of the findings shown in this chapter. Firstly, the Heuristic Ranking uses a
probabilistic model that can potentially be overfitted to the programs in the dataset.
We hope this is not the case, as the programs used to evaluate the algorithm belong
to a representative benchmark specifically designed for embedded systems. The second
threat to validity is that our results were obtained using a complex tool chain. We
not only implemented Primer, but also tools to disassemble programs and analyze data
such as the size of the forgiving zones. While we tested our tool chain, extensively, we
do not discard the existence of bugs. Hopefully, if any, such errors will not distort the
main character of our findings.
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5.4 Related Work

To the best of our knowledge Primer is the first lossy technique specifically designed to
compress code. The algorithm is primarily meant to reduce network traffic in IoT/WSN
devices [ACDFP09] (specifically when updating software remotely). Therefore, we re-
view other techniques addressing this particular problem [BS13]. More generally, code-
size reduction is a well established field of studies [BFG+03] with many related works
in the area. Closer to Primer are the work by Frazer[Fra99], also Code Compaction
schemes and compression algorithms for embedded systems.

Reducing network traffic in IoT/WSN Data compression is only one of the many
strategies used in IoT/WSN to reduce network traffic. Other approaches include data
prediction, sampling or sending data only when the best conditions exist. Techniques
for data prediction tries to avoid traffic by sending only data that does not fit to a
particular predicted behavior [CDHH06, GPI06]. Sampling techniques collect and sends
only a subset of the data based on certain criteria [GLY07, AAFR10]. Other authors
propose to wait for optimal conditions to send data, such as the sender and receiver
node having nearby locations on mobile networks [WBMP05, JZA+05].

Reprogramming IoT/WSN Many techniques for reprogramming IoT/WSN de-
vices give special attention to errors produced during update transmission [?, SV06].
Such errors can potentially increase traffic since corrupted packets need to be resent.
Therefore, authors in this field propose techniques able to recover from errors and thus
reduce traffic. Other approaches take into consideration that an update is most likely in-
cremental (i.e. the old and new version of the program are likely to share large portions
of code) and exploit this to send only diverging parts and reduce traffic [JC04, RW08].
This incremental update is easy to implement if the program is highly modular [LC02].

Code Compression Algorithms for Embedded Systems A significant number
of papers have proposed code compression techniques specifically meant for embedded
systems [BMMP99, LHW00, ZK06]. The objective here is to reduce memory require-
ments [BMMP99], which in turns brings down costs [ZK06] and energy consumption
[LHW00]. Lekatsas et. al. [LHW00] realized that assigning Huffman codes to whole
instruction was less efficient than assigning codes to the different parts of an instruction
(opcodes, registers, conditionals) by separate. Benini et.al. [BMMP99] store the code
compressed and then rely on a hardware unit to decompress it on the fly, prior to pass-
ing it to the CPU. This method is also present with variations in a number of different
papers [ACAP00]. Lefurgy et al. [LPM00] reviewed this strategy later by proposing a
decompression phase that uses a special unit of the CPU.

Compression Using Semantics Primer relies heavily on the semantics of programs
to perform compression. This intuition has been explored before by Frazer [Fra99] who
proposes to discover common patterns in code using Decision Trees. Frazer’s approach
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however, was designed to be used on internal representations of programs, requiring a
compilation phase after decompression or an interpreter.

Code Compaction Several techniques fall under the umbrella name of Code Com-
paction [DEMDS00, DBKC+03, ERBS16, RSSR16, HTP+07]. These techniques does
not compress the code. Rather, they work by removing unreachable or similar code. For
example, [CM99] and then [DEMDS00] propose a compiler optimization that search for
related areas of code. When two or more similar code areas are found, one is kept and
all others are replaced with a jump to the initially saved code segment. Post-pass com-
paction techniques [DBKC+03] take this idea further by operating at the system level
(i.e. not only similar parts in the program are factorized, but also on its dependencies
or even in collections of programs). Romano et.al. [RSSR16] proposes a technique to
detect methods that are never used in a Java program to reduce system’s size. Tra-
ditional compiler optimizations such Dead Code Elimination and Invariant Code also
reduce code size.

Compaction techniques are related to Primer because they do not preserve the origi-
nal program being optimized. However, all compaction techniques perform sound trans-
formations, while Primer relies on unsound transformations. Also, they do not trans-
forms the code into another representation, therefore they can be used in conjunction
with a compression algorithm such as Primer.

5.5 Conclusions

This chapter presented Primer, the first (to the best of our knowledge) lossy code com-
pression algorithm. The chapter described the algorithm’s inner working, both the
Heuristic Ranking function and the Lossy Phase. Also, the results of our experiments
were given showing the effectiveness of Heuristic Ranking to identify the original can-
didate and the Lossy Phase’s ability to further reduce the compression ratio without
affecting the compressed program’s QoS. Compared with GZip, Premier was able to
outperform the industry-standard algorithm by 10%.
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Conclusions and Perspectives

6.1 Conclusions

Approximate Computing is a broad field of study that propose a new point of view on
accuracy. Instead of preserving accuracy at all cost, practitioners of the field realized
that many applications such as Image Processing, Machine Learning and Big Data can
endure some degree of imprecision while still producing good enough results. This
opens a world of new opportunities to reduce energy consumption, execution times,
circuit area and storage space, among others. The ideas of Approximate Computing
have found application in diverse fields such as embedded devices, high performance
computing and media processing.

This thesis had proposed three contributions to the field of approximate computing
(i) Approximate Unrolling: a machine-independent compiler optimization, (ii) Auto-
JMH: a tool to measure speedup of approximate pieces of code and (iii) Primer: the
first lossy algorithm for ARM instructions.

Approximate Unrolling exploits the data locality found in time series to interpolate
costly computations and reduce the execution times and energy consumption of loops
mapping values to an array. By using interpolation, the optimization reduces execution
times and energy consumption of transformed loops as hypothesized initially. Also,
interpolations improved the accuracy and robustness obtained when transforming loops
with Loop Perforation, the current state-of-the-art approximate loop optimization. Our
implementation of Approximate Unrolling in the OpenJDK C2 compiler was able to
estimate with high confidence if a forgiving zone would indeed reduce execution times
by means of a prediction policy. The current implementation is still unable to determine
if by applying the optimization accuracy would drop to unacceptable levels. Good
solutions for this particular problem exists in the form of annotations or alter-and-test
dynamic analysis. During our experiments we decided to use annotations but other
methods could be used also since Approximate Unrolling is orthogonal to the concern
of identifying forgiving zones.

AutoJHM creates payloads for JMH microbenchmarks in such a way that common
mistakes made by engineers without experience designing this kind of tests are avoided.
Microbenchmarks allows to observe smaller differences in performance way smaller than
those observed by benchmarks. Yet, microbenchmarks are notoriously difficult to de-
sign properly. With AutoJMH, the amount of technical knowledge needed to design
microbenchmarks properly is reduced. This allows more engineers to use these tests,
which present unique advantages over benchmarks and profilers. AutoJMH’s evaluation
showed its ability to outperform engineers without experience and to match experienced
performance engineers. Certainly, AutoJMH is able to avoid only a small set of mistakes
such as tests prone to Dead Code, Constant Folding and unstable states. Yet, those
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errors were shown to be among the most commonly made by inexperienced designers.
Our results demonstrated that microbenchmarking can be automated to a large extent
and hint that the process can be fully automated.

Primer is the first lossy compression scheme for ARM instructions. The algorithm
treats a program’s forgiving regions as lossy data, allowing it to outperform the com-
pression ratio of the current state-of-the-art code compression schemes. Unfortunately,
the lossy nature of the algorithm can only be applied in programs with forgiving zones.
The idea is still in its infancy, better compression ratios could be obtained if with
further research in this direction where to be done. Also, a proper assessment of the
compression times and energy consumption of the algorithm is required.

6.2 Perspectives

This sections describes a potential roadmap for the continuation of all the work pre-
sented in this thesis. Initially, the section recommends several tasks to improve the
presented techniques and tools. Finally, some steps to achieve industrial application of
our results are proposed.

6.2.1 Improving Existing Results

Predict Accuracy Losses The current implementation of Approximate Unrolling
is able to predict which loops will obtain speedups benefits from the transformations.
This is done by means of a policy. Yet, the current policy is unable to predict whether
the accuracy drops in loops will be acceptable after being optimized. A way to predict
accuracy losses in optimized loops is then needed. We envision this to be done in two
ways, by static analysis or manually by a programmer.

The static analysis would try to find loops abiding to the patterns found in Section
3.4.4. These loops are the ones where the function being mapped is a smooth function.
Smooth functions are defined as those for which their derivatives exists up to a certain
order. While is not feasible to tests this condition for all possible functions without a
considerable amount of computation, it can be estimated with ease for some simpler
functions composed by arithmetic computations and intrinsic (i.e. built-in) functions
such as log or sin.

Besides an automated static analysis, another option to identify Approximate Un-
rolling amenable zones is for a programmer to do so manually. However, existing
approximate languages do not consider having more than one technique that can be
applied in the same type of forgiving zone (i.e. Approximate Unrolling and Loop
Perforation). Therefore, if more than one technique can be applied, no approximate
language features a way to hint the compiler regarding which approximation is best
to use. Another shortcoming of current languages is that some allow declaring ap-
proximable variables [SDF+11a], some to specify acceptable levels of approximation
[MCA+14, BSGC15] and some to express conditions on which the system should change
[HBZ+16, BC10, SKG+07]. Yet, no existing language binds all these concerns together.
These shortcomings indicates that the field of approximate languages is far from mature
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and that new developments should be made in order to propose tools that can be used
outside the lab.

Towards Fully-Automated Generation of Microbenchmarks While AutoJMH
is able to avoid several common mistakes made by engineers without experience in
microbenchmarking, is still far from being able to fully automate all the potential situ-
ations that can arise during the design of a tests. These include handling the situations
that can arise in multi-threaded applications such as false-sharing or asymmetric loads.
Another feature is to analyze the data passed into the tests, as it can cause corner cases
of branch prediction by the CPU. Another improvement that should be added to the
tool is the analysis of the tests’ output results to detect patterns that could signal a
potential badly constructed payload, such as a suspiciously fast-executing microbench-
marks. These are some examples of the situations that should be addressed in the next
version of AutoJMH.

Improving Primer While Primer is able to provide state-of-the-art compression ra-
tios, we believe there is still much to be explored in this new direction. The Primer’s
lossy schema can be improved. Currently, the lossy algorithm follows the lossless and
tries to improve upon it. However, much knowledge is being obtained regarding re-
silience, diversity and unsound transformations in programs by the community. There-
fore, we believe better schemes to exploit the newly discover lossy nature of code remain
to be discovered. Those algorithms should focus on the newly found nature of code,
just like the JPEG or MPEG standards do in media applications.

6.2.2 Technology Transfer Into Industry

Approximate Unrolling The idea for Approximate Unrolling came initially as a way
to support the implementation of software synthesizers in low-energy embedded devices.
The grand picture is to create a programmable smart sound card that could process
sound in real time. In live sound effects processing, real-time constraints receive higher
priority than sound quality. Hence, Approximate Computing proposes an attractive
alternative to enforce real-time constraints.

Our future work will consist in transferring the gained knowledge during the thesis
into real-time processing units, where Approximate Computing will be used to enforce
real time requirements. Most software sound processing units consist in a master loop
that maps the results of a function into a buffer. Approximate Unrolling is certainly
a viable technique in this contexts, as is able to notably increase the performance of
loops processing sound while maintaining sound quality reduction acceptable or even
unnoticeable.

AutoJMH In order to make AutoJMH an industry-ready tool three main aspects
must be addressed (i) usability (ii) test generation execution time and (iii) constant
maintenance. A first step will be to receive user feedback regarding the tool’s usage and
then adapt the tool responding to this feedback. Later on, improvements to reduce the
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time the analysis takes to run would be needed, as microbenchmarks are used for small
constant improvements and tests should be generated as quickly as possible. Finally, the
developers of AutoJMH should constantly adapt the tool to follow the inner workings of
the Java VM , as many of the design choices made depends on the set of optimizations
made by the Java VM.

Primer During the presentation of Primer in this thesis, issues such as speed of com-
pression (i.e. the time Primer takes to execute) and the energy consumption of the
algorithm where left unexplored. These are important concerns, since the main point
of compression is precisely to reduce the energy required to receive the firmware by a
given node. Some of the questions we have received in early feedback when presenting
the technique to industry professionals is whether it is possible to actually implement
Heuristic Ranking in low-energy devices or whether the actual energy consumption of
the algorithm will justify its usage. Hence, in order to obtain an industry-ready tech-
nique, a careful analysis on performance and energy consumption of Primer should be
performed in the very near future.
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Abstract

Approximate Computing is based on the idea that significant improvements in CPU,
energy and memory usage can be achieved when small levels of inaccuracy can be
tolerated. This is an attractive concept, since the lack of resources is a constant problem
in almost all computer science domains. From large super-computers processing today’s
social media big data, to small, energy-constraint embedded systems, there is always the
need to optimize the consumption of some scarce resource. Approximate Computing
proposes an alternative to this scarcity, introducing accuracy as yet another resource
that can be in turn traded by performance, energy consumption or storage space.

The first part of this thesis proposes the following two contributions to the field of
Approximate Computing:

• Approximate Loop Unrolling: a compiler optimization that exploits the approx-
imative nature of signal and time series data to decrease execution times and
energy consumption of loops processing it. Our experiments showed that the
optimization increases considerably the performance and energy efficiency of the
optimized loops (150% - 200%) while preserving accuracy to acceptable levels.

• Primer: the first ever lossy compression algorithm for assembler instructions,
which profits from programs’ forgiving zones to obtain a compression ratio that
outperforms the current state-of-the-art up to a 10%.

The main goal of Approximate Computing is to improve the usage of resources
such as performance or energy. Therefore, a fair deal of effort is dedicated to observe
the actual benefit obtained by exploiting a given technique under study. One of the
resources that have been historically challenging to accurately measure is execution
time. Hence, the second part of this thesis proposes the following tool:

• AutoJMH: a tool to automatically create performance microbenchmarks in Java.
Microbenchmarks provide the finest grain performance assessment. Yet, requiring
a great deal of expertise, they remain a craft of a few performance engineers.
The tool allows (thanks to automation) the adoption of microbenchmark by non-
experts. Our results shows that the generated microbencharks match the quality
of payloads handwritten by performance experts and outperforms those written
by professional Java developers without experience in microbenchmarking.
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