Nouvelle approche de mesure de front d'onde sans analyseur pour la microscopie à deux photons : application à l'imagerie in vivo de l'hippocampe

par Joël Teixeira

Thèse de doctorat en Astronomie et Astrophysique

Sous la direction de Laurent Mugnier et de Jean-Marc Conan.

Soutenue le 26-09-2017

à Paris Sciences et Lettres , dans le cadre de École doctorale Astronomie et astrophysique d'Île-de-France (Meudon, Hauts-de-Seine) , en partenariat avec Office national d'études et de recherches aérospatiales (France). Département Optique et Techniques Associées (laboratoire) , Observatoire de Paris (établissement opérateur d'inscription) et de DOTA- ONERA- Université Paris Saclay / DOTA, ONERA, Université Paris Saclay (F-91123 Palaiseau - France) (laboratoire) .

Le président du jury était Gérard Rousset.

Le jury était composé de Laurent Mugnier, Jean-Marc Conan, Delphine Debarre, Michaël Atlan, Arnaud Dubois.

Les rapporteurs étaient Delphine Debarre, Michaël Atlan.


  • Résumé

    L’imagerie en profondeur in vivo à deux photons est sévèrement limitée par les aberrations optiques. L'optique adaptative est maintenant une technique largement utilisée pour résoudre ce problème. Elle repose sur une des nombreuses techniques possibles de mesure de front d'onde. L'estimation du front d'onde indirecte ou sensorless présente l'avantage d'être facile à mettre en œuvre sur les systèmes existants.L'approche modale sensorless, développée initialement pour l’imagerie à deux photons par Débarre et al., est devenue une technique standard fondée sur la maximisation d'une métrique de qualité d'image telle que l'intensité moyenne de l'image.Cependant, le front d'onde indirectement inféré est influencé par l'échantillon, qui peut induire un biais fort dans l'estimation. Cet effet est connu sous le nom de dépendance en l'échantillon.Ce travail de doctorat vise à développer une approche modale sensorless améliorée qui n'est pas affectée par la dépendance en l'échantillon. J'ai d'abord étudié l'impact des aberrations et de la structure de l'échantillon sur l'intensité moyenne de l'image.Je donne une nouvelle expression analytique de l'intensité moyenne de l'image est donnée qui rend explicite l'interaction entre la forme de la PSF 3D et la distribution spatiale de l'échantillon. À partir de simulations numériques, je montre que la sensibilité de la métrique aux aberrations est préservée pour des échantillons beaucoup plus grands que la résolution spatiale. Deuxièmement, j'étudie l'approche Standard Modal Sensorless (SMS) pour différents types d'échantillons.Je caractérise le problème de la dépendance en l'échantillon induit par des structures très fluorescentes situées hors de la profondeur de focalisation.Ensuite, je montre que la technique displacement-free n’élimine pas complètement la dépendance en l'échantillon.Cette analyse aboutit au développement de notre approche nommée Axially-Locked Modal Sensorless (ALMS). Cette nouvelle approche résout la dépendance en l'échantillon par un réglage automatique et contrôlé de la profondeur de focalisation afin de verrouiller la focalisation sur des motifs brillants de l'échantillon. En outre, l'approche ALMS se fonde également sur une métrique de qualité d'image spécialement conçue pour ce verrouillage. La performance de cette approche est numériquement comparée aux approches SMS et displacement-free. Enfin, ALMS est validée par des tests expérimentaux ex vivo et in vivo.

  • Titre traduit

    Development of a new sensorless wavefront sensing approach for two photon microscopy : application to in vivo imaging of the hippocampus


  • Résumé

    Deep in vivo two-photon microscopy is severely limited by optical aberrations. Adaptive optics is now a widely used technique to overcome this issue. It relies on one of several possible wavefront sensing techniques. Indirect or sensorless wavefront estimation has the advantage of being easy-to-implement on existing systems. Modal sensorless approach, initially developed for two photon imaging by Débarre et al., has become a standard technique based on the maximization of an image quality metric such as the mean image intensity.However, the indirectly inferred wavefront is influenced by the sample, which may induce a strong bias in the estimation, the so-called sample dependence. This PhD work aims at developing an improved modal sensorless approach that is not affected by sample dependence.I first study the impact of aberrations and of the sample structure on the mean image intensity.A new analytical expression of the mean image intensity is given and makes explicit the interplay between the shape of the 3D PSF and the sample spatial distribution. Through numerical simulations I show that the metric sensitivity to aberrations is preserved for samples much larger than the spatial resolution.Secondly, I study the Standard Modal Sensorless (SMS) approach for different sample scenarios. I characterize the sample dependence issue induced by strong fluorescent structures located out-of-focus. Then, I show that the displacement-free technique fails at fully removing the sample dependence. This analysis leads to the development of our Axially-Locked Modal Sensorless approach (ALMS). This new approach solves the sample dependence by an automatic and controlled adjustment of the focusing depth so as to lock on bright sample features. Furthermore, the ALMS approach is based on a specifically designed image quality metric.The performance of this approach is numerically compared with the SMS and the displacement-free approaches. Finally, ALMS is demonstrated through ex vivo and in vivo experimental tests.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : PARIS-PSL (Paris). Observatoire de Paris : Thèses électroniques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.