Prédiction personalisée des effets secondaires indésirables de médicaments

par Víctor Bellón Molina

Thèse de doctorat en Bio-informatique

Sous la direction de Véronique Stoven et de Chloé-Agathe Azencott.

Soutenue le 24-05-2017

à Paris Sciences et Lettres , dans le cadre de École doctorale Sciences des métiers de l'ingénieur (Paris) , en partenariat avec Centre de bio-informatique (Fontainebleau, Seine et Marne) (laboratoire) et de École nationale supérieure des mines (Paris) (Établissement de préparation de la thèse) .

Le président du jury était Bertram Müller-Myhsok.

Le jury était composé de Véronique Stoven, Chloé-Agathe Azencott, Pierre Neuvial.

Les rapporteurs étaient Florence d' Alché-Buc, Jean-Loup Faulon.


  • Résumé

    Les effets indésirables médicamenteux (EIM) ont des répercussions considérables tant sur la santé que sur l'économie. De 1,9% à 2,3% des patients hospitalisés en sont victimes, et leur coût a récemment été estimé aux alentours de 400 millions d'euros pour la seule Allemagne. De plus, les EIM sont fréquemment la cause du retrait d'un médicament du marché, conduisant à des pertes pour l'industrie pharmaceutique se chiffrant parfois en millions d'euros.De multiples études suggèrent que des facteurs génétiques jouent un rôle non négligeable dans la réponse des patients à leur traitement. Cette réponse comprend non seulement les effets thérapeutiques attendus, mais aussi les effets secondaires potentiels. C'est un phénomène complexe, et nous nous tournons vers l'apprentissage statistique pour proposer de nouveaux outils permettant de mieux le comprendre.Nous étudions différents problèmes liés à la prédiction de la réponse d'un patient à son traitement à partir de son profil génétique. Pour ce faire, nous nous plaçons dans le cadre de l'apprentissage statistique multitâche, qui consiste à combiner les données disponibles pour plusieurs problèmes liés afin de les résoudre simultanément.Nous proposons un nouveau modèle linéaire de prédiction multitâche qui s'appuie sur des descripteurs des tâches pour sélectionner les variables pertinentes et améliorer les prédictions obtenues par les algorithmes de l'état de l'art. Enfin, nous étudions comment améliorer la stabilité des variables sélectionnées, afin d'obtenir des modèles interprétables.

  • Titre traduit

    Personalized drug adverse side effect prediction


  • Résumé

    Adverse drug reaction (ADR) is a serious concern that has important health and economical repercussions. Between 1.9%-2.3% of the hospitalized patients suffer from ADR, and the annual cost of ADR have been estimated to be of 400 million euros in Germany alone. Furthermore, ADRs can cause the withdrawal of a drug from the market, which can cause up to millions of dollars of losses to the pharmaceutical industry.Multiple studies suggest that genetic factors may play a role in the response of the patients to their treatment. This covers not only the response in terms of the intended main effect, but also % according toin terms of potential side effects. The complexity of predicting drug response suggests that machine learning could bring new tools and techniques for understanding ADR.In this doctoral thesis, we study different problems related to drug response prediction, based on the genetic characteristics of patients.We frame them through multitask machine learning frameworks, which combine all data available for related problems in order to solve them at the same time.We propose a novel model for multitask linear prediction that uses task descriptors to select relevant features and make predictions with better performance as state-of-the-art algorithms. Finally, we study strategies for increasing the stability of the selected features, in order to improve interpretability for biological applications.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Paris Sciences et Lettres. Thèses électroniques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.