Solutions variationnelles et solutions de viscosité de l'équation de Hamilton-Jacobi

par Valentine Roos

Thèse de doctorat en Sciences

Sous la direction de Patrick Bernard.

Soutenue le 30-06-2017

à Paris Sciences et Lettres , dans le cadre de Ecole doctorale de Dauphine (Paris) , en partenariat avec Centre de recherche en mathématiques de la décision (Paris) (laboratoire) et de Université Paris-Dauphine (Etablissement de préparation de la thèse) .

Le président du jury était Claude Viterbo.

Le jury était composé de Claude Viterbo, Guy Barles, Jean-Claude Sikorav, Marie-Claude Arnaud, Alain Chenciner, Cyril Imbert.

Les rapporteurs étaient Guy Barles, Jean-Claude Sikorav.


  • Résumé

    On étudie l'équation de Hamilton-Jacobi évolutive du premier ordre, couplée avec une donnée initiale lipschitzienne. Le but est de comparer les solutions de viscosité et les solutions variationnelles pour cette équation, deux notions de solutions faibles qui coïncident en dynamique hamiltonienne convexe. Pour travailler dans un cadre pertinent pour les deux types de solutions, on doit d’abord construire une solution variationnelle sans hypothèse de compacité sur la variété ou le hamiltonien étudiés. On retrace dans ce cas la construction historique des solutions variationnelles, en détaillant les propriétés de la famille génératrice obtenue par la méthode des géodésiques brisées. Il en découle des estimées permettant d’obtenir la solution de viscosité à partir de la solution variationnelle par un procédé d’itération. Après avoir vérifié que la solution variationnelle construite coïncide effectivement avec la solution de viscosité pour un Hamiltonien convexe, on caractérise les Hamiltoniens intégrables pour lesquels cette propriété persiste, en étudiant attentivement des exemples élémentaires en dimension 1 et 2.

  • Titre traduit

    Variational and viscosity solutions of the Hamilton-Jacobi equation


  • Résumé

    We study the first order Hamilton-Jacobi equation associated with a Lipschitz initial condition. The purpose of this thesis is to compare two notions of weak solutions for this equation, namely the viscosity solution and the variational solution, that are known to coincide in convex Hamiltonian dynamics. In order to work in a relevant framework for both notions, we first need to build a variational solution without compactness assumption on the manifold or the Hamiltonian. To do so, we follow the historical construction, detailing properties of the generating family obtained via the broken geodesics method. Local estimates allow to prove that the viscosity solution can be obtained from the variational solution via an iterative process. We then check that this construction gives effectively the viscosity solution for a convex Hamiltonian, and characterize the integrable Hamiltonians for which this property persists by carefully studying elementary examples in dimension 1 and 2.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Solutions variationnelles et solutions de viscosité de l'équation de Hamilton-Jacobi


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : PARIS-PSL (Paris). Université Paris-Dauphine. Service commun de la documentation : Thèses électroniques Dauphine.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.
Cette thèse a donné lieu à 1 publication .

Consulter en bibliothèque

à

Informations

  • Sous le titre : Solutions variationnelles et solutions de viscosité de l'équation de Hamilton-Jacobi
  • Détails : 1 vol. (118 p.)
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.