Thèse soutenue

Études du couplage entre turbulence et gradient de température pour l'intensification des transferts de chaleur dans les récepteurs solaires à haute température
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Morgane Bellec
Direction : Adrien Toutant
Type : Thèse de doctorat
Discipline(s) : Sciences de l'ingénieur
Date : Soutenance le 04/01/2017
Etablissement(s) : Perpignan
Ecole(s) doctorale(s) : École doctorale Énergie environnement (Perpignan)
Partenaire(s) de recherche : Laboratoire : Laboratoire Procédés, matériaux et énergie solaire (Perpignan) - Procédés- Matériaux et Energie Solaire / PROMES
Jury : Examinateurs / Examinatrices : François Lusseyran, Marc Medale, Gabriel Olalde, Fabien Anselmet
Rapporteurs / Rapporteuses : François Lusseyran, Marc Medale

Résumé

FR  |  
EN

Une voie prometteuse pour améliorer le rendement des centrales solaires à tour consiste à chauffer de l'air pressurisé à haute température afin d'alimenter un cycle thermodynamique de Brayton. Pour cela, il est indispensable de concevoir des récepteurs solaires performants,permettant de forts transferts de chaleur vers le fluide. Le développement de tels récepteurs passe par une compréhension fine de leurs écoulements internes. Il s'agit d'écoulements complexes, combinant de hauts niveaux de turbulence et un fort gradient de température entre la paroi irradiée par le flux solaire concentré et la paroi arrière isolée. On se propose dans ce travail de réaliser une étude amont numérique et expérimentale de ce type d'écoulements.D'une part, des mesures de vitesse par SPIV (vélocimétrie par images de particules stéréoscopique) sont effectuées dans une soufflerie de canal plan turbulent lisse dont la cellule de mesure est représentative d'un récepteur solaire surfacique. On observe en particulier l'influence d'un chauffage asymétrique sur les statistiques de la turbulence. Ces mesures sont d'autre part complétées par des simulations fines LES (simulation des grandes échelles)menées dans les conditions de la soufflerie. Pour finir, une simulation LES d'un canal plan texturé sur une paroi par une géométrie innovante est conduite. Cette architecture interne du récepteur combine des générateurs de tourbillon et des riblets afin d'intensifier les échanges de chaleur vers le fluide.