Analysis and Geometry of RCD spaces via the Schrödinger problem

par Luca Tamanini

Thèse de doctorat en Mathématiques

Sous la direction de Christian Léonard et de Nicola Gigli.

Le président du jury était Olivier Raimond.

Le jury était composé de Christian Léonard, Nicola Gigli, Olivier Raimond, Ivan Gentil, Andrei A. Agrachev, Massimiliano Berti, Gianni Dal Maso.

Les rapporteurs étaient Ivan Gentil, Giuseppe Savaré.

  • Titre traduit

    Analyse et géométrie des espaces RCD par le biais du problème de Schrödinger


  • Résumé

    Le but principal de ce manuscrit est celui de présenter une nouvelle méthode d'interpolation entre des probabilités inspirée du problème de Schrödinger, problème de minimisation entropique ayant des liens très forts avec le transport optimal. À l'aide de solutions au problème de Schrödinger, nous obtenons un schéma d'approximation robuste jusqu'au deuxième ordre et différent de Brenier-McCann qui permet d'établir la formule de dérivation du deuxième ordre le long des géodésiques Wasserstein dans le cadre de espaces RCD* de dimension finie. Cette formule était inconnue même dans le cadre des espaces d'Alexandrov et nous en donnerons quelques applications. La démonstration utilise un ensemble remarquable de nouvelles propriétés pour les solutions au problème de Schrödinger dynamique :- une borne uniforme des densités le long des interpolations entropiques ;- la lipschitzianité uniforme des potentiels de Schrödinger ;- un contrôle L2 uniforme des accélérations. Ces outils sont indispensables pour explorer les informations géométriques encodées par les interpolations entropiques. Les techniques utilisées peuvent aussi être employées pour montrer que la solution visqueuse de l'équation d'Hamilton-Jacobi peut être récupérée à travers une méthode de « vanishing viscosity », comme dans le cas lisse.Dans tout le manuscrit, plusieurs remarques sur l'interprétation physique du problème de Schrödinger seront mises en lumière. Cela pourra aider le lecteur à mieux comprendre les motivations probabilistes et physiques du problème, ainsi qu'à les connecter avec la nature analytique et géométrique de la dissertation.


  • Résumé

    Main aim of this manuscript is to present a new interpolation technique for probability measures, which is strongly inspired by the Schrödinger problem, an entropy minimization problem deeply related to optimal transport. By means of the solutions to the Schrödinger problem, we build an efficient approximation scheme, robust up to the second order and different from Brenier-McCann's classical one. Such scheme allows us to prove the second order differentiation formula along geodesics in finite-dimensional RCD* spaces. This formula is new even in the context of Alexandrov spaces and we provide some applications.The proof relies on new, even in the smooth setting, estimates concerning entropic interpolations which we believe are interesting on their own. In particular we obtain:- equiboundedness of the densities along the entropic interpolations,- equi-Lipschitz continuity of the Schrödinger potentials,- a uniform weighted L2 control of the Hessian of such potentials. These tools are very useful in the investigation of the geometric information encoded in entropic interpolations. The techniques used in this work can be also used to show that the viscous solution of the Hamilton-Jacobi equation can be obtained via a vanishing viscosity method, in accordance with the smooth case. Throughout the whole manuscript, several remarks on the physical interpretation of the Schrödinger problem are pointed out. Hopefully, this will allow the reader to better understand the physical and probabilistic motivations of the problem as well as to connect them with the analytical and geometric nature of the dissertation.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris Nanterre. Service commun de la documentation. Bibliothèque virtuelle.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.