Fabrication and investigation of III-V quantum structured solar cells with Fabry-Pérot cavity and nanophotonics in order to explore high-efficiency photovoltaic concepts : towards an intermediate band assisted hot carrier solar cell

par Benoît Behaghel

Thèse de doctorat en Physique

Sous la direction de Jean-François Guillemoles.

Le président du jury était Alexandra Fragola.

Le jury était composé de Christian Seassal, Christophe Sauvan, Yoshitaka Okada, Stéphane Collin.

Les rapporteurs étaient Christian Seassal, Guilhem Almuneau.

  • Titre traduit

    Fabrication et investigation de cellules solaires III-V à structures quantiques avec cavité de Fabry-Pérot et structures nanophotoniques dans le but d’explorer des concepts photovoltaïque à haut rendement


  • Résumé

    Le photovoltaïque (PV) s’est imposé comme un acteur majeur de l’énergie. L’innovation dans ce domaine passera sans doute par le PV à haut rendement sur des couches minces flexibles et légères permettant son déploiement dans les applications mobiles. Cette thèse étudie le développement de cellules solaires III-V à structures quantiques visant des concepts PV hauts rendements tels les cellules solaires à bande intermédiaire (IBSC). Ces IBSC se sont montrés limités du fait de l’échappement thermique des porteurs à température ambiante ainsi que la faible absorption optique sous le gap. Nous avons évalué la topologie, le mécanisme d’échappement thermique, la structure quantique ainsi que l’absorption de boites quantiques en In(Ga)As dans un matériau hôte en Al0.2GaAs à grand gap. Nous avons aussi caractérisé de manière quantitative comment opère ce système et avons amélioré son design optique. Sous une forte irradiation, nous avons mis en évidence l’apparition d’une population de porteurs chauds dans les boites quantiques. Par ailleurs, l’effet d’absorption sequentielle à deux photons (S-TPA) a été démontré. Nous avons observé une augmentation de ce S-TPA d’un facteur x5-10 grâce à du management de la lumière réalisé notamment avec des cavités de Fabry-Pérot. Des nanostructures périodiques ont aussi été fabriquées dans le cas de cellules solaires à multi-puits quantiques par l’utilisation de lithographie en nanoimpression. Dans l’ensemble cette étude vise à discuter la possibilité de réaliser des cellules solaires à porteurs chauds assistés d’une bande intermédiaire et améliorées par un management optique afin d’ouvrir la voie pour des cellules à hauts rendements.


  • Résumé

    In the past decade, photovoltaics (PV) has become a key player for the future of worldwide energy generation. Innovation in PV is likely to rely on high efficiency PV with flexible and lightweight thin films to enable PV deployement for mobile applications. In the framework of the Japanese-French laboratory “NextPV”, this thesis investigates the development of III-V quantum structured solar cells to explore high-efficiency photovoltaic concepts especially intermediate band solar cells (IBSC). Quantum structured IBSC have proven to be limited by thermal escape at room temperature and by low subbandgap light absorption. Following a consistent approach, we evaluate the topology, thermal escape mechanism, quantum structure and optical absorption of In(Ga)As quantum dots in a wide gap Al0.2GaAs host material. We also characterize quantitatively the device operation and improve the optical design. For a high irradiation, we evidence a hot carrier population in the quantum dots. At the same time, sequential two-photon absorption (S-TPA) is demonstrated both optically and electrically. We also show that S-TPA for both subbandgap transitions can be enhanced by a factor x5-10 with light management techniques, for example by implementation of Fabry-Perot cavities with the different epitaxial transfer methods that we developed. More advanced periodical nanostructures were also fabricated in the case of multi-quantum well solar cells using nanoimprint lithography techniques. Overall we discuss the possibility of realizing intermediate-band-assisted hotcarrier solar cells with light management to open the path for high-efficiency quantum structured IBSC.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.