Evolution pétrologique et déformation des semelles métamorphiques des ophiolites : mécanismes d'accrétion et couplage à l'interface des plaques lors de l'initiation de la subduction

par Mathieu Soret

Thèse de doctorat en Géosciences

Sous la direction de Philippe Agard et de Benoît Dubacq.

Soutenue le 13-01-2017

à Paris 6 , dans le cadre de École doctorale Géosciences, ressources naturelles et environnement (Paris) , en partenariat avec Institut des Sciences de la Terre de Paris / iSTeP (laboratoire) .

Le président du jury était Loïc Labrousse.

Le jury était composé de Carl Guilmette, Marco Herwegh, Philippe Yamato.

Les rapporteurs étaient Edwin Gnos.


  • Résumé

    Les semelles métamorphiques sont des unités d’origine océanique (≤ 500 m d’épaisseur) situées à la base des grandes ophiolites obductées (≤ 20 km d’épaisseur). Ces unités sont caractérisées par un gradient métamorphique inverse, où les conditions de pression (P) et de température (T) de cristallisation augmentent de la base vers le contact avec l’ophiolite sus-jacente : depuis 500±100˚C et 0.5±0.2 GPa jusqu'à 800±100˚C et 1.0±0.2 GPa. Formées et exhumées au cours des 2 Ma suivant l’initiation des subductions océaniques, les semelles sont des témoins directs de leur dynamique précoce. Les assemblages minéralogiques qu’elles portent et leur déformation fournissent des contraintes majeures, et rares, sur l’évolution de la structure thermique et sur le comportement mécanique de l’interface de subduction naissante. Au terme d'une étude pétrologique, (micro-) structurale et expérimentale sur les amphibolites naturelles de la semelle de Semail (Oman, UAE) et synthétisées en laboratoire, nous proposons un modèle où la semelle métamorphique résulte d’épisodes multiples d’accrétion d’unités homogènes en P–T (donc sans gradient métamorphique) au cours des premières étapes de subduction océanique. L’écaillage subséquent résulte de changements majeurs dans la distribution de la déformation, du fait des variations des propriétés mécaniques des roches à l’interface de subduction lors de son équilibration thermique et de l’augmentation au cours du temps de la proportion de sédiments entrant en subduction. Ce modèle rend compte d’une grande complexité thermique et mécanique à l’interface de subduction, encore insuffisamment examinée dans les études numériques actuelles.

  • Titre traduit

    Petrological and deformation evolution of metamorphic soles beneath ophiolites : mechanism of accretion and coupling at the plate interface during subduction initiation


  • Résumé

    Metamorphic soles are m to ~500 m thick tectonic slices welded beneath most large-scale ophiolites (usually ≤ 20 km thick). They typically show a steep inverted metamorphic structure where the pressure (P) and temperature (T) conditions of crystallization increase upward, from the base of the sole (500±100ºC at 0.5±0.2 GPa) to the contact with the overlying peridotite (800±100ºC at 1.0±0.2 GPa). Soles are interpreted as a result of heat transfer from the incipient mantle wedge toward the nascent slab during the first My of intra-oceanic subduction. Metamorphic soles are therefore direct witnesses of petrological processes during early subduction. Their mineralogical assemblage and deformation pattern provide major constraints on the evolution of the thermal structure, on the migration of fluids and on the effective rheology along the nascent slab interface. We present a detailed petrological, (micro-)structural and experimental study, with refined P–T estimates obtained with pseudosection modelling and EBSD measurements, on the garnet-bearing and garnet-free (natural and synthetized) amphibolite. We suggest a new tectonic–petrological model for the formation of metamorphic soles below ophiolites, which involves the stacking of several homogeneous slivers (without any T gradient) of oceanic crust to form the present-day structure of the sole. These successive thrusts are the result of rheological contrasts between the slab material and the peridotites of the upper plate as the plate interface progressively cools. This model outlines the thermal and mechanical complexity of the early subduction dynamics, and highlights the need for more refined numerical modelling studies.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.