The contribution of connective tissues to muscle morphogenesis : an unexpected role for CXCL12 and CXCL14 chemokines

par Sonya Nassari

Thèse de doctorat en Biologie du développement

Sous la direction de Claire Fournier-Thibault et de Sigmar Stricker.

Soutenue le 02-10-2017

à Paris 6 en cotutelle avec Freie Universität (Berlin) , dans le cadre de École doctorale Complexité du vivant (Paris) , en partenariat avec Laboratoire de Biologie du Développement (laboratoire) .

Le président du jury était Gillian Butler-Browne.

Le jury était composé de Peleg Hasson, Simone Spuler.

Les rapporteurs étaient Pascal Maire, Peleg Hasson.

  • Titre traduit

    La participation du tissu conjonctif dans la morphogénèse musculaire : un rôle inattendu pour les chimiokines CXCL12 et CXCL14


  • Résumé

    Les muscles se forment au cours du développement embryonnaire, principalement grâce aux capacités de prolifération et différenciation des cellules souches musculaires, néanmoins ces capacités sont insuffisantes pour le développement correct des muscles. La formation des muscles est aussi régulée par des signaux provenant de tissus adjacents, parmi lesquels le tissu conjonctif (TC). Plusieurs facteurs de transcription spécifiquement exprimés dans le TC ont été identifiés comme étant impliqués dans la myogenèse caractérisant ainsi le TC comme une source importante de signaux dans le mécanisme de morphogénèse musculaire. Ces observations soulignent l’importance du rôle du TC dans la formation des muscles, cependant la nature moléculaire des mécanismes médiés par le TC reste à ce jour inconnue. L’objectif de ce travail de thèse a été d’établir le rôle des chimiokines CXCL12 et CXCL14 dans l’intéraction entre le TC et le développement musculaire, en utilisant l’embryon de poulet comme modèle. Dans un premier temps, nous avons défini le patron d’expression de CXCL12 et CXCL14 au cours du développement embryonnaire, et avons mis en évidence une corrélation entre la localisation de ces chimiokines et l’expression de gènes spécifiques à différentes sous populations du TC. Afin d’évaluer le rôle potentiel de ces chimiokines dans la différentiation du TC nous avons utilisé des approches de gain de fonction in vitro et in vivo et avons montré que CXCL12 et CXCL14 activent les facteurs de transcription spécifiques à différentes sous population du TC, démontrant ainsi que CXCL12 et CXCL14 régulent la différentiation du TC au cours du développement du membre. De plus, nous avons établit que la voie de signalisation BMP et les forces mécaniques régulent négativement l’expression des chimiokines CXCL12 et CXCL14. Ces résultats caractérisent pour la première fois l’implication de CXCL12 et CXCL14 dans la différentiation du TC.La deuxième partie de ce travail de thèse a visé à caractériser le rôle paracrine de CXCL12 et CXCL14 sur le développement musculaire. Nous avons pu observé que l’un des récepteur de CXCL12, CXCR7, est exprimé dans les cellules musculaires souches et différenciées, dans les ailes d’embryons de poulets. En utilisant des approches de gains et pertes de fonctions, d’une part in vitro dans des cultures primaires de myoblastes de poulets, nous avons montrés que CXCR7 favorise la myogénèse, notamment en régulant la myogénèse, tandis que CXCL12 n’a pas d’impact sur la différentiation musculaire in vitro. De plus nous avons pu constater que CXCL14 inhibe la myogénèse in vitro. Finalement, in vivo, nous avons observé que la surexpression des chimiokines entraîne un développement anormal des muscles tandis que l’expression du récepteur CXCR7 tronqué favorise le développement musculaire, soulignant l’importance de la signalisation CXCL12/14 dans le processus de morphogénèse musculaire medié par le TC. Ces résultats constituent la première démonstration d’une fonction paracrine du TC dans la morphogénèse musculaire via les chimiokines CXCL12 et CXCL14.


  • Résumé

    Skeletal muscle development mostly relies on intrinsic capacities of muscle progenitors to proliferate and differentiate. However, extrinsic signals arising from non-myogenic cells also contribute to the establishment of functional skeletal muscles. The aim of this PhD project was to investigate the role of connective-tissue (CT) on the development of skeletal muscle, using the chick embryonic limb as a model. We particularly investigated the influence of the two chemokines CXCL12 and CXCL14, which have been previously shown as expressed in limb mesenchyme giving rise to the different types of CTs during development. The involvement of CXCL12 and CXCL14 in limb CT differentiation was studied, as well as the role of these chemokines in skeletal muscle development mediated by CT. We first showed that CXCL12 and CXCL14 display distinct restricted expression patterns in limb CT of chick embryos and demonstrated that CXCL12 promotes the expression of OSR1, OSR2 and COL3A1 genes, three markers of irregular CT, while CXCL14 enhances the expression of a regular CT gene, SCX. In addition, the expression of CXCL12, CXCL14 and their putative CT target genes were all negatively regulated by the anti-fibrotic BMP signalling, but also in the absence of musculoskeletal mechanical forces. These results show for the first time the involvement of CXCL12 and CXCL14 chemokines in the differentiation of CTs. The putative role of both chemokines on CT-mediated myogenesis was then analysed. We observed that CXCR7, one CXCL12 receptor, was expressed both in muscle progenitors and differentiated muscle cells in embryonic chick limbs. Using gain- and loss-of-function approaches in primary cultures of chick limb myoblasts, we revealed that CXCR7 promoted myogenesis by regulating muscle cell fusion, while CXCL12 did not influence muscle differentiation. CXCL14 dramatically inhibits in vitro myogenesis. Functional assays performed in chick embryonic forelimbs in vivo demonstrate that overexpression of CXCL12, CXCR7 or a dominant-negative form of CXCR7 all resulted in abnormal and mispatterned muscles in chick limbs. Similarly, CXCL14 overexpression in chick limb in vivo led to profound anomalies in muscle differentiation. All together, our results demonstrate an essential contribution of CXCL12 and CXCL14 chemokines in CT differentiation and in CTmediated muscle development in embryonic limb.


  • Résumé

    Die Entwicklung der Skelettmuskulatur beruht auf den Fähigkeiten von myogenen Progenitorzellen. Im Laufe der Entwicklung proliferieren diese, differenzieren zu Myoblasten, die schließlich zu Muskelfasern fusionieren. Zur Bildung der embryonalen Muskulatur werden jedoch darüber hinaus extrinsische Signale von nicht-myogenen Zellen, vor allem Zellen des Bindegewebes, benötigt. Das Ziel dieser Arbeit war, die Rolle des Bindegewebes in der embryonalen Muskelentwicklung der Extremitäten des Hühnerembryos als Modell genauer zu untersuchen. Speziell wurde hier der Einfluss zweier Chemokine untersucht, CXCL12 und CXCL14, von denen bereits vorher gezeigt wurde, dass sie im Mesenchym der sich entwickelnden Extremität exprimiert sind. In dieser Arbeit wurde die Rolle dieser Chemokine sowohl für die Differenzierung des Bindegewebes selbst, wie auch deren Einfluss auf die Muskeldifferenzierung analysiert. Es konnte gezeigt werden, dass sowohl CXCL12 als auch CXCL14 distinkte regionale Expressionsmuster im Bindegewebe der Extremität aufweisen. Funktionell erhöht CXCL12 die Expression von OSR1, OSR2 und COL3A1, dreier Marker für irreguläres Bindegewebe, während CXCL14 die Expression eines Schlüsselmarkers für reguläres Bindegewebe (Sehne), SCX, erhöht. Die Expression von CXCL12 und CXCL14 selbst, wie auch die Expression ihrer putativen Zielgene, wurden demgegenüber durch Stimulation des antifibrotisch wirkenden BMP Signalweges negativ reguliert. Zudem bewirkte eine experimentell induzierte Muskelparalyse im Hühnerembryo eine Herunterregulation von CXCL12 und CXCL14, was bedeutet, dass die Expression beider Gene abhängig von mechanischen Signalen ist. Diese Ergebnisse involvieren zu ersten Mal die Chemokine CXCL12 und CXCL14 in die Differenzierung des Bindegewebes. Im Folgenden wurde die mögliche Rolle beider Chemokine in der Muskelentwicklung analysiert. Es wurde zunächst gezeigt, dass CXCR7, ein Rezeptor für CXCL12, in Muskelvorläufern wie auch differenzierten Muskelzellen in der Extremität des Hühnerembryos exprimiert wird. Durch Funktionsgewinn und –verlust Versuche in primären Myoblasten aus Hühnerembryos konnte gezeigt werden, dass CXCR7 die Muskelbildung durch die Beeinflussung der Zellfusion fördert, während CXCL12 keinen Einfluss hatte. Demgegenüber zeigte CXCL14 eine starke Inhibition des Myogenese in vitro. Die Misexpression von CXCL12, CXCR7 sowie dominant-negative Versionen von CXCR7 in vivo bewirkten eine abnormale Musterbildung der Extremitäten-Muskulatur. Genauso bewirkte die Misexpression von CXCL14 deutliche Veränderungen der Muskeldifferenzierung. Zusammenfassend konnte eine Funktion der Chemokine CXCL12 und CXCL14 in der Differenzierung des Bindegewebes sowie im nicht-Zell autonomen Einfluss des Bindegewebes auf die Muskelentwicklung gezeigt werden.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.