Calcul efficace de la structure des protéines à partir de contacts évolutifs

par Fabrice Allain

Thèse de doctorat en Sciences de la Vie

Sous la direction de Benjamin Bardiaux et de Michaël Nilges.

Soutenue le 30-11-2017

à Paris 6 , dans le cadre de École doctorale Complexité du vivant (Paris) , en partenariat avec Bioinformatique structurale (laboratoire) .

Le président du jury était Martin Weigt.

Le jury était composé de Sophie Zinn-Justin.

Les rapporteurs étaient Jean-Christophe Gelly, Pierre Tufféry.


  • Résumé

    Les méthodes de prédiction structurale constituent une alternative relativement efficace aux approches expérimentales pour donner un premier aperçu du repliement natif d'une protéine. L'écart entre le nombre de structures et de séquences protéiques disponibles dans les bases de données ne cesse en effet de croître depuis l'arrivée des technologies de séquençage à haut débit. Cette forte croissance des informations génomiques a remis à l'ordre du jour des techniques modélisant les données capturées au cours de l'évolution. La conservation d'une fonction protéique impose de fortes contraintes sur les contacts impliqués dans le repliement et la fonction se traduisant par une trajectoire évolutive commune. Une fois détectées, ces interactions peuvent aider à modéliser la conformation d'une protéine. Les méthodes résolvant la structure tridimensionnelle des protéines à partir des données évolutives présentent encore plusieurs limitations notamment pour la détection des contacts faux positifs. Ces problèmes restent similaires à ceux rencontrés en détermination de structure par spectrométrie de Résonnance Magnétique Nucléaire où l'intégration des données est un processus clairement établit et en grande partie automatisé. Le logiciel ARIA (Ambiguous Restraints for Iterative Assignment) utilise le concept de contraintes de distances ambiguës et suit un processus itératif afin d'attribuer et d'affiner la liste des noyaux proches dans l'espace pour calculer un ensemble de modèles structuraux en accord avec les données. Ce travail a pour objectif d'adapter cette approche pour prédire de novo la structure d'une protéine en utilisant l'information évolutive.

  • Titre traduit

    Efficient modeling of proteins structure from evolutionary contacts


  • Résumé

    Structural prediction methods provide a relatively effective alternative to experimental approaches to provide a first insight into native folding of a protein. The gap between the number of structures and protein sequences available in databases has steadily increased since the advent of high throughput sequencing technologies. This strong growth of genomic information helped bring to light prediction tools using coevolutionary data. Conservation of a specific function implies strong restraints on interacting residues involved in the folding and function. Once detected, these interactions can help to model the conformation of a protein. Some important aspects needs to be improved during the modelling process including the detection of false positive among the predicted contacts. Limitations in the field are similar to those encountered in nuclear magnetic resonance spectrometry structure determination where data integration is a clearly established and largely automated process. The Ambiguous Restraints for Iterative Assignment (ARIA) software uses the concept of ambiguous distance restraints and follows an iterative process to assign and refine the list of nearby nuclei in space to compute a set of structural models in accordance with the data. This work aims to adapt this approach to de novo predict the structure of a protein using evolutionary information.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.