Synthèse de nanogels biocompatibles et multi-stimulables pour la libération contrôlée d'une molécule modèle par hyperthermie magnétique et photothermie

par Esther Del Carmen Cázares Cortés

Thèse de doctorat en Chimie Physique et Chimie Analytique

Sous la direction de Christine Ménager.

Soutenue le 20-12-2017

à Paris 6 , dans le cadre de École doctorale Chimie physique et chimie analytique de Paris Centre (Paris) , en partenariat avec PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX / PHENIX (laboratoire) .

Le président du jury était Christian Bonhomme.

Le jury était composé de Rachel Auzely-Velty.

Les rapporteurs étaient Laurence Motte, Olivier Sandre.


  • Résumé

    Les nanogels hybrides constitués de polymères thermosensibles et de nanoparticules inorganiques stimulables telles que des nanoparticules magnétiques (NPMs) ou des nanobatônnets d’or (AuNRs) sont extrêmement intéressants pour des applications biomédicales. Leur matrice en polymère permet d’encapsuler et de libérer de grandes quantités de molécules actives, alors que les nanoparticules peuvent générer de la chaleur lorsqu’elles sont exposées à un champ magnétique alternatif (AMF) pour les NPMs, et à une irradiation proche infrarouge (NIR-L) pour les AuNRs. Ce manuscrit de thèse porte sur la synthèse et la caractérisation de nanogels biocompatibles, pH- et thermosensibles, à base de monomères en oligo (éthylène glycol) méthyl éther méthacrylate (OEGMAs), d’acide méthacrylique (MAA) et encapsulant des NPMs et/ou des AuNRs pour déclencher de manière contrôlée, par hyperthermie magnétique ou par photothermie, la libération d’une molécule anticancéreuse, la doxorubicine (DOX). Des nanogels hybrides magnétiques, plasmoniques et magnéto-plasmoniques ont été synthétisés. Ces nanogels ont un diamètre hydrodynamique entre 200 et 500 nm et une température de transition de phase volumique comprise entre 30 et 54 °C. Le comportement de gonflement-dégonflement des nanogels peut être induit par plusieurs stimuli (température, pH, AMF, NIR-L). Ces résultats démontrent que les MagNanoGels sont d’excellents nanovecteurs pour accroître l’internalisation cellulaire en augmentant la cytotoxicité de la DOX et qu’il est possible de déclencher à distance la libération intracellulaire de DOX sous AMF dans des conditions athermiques. Par ailleurs, les PlasMagNanoGels peuvent générer efficacement de la chaleur par photothermie pour une thermothérapie. En outre, les propriétés intrinsèques des NPMs, pour le ciblage magnétique et en tant qu’agents de contraste pour l’imagerie par résonance magnétique (MRI), font de ces nanogels des candidats idéaux pour une nouvelle approche thérapeutique (diagnostique et traitement) contre le cancer.

  • Titre traduit

    Synthesis of biocompatible and multi-responsive nanogels for a controlled release of a model molecule by magnetic hyperthermia and photothermia


  • Résumé

    Hybrid nanogels, composed of thermoresponsive polymers and inorganic responsive nanoparticles, such as magnetic nanoparticles (NPMs) and gold nanorods (AuNRs) are highly interesting for biomedical applications. Their polymeric matrix makes them able to uptake and release high quantities of drugs, whereas nanoparticles can generate heat when exposed to an alternating magnetic field (AMF) for NPMs, and to a near-infrared light for AuNRs. This thesis manuscript focuses on the synthesis and the characterization of biocompatible, pH- and thermoresponsive nanogels, based on oligo(ethylene glycol) monomers (OEGMAs), methacrylic acid (MAA) and encapsulating NPMs and/or AuNR for remotely triggered doxorubicin (DOX, anticancer drug) release, by magnetic hyperthermia or phothothermia. Hybrid magnetic, plasmonic and magneto-plasmonic nanogels were synthesized. Theses nanogels have a hydrodynamic diameter between 200 and 500 nm and a volume phase transition temperature (VPTT) from 30 to 54°C. The nanogels’ swelling-deswelling behavior can be induced by several stimuli (temperature, pH, AMF, NIR-L). These results demonstrate that MagNanoGels are excellent nanocarriers for enhancing cellular internalization enhancing DOX cytotoxicity and that DOX release was significantly enhanced upon exposure to AMF in athermic conditions. In addition, PlasMagNanoGels can efficiently generate heat by photothermy for thermotherapy. Therefore, the intrinsic properties of NPMs for magnetic targeting and as contrast agents for Magnetic Resonance Imaging (MRI), make these nanogels ideal candidates for a new therapeutic approach (diagnosis and treatment) against cancer.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.