From continental rifting to conjugate margins : insights from analogue and numerical modelling

par Anouk Beniest

Thèse de doctorat en Géosciences

Sous la direction de Sylvie Leroy et de William Sassi.

Soutenue le 08-12-2017

à Paris 6 , dans le cadre de École doctorale Géosciences, ressources naturelles et environnement (Paris) , en partenariat avec Institut des Sciences de la Terre de Paris (laboratoire) .

Le président du jury était Claudio Rosenberg.

Le jury était composé de Sveva Corrado, Muriel Gerbault, Sierd Cloethingh, Xavier Guichet.

Les rapporteurs étaient Mathilde Cannat, Claudio Faccenna.

  • Titre traduit

    Du rifting continental aux marges conjuguées : aperçus de la modélisation analogique et numérique


  • Résumé

    Les marges conjuguées de l'Atlantique Sud sont le produit du rifting et de la rupture du continent Pangée. Ce continent présente une hétérogénéité crustale et lithosphérique importante, dont la prise en compte est un objectif de la thèse. Afin de comprendre la rupture continentale à l'échelle lithosphérique de systèmes de rhéologies préexistantes très différentes, nous avons effectué des modélisations, analogique et numérique. Les modèles analogiques s'attachent à montrer l'effet des forces externes sur un tel système hétérogène tandis que les modèles numériques, thermomécaniques, se concentrent sur l'impact des anomalies de fusion du manteau sur le rifting avec une telle configuration.Avec la modélisation analogique, l'effet des forces aux limites sur un système composé de deux segments de rhéologies différentes a été testé à l’échelle de la lithosphère pour comprendre l'influence de l'hétérogénéité rhéologique dans un système en extension. Les résultats montrent que dans un système combiné, toute l'extension se produit dans le segment faible et que le contact entre les deux segments ne joue pratiquement aucun rôle dans l'initiation des failles. Lorsque le segment le plus faible contient une couche résistante dans le manteau supérieur, le rift évolue en deux phases. La première phase montre un système de failles larges où la déformation est distribuée. Une fois que la partie résistante du manteau supérieur est suffisamment affaiblie, l'extension se localise le long d'une zone de faille étroite. Si l'extension continuait, la rupture se produirait à cet emplacement, dans une partie plutôt homogène alors que le système est latéralement hétérogène. Le résultat de ce système extensif serait des marges asymétriques avec une croûte faible/hyper-étirée sur deux marges.Les résultats numériques montrent que, dans le cas de la rupture continentale induite par un panache, le mode de rupture «central», où la rupture se localise au-dessus du point de l'impact du panache, est une forme de rupture continentale parmi d'autres. Ainsi, lorsque l'anomalie de fusion du manteau est localisée de manière décalée par rapport au contact entre les segments rhéologiques, un mode de rupture "décalé" peut se développer. Dans ce cas, le matériel du panache atteint la base de la lithosphère et s’écoule latéralement jusqu’au contact entre les deux segments rhéologiques où le rifting se localise in fine. La partie du matériel qui n’arrive pas au centre de la zone de rupture, se situe au niveau de la croûte inférieure ou bien plus profond, ressemblant aux corps de densité/vitesse élevées imagés le long des marges de l'Atlantique Sud. De plus, le mode «décalé» reproduit l'asymétrie des marges conjuguées...


  • Résumé

    The South Atlantic conjugate margins are the product of continental rifting and break-up of Pangea, which was made up of different crustal features prior to rifting. This study investigates continental rift initiation and break-up of alternative lithospheric setups, consisting of large segments with different rheological strength, with the use of analogue and numerical modelling. The analogue models investigate the effect of far-field forces on a system that consist of multiple rheological segments, whereas the numerical models include thermal processes and focus on the impact of initial plume emplacement on such a setup.Lithosphere-scale analogue models consisting of two different rheological compartments have been subjected to extensional forces, to understand effect of far-field forces on large rheological heterogeneities in a system within an extensional tectonic regime. The results show that in such a system, the weaker segment accommodates all the extension. At the contact between the two compartments no rift-initiation is observed. In the presence of a strong sub-Moho mantle, the rift evolution consists of two phases. The first phase is a wide or distributed rift event. Once the strong part of the upper mantle has sufficiently weakened, the rift localizes and a narrow rift continues to accommodate the extension. If extension would continue, break-up would happen at the location of the narrow rift, thereby breaking a rather homogenous part within a laterally heterogeneous system. This would result in asymmetric margins with hyperextended, weak crust on both margins.The numerical results show that, in the case of plume-induced continental break-up, the classical ‘central’ mode of break-up, where the break-up centre develops above the plume-impingement point is not the only form of continental break-up. When the mantle anomaly is located off-set from the contact between rheological segments, a ‘shifted’ mode of break-up may develop. In this case, the mantle plume material rises to the base of the lithosphere and migrates laterally to the contact between two rheological segments where rifting initiates. Mantle material that does not reach the spreading centre and remains at lower crustal depths, resemble high density/high velocity bodies at depth found along the South Atlantic margin and providing geometric asymmetry.Further investigation on the exact influence of the initial plume position with respect to the contact between the rheological compartments shows that there is a critical distance for which the system develops either ‘central’ (or ‘plume-induced’) continental break-up or ‘shifted’ (or ‘structural inherited’) continental break-up. For Moho temperatures of 500 – 600 oC, there is a window of ~50 km where the system creates two break-up branches. These results explain complex rift systems with both vertical penetration of plume material into the overlying lithosphere as well as reactivated inherited structures developing break-up systems both aided by the same mantle plume...


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.