Algorithmes de détection et diagnostic des défauts pour les convertisseurs statiques de puissance

par Abbass Zein Eddine

Thèse de doctorat en Automatique, signal, productique, robotique

Sous la direction de Dimitri Lefebvre et de Abbas Hijazi.

Le président du jury était Abbas Fardoun.

Le jury était composé de Iyad Zaarour, François Guérin, Bilal Saeed.

Les rapporteurs étaient Hassan Noura, Cécile Labarre.


  • Résumé

    Les convertisseurs DC-DC suscitent un intérêt considérable en raison de leur puissance élevée et de leurs bonnes performances. Ils sont particulièrement utiles dans les systèmes multisources de production d'énergie électrique. Toutefois, en raison du grand nombre de composants sensibles utilisés dans ces circuits et comprenant des semi-conducteurs de puissance, des bobines et des condensateurs, une probabilité non négligeable de défaillance des composants doit être prise en compte. Cette thèse considère l'un des convertisseurs DC-DC les plus prometteurs - le convertisseur ZVS à pont isolé de type Buck. Une approche en deux étapes est présentée pour détecter et isoler les défauts en circuit ouvert dans les semi-conducteurs de puissance des convertisseurs DC-DC. La première étape concerne la détection et la localisation des défauts dans un convertisseur donne. La seconde étape concerne sur les systèmes munis de plusieurs convertisseurs DC-DC. Les méthodes proposées sont basées sur les réseaux Bayesiens (BBN). Les signaux utilisés dans ces méthodes sont ceux des entrées de mesure du système de commande et aucune mesure supplémentaire n'est requise. Un convertisseur expérimental ZVS à pont isolé de type Buck a été conçu et construit pour valider la détection et la localisation des défauts Sur un seul convertisseur. Ces méthodes peuvent être étendues à d'autres types de convertisseurs DC-DC.

  • Titre traduit

    Fault detection and diagnosis algorithms for power converters


  • Résumé

    DC-DC converters have received significant interest recently as a result of their high power capabilities and good power quality. They are of particular interest in systems with multiple sources of energy. However due to the large number of sensitive components including power semiconductor devices, coils, and capacitors used in such circuits there is a high likelihood of component failure. This thesis considers one of the most promising DC-DC converters—the ZVS full bridge isolated Buck converter. An approach with two stages is presented to detect and isolate opencircuit faults in the power semiconductor devices in systems with DC-DC converters. The first stage is the fault detection and isolation for a single DC-DC converter, while the second stage works on a system with multiple DC-DC converters. The proposed methods are based on Bayesian Belief Network (BBN). The signals used in the proposed methods are already available as measurement inputs to control system and no additional measurements are required. An experimental ZVS full bridge isolated Buck converter has been designed and built to validate the fault detection and isolation method on a single converter. The methods can be used with other DC-DC converter typologies employing similar analysis and principals.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Algorithmes de détection et diagnostic des défauts pour les convertisseurs statiques de puissance


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université du Havre. Service commun de la documentation. Bibliothèque centrale.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.
Cette thèse a donné lieu à 1 publication .

Consulter en bibliothèque

à

Informations

  • Sous le titre : Algorithmes de détection et diagnostic des défauts pour les convertisseurs statiques de puissance
  • Détails : 1 vol. (142 p.)
  • Notes : Thèse soutenue en co-tutelle.
  • Annexes : Bibliogr. p. 139-142
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.