Equations de Hamilton-Jacobi sur des réseaux et applications à la modélisation du trafic routier

par Mamdouh Zaydan

Thèse de doctorat en Mathématiques

Sous la direction de Nicolas Forcadel.

Le président du jury était Hasnaa Zidani.

Le jury était composé de Nicolas Forcadel, Ahmad Fino, Olivier Ley, Ioana Ciotir, Emmanuel Chasseigne.

Les rapporteurs étaient Ahmad Fino, Olivier Ley.


  • Résumé

    Cette thèse porte sur l’analyse et l’homogénéisation d’équations aux dérivées partielles (EDP) posées sur des réseaux avec des applications en trafic routier. Deux types de travaux ont été réalisés : le premier axe de travail consiste à considérer des modèles microscopiques de trafic routier et d’établir une connexion entre ces modèles et des modèles macroscopiques du genre de ceux introduit par Imbert et Monneau [1]. Une telle connexion va permettre de justifier rigoureusement les modèles macroscopiques du trafic routier. En effet, les modèles microscopiques décrivent la dynamique de chaque véhicule individuellement et sont donc plus faciles à justifier du point de vue modélisation. Par contre, ces modèles ne sont pas utilisables pour décrire le trafic à grande échelle (des villes par exemple). Les modèles macroscopiques font le jeu inverse : ils sont fort pour décrire le trafic à grande échelle mais du point de vue modélisation, ils sont compliqués à mettre en œuvre pour prédire toutes les situations du trafic (par exemple trafic libre ou congestionné). Le passage du microscopique au macroscopique est fait en s’appuyant sur la théorie des solutions de viscosité et en particulier les techniques d’homogénéisation. Le second axe consiste à considérer une équation d’Hamilton-Jacobi avec une jonction qui bouge en temps. Cette équation peut décrire la circulation des voitures sur une route avec la présence d’un véhicule particulier (plus lent que les voitures par exemple). On prouve l’existence et l’unicité (par un principe de comparaison) d’une solution de viscosité pour cette EDP. [1] Cyril Imbert and Régis Monneau. Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks. Annales Scientifiques de l’ENS, 50(2) :357–448, 2013.

  • Titre traduit

    Hamilton-Jacobi equations on networks and application to traffic flow modelization


  • Résumé

    This thesis deals with the analysis and homogenization of partial differential equations (PDE) posed on networks with application to traffic. Two types of work are done : the first line of work consists to consider microscopic traffic models in order to establish a connection between these models and macroscopic models like the one introduced by Imbert and Monneau [1]. Such connection allows to justify rigorously the macroscopic models of traffic. In fact, microscopic models describe the dynamic of each vehicle individually and so they are easy to justify from the modelization point of view. On the other hand, these models are complicated to implement in order to describe the traffic at large scales (cities for example). Macroscopic models do the opposite : they are effective for describing the traffic at large scales but from the modelization point of view, they are incapable to predict all traffic situations (for example free or congested flow). The passage from microscopic to macroscopic is done using the viscosity solutions theory and in particular homogenization technics. The second line of work consists to consider a Hamilton-Jacobi equation coupled by a junction condition which moves in time. This equation can describe the circulation of cars on a road with the presence of a particular vehicle (slower than the cars for example). We prove existence and uniqueness (by a comparison principle) of viscosity solution of this PDE. [1] Cyril Imbert and Régis Monneau. Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks. Annales Scientifiques de l’ENS, 50(2) :357–448, 2013.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Institut national des sciences appliquées (Rouen Normandie).
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.