Temporal signals classification

par Imad Rida

Thèse de doctorat en Informatique

Sous la direction de Gilles Gasso et de Romain Hérault.

Le président du jury était Su Ruan.

Le jury était composé de Gilles Gasso, Romain Hérault, Su Ruan, Mounim A. El Yacoubi, David Brie, Salah Bourennane, Marie Szafranski.

Les rapporteurs étaient Mounim A. El Yacoubi, David Brie.

  • Titre traduit

    Classification de signaux temporels


  • Résumé

    De nos jours, il existe de nombreuses applications liées à la vision et à l’audition visant à reproduire par des machines les capacités humaines. Notre intérêt pour ce sujet vient du fait que ces problèmes sont principalement modélisés par la classification de signaux temporels. En fait, nous nous sommes intéressés à deux cas distincts, la reconnaissance de la démarche humaine et la reconnaissance de signaux audio, (notamment environnementaux et musicaux). Dans le cadre de la reconnaissance de la démarche, nous avons proposé une nouvelle méthode qui apprend et sélectionne automatiquement les parties dynamiques du corps humain. Ceci permet de résoudre le problème des variations intra-classe de façon dynamique; les méthodes à l’état de l’art se basant au contraire sur des connaissances a priori. Dans le cadre de la reconnaissance audio, aucune représentation de caractéristiques conventionnelle n’a montré sa capacité à s’attaquer indifféremment à des problèmes de reconnaissance d’environnement ou de musique : diverses caractéristiques ont été introduites pour résoudre chaque tâche spécifiquement. Nous proposons ici un cadre général qui effectue la classification des signaux audio grâce à un problème d’apprentissage de dictionnaire supervisé visant à minimiser et maximiser les variations intra-classe et inter-classe respectivement.


  • Résumé

    Nowadays, there are a lot of applications related to machine vision and hearing which tried to reproduce human capabilities on machines. These problems are mainly amenable to a temporal signals classification problem, due our interest to this subject. In fact, we were interested to two distinct problems, humain gait recognition and audio signal recognition including both environmental and music ones. In the former, we have proposed a novel method to automatically learn and select the dynamic human body-parts to tackle the problem intra-class variations contrary to state-of-art methods which relied on predefined knowledge. To achieve it a group fused lasso algorithm is applied to segment the human body into parts with coherent motion value across the subjects. In the latter, while no conventional feature representation showed its ability to tackle both environmental and music problems, we propose to model audio classification as a supervised dictionary learning problem. This is done by learning a dictionary per class and encouraging the dissimilarity between the dictionaries by penalizing their pair- wise similarities. In addition the coefficients of a signal representation over these dictionaries is sought as sparse as possible. The experimental evaluations provide performing and encouraging results.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Institut national des sciences appliquées (Rouen Normandie).
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.