Étude stochastique de l'impact des défauts de porosités et de plissements dans les matériaux composites

par Hassoun Ishak

Thèse de doctorat en Mécanique des solides, des matériaux, des structures et des surfaces

Sous la direction de Frédéric Jacquemin.

Soutenue le 19-12-2017

à Nantes , dans le cadre de École doctorale Sciences pour l'ingénieur (Nantes) , en partenariat avec Institut de recherche en génie civil et mécanique (Nantes) (laboratoire) .

Le président du jury était Frédéric Lebon.

Le jury était composé de Marion Girard, Alexandre Clément.

Les rapporteurs étaient Laurent Guillaumat, Abdelkhalak El Hami.


  • Résumé

    Les matériaux composites à matrice organique sont de plus en plus utilisés dans divers domaines tels que l'aérospatiale ou les énergies marines renouvelables en raison de leurs excellentes propriétés spécifiques. Cependant, les procédés de fabrication des structures composites sont complexes et peuvent conduire à l'apparition de défauts, en particulier de plissement des plis et de porosité, qui affectent les propriétés mécaniques de la structure. Les pièces composites sont ainsi systématiquement soumises à des contrôles CND long et coûteux. En cas de résultats négatifs par rapport à des critères conservatifs, celles-ci peuvent être rejetées, avec des conséquences économiques non négligeables. L'objectif de cette étude est de quantifier l'impact des défauts observés et des incertitudes associées sur le comportement de pièce composite. Dans ce travail, nous adoptons une vision paramétrique des incertitudes consistant à représenter le contenu probabiliste à travers d’un ensemble fini de variables aléatoires. Nous nous concentrons sur la propagation des incertitudes basée sur des méthodes stochastiques spectrales. L'étude portant sur le défaut de porosités se fait à l’échelle microscopique puis macroscopique. Les paramètres aléatoires d'entrée sont liés à la géométrie des porosités et à leur taux. L'étude du défaut plissements à l'échelle mésoscopique est basée sur une représentation paramétrique de la géométrie du plissement. Les paramètres aléatoires d'entrée représentent alors la forme et la taille de ces défauts. Il est donc possible d'analyser l'impact de ces défauts à l'échelle structurelle par des grandeurs mécaniques classiques et des critères de rupture.

  • Titre traduit

    Stochastic study of the impact of porosities and wrinkles defects in composite materials


  • Résumé

    Composite materials are increasingly used in various fields such as aerospace or renewable marine energies due to their excellent specific properties. However, the manufacturing processes of the composite structures are complex, which can lead to the appearance of defects, particularly wrinkles and porosities, which affect the mechanical properties of the structure. Based on conservative criteria, a system of non-destructive testing of composite parts thus makes it possible to judge their conformity. In case of non-conformity, those components are rejected, with non-negligible economic consequences. The objective of this study is to quantify the impact of the defects and associated uncertainties on the behavior of composite parts. In this work, we adopt a parametric vision of the uncertainties consisting in representing the probabilistic content through a finite set of random variables. We focus on the propagation of uncertainties based on spectral stochastic methods. The study involving porosity is done at the micro-scale and then at the macro-scale. The random input parameters are related to the geometry of the porosities and their rates. The study of the wrinkle defect, done at the mesoscopic scale, is based on a parametric representation of the geometry of the wrinkle. The random input parameters then represent the shape and size of this defect. It is therefore possible to analyze the impact of these two manufacturing defects at a structural scale through classical mechanical quantities and check the failure of the structure with failure criteria.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Nantes. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.