Thèse soutenue

Contrôle de la discontinuité de mouvement - contrôleur robuste pour robots mobiles roulants

FR  |  
EN
Auteur / Autrice : Mohamed Sorour
Direction : Philippe Fraisse
Type : Thèse de doctorat
Discipline(s) : Systèmes automatiques et micro-électroniques
Date : Soutenance le 06/11/2017
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : École doctorale Information, Structures, Systèmes (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique, de robotique et de micro-électronique (Montpellier ; 1992-....)
Jury : Président / Présidente : André Crosnier
Examinateurs / Examinatrices : Philippe Fraisse, André Crosnier, Reza Ghabcheloo, Paolo Robuffo Giordano, Nahid Armande, Andrea Cherubini
Rapporteurs / Rapporteuses : Reza Ghabcheloo, Paolo Robuffo Giordano

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les robots mobiles à roues orientables gagnent de la mobilité en employant des roues conventionnelles entièrement orientables, comportant deux joints actifs, un pour la direction et un autre pour la conduite. En dépit d'avoir seulement un degré de mobilité (DOM) (défini ici comme degrés de liberté instantanément autorisés DOF), correspondant à la rotation autour du centre de rotation instantané (ICR), ces robots peuvent effectuer des trajectoires planaires complexes de 2D . Ils sont moins chers et ont une capacité de charge plus élevée que les roues non conventionnelles (par exemple, Sweedish ou Omni-directional) et, en tant que telles, préférées aux applications industrielles. Cependant, ce type de structure de robot mobile présente des problèmes de contrôle textit {basic} difficiles de la coordination de la direction pour éviter les combats d'actionneur, en évitant les singularités cinématiques (ICR à l'axe de la direction) et les singularités de représentation (du modèle mathématique). En plus de résoudre les problèmes de contrôle textit {basic}, cette thèse attire également l'attention et présente des solutions aux problèmes de textit {niveau d'application}. Plus précisément, nous traitons deux problèmes: la première est la nécessité de reconfigurer "de manière discontinue" les articulations de direction, une fois que la discontinuité dans la trajectoire du robot se produit. Une telle situation - la discontinuité dans le mouvement du robot - est plus susceptible de se produire de nos jours, dans le domaine émergent de la collaboration homme-robot. Les robots mobiles qui fonctionnent à proximité des travailleurs humains en mouvement rapide rencontrent généralement une discontinuité dans la trajectoire calculée en ligne. Le second apparaît dans les applications nécessitant que l'angle de l'angle soit maintenu, certains objets ou fonctionnalités restent dans le champ de vision (p. Ex., Pour les tâches basées sur la vision) ou les changements de traduction. Ensuite, le point ICR est nécessaire pour déplacer de longues distances d'un extrême de l'espace de travail à l'autre, généralement en passant par le centre géométrique du robot, où la vitesse du robot est limitée. Dans ces scénarios d'application, les contrôleurs basés sur l'ICR à l'état de l'art conduiront à des comportements / résultats insatisfaisants. Dans cette thèse, nous résolvons les problèmes de niveau d'application susmentionnés; à savoir la discontinuité dans les commandes de vitesse du robot et une planification meilleure / efficace pour le contrôle du mouvement du point ICR tout en respectant les limites maximales de performance des articulations de direction et en évitant les singularités cinématiques et représentatives. Nos résultats ont été validés expérimentalement sur une base mobile industrielle.