Thèse soutenue

Effets singuliers des rayonnements cosmiques et atmosphériques sur les composants mémoires

FR  |  
EN
Auteur / Autrice : Alexandre Louis Bosser
Direction : Luigi DililloAri Virtanen
Type : Thèse de doctorat
Discipline(s) : Systèmes automatiques et micro-électroniques
Date : Soutenance le 20/12/2017
Etablissement(s) : Montpellier en cotutelle avec Jyväskylän yliopisto
Ecole(s) doctorale(s) : École doctorale Information, Structures, Systèmes (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier / LIRMM
Jury : Président / Présidente : Fernanda Lima Kastensmidt
Examinateurs / Examinatrices : Luigi Dilillo, Ari Virtanen, Fernanda Lima Kastensmidt, Ronald D. Schrimpf, Simone Gerardin
Rapporteurs / Rapporteuses : Ronald D. Schrimpf, Simone Gerardin

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les composants mémoires sont omniprésents en électronique : ils sont utilisés pour stocker des données, et sont présents dans tous les champs d’application - industriel, automobile, aérospatial, grand public et télécommunications, entre autres. Les technologies mémoires ont connu une évolution constante depuis la création de la première mémoire vive statique (Static Random-Access Memory, SRAM) à la fin des années 60. Les besoins toujours plus importants en termes de performance, de capacité et d’économie d’énergie poussent à une miniaturisation constante de ces composants : les mémoires modernes contiennent des circuits dont certaines dimensions sont de l’ordre du nanomètre.L’un des inconvénients de cette miniaturisation fut un accroissement de la sensibilité de ces composants aux radiations. Depuis la détection des premiers effets singuliers (Single-Event Effects, SEE) dans un satellite à la fin des années 70, et la reproduction du phénomène en laboratoire, les fabricants de composants mémoires et les ingénieurs en électronique se sont intéressés au durcissement aux radiations. Au début, les besoins en stockage pour des applications civiles et militaires – comme le développement d’accélérateurs de particules, de réacteurs nucléaires et d’engins spatiaux – créa un marché pour les composants durcis aux radiations. Ce marché s’est considérablement réduit avec la fin de la Guerre Froide et la perte d’intérêt des gouvernements, et après quelques années, les ingénieurs durent se tourner vers des composants commerciaux (Commercial Off-The-Shelf Components, COTS).Les composants COTS n’étant pas conçus pour résister aux radiations, chaque composant doit être évalué avant d’être utilisé dans des systèmes dont la fiabilité est critique. Ce processus d’évaluation est appelé Radiation Hardness Assurance (RHA). Les tests aux radiations des composants commerciaux sont devenus une pratique standardisée (en particulier dans l’industrie aérospatiale). Ces composants sont irradiés à l’aide d’accélérateurs de particules et de sources radioactives, afin d’évaluer leur sensibilité, de prédire leur taux d’erreur dans un environnement radiatif donné, et ainsi de déterminer leur adéquation pour une mission donnée.Cette étude porte sur le test de composants mémoires aux effets singuliers. Les objectifs, difficultés et limitations des tests aux radiations sont présentés, et des méthodes d’analyse de données sont proposées ; l’identification et l’étude des modes de défaillance sont utilisées pour approfondir les connaissances sur les composants testés. Cette étude est basée sur de nombreuses campagnes de test aux radiations, étalées sur une période de quatre ans, pendant lesquelles des mémoires de différentes technologies – mémoires vives statique (SRAM), ferroélectrique (FRAM), magnétorésistive (MRAM) et mémoire flash – furent irradiées avec des faisceaux de muons, neutrons, protons et ions lourds. Les données générées ont également servi au développement d’un CubeSat développé conjointement par le LIRMM et le Centre Spatial Universitaire de Montpellier, MTCube, dont la mission est l’irradiation de ces mêmes composants en milieu spatial. Les concepts sous-jacents liés aux radiations, aux environnements radiatifs, à l’architecture des composants mémoires et aux tests aux radiations sont introduits dans les premiers chapitres, et les avancées scientifiques de cette étude sont présentées dans le dernier chapitre.