Terahertz Spectroscopy of Topological Phase Transitions in HgCdTe-based systems

par Michal Marcinkiewicz

Thèse de doctorat en Physique

Sous la direction de Frédéric Teppe.

Soutenue le 10-07-2017

à Montpellier , dans le cadre de École Doctorale Information, Structures, Systèmes (Montpellier ; 2015) , en partenariat avec Laboratoire Charles Coulomb / L2C (laboratoire) .

Le président du jury était Eric Tournié.

Le jury était composé de Frédéric Teppe, Eric Tournié, Yves Guldner, David Carpentier, Philippe Ballet, Wojciek Knap, Milan Orlita.

Les rapporteurs étaient Yves Guldner, David Carpentier.

  • Titre traduit

    Spectroscopie Térahertz de Transitions de Phase Topologique dans des hétérostructures à base de CdHgTe


  • Résumé

    Cette thèse porte sur l'exploration de différentes phases topologiques présentes dans des hétérostructures à base de mercure, cadmium et tellure (HgCdTe). Ces systèmes sont de parfaits cas d'études des états topologiques dans la matière condensée. En effet, leur structure de bande peut aisément être modifiée d'inversée à non-inversée par le biais de paramètres internes ou externes.Lorsqu'un système présente une structure de bande inversée, il a une topologie non triviale. Il est impossible de modifier cet ordre topologique sans fermer son gap, ce qui inévitablement entraîne l'apparition de particules sans masse dans son volume. Un système présentant une structure de bande inversée et un gap d'énergie finie dans lequel se trouve le niveau de Fermi, est appelé isolant topologique. Ce nouveau type de matériau est isolant dans son volume, mais abrite des états métalliques sans gap sur ses bords. Ces derniers ont une relation de dispersion linéaire et sont protégés des effets liés au désordre et de la rétrodiffusion par des impuretés non magnétiques. Ces états particuliers apparaissent à l'interface de matériaux présentant des ordres topologiques différents. Ainsi, un isolant topologique 2D se caractérise par des canaux 1D de conductance polarisés en spin à ses bords, alors qu'un isolant topologique 3D accueille des fermions de Dirac 2D, polarisés en spin, aux surfaces.L'existence de fermions sans masse 2D et 3D a déjà été démontrée expérimentalement. Cependant, la transition de phase topologique durant laquelle apparaissent les particules sans masse n'a que très peu été explorée. Il est possible de modifier la structure de bande de HgCdTe d'inversée à non inversée par le biais de la composition chimique, la pression, la température ou le confinement quantique. Ces paramètres permettent ainsi de sonder le système au voisinage de différentes transitions de phase topologiques. Dans ce travail, l'utilisation de la température comme paramètre d'ajustement continu du gap permet d'étudier au point de transition de phase l'apparition de fermions semi-relativistes de Dirac (2D) et de Kane (3D) ainsi que leurs propriétés.Les systèmes étudiés au cours de ces travaux de recherche sont des cristaux massifs de Hg1-xCdxTe et des puits quantiques HgTe/CdTe présentant des structures de bandes inversées et non inversées, ainsi que des couches minces de HgTe contraintes pouvant être considérées comme des isolants topologiques 3D ayant un confinement quantique résiduel. Tous ces systèmes possèdent des propriétés topologiques. L'interprétation des résultats s'appuie sur les prédictions théoriques basées sur le modèle de Kane. En annexe, une vue d'ensemble des puits quantiques composites InAs/GaSb, structures également identifiées comme isolants topologiques, est présentée, comportant les résultats préliminaires obtenus sur ces dernières.Toutes les structures ont été étudiées par magnétospectroscopie en transmission dans les domaines de fréquence terahertz et infra-rouge moyen à l'aide d'un dispositif expérimental spécifiquement conçu pour permettre des mesures sur une large plage de températures.


  • Résumé

    This thesis presents an investigation of different topological phases in mercury-cadmium-telluride (HgCdTe or MCT) based heterostructures. These solid state systems are indeed a perfect playground to study topological states, as their band structure can be easily varied from inverted to non-inverted, by changing internal or external parameters.If a system has an inverted band ordering, its electronic structure has a non-trivial topology. One cannot change its topological order without closing the band gap, which is inevitably accompanied with the appearance of massless particles in the bulk. A system, that has an inverted band structure and a finite gap in which the Fermi level is positioned, is called a topological insulator. These novel materials are insulators in the bulk, but host gapless metallic states with linear dispersion relation at boundaries, protected against disorder and backscattering on non-magnetic impurities. These states arise at the interfaces between materials characterized by a different topological order. A 2D topological insulator is thus characterized by a set of 1D spin-polarized channels of conductance at the edges, while a 3D topological insulator supports spin-polarized 2D Dirac fermions on its surfaces.The 2D and 3D massless fermions have already been demonstrated experimentally in HgCdTe-based heterostructures. However, the topological phase transitions during which the massless particles appear remain barely explored. The HgCdTe band structure can be tuned from inverted to non-inverted using chemical composition, pressure, temperature, or quantum confinement. These parameters therefore allow to probe the system in the vicinity of different topological phase transitions. In this thesis, the use of temperature as continuous band gap tuning parameter allows to study the appearance and the parameters of semi-relativistic 2D Dirac and 3D Kane fermions emerging at the points of phase transitions.The systems investigated were Hg$_{1-x}$Cd$_x$Te bulk systems and HgTe/CdTe quantum wells characterized by an inverted and regular band order, and strained HgTe films which can be considered as 3D topological insulators with a residual quantum confinement. All these systems exhibit topological properties, and the experimental results are interpreted according to theoretical predictions based on the Kane model. This thesis is complemented by an overview and the preliminary results obtained on a different compound -- a InAs/GaSb broken-gap quantum well, which was also identified as a topological insulator. The structures were studied by means of terahertz and mid-infrared magneto-transmission spectroscopy in a specifically designed experimental system, in which temperature could be tuned in a broad range.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque interuniversitaire. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.