Thèse soutenue

Simulations de la mise en forme, la compaction et la consolidation de composites thermoplastiques basées sur des éléments finis solides-coques

FR  |  
EN
Auteur / Autrice : Hu Xiong
Direction : Philippe Boisse
Type : Thèse de doctorat
Discipline(s) : Mécanique, Génie mécanique
Date : Soutenance le 28/09/2017
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....)
Laboratoire : LaMCoS - Laboratoire de Mécanique des Contacts et des Structures (Lyon, INSA ; 2007-....) - Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] / LaMCoS
Jury : Président / Présidente : Dominique Baillis
Examinateurs / Examinatrices : Philippe Boisse, Dominique Baillis, Rezak Ayad, Frédéric Jacquemin, Jérôme Bikard, Nahiène Hamila
Rapporteurs / Rapporteuses : Rezak Ayad, Frédéric Jacquemin

Résumé

FR  |  
EN

Les composites thermoplastiques préimprégnés suscitent un intérêt croissant pour l'industrie automobile grâce à leurs excellentes propriétés mécaniques et leur procédé de fabrication rapide. Dans ce contexte, la modélisation et la simulation numérique des procédées de mise en forme de pièces composites à géométries complexes sont nécessaires pour prédire et optimiser les pratiques de fabrication. Cette thèse est consacrée à la modélisation et à la simulation du comportement de consolidation des composites thermoplastiques préimprégnés lors du processus de mise en forme. Un nouvel élément solide-coque prismatique à sept nœuds est proposé: six situés aux sommets et le septième situé au centre. Le champ de cisaillement transverse est supposé afin de réprimer le verrouillage de cisaillement transversal. La méthode de déformation renforcée supposée par addition d'un DOF de déplacement supplémentaire depuis le nœud central et un schéma d'intégration réduit sont combinées offrant un champ de déformation linéaire le long de la direction d'épaisseur pour contourner le verrouillage. De plus, une procédure de stabilisation de sablier est employée afin de corriger le défaut de rang de l'élément pour le pincement. Cet élément utilise un modèle de relaxation viscoélastique pour modéliser le comportement tridimensionnel de composites thermoplastiques préimprégnés avec effet de consolidation. Un modèle de contact intime est également utilisé pour prédire l'évolution de la consolidation et la microstructure du vide présente au sein du préimprégné. A l’aide d’une loi hyperélastique, plusieurs simulations ont été conduites en combinant le nouvel élément fini et les modèles de consolidation. La comparaison des résultats de simulation avec les essais expérimentaux montre l'efficacité de l’élément solide-coque face aux problèmes de déformations dans le plan et en flexion, mais également pour l'analyse du comportement de consolidation. De plus, le degré de contact intime fournit le degré de consolidation par conditions de procédé appliqué, ce qui est essentiel pour l'apparition de défauts dans la pièce finale de composite.