Spécificités de la mobilité de l'oxygène et de l'hydrogène dans le Zircaloy-4 en condition APRP et conséquences mécaniques

par Elodie Torres

Thèse de doctorat en Mécanique, génie mécanique

Sous la direction de Marie-Christine Baietto et de Michel Coret.

Le président du jury était Eric Andrieu.

Le jury était composé de Marie-Christine Baietto, Michel Coret, Eric Andrieu, Eric Hug, Nathalie Moncoffre, Jean Desquines.

Les rapporteurs étaient Eric Hug, Nathalie Moncoffre.


  • Résumé

    Les différentes études menées pour comprendre la phénoménologie d’un APRP ont montré que l’hydrogène et l’oxygène jouent un rôle important sur le comportement des crayons de combustible et en particulier leur fragilisation à la fin de l’accident. L’objectif de cette thèse était de clarifier les effets combinés de l’oxygène et de l’hydrogène à 1200°C et d’identifier les mécanismes essentiels gouvernant leur mobilité. La première partie de la thèse a consisté à faire un état des lieux des mécanismes d’adsorption et de diffusion observés à basse température afin de proposer un modèle décrivant la cinétique de chargement en hydrogène par voie gazeuse à 420°C grâce à une modélisation couplée des échanges solide/gaz et de la mobilité de l’hydrogène en solution solide. Au cours de l’oxydation haute température sous vapeur d’eau à 1200°C, une ségrégation chimique des éléments a été observée. L’oxygène et l’hydrogène présentent une distribution complexe dans l’épaisseur de la gaine. L’hydrogène a une forte affinité avec la phase ex-β et les joints de grains α/β. Les cartographies ERDA ont montré un enrichissement en hydrogène autour des inclusions dont la présence massive d’hydrures a été confortée par les observations microscopiques MET. La diffusion de l’oxygène dans le domaine biphasé α+β par les codes existants nécessite quelques améliorations pour bien décrire les résultats expérimentaux. Les apports essentiels de cette thèse ont donc consisté à déterminer les paramètres clés qui gouvernent sa diffusion dans le domaine α+β. Un nouveau modèle a été spécialement conçu pour déterminer les mécanismes de diffusion de l’oxygène. Ce modèle, validé à 1200°C, est basé sur le fait que la diffusion de l’oxygène est régi par la croissance des inclusions et donc par la fraction de phase alpha(O). L’analyse des essais mécaniques a également montré une fragilisation du matériau par un effet conjoint de l’hydrogène et de l’oxygène.

  • Titre traduit

    Oxygen and hydrogen motion specificities in Zircaloy-4 material in LOCA transient condition and mechanicals impacts


  • Résumé

    Les différentes études menées pour comprendre la phénoménologie d’un APRP ont montré que l’hydrogène et l’oxygène jouent un rôle important sur le comportement des crayons de combustible et en particulier leur fragilisation à la fin de l’accident. L’objectif de cette thèse était de clarifier les effets combinés de l’oxygène et de l’hydrogène à 1200°C et d’identifier les mécanismes essentiels gouvernant leur mobilité. La première partie de la thèse a consisté à faire un état des lieux des mécanismes d’adsorption et de diffusion observés à basse température afin de proposer un modèle décrivant la cinétique de chargement en hydrogène par voie gazeuse à 420°C grâce à une modélisation couplée des échanges solide/gaz et de la mobilité de l’hydrogène en solution solide. Au cours de l’oxydation haute température sous vapeur d’eau à 1200°C, une ségrégation chimique des éléments a été observée. L’oxygène et l’hydrogène présentent une distribution complexe dans l’épaisseur de la gaine. L’hydrogène a une forte affinité avec la phase ex-β et les joints de grains α/β. Les cartographies ERDA ont montré un enrichissement en hydrogène autour des inclusions dont la présence massive d’hydrures a été confortée par les observations microscopiques MET. La diffusion de l’oxygène dans le domaine biphasé α+β par les codes existants nécessite quelques améliorations pour bien décrire les résultats expérimentaux. Les apports essentiels de cette thèse ont donc consisté à déterminer les paramètres clés qui gouvernent sa diffusion dans le domaine α+β. Un nouveau modèle a été spécialement conçu pour déterminer les mécanismes de diffusion de l’oxygène. Ce modèle, validé à 1200°C, est basé sur le fait que la diffusion de l’oxygène est régi par la croissance des inclusions et donc par la fraction de phase alpha(O). L’analyse des essais mécaniques a également montré une fragilisation du matériau par un effet conjoint de l’hydrogène et de l’oxygène.

Autre version

Cette thèse a donné lieu à une publication en 2017 par DocINSA [diffusion/distribution] à Villeurbanne

Spécificités de la mobilité de l'oxygène et de l'hydrogène dans le Zircaloy-4 en condition APRP et conséquences mécaniques


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Institut national des sciences appliquées (Villeurbanne, Rhône). Service Commun de la Documentation Doc’INSA. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

Cette thèse a donné lieu à une publication en 2017 par DocINSA [diffusion/distribution] à Villeurbanne

Informations

  • Sous le titre : Spécificités de la mobilité de l'oxygène et de l'hydrogène dans le Zircaloy-4 en condition APRP et conséquences mécaniques
  • Détails : 1 vol.([1]-149-[24] p.)
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.