Subspace clustering on static datasets and dynamic data streams using bio-inspired algorithms

par Sergio Peignier

Thèse de doctorat en Informatique

Sous la direction de Christophe Rigotti.

Soutenue le 27-07-2017

à Lyon , dans le cadre de École doctorale en Informatique et Mathématiques de Lyon , en partenariat avec Institut national des sciences appliquées de Lyon (Lyon) (établissement opérateur d'inscription) , LIRIS - Laboratoire d'Informatique en Image et Systèmes d'information (Rhône) (laboratoire) et de Laboratoire d'InfoRmatique en Image et Systèmes d'information / LIRIS (laboratoire) .

Le président du jury était Sylvie Galichet.

Le jury était composé de Christophe Rigotti, Sylvie Galichet, Wolfgang Banzhaf, Stefan Kramer, Guillaume Beslon, Ruggero Pensa, Susan Stepney, Sébastien Verel.

Les rapporteurs étaient Wolfgang Banzhaf, Stefan Kramer.

  • Titre traduit

    Regroupement de sous-espaces sur des ensembles de données statiques et des flux de données dynamiques à l'aide d'algorithmes bioinspirés


  • Résumé

    Une tâche importante qui a été étudiée dans le contexte de données à forte dimensionnalité est la tâche connue sous le nom de subspace clustering. Le subspace clustering est généralement reconnu comme étant plus compliqué que le clustering standard, étant donné que cette tâche vise à détecter des groupes d’objets similaires entre eux (clusters), et qu’en même temps elle vise à trouver les sous-espaces où apparaissent ces similitudes. Le subspace clustering, ainsi que le clustering traditionnel ont été récemment étendus au traitement de flux de données en mettant à jour les modèles de clustering de façon incrémentale. Les différents algorithmes qui ont été proposés dans la littérature, reposent sur des bases algorithmiques très différentes. Parmi ces approches, les algorithmes évolutifs ont été sous-explorés, même si ces techniques se sont avérées très utiles pour traiter d’autres problèmes NP-difficiles. L’objectif de cette thèse a été de tirer parti des nouvelles connaissances issues de l’évolution afin de concevoir des algorithmes évolutifs qui traitent le problème du subspace clustering sur des jeux de données statiques ainsi que sur des flux de données dynamiques. Chameleoclust, le premier algorithme développé au cours de ce projet, tire partie du grand degré de liberté fourni par des éléments bio-inspirés tels qu’un génome de longueur variable, l’existence d’éléments fonctionnels et non fonctionnels et des opérateurs de mutation incluant des réarrangements chromosomiques. KymeroClust, le deuxième algorithme conçu dans cette thèse, est un algorithme de k-medianes qui repose sur un mécanisme évolutif important: la duplication et la divergence des gènes. SubMorphoStream, le dernier algorithme développé ici, aborde le problème du subspace clustering sur des flux de données dynamiques. Cet algorithme repose sur deux mécanismes qui jouent un rôle clef dans l’adaptation rapide des bactéries à des environnements changeants: l’amplification de gènes et l’absorption de matériel génétique externe. Ces algorithmes ont été comparés aux principales techniques de l’état de l’art, et ont obtenu des résultats compétitifs. En outre, deux applications appelées EvoWave et EvoMove ont été développés pour évaluer la capacité de ces algorithmes à résoudre des problèmes réels. EvoWave est une application d’analyse de signaux Wi-Fi pour détecter des contextes différents. EvoMove est un compagnon musical artificiel qui produit des sons basés sur le clustering des mouvements d’un danseur, décrits par des données provenant de capteurs de déplacements.


  • Résumé

    An important task that has been investigated in the context of high dimensional data is subspace clustering. This data mining task is recognized as more general and complicated than standard clustering, since it aims to detect groups of similar objects called clusters, and at the same time to find the subspaces where these similarities appear. Furthermore, subspace clustering approaches as well as traditional clustering ones have recently been extended to deal with data streams by updating clustering models in an incremental way. The different algorithms that have been proposed in the literature, rely on very different algorithmic foundations. Among these approaches, evolutionary algorithms have been under-explored, even if these techniques have proven to be valuable addressing other NP-hard problems. The aim of this thesis was to take advantage of new knowledge from evolutionary biology in order to conceive evolutionary subspace clustering algorithms for static datasets and dynamic data streams. Chameleoclust, the first algorithm developed in this work, takes advantage of the large degree of freedom provided by bio-like features such as a variable genome length, the existence of functional and non-functional elements and mutation operators including chromosomal rearrangements. KymeroClust, our second algorithm, is a k-medians based approach that relies on the duplication and the divergence of genes, a cornerstone evolutionary mechanism. SubMorphoStream, the last one, tackles the subspace clustering task over dynamic data streams. It relies on two important mechanisms that favor fast adaptation of bacteria to changing environments, namely gene amplification and foreign genetic material uptake. All these algorithms were compared to the main state-of-the-art techniques, obtaining competitive results. Results suggest that these algorithms are useful complementary tools in the analyst toolbox. In addition, two applications called EvoWave and EvoMove have been developed to assess the capacity of these algorithms to address real world problems. EvoWave is an application that handles the analysis of Wi-Fi signals to detect different contexts. EvoMove, the second one, is a musical companion that produces sounds based on the clustering of dancer moves captured using motion sensors.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Institut national des sciences appliquées (Villeurbanne, Rhône). Service Commun de la Documentation Doc’INSA. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.