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Résumé en français

Presque chaque organisme terrestre interagit avec d’autres espèces. Quand cette interaction est
proche et durable, elle est appelé symbiose. Les interactions symbiotiques impliquent en général
une dépendance entre espèces et sont indispensables pour le fonctionnement de l’écosystème.
Plusieurs types d’associations symbiotiques entre espèces existent en nature, tels que : le mutu-
alisme (association bénéfique entre deux espèces vivantes) et le parasitisme (association étroite
entre deux espèces vivantes dont l’une appelée l’hôte héberge la seconde qui vit à ses dépens),
avec des situations intermédiaires où une espèce n’est pas affectée mais les autres espèces béné-
ficient de l’interaction (le commensalisme) ou elle en sont blessées (ici on parle de amensalisme).
Certaines interactions peuvent devenir obligatoires dans le cas où aucune des espèces impliquées
ne peut survivre sans l’autre. Cela peut par exemple se vérifier quand une des espèces vit à
l’intérieur des cellules de l’autre. Nous porlons alors de endosymbiose. Les espèces qui héber-
gent les autres, que ce soit à l’intérieur ou à l’extérieur, s’appellent hôtes, tandis que les espèces
hébergées s’appellent symbiotes. Puisque il est possible d’avoir des interactions symbiotiques
pendant une très longue période, les espèces impliquées influencent mutuellement l’évolution
l’une de l’autre. Ceci est connu sur le nom de coévolution.

L’étude de la coévolution et de l’influence évolutive réciproque entre les hôtes et leurs sym-
biotes est de plus en plus utilisé, notamment parce que ceux-ci peuvent aider à améliorer la pro-
duction agricole, mais aussi aider à étudier des maladies dangereuses. Par exemple un dernier
étude [66], envisage d’arrêter ou de limiter l’impact des infections, répandues par certains in-
sectes, par une manipulation des endosymbiotes qui les habitent.

La toujours plus grande disponibilité de données phylogénétiques a permis de mieux com-
prendre les associations historiques qui existent entre différents hôtes et symbiotes. Cela a comme
but d’essayer de comprendre: l’ancienneté de ces associations, si l’acquisition du symbiote est
récente ou ancienne et si le symbiote est spécifique (c’est-à-dire si le symbiote a la capacité
d’infecter un seul hôte ou une grande gamme des hôtes). Dans le premier cas, le symbiote est
appelé spécialiste (avec une spécificité élevée), tandis que dans le second, le symbiote est appelé
généraliste (avec une faible spécificité).

L’évolution d’un groupe d’espèces est généralement représentée avec un arbre phylogénétique,
où les arcs correspondent aux lignées des espèces, les sommets internes représentent le moment de
spéciation et les feuilles correspondent aux espèces qui vivent actuellement sur Terre. L’histoire
évolutive commune entre les deux ensembles d’espèces, pour les hôtes et pour les symbiotes, peut
être étudiée en comparant les arbres phylogénétiques respectifs, cela seulement si on connait
quelles sont les interactions actuelles, c’est-à-dire si on connait les symbiotes qui actuellement
habitent un hôte. Si deux arbres ont la même topologie, on parle de congruence entre phylogénies.
D’habitude, la congruence est lié a la cospeciation. Cet evènemet se présente quand la spéciation
de l’hôte et du symbiote sont strictement dépendantes l’un de l’autre. Cependant, il est très
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rare de trouver deux arbres phylogénétiques des hôtes et des symbiotes qui sont exactement
les mêmes. D’habitude, des incongruences sont présents, cela est dû au fait que les symbiotes
peuvent changer de lignée (c’est appelé saut), specier indépendamment de l’hôte (c’est appelé
duplication) disparaître ou ne pas coloniser tous les hôtes (ceux-ci sont appelés perte). Il faut
remarquer que avoir des incongruences ne signifient pas nécessairement que les deux groupes
d’espèces n’ont pas coévolué. Pas tout le monde est d’accord pour dire que deux espèces peuvent
coévoluer sans cospecicer. Par exemple Brooks and Lennan [8] assument que la cospeciation et la
coévolution représentent un même événement, ou plus précisément, ils assument que au niveau
macro-évolutif la cospeciation est égale à la coévolution. Cependant, la majorité des auteurs
chercheurs fait une distinction entre la cospeciation et la coévolution, et considèrent cette dernière
comme l’adaptation réciproque des hôtes et des symbiotes [79] tandis que la cospeciation est vue
comme un processus distinct [57]. Dans cette thèse, nous considérons la cospeciation comme une
possible conséquence à la coévolution.

La méthode de réconciliation cophylogénétique que nous utilisons implique de associer (ou
lier) un arbre, d’habitude celui des symbiotes, à l’autre, en utilisant un modèle appelé basées sur
des evènements. Les evènement le plus utilsés sont la cospéciation, la duplication le saut et la
perte. Les phylogénies des l’hôtes et des symbiotes sont généralement considérés comme correcte,
ou sans aucune erreur. Ceci est une hypothèse forte qui est rarement vrai. Une autre assomption
forte est que en général il est supposé qu’un symbiote peut habiter au plus un hôte. Cela est
l’hypothèse dite un-hôte-par-symbiote [68]. Cette dernière rend le problème mathématiquement
plus simple et est largement adopté, même si elle est biologiquement fausse. En effet, il existent
de nombreux cas d’espèces multiples, pathogènes ou non, infectant un plusieurs hôtes.

Ces deux assomptions, qui sont rarement correctes sont les principaux études de cette thèse.
Nous avons essayé d’affiner les modèles de réconciliation existants et de les rendre plus réalistes.
À cette fin, nous avons présenté certains evènements peu ou pas formellement considérés dans la
littérature. L’un d’entre eux est le “spread”, qui correspond à l’invasion de différents hôtes par
un même symbiote.

Cependant, avant de développer un tel modèle, nous nous sommes demandés quel est la
robustesse de la méthode adoptée. C’est à dire que, compte tenu d’un modèle, si la méthode
peut trouver toutes les réconciliations optimales même en présence des petites perturbations ou
des erreurs dans les données en entrée.

Ce doctorat s’est concentré sur ces deux aspects :

• Robustesse du modèle : L’objectif était d’analyser la robustesse des méthodes de réc-
onciliation des arbres phylogénétiques, qui sont très utilisés dans ce type d’étude.Nous
avons essayé de comprendre les forces et les faiblesses du modèle parcimonieux utilisé et
comprendre comment les résultats finaux peuvent être influencés en présence des petites
perturbations ou des erreurs dans les données en entrée. Ici deux cas sont considérés, le pre-
mier est le choix erroné d’une association entre les feuilles des hôtes et des symbiotes dans
le cas où plusieurs d’autres existent, le deuxième est lié au mauvais choix de l’enracinement
de l’arbre des symbiotes. Nos résultats montrent que le choix des associations entre feuilles
et le choix de l’enracinement peuvent avoir un fort impact sur la variabilité de la réconcil-
iation obtenue. Nous avons également remarqués que l’evènement appelé “saut” joue un
rôle important dans l’étude de la robustesse surtout pour le problème de l’enracinement.

• Modèle de cophylogénie plus réaliste : L’objectif est d’introduire certains evènements
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peu ou pas formellement considérés en littérature. L’un d’entre eux est le “spread”, qui
correspond à l’invasion de différents hôtes par un même symbiote. Dans ce cas, quand les
spreads ne sont pas pris en compte, les réconciliations optimales sont obtenus en tenant
compte seulement des coûts des evènements classiques (cospeciation, duplication, saut,
perte). La nécessité de développer des méthodes statistiques pour assigner les coûts le
plus appropriées est toujours d’actualité. Deux types de spread sont introduits: verticale
et horizontale. Le premier type correspond à ce qu’on pourrait appeler aussi une gèlé,
c’est à dire que l’évolution du symbiote s’arrête et “gèle ” alors que le symbiote continue
d’être associé à un hôte et aux nouvelles espèces qui descendent de cet hôte. Le second
comprend à la fois une invasion, du symbiote qui reste associé à l’hôte initial, mais au
même temps il est associé (il “envahit”) un symbiote incomparable avec le premier, ici
nous avons que l’évolution du symbiotes “ gèle ” par rapport l’évolution des deux l’hôtes,
celui auquel il était associé au début et celui qu’il a envahi. Nos résultats montrent que
l’introduction de ces evènement rend le modèle plus réalise, mais aussi que désormais il est
possible d’utiliser directement des jeux de données avec un symbiote qui habite plusieurs
hôtes au même temps, ce qui n’était pas faisable auparavant.
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10 Introduction

1.1 Motivation
Although initial concepts related to evolution have been elaborated since Ancient Greece, the
first more general theories were developed much later. J. B. Lamark’s model, presented in his
book “Philosophie Zoologique” dating from 1809, may be considered as one of the first examples
of this. The real revolution came however a few years later, in 1859, when Charles Darwin’s book
“The origin of species” was published. In it, Darwin introduced his theory of the process through
which organisms of the same species gradually evolve over time. Figure 1.1 presents the famous
sketch of an evolutionary tree that he drew a few years before, in 1837-1838, and which appears
in his “Notebook B: Transmutation of species”. Darwin’s main idea, that he called “natural
selection”, is that, in a world with stable populations where each individual has to struggle to
remain alive, only those with the “best” features will have more chance to survive and to transmit
those favourable traits to their descendants. These beneficial characteristics will thus gradually
become the dominant ones in the population. According to Darwin, if the process of natural
selection takes place over a long enough period of time, it produces changes in a population,
possibly leading to the formation of new organisms. The latter phenomenon is called speciation.

Figure 1.1: Darwin’s first sketch of an evolutionary tree, dated around July 1837. Interpretation
of the handwriting: “I think case must be that one generation should have as many living as
now. To do this and to have as many species in same genus (as is) requires extinction. Thus
between A + B the immense gap of relation. C + B the finest gradation. B+D rather greater
distinction. Thus genera would be formed. – bearing relation”.

In his book of 1859, Darwin mentioned also the existence of evolutionary interactions as these
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may be important in particular for analysing the rate of evolution of the species involved. One
example he gave concerned flowering plants and insects. Instances of such interactions have since
been discovered to be very extensive. Indeed, it is nowadays believed that almost every organism
is involved in what has been initially called (by Heinrich Anton de Bary in 1879) a symbiotic
interaction with other biological species, or symbiosis for short, that is, in an interaction which,
according to the initial meaning given to it by de Bary, is close and often long term. Both
characteristics will in general imply in a dependency on the presence of the other species to
survive, and are indispensable for the functioning of the ecosystem.

Symbiosis can involve two different species, or more than two. It can also be of various
types, ranging from mutualism (when both species benefit) to parasitism (when one benefits to
the detriment of the other), with intermediate situations where one species is unaffected but
the other species either benefits from the interaction (this is called commensalism) or is harmed
(one then speaks of amensalism). Some interactions may become obligatory in the sense that
none of the species involved is able to survive anymore without the other. This may be the
case in particular when one of the species lives inside the cells of the other. We speak then
of endosymbiosis. An example is the insect Acyrthosiphon pisum and the bacterium Buchnera
aphidicola. It is however important to notice that not all endosymbioses are mandatory. This is
for instance the case of the bacteria from the Wolbachia genus which infect a range of arthropods
and of nematodes, and where the interaction is sometimes obligatory, and at other times not.

The species harbouring others, whether inside or outside, is called a host, while the species
being hosted is called parasite when it benefits from the interaction to the detriment of the host.
As such interactions may not always be detrimental to the host, the term of symbiont has also
been used in the literature [81] and is the one that will be adopted in this Ph.D.

Since symbiotic interactions may continue over very long periods of time, the species involved
can affect each other’s evolution. This is known as coevolution. There have been increasingly
more studies of coevolution and of the reciprocal evolutionary influence between hosts and their
symbionts, notably because these may help improve agricultural production [86] or even control
for devastating diseases. As an example of the latter, one may consider recent attempts to stop
or to limit the impact of infections that are spread by some insects through a manipulation of
the endosymbionts that inhabit them [66].

A growing availability of phylogenetic data has allowed to better study the historical associa-
tions that exist between different types of hosts and symbionts [56] in order to try to understand
how old such associations are, if the acquisition of the symbiont is recent or ancient, and what is
the host specificity of the symbiont, that is whether the symbiont has the ability to infect only
one or a large range of hosts. In the first case, one speaks of a specialist symbiont and of a high
specificity, while in the second, one talks of a generalist symbiont with a low specificity.

The evolution of a set of species is usually represented by a so-called phylogenetic tree, where
the arcs correspond to the species lineages, the internal vertices are the moment of speciation and
the leaves correspond to the species that live at present time. The common evolutionary history
between two sets of species, one for the hosts and one for the symbionts, can then be studied
by comparing their respective phylogenetic trees if one further knows which are the present-day
interactions, that is, which currently living symbiont closely interacts with (or inhabits in the
case of endosymbiosis) which hosts. If the two trees have the same topology, there is congruence
between the phylogenies. Usually, congruence is related to cospeciation (some authors prefer the
term codivergence; we will be using both terms on this Ph.D. manuscript). This event occurs
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when the speciation of hosts and of symbionts strictly depends on one another. An example is
given in Figure 1.2(a). It is however very rare to find two phylogenetic trees of hosts and of
symbionts that are exactly the same. Most often, there are incongruences that are due to the
fact that the symbionts can switch lineage (Figure 1.2(b) – this is called host switch), speciate
independently of the host (Figure 1.2(c) – this is called duplication), go extinct (Figure 1.2(d)),
or not colonise all the hosts (Figure 1.2(e) – these are called a loss (of the symbiont)). It is
important to notice that such incongruences do not necessarily mean that the two sets of species
have not coevolved.

Figure 1.2: Host-symbiont associations. The tube represents the host tree and the dotted lines
the symbiont tree. (a) Hosts and symbionts speciate at the same time – this is called cospeciation
or codivergence. (b) Symbionts speciate and one of the new species switches from one host lineage
to another – this is called host switch. (c) Symbionts speciate independently from the host –
this is called in the literature duplication (of the symbiont). (d) Absence of a symbiont from a
host which may be due to extinction of the symbiont (notice that other explanations are possible
such as failure to detect the symbiont) – this is called loss (of the symbiont). (e) The ancestor
of the host lineage may not have inherited the ancestral symbiont (also called loss).

Not everyone agrees that two species can coevolve without cospeciating. Brooks and Lennan
[8] for instance assumed that cospeciation and coevolution represent a same event, or more
precisely, they assumed that cospeciation equals coevolution in macro-evolutionary time. The
majority of authors however distinguish between cospeciation and coevolution, and consider the
latter as the reciprocal adaptation of hosts and of symbionts [79] while cospeciation is perceived
as a separate process [57]. That is will be our case also in this Ph.D., where cospeciation will be
seen as only one possible consequence of coevolution.

One must however be conscious of the fact that establishing where the line stands can of-
ten be difficult. As an example, Ramsden et al. (2009, Figure 2) considered the evolution of
hantaviruses in relation to their rodent hosts. The two phylogenetic trees exhibited enough topo-
logical similarities for many [33, 38, 53, 62] to believe that the two sets of species coevolved. By
more finely analysing the similarities between the two trees through what is called a cophyloge-
netic reconciliation, Ramsden et al. [64] showed that more than 20 cospeciations were however
non significant. To then explain the observed congruence between the two trees, the authors
suggested that this was the consequence of a number of symbionts switching lineages. Based
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on this study, the authors concluded that the evolution between rodents and hantaviruses is the
result of a recent history of preferential host switching and of local adaptation rather than of
coevolution.

The cophylogenetic reconciliation method that Ramsden et al. [64] used, involves mapping
one tree, most often the symbiont’s, to the other using a so-called event-based model. The events
considered are those that were mentioned above and that appear illustrated in Figure 1.2. The
host and the symbiont phylogenies are usually considered as given and without any errors. This
is clearly a strong assumption that is seldom if ever correct. It is further assumed in general that
a symbiont can inhabit at most one host. This is the so-called one-host-per-symbiont assumption
[68]. This latter in particular makes the problem mathematically simpler and is widely adopted
even though it is biologically wrong. Indeed, there exist numerous cases of multiple species,
pathogen or not, infecting a same host. Two examples of such are provided for instance in
[12]. The first concern HIV viruses, more particularly HIV-1 and HIV-2 and their evolutionary
relationship with humans. HIV is a human virus that causes failure of the immune system. One
of the questions that had been addressed by the authors and by others was whether this virus
had been recently acquired from monkeys or if the human species were hosting the virus since a
much longer time. The second example concerns malaria parasites which include Plasmodium and
related genera. Malaria is a disease present in different animals including humans. Perkins and
Schall [61] found that the four types of parasites that cause malaria in humans are polyphyletic,
which means that they do not share an immediate common ancestor. The question here was if
humans acquired the parasite from monkeys or the opposite.

In both cases, what Charleston and Perkins argued [12] is that the results obtained and the
conclusions that were then reached depend strongly on whether the two assumptions above –
i.e. that the trees given as input are correct and that each symbiont is associated to at most one
host – are correct.

These two examples make us understand the importance of trying to address such problems,
or in the case of possible errors in the input, of trying to evaluate its potential impact on the
results obtained. These are the main aims of this thesis.

Before we introduce more in detail each of the above problems in turn (in Sections 1.4.1 and
1.4.2), we provide a few basic concepts below on phylogeny (Section 1.2) and on cophylogeny
(Section 1.3) that will be important to understand the remaining of the thesis.

1.2 Phylogeny

A phylogenetic tree is a directed graph with labelled leaves that represents the lines of evolu-
tionary descent between the taxonomic groups of different organisms. The leaves represent the
current taxa, the internal vertices correspond to the inferred speciation events and the arcs of the
tree represent the life of a single species. Although a number of phylogenetic tree reconstruction
algorithms produce unrooted trees [52, 70, 76], most provide phylogenetic trees that are rooted,
where the root is the common ancestor of all the species in the tree. In this case, a direction is
thus intrinsically assumed that corresponds to the one of increasing evolutionary time. Rooting
of the tree is in general obtained using the so-called outgroup method. A correct indication of
the root position therefore strongly depends on the availability of a proper outgroup [29, 63, 73].
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1.2.1 Basic Definitions

In this work, we will consider always rooted trees. The inner vertices of such trees have in-degree
1 and out-degree 2 (except for the root that has in-degree 0), while the leaf vertices have in
degree 1 and out-degree 0.

Given a tree T , the set of its vertices will be denoted by V (T ), the set of its arcs by A(T ),
and the set of its labelled leaves by L(T ). The root of T is denoted by r(T ). Given an arc
a = (v, w) ∈ A(T ) going from vertex v to vertex w, we denote the head of a by h(a) and its
tail by t(a). We thus have that v = t(a) and w = h(a). In terms of evolutionary relationship, v
is the parent of w. We denote this by v = par(w). The only vertex without parent is the root
r(T ). We assume that a parent and its children do not coexist, meaning that enough time has
passed between the two to distinguish them.

Given a vertex v ∈ V (T ), we denote by Tv the subtree of T rooted at v (including v). We
define the set of descendants of v, denoted by Des(v), as the set of vertices in Tv. Similarly, the
set of ancestors of v, denoted by Anc(v), is the set of vertices in the unique path from the root
of T to v (including the end-points). We denote by lrca(v, w) the last recent common ancestor
of v and w in T . We denote by ≥ the partial order induced by the ancestry relation in the
tree. Formally, for x, y ∈ V (T ), we say that x ≥ y if x ∈ Anc(y). If neither x ∈ Anc(y) nor
y ∈ Anc(x), the vertices are said to be incomparable. All operations that may be performed on
phylogenetic trees are followed by a cleaning of the vertices of out-degree 1 if any were created
(see Figure 1.3) in order to obtain once again a phylogenetic tree.

Figure 1.3: Example of an operation of cleaning a phylogenetic tree. Given such a tree, suppose
we want to eliminate leaf b. In a second step, we then need to clean the phylogenetic tree, taking
out the vertex v1 that is of out-degree 1. At the end, we obtain a cleaned phylogenetic tree.

1.2.2 Rooting a Phylogenetic Tree

Phylogenetic methods reconstruct trees using as information the differences observed between
taxa, but often they cannot orient the trees. This is why many phylogenetic tree reconstruction
algorithms produce unrooted trees [52, 70, 76]. In this case, there are as many potential roots
as the number of the arcs in the tree (see an example in Figure 1.4).

There are different methods to orient two phylogenetic trees. We indicate two of the main
ones below:

• Midpoint rooting. This approach is used when all the species are believed to have evolved
at the same velocity (this is called the molecular clock hypothesis). The evolutionary
distance between each leaf and the root is therefore the same. The root is then positioned
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in the tree equidistantly from all the leaves. The midpoint rooting works well if the tree
is balanced with a long branch in the middle separating the groups of organisms. The
main problem with midpoint rooting is that it is very susceptible to large deviations from
a constant evolutionary rate, notably when these are not balanced. The rooting can also
be wrong when it places the root amongst a dense set of short branches. In this case, a
small deviation will place the root on the wrong branch.

• Outgroup rooting. This is the most widely used method. Here a species (or set of species),
exterior to those analysed, is included in the input. The root is positioned at the vertex
that binds the outgroup to the studied tree. The main problem with outgroup rooting is
that it is very sensitive to the choice of the outgroup as a distant one can lead to a wrong
positioning of the root.

Figure 1.4: All possible roots for an unrooted phylogenetic tree. On the right, all the rooted trees
obtained from the left unrooted phylogenetic tree. Tree 1 is obtained by placing the root in the arc 1
of the unrooted phylogenetic tree. The same for all the other rooted trees, leading to 7 possible rooted
phylogenetic trees.

1.2.3 Dated and Undated Trees - Timing information

Estimating the timescales for a phylogenetic tree can be important to understand the evolutionary
history of species. Using molecular clocks to estimate divergence dates depends on other methods
of dating that most often rely on molecular data. In this case, the length of an arc in a tree
represents the rate at which a stretch of DNA changes. The molecular clock hypothesis asserts
that, over time and among different organisms, DNA and protein sequences evolve at a rate that
is relatively constant. A direct consequence of this is that the difference observed between two
species is proportional to the time since these species shared a common ancestor. This hypothesis
is in particular used to study organisms that have left few fossil traces in their biological history,
as is the case of viruses.

In many phylogenetic trees, timing information is not available. The trees are thus undated
and any time information is given by the topology only. The ancestor species is the root and
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the leaves are those species that live on earth today. It is assumed that an ancestor and its
descendants cannot coexist. However, two incomparable vertices may have coexisted.

In this Ph.D., we will work with trees that are rooted and are undated.

1.3 Cophylogeny
Phylogenetic trees can be used to study the evolutionary history between two sets of species,
in what is known under the name of cophylogeny. In this case, we need two trees (more may
also be considered) and must also know the associations between the leaves, that is, we must
have as additional information which present-day symbiont has a close and long term interaction
(parasitic, mutualistic, commensalist, amensalist) with which present-day host (in the case of
endosymbiosis, inhabits the host).

The corresponding dataset will be denoted by the triple (H,S, φ) where H is the host tree,
S is the symbiont tree and phi is a function which indicates the association between the leaves
of the host tree and the leaves of the symbiont tree. An example is given in Figure 1.5. In this
model, the one-host-per-symbiont assumption is made, meaning that each present-day symbiont
is associated to one and only one present-day host. A host on the other hand can have more
than one symbiont associated to it.

Figure 1.5: Example of a cophylogeny dataset (H,S, φ), with the host tree H at the right, the symbiont
tree S at the left and the blue arrows representing the associations between the leaves of the two trees.

Cophylogeny may be addressed in different ways, we briefly mention two main approaches
that were used in the literature before entering more in detail into the reconciliation method
which is the one we adopted in this work.

1.3.1 Comparison, or Congruence Test Method

In earlier studies of coevolution, the objective was to just evaluate whether two sets of species
could be said to have coevolved, not to infer the ancestral associations from present-day ones.
Most such methods therefore performed what was called a congruence test. Such studies thus
relied on the assumption that two sets of species have coevolved if their trees are measured as
being “congruent enough”, meaning topologically “similar enough”. If hosts and symbionts often
speciated at the same time, some dependence between these two species could be assumed. The
notion of congruent phylogenies thus implies a high number of cospeciations, while incongruence
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implies host switching [8]. Many tests of tree congruence have been proposed in the literature
[14, 15, 30, 32, 44]. In most, the main idea is to fit a host and a symbiont tree together by
maximising the number of cospeciations. Even though this method is easily applicable, it cannot
say anything about events other than cospeciation.

1.3.2 Brooks Parsimony Analysis

One of the earliest methods that attempted to go further than a congruence test was the so-
called Brooks Parsimony Analysis (BPA for short) developed by Brooks and McLennan [8]. The
method takes two phylogenetic trees as input, each corresponding to a set of species, and uses a
parsimonious analysis to reconstruct the coevolutionary relationships between the two sets. Each
leaf of a phylogenetic tree (of the host or of the symbiont) is coded, using binary characters, in
a manner that indicates non only the identity of the species, but also the common ancestors of
each species. This code is then represented in a binary cost matrix which is optimised on the
other tree. The results of BPA can be interpreted a posteriori in terms of events but it has
proved difficult to properly formalise this translation. It is important to note that this analysis
is not based on a model with associated event-cost assignments.

1.3.3 Reconciliation Model

A more widely used model for studying the evolutionary history of two sets of species has been
called phylogenetic tree reconciliation [9, 10, 49, 55].

The main idea of such model is, given a triple, (H,S, φ) to find a reconciliation λ that
associates each vertex of the symbiont tree S to a vertex of the host tree H. The function λ

must be an extension of the function φ that associates each leaf lS ∈ L(S) of the symbiont tree
to a leaf lH ∈ L(H) of the host tree.

Thanks to this λ function, it is then possible to unambiguously identify a series of events
that explain the coevolution of the two sets of organisms [37].

Four major macro-evolutionary events are in general considered in the literature: a) cospe-
ciation, when the divergence of a symbiont is in correspondence to the divergence of a host; (b)
duplication, when the divergence of a symbiont is independent of the divergence of a host; (c)
host switch, when after a divergence of the symbiont, one symbiont jumps from one host species
to another that is incomparable with the first; and (d) loss, which can describe three different and
undistinguishable situations: (i) when the divergence of the host is independent of the divergence
of a symbiont, which then follows just one of the new host species due to factors such as, for
instance, geographical isolation; (ii) when there is a cospeciation of host and symbiont, followed
by the extinction of one of the new symbiont species, and (iii) when there is a cospeciation of
host and symbiont, with failure to detect the symbiont in one of the two new host species [9, 10].
These events are depicted in Figure 1.6.

A cost is associated with each of the four types and the best reconciliation (the optimal one)
is chosen according to a parsimony model [55]. The final objective is to find the λ function
associating the vertices of the symbiont tree to the vertices of the host tree which has minimum
total cost.

Biologically, in a host switch event, a symbiont can only jump from one host species to another
that is contemporaneous to the first. If timing information (i.e. the order in which the speciation
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Figure 1.6: Example of reconciliation. The tube represents the host tree and the dotted lines
represent the symbiont tree.

events occurred along the host phylogeny) is not available, some reconciliations proposed may
be biologically impossible in the sense that some of the switches induce a contradictory time
ordering for the internal vertices of the host tree.

An example is given in Figure 1.7B where a cycle is present. We have here two host switches,
one involving a symbiont and another one involving of its descendants, where the latter jumps to
a host that is an ancestor of the host to which the former jumped. This is biologically unfeasible
because it is assumed that an ancestor and a descendant cannot coexist.

We will henceforth call a reconciliation without cycles (as in Figure 1.7A), a time feasible
reconciliation and one with cycles (as in Figure 1.7B) a time unfeasible reconciliation. In reality,
things are slightly more complicated than this, as indicated in [74].

If timing information is not known, as is usually the case, the problem of reconciling two
phylogenetic trees is NP-hard [54, 80]. A way to deal with this is to allow for solutions that may
be biologically unfeasible, that is for solutions where some of the switches induce a contradictory
time ordering for the internal vertices of the host tree. In this case, the problem can be solved
in polynomial time [4, 18, 20, 50, 74]. In most situations, as shown in [18], among the many
optimal solutions, at least some will be time-feasible.

Another option is to rely on heuristics [13], that is on approaches that are not guaranteed to
be optimal.

In both cases, providing a single optimal solution is not a good option as it may either be
not optimal among those that are time-feasible, or it may be biologically unfeasible. Observe
however that this is what the majority of the existing reconciliation algorithms do.

Moreover, the common evolutionary history of the hosts and of the symbionts is only partially
captured by the reconciliation model. The most desirable solution may thus depend on biological
quality criteria that are not taken into consideration in the model. Indeed, it is frequent that
given a host and a symbiont tree, there may be many optimal solutions which, although having
the same total cost, can be quite different among them (i.e. can correspond to a different set of
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events). For all these reasons, it is better not to rely on only one optimal solution and instead
to output all solutions. Once such a list of candidates is generated, one can then rely on more
sophisticated biological criteria to choose among or to classify them. Enumeration, also called
listing algorithms are therefore of particular interest.

Figure 1.7: Two examples of reconciliation. The tube represents the host tree and the dotted
line represents the symbiont tree. The dotted arrows represent a symbiont that jump to from an
host to an other. (A) Example of time feasible reconciliation. (B) Example of time unfeasible
reconciliation, in this case a cycle is present.

Notice that, in the context of gene-species associations, the reconciliation model presented
here is known as the DTL (for “Duplication, Transfer, and Loss”) model and has been extensively
studied (see, for example, [4, 19, 27, 75, 80]).

1.3.4 Enumeration Algorithm

It is important to observe that the complexity of enumeration algorithms is different from tra-
ditional complexity theory as usually the number of solutions is exponential. It is therefore
meaningless to measure efficiency by a polynomial running time in the input size ignoring the
output size.

New notions of efficiency have thus been developed for enumeration problems. Examples
are provided by Johnson et al. in [41]. For instance, an enumeration algorithm is said to be
polynomial delay if the time between the output of any one solution and the next one is bounded
by a polynomial function of the input size [41]. Eucalypt (which will be introduced below and
then more in detail in Chapter 2) is such a polynomial delay algorithm, that, given a cost model
for the events, generates all the optimal solutions for the reconciliation problem [18]. Observe
that in order to guarantee such polynomial delay, the optimal solutions are enumerated without
requiring that the reconciliations are time-feasible. This is because even producing one optimal
time-feasible solution may take exponential time as mentioned before [54, 80]. A post-processing
of the solutions obtained may be done to filter out for unfeasible solutions.

Other methods that generate more than one solution include CoRe-Pa [50], Mowgli [20],
Jane 4 [13], Notung [75], Ranger-DTL [4] and ecceTERA [39]. For a survey on the
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different features each method presents, and their possible limitations, see e.g. [18, 39]. More
recent methods, namely CoRe-ILP [87] and ILPEACE (see the arXiv file at: https://arxiv.
org/abs/1410.7004), find optimal solutions using integer linear programming.

Among the above methods, three have been recently extended and one newly developed to
address the problem in the case where the input datasets include symbionts that are associated
to more than one host. These methods are CoRe-Pa [50], Jane 4 [13], and WiSPA (see the
arXiv file at: https://arxiv.org/abs/1603.09415). CoRe-Pa solves the multiple associations
locally, by starting from the leaves that are already mapped and choosing for a parent vertex
the unique associations of its children that give the best cost. Jane 4 uses a heuristic approach
based on a genetic algorithm to recover the best solutions. Finally, WiSPA is a new model for
reconciling trees where the symbionts are permitted to be associated with more than one host
that includes additional evolutionary events, which the authors call spread events.

Considering spread events, or spreads for short, as in WiSPA was one of the objectives of
this Ph.D. The term of spread was first used (to the best of our knowledge) by Brooks and
McLennan in [8].

Before explaining what was done on this question, I briefly introduce below a method, Eu-
calypt, previously developed in the team where I did my Ph.D that was used in the work that
I did.

Eucalypt (EnUmerator of Co-evolutionary Associations in PolYnomial-Time delay) is an
algorithm that, given a triple (H,S, φ) and a vector of costs 〈cc, cd, cs, cl〉, generates all reconcil-
iations with minimum cost (both time-feasible and time-unfeasible) [17].

Eucalypt adopts, as in [4], a dynamic programming approach to enumerate all optimal
reconciliations. This uses a matrix D of dimension m by n where m is the number of symbionts
and n the number of hosts. Each cell c = D(s, h) of the matrix D indicates the cost of an optimal
reconciliation that maps s to h. The complexity to find one optimal solution is O(nm). A pseudo-
code for finding the cost of one optimal reconciliation is given in Algorithm 1 in Appendix A.
Actually two matrices are used. The first corresponds to D. The second, denoted by DST and
of size also m by n, contains the optimal solutions of the subtrees. Formally, DST (s, h) indicates
the cost of an optimal solution with s mapped to some vertex i in the host subtree rooted in h.

In the case where we want to enumerate all solutions, each cell c = D(s, h) of D must contain
a list of O(n2) pointers, one to each of the mappings of the children s1 and s2 of s having led to
the cost of an optimal sub-solution that mapped s to h. Each list has in the worst case a size of
n2, meaning that the total space required becomes O(n3m).

Figure 1.8 (left side) shows the representation of a cell c = D(s, h). In Figure 1.8 (right
side), the information is visualised in the form of a local tree, with a parent vertex c as the root
which corresponds to the mapping of vertex s in the symbiont tree to vertex h in the host tree
(denoted in Figure 1.8 by s : h) and one child for each alternative mapping solution (denoted
in the figure by rectangle vertices). Each alternative mapping solution corresponds to a pair of
pointers that have optimal cost (denoted in Figure 1.8 by circle vertices). Accordingly, these
vertices correspond to other cells of the matrix D which contain a similar local tree.

Finally, a time-feasibility test, following the approach used in [75], was implemented in Eu-
calypt to enumerate only time-feasible reconciliations. It has a time complexity of O(n2).

To enumerate all the optimal reconciliations, a pseudo-code is given in Algorithm 2 in Ap-
pendix A. A stack M is used to select which sub-solutions to add to the reconciliation that is
currently being built. This stack is filled with couples of the form 〈cell, index〉. The function
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M(cell) returns, in constant time, the couple 〈cell, index〉 at the top of M , if M is not empty.

Figure 1.8: Representation of the content of the cell c = D(s, h) in the dynamic programming
matrix D: Suppose the cell is related to the association s : h and let s1, s2 be the two children of
s. One single cell-root vertex is created to represent the association s : h. This association has a
local minimum cost that can be obtained in different ways, meaning by this, choosing different
associations for s1 and s2. Each equivalent alternative is represented by a vertex (squared vertex
in the picture). The number of alternatives is variable. Each squared vertex has exactly two
children corresponding to the associations of s1 and s2 respectively (circle vertices in the picture)

1.3.5 Cost Inference Problem

Another crucial issue related to the parsimonious framework is that, from a biological point
of view, reasonable cost values for a reconciliation are not easy to establish. Some approaches
[11, 45] attempt to choose the costs of the events by adopting some minimisation constraints.
Others, such as CoRe-Pa [50], propose to find cost minimal reconstructions using a parameter
adaptive approach. The space of cost vectors is explored either by sampling such vectors at
random assuming a uniform distribution model or by using more sophisticated approaches. In
both cases, no costs have to be assigned in advance to the coevolutionary events. The method
instead seeks for the optimal reconstruction in which the used costs are inversely related to the
relative frequency of the corresponding events.

As indicated in [67], if each event is associated with a cost that is inversely related to its
likelihood (the more likely is the event, the smaller is its cost), then the most parsimonious
reconstruction will also, in some sense, be the most likely explanation of the observed data.

Likelihood-based approaches are on the other hand sometimes preferred to parsimony-based
methods. A number of works have been done along these lines, for instance in [31, 32]. However
in [32], the authors tested restricted hypotheses and mainly focused on the congruence between
the trees, while in [31] the authors excluded duplications and tended to over-estimate the number
of host switches. In [77] instead, all four types of events are considered, but the method was
developed with the objective of inferring reconciled gene trees from a species tree (see also [78]).
The aim is similar in [2] but the type of approach is different and the model again incomplete
as in [31], this time not allowing for host switches. The Monte Carlo Markov chain approach
adopted in [31, 77] moreover presents the inconvenience of being computationally intensive.
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In the teams where this Ph.D. was done, an algorithm called Coala (for “CO-evolution As-
sessment by a Likelihood-free Approach”) was then introduced to deal with the problem of cost
inference [5]. For a given pair of host and symbiont trees, Coala estimates the frequency of
the events based on an approximate Bayesian computation (ABC for short) approach. Indeed,
in complex models where the likelihood calculation is often unfeasible or computationally pro-
hibitive, classical Monte Carlo methods and their variants are being replaced by ABC, a set of
more efficient statistical techniques [7].

In [5], starting with a probability distribution associated with the events, Coala simulates
accordingly the temporal evolution of a set of species (the symbionts) following the evolution of
another set (the hosts) for which a phylogenetic tree is already available. During an evolution
simulation, Coala thus generates symbiont trees which are compared to the “known” symbiont
tree. The set of probabilities that generates trees “closer” to the real one are in some sense the
most likely explanation of the observed data. The approach thus consists in selecting parameter
values (i.e. event probabilities) giving rise to symbiont trees that are “similar” to the known one.
In this way, starting from a prior distribution on the parameter values, the approximate poste-
rior probability for the events that best explains the observed data is deduced. The algorithm
proposed, on one hand provides some confidence in the set of costs to be used for a given pair
of host and symbiont trees, while on the other hand it allows to estimate the frequency of the
events in cases where the dataset consists of trees with a large number of taxa.

Coala includes two main parts: the first (corresponding to Algorithm 1 below) simulates
the evolutionary history of symbionts while the second (Algorithm 2) uses ABC in order to select
the most probable frequency of the four events: cospeciation, duplication, host switch and loss.

Given a host tree H and a vector of four probabilities θ = 〈pc, pd, ps, pl〉, a simulated tree S̃

is created using Algorithm 1 explained below. Using a distance between S̃ and S, it is possible
to compare the simulated symbiont tree to the real one. The more similar are the two trees in
terms of size and of topology, the lower will be the distance. At the end, the best vector θ is the
one that creates a simulated tree S̃ that is most similar to the real tree S.
Algorithm 1: Simulation of the evolutionary history of the symbionts. The parameter
vector of the model is composed of the probabilities of each one of the four events: cospeciation,
duplication, host switch and loss. We thus have that θ stands for a vector of four probabilities
〈pc, pd, ps, pl〉. Following the topology of H and the vector θ, a simulated symbiont tree S̃ is
created. At the same time as the simulation of S̃, a function λ that associates each vertex of S̃
to a vertex of H is created. If a host vertex does not match any symbiont vertex, we have a loss
event. For this reason, θ is constrained such that pc + pd + ps + pl = 1.
Algorithm 2: Approximate Bayesian Computation – Sequential Monte Carlo proce-
dure (ABC-SMC). In this case, N vectors in the space [0, 1]3 are randomly chosen under some
prior distribution (usually uniform). The two main steps of the Algorithm 2 consist in:

Step 1 For each vector θ, Algorithm 1 is used to generate M simulated trees S̃. A distance
value, obtained computing the difference between S and S̃, is associated to each parameter
vector. The vectors are then ordered respecting the distance value, in ascending order. The
choice of the best vectors is made by taking into account two values which are:

• Tolerance: This value determines the percentage of parameter vectors to be accepted.
If for instance, the tolerance value is 0.2, then 20% of the vectors with lower distance
will be accepted.
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• Threshold: This corresponds to the largest value of the summary statistics associated
with the accepted parameter vectors.

Step 2 Only the best vectors previously selected are used in this step, and are perturbed. The
perturbation is performed by adding to each coordinate of the vector a randomly chosen
value in the interval [−0.01,+0.01] and by doing a normalisation. A new distance value is
calculated for the perturbed vector. If the new distance is lower than the threshold, the
perturbed vector is conserved.

The ABC-SMC procedure is composed of R > 1 rounds. For each of round, a tolerance value
is defined which determines the percentage of parameter vectors to be accepted.

The final set of accepted parameter vectors is the result of the ABC-SMC procedure and
characterises the list of vectors that may explain the evolution of the pair of host and symbiont
trees given as input. Observe that, since in all experiments a uniform prior distribution is
assumed and also the perturbations are performed in a uniform way, the weights induced by the
proposals will also appear to be uniform [6]. However, in the case of a different prior, weights
should be used in the process in order to correct the posterior distribution according to the
perturbation made.

Very recently, Alcala et al. [1] developed a new ABC framework to infer the rates of host
switch and cospeciation. The authors indicate that their method allows to consider that a
symbiont may be associated to more than one host. This is called parasite speciation as a
generalist (Figure 1 in the paper). The ABC method itself resembles what was done in Coala.
The summary statistics used is not a metric between trees as in Coala but corresponds instead
to the summary classically adopted in ABC methods. The host and symbiont trees together with
the leaf associations are represented as a network and 32 ecological measures (such as modularity,
connectivity, etc.) are used for such summary to compare the simulated networks to the real
one.

1.4 Questions Addressed in this Ph.D.
The topic of my Ph.D. was the development of models and algorithms to study the evolutionary
history between hosts and symbionts. The main goal was to refine the existent reconciliation
models and to make them more realistic. To this purpose, it was important to introduce some
events that were little or not formally considered in the literature. One of them is the spread,
which corresponds to the invasion of different hosts by a same symbiont [8]. In this case, as
when spreads are not considered, the optimal reconciliations obtained will depend on the choice
made for the costs of the events. The need to develop statistical methods to assign the most
appropriate ones therefore remains of actuality.

Before considering such extended models however, one may question the robustness of any
adopted method for, given a model, find all optimal reconciliations, under editing or small
perturbations of the input or when some types of errors may be present in the input.

This Ph.D focused on these two aspects starting with the second:

• Robustness of the model: The objective here was to understand the strengths and weak-
nesses of the parsimonious model, and how the final results may be influenced when small
errors are present, or are introduced in the input datasets. This may correspond either to
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a wrong choice of present-day symbiont-host association in the case where multiple ones
exist, or to small errors related to a wrong rooting of the symbiont tree.

• More realistic cophylogenetic model: The objective in this case was to consider spread
events that are observed in nature but that are not taken into account in most models, or
are done so in limited ways.

1.4.1 Robustness of the model

In Eucalypt, a parsimonious model is used. An important issue related to this is that it makes a
strong assumption on the input data which may not be verified in practice. The robustness of an
algorithm is its ability not to be affected by “small” changes in the input. We examine two cases
where this situation happens. The first is related to a limitation in most of the currently available
methods for tree reconciliation where the association φ of the leaves is in general required to be
a function. A leaf s of the symbiont tree can therefore be mapped to at most one leaf of the
host tree. This is clearly not realistic as a single symbiont species can infect more than one
host. We henceforth use the term multiple association to refer to this phenomenon. For each
present-day symbiont involved in a multiple association, one is thus often forced to choose a
single one. Clearly, this may have an influence on the solutions obtained.

The second case addresses a different type of problem related to the phylogenetic trees of
hosts and symbionts. These indeed are assumed to be correct, which may not be the case
already for the hosts even though these are in general eukaryotes for which relatively accurate
trees can be inferred, and can become really problematic for the symbionts which most often are
prokaryotes and can recombine among them [52, 73, 76]. We decided to deal for now with one
single type of error, that corresponds to the problem of correctly rooting a phylogenetic tree.
Many phylogenetic tree reconstruction algorithms in fact produce unrooted trees [52, 70, 76].
As we saw, the outgroup method is the most widely used in phylogenetic studies but a correct
indication of the root position strongly depends on the availability of a proper outgroup [29, 63,
73]. A wrong rooting of the trees given as input may lead to an incorrect output.

The goal of this study was, in the two cases, to explore the robustness of the parsimonious
tree reconciliation method under “editing" (multiple associations) or “small perturbations" of the
input (rooting problem). Notice that the first case is in general due to the fact that we are not
able for now to handle multiple associations, although there could also be errors present in the
association of the leaves that is given as input. The editing or perturbations we will be considering
involve, respectively: (a) making all possible choices of single symbiont-host leaf mapping in the
presence of multiple associations (we call this resolving the multiple associations into simple
ones), and (b) re-rooting of the symbiont tree. In both studies, we explore the influence of six
cost vectors that are commonly used in the literature (for a more detailed discussion, see for
e.g. [5, 10]).

This work is described in Chapter 2. It was initially presented in a paper [81] that was
accepted at the International Conference on Algorithms for Computational Biology (AlCoB 2016)
whose proceedings appeared in LNBI/LNCS. A full version of the paper is currently under
revision in IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB)
[82].
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1.4.2 More realistic cophylogeny model

Most often, the coevolutionary models considered in the literature address only cases where a
symbiont can be associated with at most one host, following the one-host-per-symbiont assump-
tion [68]. In nature, however, a same symbiont can be associated to different hosts.

In order to deal with this problem, we modified both the model and the algorithm used in
Coala [5]. In this case, the relation φ from L(S) to L(H) need no longer to be a function.
It can be one-to-many, or many-to-many and not only one-to-one or many-to-one. It may thus
be viewed as a bipartite network on the set L(S) ∪ L(H) and encoded as a binary adjacency
matrix φ with size |L(S)| × |L(H)|. In this matrix, the entry φsh is 1 whenever the symbiont s

is associated to the host h, and zero otherwise.
This required introducing the new event of spread. Two kinds of spreads are considered:

vertical and horizontal.
We recall that Coala includes two main steps, that were indicated above in Section 1.3.5.
We changed the first step to simulate the evolution of the symbiont, where the frequency of

the events (cospeciation, duplication, host switch and loss) are calculated (Figure 1.2 shows the
different events). At the beginning of this step, the probability of a vertical or of a horizontal
spread is calculated for each vertex of H. Thus pvert−spread (probability of a vertical spread) and
phor−spread (probability of a horizontal spread) are estimated based on the topology of H and
the association φ of the leaves. We changed also the second step, introducing a new distance
that we called MAS and denoted by dMAS to compare the simulated to the real symbiont trees
even in this case of multiple associations.

Figure 1.9: A tanglegram with a host-symbiont system including multiple associations. The host
tree is on the left, the symbiont tree on the right and the associations are represented with blue
arrows.

This work is described in Chapter 3. A paper is in preparation that will be submitted to a
journal before the end of 2017.
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Robustness of the Model
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2.1 Overview

A phylogenetic tree reconciliation makes strong assumptions on the input data which may not
be verified in practice. In this chapter, we examine two cases where this situation happens.

The first is related to a limitation in most of the currently available methods for tree recon-
ciliation where the association φ of the leaves is in general required to be a function. A leaf s of
the symbiont tree can therefore be mapped to at most one leaf of the host tree. This is clearly
not realistic as a single symbiont species can infect more than one host. We henceforth use the
term multiple association to refer to this phenomenon. For each present-day symbiont involved
in a multiple association, one is thus often forced to choose a single one. Clearly, this may have
an influence on the solutions obtained.

The second case addresses a different type of problem related to the phylogenetic trees of
hosts and symbionts. These indeed are assumed to be correct, which may not be the case
already for the hosts even though these are in general eukaryotes for which relatively accurate
trees can be inferred, and can become really problematic for the symbionts which most often are
prokaryotes and can recombine among them [52, 73, 76]. This is the problem of correctly rooting
a phylogenetic tree. Many phylogenetic tree reconstruction algorithms in fact produce unrooted
trees [52, 70, 76]. The outgroup method is the most widely used in phylogenetic studies but a
correct indication of the root position strongly depends on the availability of a proper outgroup
[29, 63, 73]. A wrong rooting of the trees given as input may lead to an incorrect output.

The organisation of the chapter is as follows. We start by introducing the datasets that will
be used, both real and simulated ones, as well as in the latter case the methods to generate them.
We also present a measure to compare sets of tree reconciliations which may be of independent
interest. We then describe the methods used to explore small perturbations in the two cases
considered here, and discuss the results obtained.

In what follows, a dataset is a pair of host and symbiont trees (H,S), together with the
association φ of the leaves of S to the leaves of H. The indexes c, d, s, l relate to the 4 different
events: cospeciation, duplication, host switch and loss, respectively [5, 10]. To analyse the
influence of a perturbation, we adopted a set of cost events that correspond to those most
commonly used in the literature on cophylogeny. We thus considered the following cost vectors
c = 〈cc, cd, cs, cl〉 ∈ C where

C = {〈−1, 1, 1, 1〉, 〈0, 1, 1, 1〉, 〈0, 1, 2, 1〉, 〈0, 2, 3, 1〉,
〈1, 1, 1, 1〉, 〈1, 1, 3, 1〉}.

The implemented methods are included in the software previously developed in the team, Eu-
calypt [18], that is available at this web page: http://eucalypt.gforge.inria.fr/.

2.2 Material

2.2.1 Biological Datasets

To test the robustness of the method, we selected 28 biological datasets from the literature:
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AP - Acacia & Pseudomyrmex. This dataset was extracted from the work of Gómez-Acevedo
et al. [24]. The host tree includes 9 leaves and the symbiont tree includes 7 leaves.

AS - Aves & Syringophilopsis. This dataset was extracted from the work of Hendricks et al.
[28]. The host tree includes 19 leaves and the symbiont tree includes 16 leaves.

AW - Arthropod & Wolbachia. This dataset was extracted from the work of Simões et al.
[71, 72] and is composed of a pair of host and symbiont trees which have each 12 leaves.

CA - Carex & Anthracoidea. This dataset was extracted from the work of Escudero [22].
The host tree includes 41 leaves and the symbiont tree includes 30 leaves.

CP - Cichlidae & Platyhelminthes. This dataset was extracted from the work of Mendlová
et al. [48]. The host tree includes 6 leaves and the symbiont tree includes 29 leaves.

CT - Cichlidogyrus & Tropheini. This dataset was extracted from the work of Vanhove et
al. [83]. The host tree includes 19 leaves and the symbiont tree includes 28 leaves.

EC - Encyrtidae & Coccidae. This dataset was extracted from the work of Deng et al. [16].
The host tree includes 7 leaves and the symbiont tree includes 10 leaves.

FA - Ficus & Agaonidae. This dataset was extracted from the work of McLeish and Van
Noort [47]. The host tree includes 7 leaves and the symbiont tree includes 8 leaves.

FD - Fishes and Dactylogyrus. This dataset was extracted from the work of Juan et al. [3].
The host tree includes 20 leaves and the symbiont tree includes 50 leaves.

FE - Formicidae & Eucharitidae. This dataset was extracted from the work of Murray et
al. [51]. The host tree includes 4 leaves and the symbiont tree includes 5 leaves.

GL - Gopher & Lice. This dataset was extracted from the work of Hafner and Nadler [26].
The host tree includes 8 leaves and the symbiont tree includes 10 leaves.

GM - Goodeinae & Margotrema. This dataset was extracted from the work of Martinez et
al. [46] and is composed of a pair of host and symbiont trees which have each 14 leaves.

IFL - Insect & Flavobacterial endosymbionts. This dataset was extracted from the work of
Rosenblueth et al. [69] and is composed of a pair of host and symbiont trees which have each 17
leaves.

MF - Mycocepurus smithii & Fungi. This dataset was extracted from the work of Kellner et
al. [42]. The host tree includes 11 leaves and the symbiont tree includes 9 leaves.

MP - Myrmica & Phengaris. This dataset was extracted from the work of Jansen et al. [40]
and is composed of a pair of host and symbiont trees which have each 8 leaves.

PML - Pelican & Lice ML. This dataset was extracted from the work of Hughes et al. [34]
and is composed of a pair of host and symbiont trees which have each 18 leaves. The trees here
were generated through a maximum likelihood approach.

PMP - Pelican & Lice MP. This dataset was extracted from the work of Hughes et al. [34]
and is composed of a pair of host and symbiont trees which have each 18 leaves. The trees here
were generated through a maximum parsimony approach.

PP - Primates & Pinworms. This dataset was extracted from the work of Hugot [35]. The
host tree includes 36 species and the symbiont tree includes 40 leaves.

RH - Rodents & Hantaviruses. This dataset was extracted from the work of Ramsden et al.
[64]. The host tree includes 34 leaves and the symbiont tree includes 42 leaves.

RM - Ramphastidae & Mallophaga. This dataset was extracted from the work of Weckstein
[85]. The host tree includes 11 leaves and the symbiont tree includes 5 leaves.

RP - Rodents & Pinworms. This dataset was extracted from the work of Hugot [36] and is
composed of a pair of host and symbiont trees which have each 13 leaves.
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SBL - Seabirds & Lice, This dataset was extracted from the work of Paterson et al. [57].
The host tree includes 15 leaves and the symbiont tree includes 8 leaves.

SC - Seabirds & Chewing Lice. This dataset was extracted from the work of Paterson et al.
[60]. The host tree includes 11 leaves and the symbiont tree includes 14 leaves.

SFC - Smut Fungi & Caryophillaceus plants. This dataset was extracted from the work of
Refregier et al. [65]. The host tree includes 15 leaves and the symbiont tree includes 16 leaves.

SHA - Sigmodontinae Hantavirus & Arenaviridae. This dataset was extracted from the work
of Jackson and Charleston [38]. The host tree includes 14 leaves and the symbiont tree includes
16 leaves.

SSA - Sigmodontinae Spumavirus & Arenaviridae. This dataset was extracted from the
work of Jackson and Charleston [38] and is composed of a pair of host and symbiont trees which
have each 10 leaves.

TC - Teleostei & Copepods. This dataset was extracted from the work of Paterson and Poulin
[58]. The host tree includes 8 leaves and the symbiont tree includes 9 leaves.

TD - Tephritidae & Bacteria. This dataset was extracted from the work of Viale et al. [84].
The host tree includes 26 leaves and the symbiont tree includes 22 leaves.

The choice of these datasets was dictated by: (1) the availability of the data in public
databases, and (2) the desire to cover for situations as widely different as possible in terms of
the topology of the trees and the presence of multiple associations.

We call attention here to the fact that only 15 of these datasets present multiple associations
(namely AP, AS, CA, CP, FA, FE, GM, MF, MP, RM, SBL, SFC, SHA, TC, TD) and are the
ones used to study the robustness of the method in the case of multiple associations.

Let us recall that whenever a symbiont inhabits more than one host, we have multiple asso-
ciations. For a leaf s ∈ L(S) (where L(S) is the set of leaves of the symbiont tree S), we denote
by φ(s) the set of host leaves to which it is associated.

Given a dataset (H,S,φ), the number of multiple associations M for the dataset is:

M(H,S, φ) =
∑

s∈L(S) |φ(s)| − 1. (2.1)

Table 2.1 shows the number of multiple associations in the datasets where it is non null.

Figure 2.1 shows the multiple associations for the MP dataset. MP has five symbiont leaves
s ∈ L(S) with multiple associations {Phengaris_atroguttata,rebeli,alcon,nausithous,teleius}. If
we apply Equation 2.1, the value of M is 8. For example, the symbiont leaf Phengaris_atroguttata
is associated to the host leaves formosae and arisana, and φ(Phengaris_atroguttata) = {formosae, arisana}.
There are therefore 2 simple association or 1 multiple associations for Phengaris_atroguttata.

Table 2.1: List of datasets exhibiting multiple associations, the number M(H,S, φ) of such multiple
associations as in Equation 2.1 and the ratio (in percentage) of this number to the number of host leaves.

Dataset AP AS CA CP FA FE GM MF MP RM SBL SFC SHA TC TD
M(H,S, φ) 22 4 11 5 2 3 5 12 8 6 15 4 1 1 4

M/|L(H)| (%) 244 21 27 83 29 75 36 109 100 55 94 27 7 13 15
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Figure 2.1: Dataset MP. Figure obtained with TreeMap 3 (https://sites.google.com/site/
cophylogeny/treemap/using-treemap). In blue the host tree, in yellow the symbiont tree, in grey the
associations between leaves. The red circles show the symbiont leaves that have multiple associations.
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2.2.2 Simulated Datasets for Multiple Associations

To study the multiple associations, we generated simulated datasets with a variable amount
of multiple associations, using a method developed by Drinkwater et al. [21]. The simulated
datasets were generated using the 15 biological datasets that present multiple associations as
follows.

For each of them, we simulated a number of multiple associations, as defined in 2.1, equal
to x% of the total number of host tree leaves, with x ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50}. We
thus constructed 9 simulated datasets per original real dataset, by adding or removing multiple
associations and keeping the host and symbiont trees fixed. More precisely, consider a dataset
D with M multiple associations and an integer M∗ (equal to the integer part of x%|L(H)|).
Whenever M∗ > M , we randomly choose M∗ − M different pairs 〈s, h〉 ∈ L(S) × L(H) such
that we do not already have h ∈ φ(s) and we associate them (i.e. h ∈ φ(s)). If M∗ < M , we
randomly choose M −M∗ different pairs 〈s, h〉 ∈ L(S)×L(H), for which h ∈ φ(s) and |φ(s)| ≥ 2

and delete their association.

For each real dataset D, we denote by Dx% the dataset simulated from D with x% of multiple
associations.

2.2.3 Simulated Datasets for Re-Rooting a Symbiont Tree

To study the re-rooting, we generated simulated datasets using a method that we previously
developed, called Coala [5], and the 28 biological datasets as follows.

For any such dataset, Coala first estimates the corresponding probability of each coevo-
lutionary event (cospeciation, duplication, switch and loss) based on an approximate Bayesian
computation (ABC) approach. As we needed the datasets to be as realistic as possible, each time
we ran Coala to obtain 50 vectors of probabilities γ = 〈γc, γd, γs, γl〉 that are in some sense a
likely explanation of the observed data.

In a second step, we used these vectors and the symbiont tree generation algorithm in Coala
(see Baudet et al. [5] for more details) to obtain, for each vector γ, a simulated symbiont tree
S′ whose evolution follows that of the host tree H (under the parameter value γ). Each dataset
(H,S, φ) and probability vector γ thus led to a simulated dataset (H,S′, φ′). In total, we created
28 × 50 = 1400 such datasets. For each real dataset D, we denote by D-sim the 50 simulated
datasets ( generated using the parameter estimated on D).

2.3 Methods

2.3.1 Generating All the Optimal Solutions

We used Eucalypt [18], which for a given dataset (H,S, φ) and a vector c = 〈cc, cd, cs, cl〉
specifying the costs of the events, generates all the optimal reconciliations in polynomial-delay,
meaning that the computation time between two outputs is polynomial in the input size. Only
time-feasible reconciliations are retained.
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2.3.2 Choosing Among Multiple Associations

Fifteen of the real datasets we selected present multiple associations. For each dataset D =

(H,S, φ), we considered all the datasets that can be obtained by resolving the multiple associa-
tions in all the possible ways. More precisely, for each symbiont associated with more than one
host, we chose one and only one of the possible associations, and we did this in all the possible
ways. In the end, we have a set of datasets {D1, ..., Dt} with simple associations (an example is
shown in Figure 2.2). For instance, in the SBL dataset, 5 of the 8 leaves of the symbiont tree
have multiple associations, each connected to 2, 2, 4, 5, and 7 leaves of the host tree respectively
Figure B.1 in the Appendix B. By choosing in all possible ways among the multiple associations,
we thus obtain 560 datasets.

Figure 2.2: On the left, a dataset with multiple associations. There are three multiple associations. On
the right, the datasets obtained by resolving multiple associations in all possible ways.

2.3.3 Re-Rooting of the Symbiont Tree

Most phylogenetic reconstruction algorithms produce unrooted trees, or rooted ones that have
an unreliable root [29]. Rooting a phylogenetic tree is especially challenging for fast-evolving
organisms. We therefore studied the influence on the optimal tree reconciliation of an erroneous
rooting of the symbiont tree. More precisely, given a host tree H and a symbiont tree S, the
association of their leaves φ, and a cost vector c, we compute in a first step all the optimal
reconciliations for the pair H,S′ where S′ is obtained by positioning the root of S in an edge of
S. With these re-rooted trees, we explore the plateau property (see below).

In a second step, we want to study the robustness from a slightly different perspective, taking
into account the distance from the new root to the original one. We then focus on the subset
of re-rooted datasets, where the root is positioned in an edge of S at distance at most k to the
original root. More precisely, given a dataset (H,S, φ), let k = max(5%|V (S)|, 3). We focus on
the optimal reconciliations for the pair H,S′ where S′ is obtained from S by positioning the root
of S in an edge (x, y) ∈ E(S) at a distance exactly k from the root, the latter being defined
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as the minimum distance between the vertex and the edge endpoints. The variable k captures
the “closeness” of the new root to the original one. In Figure 2.3, an example is shown of the
re-rooting of a given dataset. We have on the left a host tree H and a symbiont tree S with 5
leaves; in this case k = 3. We create all possible datasets obtained with the different root (shown
on the right-hand side).

Figure 2.3: On the left, the host and symbiont trees. On the right, some of the re-rooted symbiont trees.

2.3.4 The Plateau Property

Intuitively, one would expect that the correct positioning of the root would correspond to the
reconciliation(s) having the minimum cost among all the ones that could be obtained by other
rootings. This is indeed motivated by the same parsimony principle as for the tree reconciliation
itself. Although slightly less immediate to grasp, one could expect also that positioning the root
“near” to what would be the real one would lead to optimal reconciliation costs that are near the
minimum.

Both cases were in fact observed by Gorecki et al. [25] who showed the existence of a certain
property in models such as the Duplication-Loss for the gene/species tree reconciliation. Such
property, which the authors called the plateau property, states that if we assign to each edge of
the symbiont tree a value indicating the cost of an optimal reconciliation when considering the
symbiont tree rooted in that edge, the edges with minimum value form a connected subtree in
the symbiont tree, hence the name of plateau. Furthermore, the edge values in any path from
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a plateau towards a leaf are monotonically increasing. In the presence of host switches, it was
however not known whether such plateau property was satisfied.

Here, for both the biological and the simulated datasets, we use the sets of all optimal
reconciliations of the datasets with all possible symbiont tree rootings to count the number
of plateaux (i.e. of subtrees of the symbiont tree where the rootings in their edges lead to a
minimum cost), and we further keep track whether the original root belongs to a plateau.

Figure 2.4: Example of plateau property. On the left, a rooted host tree. On the right, an unrooted
symbiont tree. The number associated to each edge corresponds to the cost of an optimal reconciliation.
The plateau is in green and shows the minimum cost values obtained by other re-rootings. The edges with
minimum reconciliation cost are close each other. The edge values in any path from a plateau towards a
leaf are monotonically increasing.

2.3.5 Comparing Two Sets of Reconciliations

To evaluate the similarity of the outputs of two different runs of the tree reconciliation algorithm,
we need a measure to compare two sets of tree reconciliations. A first step is to compare
the respective optimal costs obtained at each run (note that this makes sense only when tree
topologies and cost vectors are fixed). When these optimal costs are equal, we need to keep more
information on the sets of optimal reconciliations. Most studies summarise a reconciliation as
a pattern of integers π = 〈nc, nd, ns, nl〉 representing the number of each event that it contains.
The set of optimal solutions for a given dataset (H,S, φ) and cost vector c can thus be viewed
as a multiset ΛH,S,φ,c of patterns in N

4. Notice that we need to consider multisets as different
reconciliations may induce the same pattern of events.

There is a wide literature on distances for sets of points. One of the best-known metrics
between subsets, the Hausdorff metric, does not take into account the overall structure of the
point sets. Other distances used for mining multisets, such as the Jaccard or Minkowski distance
(see for example Chapter 6 in [43]), have the drawback of taking into account not the distance
between the elements in the sets but only the number of different elements and their multiplicity.

Hence, for our purpose, we decided to introduce the following measure. Given a tree recon-
ciliation Λ (i.e. a multiset of patterns), we define its representative by vΛ =

∑
π∈Λ π. Notice

that such sum takes into account the multiplicities of a pattern. Given two multisets of patterns
Λ1 and Λ2, we define a dissimilarity measure d(Λ1,Λ2) as follows:

d(Λ1,Λ2) =
||vΛ1

− vΛ2
||

(|Λ1|+ |Λ2|)maxπ∈Λ1∪Λ2
||π|| (2.2)
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where || · || is the L1 norm and |Λ| is the cardinality of the multiset Λ. Observe that d(Λ1,Λ2) = 0

whenever Λ1 = Λ2 while the converse is not necessarily true. Notice also that we normalised this
dissimilarity measure so that it takes values in [0, 1]. This dissimilarity measure, while not being
a distance, enables us to summarise the comparison between two multisets of reconciliations.
In particular, it takes into account both the multiplicity of the patterns and their actual values
(patterns are vectors in N

4 that might be close to each other).

2.3.6 Dissimilarities in the Case of Multiple Associations

As already explained, for each dataset D, we have extracted a set of datasets {D1, . . . , Dt} each
with simple associations. We fixed a cost vector c and for each 1 ≤ j ≤ t, we computed all the
optimal reconciliations for Dj . We denoted by ΛDj ,c the multiset of patterns (as defined above)
obtained for these optimal reconciliations and by opt(Dj , c) their optimal cost. In most of the
cases, the set {opt(Dj , c); 1 ≤ j ≤ t} will contain many different values (this is a first observation
that the corresponding multisets of reconciliations are different). Then, to further analyse the
diversity of these different optimal reconciliations, we focused on the most frequent optimal cost
opt∗(Dj , c) and on the subset D∗ ⊆ {D1, . . . , Dt} of datasets that exhibit this most frequent
optimal cost. For any pair of datasets D,D′ ∈ D∗, the optimal reconciliations for D and D′

have same cost (by construction) and we further analyse how different they are by computing
the dissimilarity between these sets. Given ΛD,c and ΛD′,c, the sets of optimal reconciliations for
D and D′ respectively, we thus compute d(ΛD,c,ΛD′,c) for any pair D,D′ ∈ D∗.

2.3.7 Dissimilarities in Case of Re-Rooting at Distance k

In order to study the robustness of the parsimonious tree reconciliation method with respect to
the position of the root in the symbiont tree, we explore “small perturbations” of the rooting by
varying the distance k of the position of the new root with respect to the original one. We then
compare the sets of reconciliations obtained with the true positioning of the root and with the
positioning at distance k using our dissimilarity measure defined in Eq. (2.2). Notice that here
we are interested in the variation of dissimilarity at distance less than k from the original root.
Thus, we are not necessarily inside a plateau. For this reason, we use our dissimilarity measure
to compare sets of reconciliations where the optimum cost may not be the same.

2.3.8 Empirical Distribution of Dissimilarity

It is important to understand what values of the dissimilarity measure correspond to low/high
values between two multisets of patterns. To answer this question, we studied the behaviour
of the dissimilarity under the null hypothesis H0 that there is a random association between
H and S. More precisely, the empirical distribution of the dissimilarity between two multisets
of patterns is computed in the following way: we fix the topologies of H and S as well as the
association φ between their leaves, and we randomly permute the labels of the leaves of H and
S to obtain permuted datasets.

In the multiple associations setup, for any original dataset D = (H,S, φ) and any cost
vector c, we previously obtained a set of dissimilarities {di; 1 ≤ i ≤ K} between all the pairs of
datasets that have the same most frequent optimal cost. We generated 1000 permuted datasets
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{D0, D1, ..., D999}, by permuting the labels of the leaves of H and S and keeping the associations
between the leaves fixed, i.e. fixing the topology of the tree H and considering the tree H ′ given
by a permutation of the labels of its leaves (similarly for S). The association φ between H ′, S′

remains the same as in H,P . In other words, for a leaf s of the symbiont tree and a leaf h

of the host tree, if φ(s) = h, they are associated in the trees H ′, S′. For each Dj , we resolved
the multiple associations into simple ones, extracted the subset Dj,∗ of datasets that exhibit the
most frequent optimal cost and for all pairs of such datasets, computed the dissimilarity of their
optimal reconciliation sets. We thus ended up with a set of dissimilarities {dji ; 1 ≤ i ≤ Kj}.
We then plotted a histogram of the values {dji ; 1 ≤ i ≤ Kj , 0 ≤ j ≤ 999}. This is the empirical
distribution of the dissimilarities under the null hypothesis of random associations between H

and S. We computed the 10%–quantiles and the 90%-quantiles of this empirical distribution.
For the original dataset D, we denote by freqdissim(D) the most frequent non null dis-

similarity. Whenever this value is less than the 10%-quantile, we are observing a value that is
statistically significantly small. When this value is larger than the 90%-quantile, we are observing
a value that is statistically significantly large.

2.4 Results and Discussions

For both the editing of the host-symbiont associations and the perturbations of the symbiont tree
root, we present here only part of the results obtained in our analysis (in terms of datasets and/or
of cost vectors). In every case, the choice of which results to show was dictated either by the most
interesting case observed among all those explored for the purposes of a discussion of the effect
of edits and small perturbations on a parsimonious tree reconciliation, or, in the case of the cost
vectors, by the one(s) that are more commonly used in the literature. An exhaustive presentation
of the results appears in the Appendix B. Notice that the time-unfeasible reconciliations have
been filtered-out.

2.4.1 Perturbation of the Present-Day Host-Symbiont Associa-
tions

We present here the results for the SBL dataset analysed with cost vector 〈0, 1, 1, 1〉. The
TreeMap analysis of this dataset performed in [57] tried to maximise the number of cospe-
ciations between hosts and symbionts but found out that sometimes host switches must be
postulated to maximise cospeciations. Thus in some sense the choice of this cost vector is in
agreement with the TreeMap philosophy. Our results for this dataset with the other cost vec-
tors together with the other datasets presenting multiple associations (AP, AS, CA, CP, FA, FE,
GM, MF, MP, RM, SFC, SHA, TC and TD) are presented in Section B.2.1 in the Appendix B.

Figure 2.6 (top) shows the optimal reconciliation costs obtained for the 560 datasets that
were generated from the SBL one by resolving the multiple associations in all the possible ways.
We observe that when we change the associations, most often the optimum cost remains the
same, namely 70% of the datasets have the same cost (of 7). However, in many cases (30%),
changing the association of the leaves results in a change of the optimum cost value (from 7 to
a value in {6,8,9}).

To go further and analyse whether two datasets with same optimum cost have the same
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evolutionary history, we compared their sets of reconciliation patterns through the dissimilarity
measure introduced in Eq. (2.2). Figure 2.6 (bottom) shows a density histogram of the pairwise
dissimilarities between the reconciliation sets of the 392 datasets with same optimum cost of 7.
Even if in many cases the dissimilarity between two reconciliation sets is 0 (and we checked that
the multisets of reconciliations are in fact exactly the same in those cases), in 82% of the cases
this is not so, and the value instead ranges inside [0.004, 0.6], the largest dissimilarity (value of
0.6) being observed in 8.5% of the cases.

In order to assess whether the values of the dissimilarity are (statistically) large or not, we
plotted in Figure 2.5 the empirical distribution (under a null hypothesis of random association)
of the dissimilarities between sets of reconciliations (for the cost vector 〈0, 1, 1, 1〉) of datasets
with same most frequent optimal cost, obtained by resolving in all possible ways permuted
versions of the original SBL dataset (as explained in the paragraph “Empirical Distribution of
Dissimilarity”). As already explained, we focus on freqdissim(SBL), the most frequent non null
dissimilarity observed in the original dataset. In this case, it takes two different values (0.32 and
0.6), which appear to be the quantiles at levels 86.607% and 97.64% respectively of the empirical
distribution. We then cannot conclude whether the dissimilarity value of 0.32 is statistically big
or not. However, the dissimilarity value of 0.6 is bigger than the 90%-quantile, so that we can
conclude that this is a statistically big dissimilarity. This result shows that even if two datasets
have the same optimal cost, they may exhibit very different reconciliations.

Figure 2.5: Histogram of dissimilarity derived from SBL dataset with the cost vector 〈0, 1, 1, 1〉. The
black histogram is obtained by resolving the multiple associations in all the possible ways for the permuted
datasets. The red lines are obtained by resolving the multiple associations in all possible ways for the
original dataset SBL. The green crosses are the freqdissim(SBL).

Still considering the SBL dataset, now for the other cost vectors c (Figure B.87 in Sec-
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tion B.2.2 in the Appendix B), the values of the most frequent non null dissimilarity freqdissim(SBL)

are as follows. For the cost vectors 〈−1, 1, 1, 1〉, 〈0, 1, 2, 1〉 and 〈1, 1, 1, 1〉, the values are larger
than the 90%-quantile and we conclude that they are statistically significantly large. For the
cost vectors 〈0, 2, 3, 1〉 and 〈1, 1, 3, 1〉, the results are not conclusive. There are no cases with a
value smaller than the 10%-quantile.

For the other datasets (Section B.2.2 in the Appendix B), we observe that whenever the
original datasets have less than three multiple associations, or if the multiple associations are
in the same clade (AS, TC, TD), the value freqdissim(D) is smaller than the 10%-quantile of
the empirical distribution. This means that if two datasets have the same optimum cost, they
have very similar reconciliations (their dissimilarities are statistically significantly small). For
some datasets (CP, FA, FE, MF and SFC), the value freqdissim(D) is between the 10%- and
the 90%-quantiles. In these cases, we cannot conclude about the values of the dissimilarities of
the reconciliations. In the other cases (GM, MP, SBL), there are some cost vectors such that
freqdissim(D) is larger than the 90%-quantile while it is never smaller than the 10%-quantile. For
these three last datasets, even if the cost of the optimal solution is the same, we can thus obtain
very different reconciliations. Indeed, if we have a tree with symbionts that inhabit different
hosts which are topologically far, the way in which we choose the associations may have a big
impact in terms of reconciliation. This means that the resulting dissimilarity is directly related
to the leaves association φ.

In order to better understand what may be happening, if there is a relation between the
number of multiple associations and the dissimilarity observed, we considered the simulated
datasets Dx% constructed with different values of multiple associations. The SBL dataset has
originally 94% of multiple associations. This means that in order to create a dataset SBLx%,
we deleted some associations. The structure of the 9 datasets SBLx% is shown in Table 2.2.

Table 2.2: Table showing some details for the SBLx% datasets. Each line shows a summary of SBLx%.
Column A indicates the number of multiple associations; column B shows the number of datasets ob-
tained resolving those multiple associations into simple ones; column C describes how many leaves in the
symbiont tree S have multiple associations (and the cardinality of their image |φ(s)| in the host tree H).

SBLx% A B C

SBL10% 2 3 1 leaf (3 associations)
SBL15% 2 3 1 leaf (3 associations)
SBL20% 3 4 1 leaf (4 associations)
SBL25% 4 12 3 leaves (2, 2 and 3 associations)
SBL30% 5 18 3 leaves (3, 3 and 2 associations)
SBL35% 5 12 2 leaves (3 and 4 associations)
SBL40% 6 24 3 leaves (2, 3 and 4 associations)
SBL45% 7 30 3 leaves (2, 3 and 5 associations)
SBL50% 8 36 3 leaves (2, 3 and 6 associations)

It is important to note that the number of datasets obtained by resolving the multiple associ-
ations into simple ones is not related to the percentage x%, but rather to the combinatorial way
to solve it. For example SBL30% and SBL35% have the same number of multiple associations
(this is due to the fact that the integer parts of the values x%|L(H)| are the same in this case).
However, in SBL30% the multiple associations are spread among more leaves than for SBL35%.
This is why SBL30% is resolved with more datasets than SBL35%. Currently we are not able to
create datasets with multiple associations that would lead to a fixed number of resolutions (i.e.
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datasets with simple associations obtained from the original dataset). Figures 2.7, 2.8 and 2.9
are similar to Figure 2.6 (which concerns the original dataset SBL) but now for the simulated
datasets SBLx%, with cost vector 〈0, 1, 1, 1〉. We see that in general the number of optimal
reconciliations and the dissimilarity increase with the value of x. A particular case is SBL25%

that presents the largest most frequent non null dissimilarity. If we look at this dataset for the
other cost vectors (Section B.2.3 in the Appendix B), we observe that when we consider low
costs for the host switch, namely for the cost vectors 〈−1, 1, 1, 1〉, 〈0, 1, 1, 1〉 and 〈1, 1, 1, 1〉, this
dataset exhibits a value of freqdissim(SBL25%) larger than what is obtained for other values of
x. We believe that this is due to a high number of host switches in the reconciliations.

The other simulated datasets present similar results as SBLx% (Section B.2.3 in the Ap-
pendix B). In general, the number of optimal reconciliations and the dissimilarity increase with
the value of x. However, it is important to note that the results are related to the combinatorial
way in which datasets with multiple-associations are resolved into datasets of simple associations.

2.4.2 Re-Rooting of the Symbiont Tree

Testing the Plateau Property

Table B.1 and Table B.2 in the Appendix B present the results for the 28 biological datasets
evaluated with the 6 cost vectors in C. Most of the datasets present only 1 plateau, 3 datasets
(CA, CT and EC) present 2 plateaux and 1 dataset (CT) present 3 plateaux. Moreover for 5
out of the 6 cost vectors tested, there is always a biological dataset for which 2 plateaux are
observed. The cost vector 〈1, 1, 1, 1〉 is the one that gives, for the CT dataset, 3 plateaux.

The plateau property therefore does not hold in the presence of host switches for real datasets
analysed with biologically plausible setups. It is interesting to observe that among the 28 biolog-
ical datasets (except for TC, with cost vector 〈1, 1, 3, 1〉), there were never more than 2 plateaux.
This may be due to the relatively small size of the trees.

We also note that in 53% of the cases, the original root is not in a plateau. Moreover,
the difference between the optimal cost obtained for the original rooting and the cost obtained
by placing the root inside the plateau is quite large (difference between columns D and B in
Table B.1 in the Appendix B). Among these 53%, in addition, for the datasets AW, CP, FD,
GM, MF, RH, SFC, SHA, TC, TD, the original root of the symbiont tree is never in a plateau.
This may indicate that, either the original root is not at its correct position, or there is not
enough evolutionary dependence between the two organisms to allow for a correct inference of
the symbiont tree root.

The simulated datasets present similar results as the biological ones (Table B.3 and Table B.4
in the Appendix B). The number of datasets with more than one plateau however increases, as
does in some cases the number of plateaux observed. Indeed, some simulated datasets from the
sets CA-sim and FE-sim exhibit up to 5 plateaux. In 25% of the simulations, the original root
does not belong to a plateau (data not shown).

Re-rooting at Distance k

We show in Figure 2.10 the results obtained with the biological dataset MP. Similar figures are
presented with other biological datasets in Section B.2.5 in the Appendix B. Here the dissimilarity
of the reconciliation globally increases as k also increases. The farther is the new root from the
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Figure 2.6: Barplots of optimum cost (top) and dissimilarity between pairs of reconciliations with
optimum cost 7 (bottom) obtained on the datasets derived from the SBL dataset by resolving the multiple
associations in all the possible ways and computed with the cost vector 〈0, 1, 1, 1〉.

original one, the more dispersed the patterns tend to be (i.e. the values of d have larger variance).
These conclusions extend for 27 of the remaining biological datasets. However, no such global
trend is obtained for the other biological datasets for which we only observe variability (neither
increasing nor decreasing) in the dissimilarities.

As concerns the simulated datasets, we observe a bigger dispersion between the patterns
with larger values taken by the dissimilarities (see Section B.2.6 in the Appendix B). This might
be due to the fact that there are many more datasets (50 simulated datasets corresponding to
one biological dataset). The trend of a global increase of the values and of the variance of the
dissimilarity when k increases is observed again.
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Figure 2.7: Barplots of optimum cost (left) and dissimilarity between pairs of reconciliations with the
most frequent optimum cost (right) obtained on the datasets derived from the SBLx% dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 1, 1〉. Each
lines is a different SBLx% with x = 10, 15, 20.

2.5 Conclusions and Open Problems

In this paper, we explored the robustness of the parsimonious tree reconciliation method to
some editing of the input required in order to associate a symbiont to a unique host in the case
where multiple associations exist, as well as to small perturbations linked to a re-rooting of the
symbiont tree.

In the first case, we observed that the choice of leaf associations may have a strong impact on
the variability of the reconciliation output. Although such impact appears not so important on
the cost of the optimum solution, probably due to the relatively small size of the input trees, the
difference becomes more consequent when we refine the analysis by comparing, not the overall
cost, but instead the patterns observed in the optimal solutions. Notice that this highlights the
great interest in finding measures for the dissimilarity of sets of reconciliations such as the new
one we proposed in this paper.

As concerns the problem of the rooting, we were able to show that allowing for host switches
invalidates the plateau property that had been previously observed (and actually also mathe-
matically proved) in the cases where such events were not considered. Again here, the number of
plateaux observed is small for the real datasets (this number is indeed at most of 3). Moreover,
having more than one plateau does not concern all pairs of datasets and of cost vectors, even
though for all, except one of the cost vectors tested, there is always a biological dataset for which
at least 2 plateaux are observed. We might be tempted to say that this is once more due to the
small sizes of the input trees. However, the sizes are of the same order for the simulated datasets,
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Figure 2.8: Barplots of optimum cost (left) and dissimilarity between pairs of reconciliations with the
most frequent optimum cost (right) obtained on the datasets derived from the SBLx% dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 1, 1〉. Each
lines is a different SBLx% with x = 25, 30, 35.

but there the differences are greater: we may indeed reach up to 6 plateaux in some cases. We
are currently not able to explain this difference between the two types of datasets (this might be
just chance related to the fact that we have 50 times more simulated than biological datasets).
In 10 real datasets among the 28, the original root is never in the plateau. We hypothesised that
for the biological datasets, this might indicate that the original root is not at its correct position.
It would be interesting in future to try to validate this hypothesis. If it were proved to be true,
an interesting, but hard open problem would be to be able to use as input for a cophylogeny
study unrooted trees instead of rooted ones, or even directly the sequences that were originally
used to infer the host and symbiont trees. In this case, we would then have to, at a same time,
infer the trees and their optimal reconciliation.

Re-rooting the symbiont tree at distance k leads in many cases to an increase in both the
values and variance of the dissimilarity measure in the patterns (17 out of 28 biological datasets
and all sets of simulations). The dispersion and the values of dissimilarity are also greater in the
simulated datasets than in the biological ones (here again, this could be an artefact due to the
large number of simulated datasets).

Clearly, the effect in terms of number of plateaux depends on the presence of host switches
since this number was proved to be always one when switches are not allowed [25]. Perhaps the
most interesting open problem now is whether there is a relation between the number of plateaux
observed as well as the level of dissimilarity among the patterns obtained on one hand, and the
number of host switches in the optimal solutions on the other hand. Actually the relation may
be more subtle, and be related not to the number of switches but to the distance involved in a
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Figure 2.9: Barplots of optimum cost (left) and dissimilarity between pairs of reconciliations with the
most frequent optimum cost (right) obtained on the datasets derived from the SBLx% dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 1, 1〉. Each
lines is a different SBLx% with x = 40, 45, 50.

switch, where by distance of a switch we mean the evolutionary distance between the two hosts
involved in it. This could be measured in terms of the number of branches (as is the case in
our method Eucalypt) or in terms of the sum of the branch lengths, that is, of an estimated
evolutionary time.

We end by noticing that since our paper [81], appeared, a more recent study was published
in the context of gene-species reconciliation (this appeared from now as an Abstract in ISBRA
2017 with the full version available at this address: http://compbio.engr.uconn.edu/papers/
Kundu_RootingUncertainty_2017.pdf). By analyzing a data set of over 4500 gene families from
100 species the authors showed that an important fraction of gene trees have multiple optimal
rootings, with the roots often, but not always, appearing clustered together in a same region of
the gene tree with other aspects of the reconciliation also remaining conserved across the different
rootings.
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Figure 2.10: Boxplots of the dissimilarities between reconciliations obtained for the original dataset MP
and all datasets obtained from MP by re-rooting the symbiont tree at distance k from the original root.
The six plots correspond to the 6 cost vectors in C. The x-axis shows the distance k between new and
original root. The y-axis shows the value d of the dissimilarity of the reconciliation patterns.
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3.1 Overview

The cophylogeny methods present in the literature do not handle (or they do so only partially)
the cases where a symbiont is associated to more than one host. In nature, however, such
multiple associations are often observed. Such associations introduce a type of events that have
been called spread in the literature. To the best of our knowledge, the first use of such term was
by Brooks and McLennan in [8].

Among the methods for dealing with host-symbiont cophylogeny that enumerate all optimal
reconciliations, four address the problem in the case where the input datasets include symbionts
that are associated to more than one host. These are CoRe-Pa [50], Jane 4 [13], WiSPA (see
the arXiv file at: https://arxiv.org/abs/1603.09415), and the approach of Alcala et al. [1].
CoRe-Pa solves the multiple associations locally, by starting from the leaves that are already
mapped and choosing for a parent vertex the unique associations of its children that give the
best cost. Jane 4 uses a heuristic approach based on a genetic algorithm to recover the best
solutions. Furthermore, the spread events in this case appear to be allowed only just before
the leaves. WiSPA is a new model for reconciling trees where the symbionts are permitted to
be associated with more than one host which however apparently uses also a restricted form of
spread events. Finally, very recently, Alcala et al. [1] developed a new ABC framework to infer
the rates of host switch and cospeciation. The authors indicate that their method allows also
to consider that a symbiont may be associated to more than one host. This is called parasite
speciation as a generalist (Figure 1 in the paper). The part of the paper related to this is however
not detailed in the paper.

In this chapter, we describe how we extended Coala to create a new model, that we called
AmoCoala, to address the problem of multiple associations.

Coala (for “CO-evolution Assessment by a Likelihood-free Approach”) [5] is an algorithm for
inferring a rate for each of the four macro-evolutionary events most used in the literature, namely
cospeciation, duplication, host switch and loss. For a given pair of host and symbiont trees,
Coala estimates the frequency of the events based on an approximate Bayesian computation
(ABC) approach that may be more efficient than a classical likelihood approach [7].

Coala includes two main parts: the first simulates the evolutionary history of symbionts
while the second uses ABC in order to select the most probable frequency of the four events:
cospeciation, duplication, host switch and loss.

In the case of AmoCoala, φ is no longer a function from L(S) to L(H) since a symbiont
may now be associated with multiple hosts. Instead, φ can be viewed as a bipartite network on
the set L(S)∪L(H) and is encoded as a binary adjacency matrix φ with size |L(S)|× |L(H)|. In
this matrix, the entry φsh is 1 whenever symbiont s is associated to host h, and zero otherwise.

Two kinds of spread events are considered: vertical and horizontal. The first case corresponds
to what could be called also a freeze in the sense that the evolution of the symbiont “freezes”
while the symbiont continues to be associated with a host and with the new species that descend
from this host. The second includes both an invasion, of the symbiont which remains with the
initial host but at the same time gets associated (“invades”) another one incomparable with the
first, and a freeze, actually a double freeze as the evolution of the symbiont “freezes” in relation
to the evolution of the host to which it was initially associated and in relation to the evolution
of the second one it “invaded”.

We changed the first step of Coala to simulate the evolution of the symbiont, where the
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frequency of the events (cospeciation, duplication, host switch and loss) are calculated. At the
beginning of this step, the probability of vertical and horizontal spreads, respectively denoted
by pvert-spread and phor-spread, are computed for each vertex of H. These are estimated based on
the topology of H and the association φ of the leaves. The second step was also modified by
introducing a new distance, that we called MAS, to compare the simulated to the real symbiont
trees in this case where we have multiple associations.

We start by briefly recalling how the algorithm Coala works before presenting the methods
and distance introduced in AmoCoala for handling vertical and horizontal spread events. We
then indicate the datasets that will be used to test the method, both synthetic and real ones, as
well as in the first case, the method to generate them. We conclude by showing and discussing
the results obtained by AmoCoala on these datasets.

This chapter presents an advanced draft of a paper that will be submitted before the end of
2017.

3.2 Model

In order to make this Ph.D. self-contained, we start by first describing the existing model, Coala,
which served as starting point for our new one, AmoCoala, which is introduced next. The parts
of this section related to Coala are based on the paper of Baudet et al. [5] and on the Ph.D. of
Beatrice Donati [17].

3.2.1 Coala Model

Coala [5] is an algorithm that, given a host tree H, a symbiont tree S, and the associations
between leaves φ : L(S) 	→ L(H), estimates the vector of frequencies of the macro-evolutionary
events of cospeciation, duplication, loss and host switch, using an approximate Bayesian compu-
tation (ABC) approach. We recall here what these events stand for: a) cospeciation is when the
parasite diverges in correspondence to the divergence of a host species; (b) duplication is when
the symbiont diverges “without the stimulus of host speciation” [59]; (c) host switch is when a
symbiont switches, or jumps from one host species to another independent of any host diver-
gence; and (d) loss can describe three different and undistinguishable situations: (i) speciation
of the host species independently of the symbiont, which then follows just one of the new host
species due to factors such as, for instance, geographical isolation; (ii) cospeciation of host and
symbiont, followed by extinction of one of the new symbiont species and; (iii) same as (ii) with
failure to detect the symbiont in one of the two new host species.

The parameter vector θ of the model is thus composed of the probabilities 〈pc, pd, ps, pl〉 of
each one of these four events.

Following the topology of H and a given vector θ, a simulated symbiont tree S̃ is created. At
the same time as the simulation of S̃, a function λ that associates each vertex of S̃ to a vertex
of H is also created. Once a symbiont tree S̃ is simulated, a distance summary between S̃ and
S is computed.
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Evolution of symbionts in Coala

The evolution of the symbionts is simulated by following the evolution of the hosts traversing the
phylogenetic tree H from the root to the leaves, and progressively constructing the phylogenetic
tree for the symbionts. The probabilities of the parameter vector θ are used to define the type
of mapping chosen. In this process, a symbiont vertex can be in two different states: mapped
or unmapped. At the moment of its creation, a new vertex v is unmapped and is assigned a
temporary position on an arc a of the host tree H. We denote this position by 〈v, a〉. Vertex v is
mapped to a vertex w of H (for cospeciation, duplication and host switch). For the three events
except the loss case, v is always mapped to the vertex h(a). This mapping is denoted by [v : w]

with w = h(a).
In the cases of cospeciation, duplication, and host switch, the symbiont is supposed to speciate

and two children are created for v, denoted by v1 and v2. Their positioning along the arcs of
the host then depends on which of the three events took place. In the case of a loss, no child
for v is created (at this step) since there is no symbiont speciation, and v is just moved to one
of the two arcs outgoing from h(a) chosen randomly. These choices, together with the general
framework for the symbiont tree generation method, are provided next.

Evolutionary events

For any vertex s of S̃ that is not yet mapped and whose position is 〈s, a〉 (Figure 3.4 (b)), Coala
chooses to apply one among the four allowed operations, depending on the probability of each
event. In what follows, we denote by a1, a2 the arcs outgoing from the head h(a) of the arc a.

• Cospeciation (Figure 3.4 e)): We apply the mapping [v : h(a)] and we create the vertices v1
and v2 as children of v. We position them as follows: 〈v1, a1〉 and 〈v2, a2〉. This operation
is executed with probability pc.

• Duplication (Figure 3.4 f)): We apply the mapping [v : h(a)] and we create the vertices v1
and v2 as children of v. Both v1 and v2 are positioned on a. This operation is executed
with probability pd.

• Host switch (Figure 3.4 g)): We apply the mapping [v : h(a)] and we create the vertices v1
and v2 as children of v. We then randomly choose one of the two children and position it
on a. Finally, we randomly choose an arc a′ that does not violate the time feasibility of the
reconstruction so far [75]. If such an arc does not exist, it is not possible for a host switch
to take place. In this case, we choose between the three remaining events with probability
pi/(pc + pd + pl) with i ∈ {c, d, l}. Otherwise, we position v2 on a′. This operation is
executed with probability ps.

• Loss (Figure 3.4 h)): This operation is executed with probability pl and consists of ran-
domly choosing an arc outgoing from the head h(a) of a and positioning v on it. Observe
that we are considering only losses resulting from lineage sorting. It would be interesting
to incorporate extinction or failure to detect infection but this would require the addition
of new parameters, thus making the model more complex to analyse. However, if v was
created by a duplication event and is being processed for the first time, we have to verify
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if its sibling vertex v′ was already processed and also suffered a loss. In this case, v must
be positioned on the same arc a′ where v′ was positioned. This procedure is adopted to
avoid later mappings where a duplication followed by two losses would be confused with a
cospeciation.

3.2.2 AmoCoala model

As mentioned at the start of the chapter, when a symbiont is associated to more than one host,
the association φ is no longer a function from L(S) to L(H) but may rather be viewed as a
bipartite network on the set L(S)∪L(H). It can then be encoded as a binary adjacency matrix
φ with size |L(S)| × |L(H)|. In this matrix, the entry φsh is 1 whenever symbiont s is associated
to host h, and zero otherwise. Before explaining how we handle this situation and the event of
spreads, vertical and horizontal (or if one prefers, of freeze and invasion followed by a double
freeze), we introduce some basic definitions.

Basic definitions

Given a dataset (H,S,φ), the number of multiple associations, denoted by MA, for such dataset
is given by:

MA(H,S, φ) =
∑

s∈L(S) |φ(s)| − 1, (3.1)

where φ(s) = {h ∈ L(H);φsh = 1}.
Given a set-labelled tree T , that is a tree whose leaves are labelled with a set of labels, we

denote its weight by:
w(T ) =

∑
v∈L |l(v)|, (3.2)

where l(v) is the set of labels of leaf v. If T is a symbiont tree S, then l(v) is equal to φ(v).

The χ2 distance that we use to compare two vectors θ = 〈p0, p1, . . . , pn〉 and θ′ = 〈q0, q1, . . . , qn〉
is a weighted Euclidean distance defined as follows:

d(θ, θ′) =

√√√√ n∑
i=1

2× (pi − qi)2

(pi + qi)
. (3.3)

For a set-labelled tree T , we recall that we denote by Tv the subtree of T rooted in v. An
operation performed on phylogenetic trees may be associated with the removal of some elements
from a set, or followed by, a cleaning of the vertices of out-degree 1 if any were created in order
to obtain once again a phylogenetic tree. An example is given in Figure 3.1.

Given a set-labelled tree T , we say that a set T ∗ is a subtree of T , if the following holds:
(i) there exists a function f : L(T ∗) → L(T ) such that f is injective (i.e., for v1, v2 ∈ L(T ∗), if
v1 �= v2 then f(v1) �= f(v2)), (ii) for every v ∈ L(T ∗), l(v) ⊆ l(f(v)), and (iii) T ∗ can be obtained
by cleaning the leaves of T that are not in the images of f .

Given two set-labelled trees T1 and T2, we say that T ∗ is an agreement subtree if T ∗ is a
subtree of both T1 and T2. A maximum agreement subtree is an agreement subtree of maximum
weight (an example is given in Figure 3.2).
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Figure 3.1: Example of operation of cleaning a tree. Following some operation, label b from the leaf v2
was removed as was leaf v3. The latter further necessitates that vertex v1, which is of out-degree 1, is
taken out.

Figure 3.2: Example of a maximum agreement subtree for a set-labelled tree. T ∗ is the agreement
subtree of the set-labelled trees T1 and T2 that has the maximum weight.

Spread events

To make the model more realistic by being able to handle multiple associations, we define two
types of spreads: vertical and horizontal.

A vertical spread happens when a symbiont s is associated to a host h and to all the vertices
in the subtree of h. The difference between cospeciation and a vertical spread event is that, in
the first case the symbiont s speciates into two new species of symbionts s1 and s2, while in the
second it does not.

A horizontal spread happens when a symbiont s is associated to two incomparable hosts hi

and hj and all the vertices in the subtrees of hi and hj are also associated to the same symbiont
s. The difference between host switch and a horizontal spread event is that, in the first case the
symbiont s speciates into s1 and s2 and each is associated to a distinct host vertex with the two
being incomparable, while in the second the same symbiont s is associated to two incomparable
host vertices.

The probabilities of the “classical” events (cospeciation, duplication, host switch and loss)
are parameters to be inferred. On the contrary, the probabilities for the spread events
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are given a priori.
We now define the different probabilities that will be used in our new algorithm. Observe

that each spread event has its own probability.
A probability pvert-spread(h) is associated to a vertical spread event at host h as follows.

For each h ∈ L(H), we set pvert-spread(h) to 1. For internal vertices h of the host tree H, the
probability pvert-spread(h) is given by:

pvert-spread(h) =

(
1

|SL(h)|
) ∑

s∈SL(h) |φ(s) ∩ L(h)| − 1

|L(h)| − 1
, (3.4)

where L(h) is the set of leaves in the subtree of H rooted in h, the set of symbionts in the leaves
of this subtree is SL(h) and the number of leaves in this subtree infected by a symbiont s is
|φ(s) ∩ L(h)|.

Observe that the “classical events” (of cospeciation, duplication, host switch and loss) have
the same probability everywhere in the tree, while the probability of a vertical spread is specific
to each vertex of the host tree. This probability pvert-spread(h) is large whenever most of the
symbionts are associated to almost all the leaves L(h) in the subtree rooted in h. On the
contrary, the probability is low when most of those symbionts appear only in a few of the leaves.
In particular, whenever all the symbionts associated to the leaves below h are associated to only
one of those leaves, the probability pvert-spread(h) is zero.

For two incomparable vertices hi and hj , a probability pjump(hi → hj) is computed as follows:

pjump(hi → hj) =
|SL(hi) ∩ SL(hj)|
|SL(hi) ∪ SL(hj)| . (3.5)

Here again, the probability of a jump (we remind that jump and host switch are synonym)
is specific to each pair of vertices of the host tree. This quantity is symmetric. The probability
pjump(hi → hj) is high whenever the leaves of the subtrees below hi and hj have many associated
symbionts in common. In particular, it is zero when they do not share any associated symbiont,
and 1 when they have exactly the same set of associated symbionts.

From these probabilities pjump(hi → hj) of jumps, we construct a probability of horizontal
spread at each vertex hi. The associated probability depends on all the vertices that are incom-
parable with hi. Indeed, such vertices are all those that may be reached from hi. In practice, a
horizontal spread corresponds to a jump combined with two vertical spreads. We thus associate
a probability of spread phor-spread(h) to each vertex h of the host tree that takes into account
both horizontal and vertical spreads and is defined as:

phor-spread(h) = min{1, p∗(h)}, (3.6)

where
p∗(h) = pvert-spread(h)

∑
h′;h,h′ incomparable

pvert-spread(h
′)pjump(h → h′).

This probability of horizontal spread phor-spread(h) is high whenever pvert-spread(h) is high (so
most of the symbionts associated below h are spread all over the leaves) and there are vertices
h′ incomparable to h with large pvert-spread(h) and large value pjump(h → h′) (so that the leaves
below h and h′ share a lot of associated symbionts). Observe that p∗(h) is not a probability but
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a value, that in particular may be bigger than 1.
Finally, if a horizontal spread happens at vertex h, we sample an incomparable vertex h′

where the symbiont s has to jump to. We associate a probability pinvasion(h → h′, λ) to thus be
invaded to h and every incomparable vertex h′. For a current mapping λ of the vertices of S to
the vertices of H, the probability of a vertex h′ to be invaded from a symbiont s mapped in h is:

pinvasion(h → h′, λ) =
pjump(h → h′)1{Eh,h′,λ}pvert-spread(h)pvert-spread(h

′)
pvert-spread(h)

∑
h′ pvert-spread(h′)pjump(h → h′)1{Eh,h′,λ} , (3.7)

where 1{Eh,h′,λ} = 1 whenever the event induces a time feasible reconciliation, and the sum on
the denominator is restricted to the vertices h′ that are incomparable to h. If no vertex induces a
time feasible reconciliation (namely pinvasion(h → h′, λ) = 0), the horizontal spread is not applied
and another event is sampled.

Figure 3.3 shows an example of a dataset with horizontal and vertical spread probabilities.
Here the host tree H has 5 leaves, the symbiont tree S has 4 leaves and there are 3 multiple
associations.

Computing the spread probabilities

The spread probabilities are calculated at the beginning of the algorithm. These values depend
only on the host tree H, the symbiont tree S and the associations φ. In a first step, we start by
setting to 1 the probabilities pvert-spread for the leaves. Then, for the internal vertices h, these
probabilities are computed as in Equation (3.4). In a second step, the probabilities of a jump are
calculated for each pair of incomparable vertices h and h′ as in Equation (3.5). In the last step,
the probabilities of a horizontal spread for vertex h are computed as in Equation (3.6). Observe
that the probabilities of invasion (Equation (3.7)) depend on the current simulation (one has to
take into account acyclicity to choose the target h′ of a horizontal spread). These are computed
during the simulated algorithm, each time a horizontal spread is selected.

Evolution of the symbionts in AmoCoala

The evolution of the symbionts in AmoCoala enables to construct the simulated symbiont tree
S̃. We follow a process similar to the one used in Coala, but we introduce the mapping of
vertical and horizontal spread events.

As in Coala, at the moment of its creation, a new vertex v of S̃ is unmapped and is assigned
a temporary position on an arc a of the host tree H. We first sample whether we have a horizontal
spread event. If yes, then we map v to the vertex h(a) that is the head of the arc a, and to all the
descendants of h(a). We denote this mapping by {v,Hh(a)}. We then choose an incomparable
vertex h(a′) based on the probabilities given in Equation (3.7) and we map v to it and to all its
descendants.

If we do not have a horizontal spread event, we sample whether a vertical spread occurs. If
yes, we map v to the vertex h(a) and to all its descendants as before.

In both cases, of vertical or of horizontal spread, the evolution of v stops and v becomes a
leaf.

If we do not have a spread, we map v to a vertex w of H (cospeciation, duplication or host
switch) or, in the case of a loss, we move v to another position. This last part is done exactly as
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Figure 3.3: Probabilities of horizontal and vertical spreads. The host tree is to the left, the symbiont
tree to the right and the associations are represented by the blue arrows. For each host vertex in the host
tree are shown: in black the vertex name, in orange the value of pvert-spread(h) and in green the value of
phor-spread(h).

in Coala. In the first case, v is always mapped to the vertex h(a). We denote this mapping by
[v : w] with w = h(a).

If a spread event has been sampled, we construct a subtree below v (see details in the
paragraph “Algorithm for simulating the evolution of the symbiont in the case of horizontal and
vertical spreads” below) together with its mapping in H, and we stop the evolution of S̃ in this
direction.

These choices, together with the general framework for our symbiont tree generation method,
are provided next.

Starting the generation in AmoCoala

The generation of the simulated symbiont tree S̃ starts with the creation of its root vertex
S̃root. This vertex is positioned before the root of H on the arc a = (ρ,Hroot). This allows the
simulation of events that happened in the symbiont tree before the most recent common ancestor
of all host species in H. Figure 3.4a) depicts this initial configuration. For any vertex v of S̃
that is not yet mapped and whose position is 〈v, a〉 (Figure 3.4b)), we choose an event according
to the following procedure:

1. If h(a) is a leaf, STOP.

2. With probability phor-spread(h(a)) do a horizontal spread event (h(a) → h(a′)). The incom-
parable vertex h(a′) is chosen with a multinomial distribution, according to Equation 3.7.
Construct a subtree below v together with its mapping in H and stop the evolution of S̃
in this direction.

3. If we do not draw a horizontal spread event, then with probability pvert-spread(h(a)) we do
a vertical spread event. Construct a subtree below v together with its mapping in H and
stop the evolution of S̃ in this direction.
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4. Otherwise, sample with a multinomial distribution one of the four events: cospeciation,
duplication, host switch or loss event, and apply the same procedure as in Coala.

The evolutionary events in AmoCoala

As in Coala, for any vertex v of S̃ that is not yet mapped and whose position is 〈v, a〉 (see
Figure 3.4b)), we choose to apply either a vertical spread, a horizontal one, or one of the “classical
events”, depending on the probability of each event. We do not repeat how the “classical events”
are handled because it is the same as in Coala. Here we will just describe how to apply the
vertical and horizontal spreads. In what follows, we denote by a1, a2 the arcs outgoing from the
head h(a) of the arc a.

• Vertical Spread (Figure 3.4c)): We apply the mapping {v,Hh(a)}. This operation is exe-
cuted with probability pvert-spread(ha).

• Horizontal Spread (Figure 3.4d)): We apply the mapping {v,Hh(a)} and the mapping
{v,Hh(a′)}. This operation is executed with probability phor-spread(ha). The choice of the
incomparable vertex h(a′) can change due to the need to preserve time feasibility: thus
the probabilities described in Equation (3.7) are updated accordingly to the new set of
incomparable vertices.

Algorithm for simulating the evolution of the symbiont in the case of horizontal
and vertical spreads

During the simulation, if a spread event is chosen (horizontal or vertical), the symbiont is associ-
ated to a set of hosts. We need to choose a way to simulate the topology of the symbiont tree S̃

below the symbiont vertex s̃ that undergoes a spread event. With the passing of time, both the
host and the symbiont have evolved and in addition, it is possible that some hosts have lost their
symbiont. Reconstructing all the possible evolutions of the symbiont is practically impossible.
Trying all the possible topologies is hard. Therefore, for computational reasons, we decide to
promote the more realistic situations, that is those present in the real symbiont. In this context,
we choose the topology and the leaves associations that are identical to those observed in the
original symbiont tree. In the following, for any tree T and any set of taxa t1, . . . , tn, we let
T|{t1,...,tn} denote the subtree of T with leaves t1, . . . , tn.

Given a dataset (H,S, φ), the procedure to follow in case of a vertical spread in hi, during
the simulation of S̃ is:

• List the symbionts {s1, . . . sn} associated with L(h), the leaves of the subtree under h.

• Create a subtree with the leaves {s1, . . . , sn} identical to S|{s1,...,sn}, and attach the root
of this subtree to s̃ in S̃.

• The associations φ(s1, ..., sn) of S̃ will be like in the original symbiont tree.

Figure 3.5 shows an example of a mapping that involves a vertical spread. For this, we used
the dataset of Figure 3.3 with their probabilities of horizontal and vertical spreads. At first,
we have a cospeciation (Figure 3.5(A)), next there is a vertical spread in h4, the symbiont’s
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Figure 3.4: Events during the generation of the symbiont tree S̃. The host tree has white vertices and
the symbiont tree grey vertices. The association {v,Hh(a)} indicates that we map v to the vertex h(a)
that is the head of the arc a and to all the descendants of h(a). The association 〈v : a〉 indicates that an
unmapped symbiont vertex v is positioned on the arc a of the host tree. The association [v : w] indicates
that the symbiont vertex v is mapped to the host vertex w.

simulation for the vertical spread starts as described above. The list of the symbionts associated
to h4 are {s2, s3, s5}. A phylogenetic tree identical to S|{s2,s3,s5} is attached to s̃2. Finally the
associations are copied, as in the original: we thus have that φ(s̃4) = {h8}, φ(s̃5) = {h8} and
φ(s̃6) = {h5, h7}.

Given a dataset (H,S, φ), the procedure to follow in the case of a horizontal spread in hi → hj

is:

• List the symbionts {s1, . . . , sn} associated with L(h), the leaves of the subtrees under hi

and hj .

• Create a subtree with the leaves {s1, . . . , sn} identical to S|{s1,...,sn}, and attach the root
of this subtree to s̃ in S̃.

• The associations φ(s1, . . . , sn) of S̃ will be like in the original symbiont tree.
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Figure 3.6 shows an example of mapping that involves a horizontal spread. For this example, we
used the dataset of Figure 3.3 with their probabilities of horizontal and vertical spreads. The
choice of the incomparable vertex hj is made using Table 3.1. At first, we have a cospeciation
(Figure 3.6(A)), next there is a horizontal spread h1 → h5 of s̃, then the symbiont’s simulation
starts for the horizontal spread as described above. The list of the symbionts associated to h1 and
h5 are {s5, s6}. A phylogenetic tree identical to S|{s5,s6} is attached to s̃. Finally the associations
are copied, as in the original: we thus have that φ(s̃3) = {h3, h5} and φ(s̃4) = {h2, h3}.

Table 3.1: Probabilities of a jump between vertices for the example shown in Figure 3.3

pjump(hi → hj) h0 h1 h2 h3 h4 h5 h6 h7 h8
h0 0 0 0 0 0 0 0 0 0
h1 0 0 0 0 0.25 0.5 0.25 0.5 0
h2 0 0 0 1 0 0 0 0 0
h3 0 0 1 0 0.25 0.5 0.25 0.5 0
h4 0 0.25 0 0.25 0 0 0 0 0
h5 0 0.5 0 0.5 0 0 0.33 1 0
h6 0 0.25 0 0.25 0 0.33 0 0 0
h7 0 0.5 0 0.5 0 1 0 0 0
h8 0 0 0 0 0 0 0 0 0

Figure 3.5: Example of a simulation of the evolution of a symbiont tree S̃ in the case of a vertical
spread. The vertices of the host tree (resp. simulated tree) are in white (resp. in colour) while the real
symbiont tree is shown in the top right rectangle (the original associations are shown in Figure 3.3). (A)
A cospeciation event with the symbiont tree root s̃0 mapped in h0 (namely [s̃0 : h0]) while the children
s̃1, s̃2 are positioned on the arcs a1 = (h0, h1) and a2 = (h0, h4) (namely 〈s̃1 : a1〉 and 〈s̃2 : a2〉). (B) A
vertical spread event for the symbiont s̃2 positioned on the arc a2. We thus first map s̃2 to h4 and all its
descendants (namely {s̃2 : h(a2)}). We then attach a subtree to s̃2 constructed as explained in the text.

3.2.3 ABC-SMC Inference Method

In this section, we describe the Bayesian computation (ABC method) that was developed in
Coala (this section is based on [5, 17]).
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Figure 3.6: Example of a simulation of the evolution of a symbiont tree S̃ in the case of a horizontal
spread. The vertices of the host tree (resp. simulated tree) are in white (resp. in colour) while the real
symbiont tree is shown in the top right rectangle (the original associations are shown in Figure 3.3).
(A) A cospeciation event with the symbiont tree root s̃0 mapped in h0 (namely [s̃0 : h0]) while the
children s̃1, s̃2 are positioned on the arcs a1 = (h0, h1) and a2 = (h0, h2) (namely 〈s̃1 : a1〉 and 〈s̃2 : a2〉).
(B) A horizontal spread event for the symbiont s̃2 in h1 → h5. We thus first map s̃1 to h1 and all its
descendants (namely {s̃1 : h(a1)}). We then map s̃1 to h5 and all its descendants (namely {s̃1 : h(a5)}),
where a5 = (h4, h5). Note that h5 does not have a descendant. We then attach a subtree to s̃1 constructed
as explained in the text.

In general, a likelihood-free computation involves a chain of parameter proposals and only
accepts a set of parameter values on the condition that the model with these values generates data
that satisfy a performance criterion with respect to the observed data. In this case, N parameter
vectors in the space [0, 1]3 are randomly chosen under some prior distribution (usually uniform).
The two main steps of the ABC-SMC procedure consist in:

Step 1 For each vector θ, generate M simulated trees S̃. A distance value, obtained computing
the difference between S and S̃, is associated to each parameter vector. The vectors are
then ordered respecting the distance value, in ascending order. The choice of the best
vectors is made by taking into account two values which are:

• Tolerance: This value determines the percentage of parameter vectors to be accepted.
If for instance, the tolerance value is 0.2, then 20% of the vectors with lower distance
will be accepted.

• Threshold: This corresponds to the largest value of the summary statistics associated
with the accepted parameter vectors.

Step 2 Only the best vectors previously selected are used in this step, and are perturbed. The
perturbation is performed by adding to each coordinate of the vector a randomly chosen
value in the interval [−0.01,+0.01] and by doing a normalisation. A new distance value is
calculated for the perturbed vector. If the new distance is lower than the threshold, the
perturbed vector is conserved.

The ABC-SMC procedure is composed of R > 1 rounds. For each round, a tolerance value
is defined which determines the percentage of parameter vectors to be accepted.
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The final set of accepted parameter vectors is the result of the ABC-SMC procedure and
characterises the list of vectors that may explain the evolution of the pair of host and symbiont
trees given as input. Observe that, since in all experiments a uniform prior distribution is
assumed and also the perturbations are performed in a uniform way, the weights induced by the
proposals will also appear to be uniform [6]. However, in the case of a different prior, weights
should be used in the process in order to correct the posterior distribution according to the
perturbation made.

Distance for comparing trees

We now propose an extension of MAAC (Maximum Agreement Area Cladogram) [23] for com-
paring two phylogenetic trees whose leaves are labelled by a subset of a set X. We remind that
in Coala, one host can be associated to more than one symbiont, but one symbiont cannot be
associated to more than one host, so that S̃ is a multi-labelled tree, meaning that it is a tree
whose leaf labels need not be unique.

Instead in AmoCoala, one host can be associated to more than one symbiont and one
symbiont can be associated to more than one host. In this case, S̃ is a set-labelled tree (that is,
the leaves are labelled with sets and not singletons). We can extend the concept of maximum
agreement subtree in order to handle the case of set-labelled trees. We recall that the maximum
agreement subtree of two trees T1 and T2 is an agreement subtree with the maximum weight.
We will denote such weight by MAS(T1, T2). The MAS distance, denoted by dMAS , between
two set-labelled phylogenetic trees T1,T2 is defined as:

dMAS(T1, T2) = max{w(T1), w(T2)} − w(MAS(T1, T2)) (3.8)

where we remind that w(T ) is the weight of a tree T . The MAS distance is thus the difference
between the maximum weight of T1 and T2, and the weight of a maximum agreement subtree of
T1 and T2. Note that the maximum agreement subtree does not necessarily have the maximum
number of vertices as showed in Figure 3.7.

We show that the distance dMAS is a metric. For this, we check that dMAS satisfies the
following properties:

1. dMAS(T1, T2) ≥ 0 for all T1,T2: this is trivial.

2. dMAS(T1, T2) = 0 if and only if T1 = T2. Clearly if T1 = T2 then dMAS(T1, T2) = 0.
Otherwise, let dMAS(T1, T2) = 0. Then max{w(T1), w(T2)} = MAS(T1, T2). The proof
follows by observing that in general if T ∗ is a subtree of T such that w(T ∗) = w(T ) then
T ∗ = T .

3. dMAS(T1, T2) = dMAS(T2, T1): this is trivial.

4. For any triplet of trees T1, T2, T3, it holds that dMAS(T1, T2)+dMAS(T2, T3) ≥ dMAS(T1, T3):
For simplicity, we set wi = w(Ti) and mi,j = MAST (Ti, Tj). Hence dMAS(Ti, Tj) =

max{wi, wj}−mi,j . Furthermore, we denote by m1,2,3 the size of the maximum agreement
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subtree that is common to the three trees T1, T2, T3. We then have:

dMAS(T1, T2) + dMAS(T2, T3) = max{w1, w2} −m1,2 +max{w2, w3} −m2,3

= max{w1, w2}+max{w2, w3} − (m1,2 +m2,3 −m1,2,3 +m1,2,3)

≥ max{w1, w2, w3}+ w2 − (w2 −m1,2,3)

≥ max{w1, w3} −m1,3,

where for the first inequality, we use the fact that max{w1, w2}+max{w2, w3} ≥ max{w1, w2, w3}+
w2 and m1,2 +m2,3 −m1,2,3 is at most w2. This concludes the proof.

Figure 3.7: (A) Two set-labelled phylogenetic trees. T1 has weight 9 and T2 has weight 11. In (B),
(C), (D), three different agreement subtrees of weight 6, 5 and 7 respectively. The maximum agreement
subtree is the one depicted in (D).

The previous proof and comments show that the MAS distance dMAS is very similar to
the MAAC one [23] for multi-labelled trees. Thus, it is natural to ask whether comparing two
set-labelled trees can be reduced to comparing two multi-labelled trees. One idea is to transform
a set-labelled tree into a multi-labelled tree. However, the straightforward transformation seems
not to work well for our purpose. For instance, we can transform each set-labelled tree into a
multi-labelled tree by substituting each set-labelled leaf by a subtree with a fixed topology (say
a complete binary tree, or a multifurcating vertex) as in Figure 3.8. However, in these cases the
two trees in Figure 3.8A-B would be considered equivalent, but in our context they are different.
In fact, the set-labelled tree in Figure 3.8 indicates that there is a symbiont that infects 4 different
hosts {a, b, c, d}, while in the multi-labelled trees, we will have 4 different symbionts infecting
each a different host.
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Figure 3.8: (A) The two phylogenetic trees will be considered at distance 0 if we substitute the vertex
labelled by the set {a, b, c, d} by: (A) a balanced binary tree, (B) a multifurcated vertex.

A polynomial time algorithm for computing the MAS distance dMAS

We now show that it is possible to calculate the distance dMAS(T1, T2) in polynomial time with
respect to the size of the trees. The algorithm is based on dynamic programming and extends
quite straightforwardly the algorithm for calculating the MAAC distance [23]. We denote by
MAS(v1, v2) the maximum agreement subtree between the two trees T1 and T2 rooted in v1 and
v2, respectively. For a leaf v, we denote by l(v) the set of labels associated with it. Finally, for
an internal vertex v, we denote by ch1(v) and ch2(v) the two children of v.

The dynamic programming algorithm starts from the leaves and ends in the roots of T1 and
T2 following a recursion. We have that MAS(v1, v2) is given by:

• If v1 and v2 are both leaves then MAS(v1, v2) = |L(v1) ∪ L(v2)|

• If v1 or v2 (could be both) are internal vertices, MAS(v1, v2) is the maximum value among
the following three quantities:

1. max{MAS(ch1(v1), v2),MAS(ch2(v1), v2)}
2. max{MAS(v1, ch1(v2)),MAS(v1, ch2(v2)}
3. max{MAS(ch1(v1), ch1(v2)) +MAS(ch2(v1), ch2(v2)), MAS(ch1(v1), ch2(v2))

+MAS(ch2(v1), ch1(v2))}

Figure 3.9 shows an example of dynamic programming matrix for the set-labelled trees T1

and T2 rooted in v1 and v2 respectively. In this example, MAS(v1, v2) is equal to 2.
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Figure 3.9: Example of dynamic programming matrix for the set-labelled trees T1 and T2 rooted in v1
and v2 respectively.

3.3 Datasets

We evaluated our method AmoCoala using synthetic and real datasets. We describe below
each one of these datasets.

3.3.1 Synthetic datasets

We first evaluated the model using synthetic datasets. The idea is, given a dataset (H,S, φ) and
a specific probability vector θ, to produce a simulated symbiont tree S̃θ. Observe that θ stands
for a vector of four probabilities 〈pc, pd, ds, pl〉.

In this way, we create a synthetic dataset (H, S̃θ, φ′) for which we know the “truth”, that
is the real parameter vector θ associated to it. Hence, to test AmoCoala with this dataset,
we want to check whether the vector θ (or a vector very “similar” to it) is found among those
accepted in the last round of the procedure.

To test the algorithm, we used the 5 biological datasets described in Section 3.3.2 below, and
we generated the synthetic ones using the method described below.

For any such dataset, we generated 8 datasets (H,S) associated with the following 8 probabil-
ity vectors: θ1 = 〈0.70, 0.10, 0.10, 0.10〉, θ2 = 〈0.80, 0.15, 0.01, 0.04〉, θ3 = 〈0.75, 0.01, 0.16, 0.08〉,
θ4 = 〈0.70, 0.05, 0.02, 0.23〉, θ5 = 〈0.60, 0.20, 0.00, 0.20〉, θ6 = 〈0.55, 0.00, 0.20, 0.25〉, θ7 = 〈0.45, 0.10, 0.15, 0.30〉
and θ8 = 〈0.40, 0.20, 0.10, 0.30〉. The choice of vectors was done with the aim to cover different
patterns of probability. All datasets were generated with the same host tree H and symbiont
tree S.

We used these vectors and the symbiont tree generation algorithm in Coala (see [5] for
more details) to obtain, for each vector θ, a simulated symbiont tree S̃θ whose evolution follows
that of the host tree H under the parameter value of θ. It is important to note that during the
simulation of S̃θ, we can have vertical or horizontal spreads (so also multiple associations created
as explained in “Algorithm for simulating the evolution of the symbiont in the case of horizontal
and vertical spreads”). Each dataset (H,S, φ) and probability vector γ thus led to a simulated
dataset (H,S′, φ′).

Due to the high variability of the symbiont trees which can be simulated given a host tree H

and a vector θ, the task of choosing the most “typical” tree can be hard. To simplify this task
and select a typical tree, we impose two conditions which must be observed by the simulated
tree. The first one requires that the candidate tree should have a size close to the median for all
the trees which are simulated using H and θ. The second condition requires that the observed
number of events of a candidate tree should be very close to the expected number given θ. For
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this reason, the number of synthetic datasets created is not 5×8=40, because there are some
vectors θ that do not produce enough simulated trees (for reasons of size or number of events).
In this case, the vector θ is not used, and this is why in the end, we have only 36 synthetic
datasets.

In practical terms, in order to simulate a realistic symbiont tree, we choose a real host tree
H and a probability vector θ. We then generate 2000 symbiont trees, imposing constraints on
the size of the simulated trees S̃θ can be at most two times bigger than S). We then compute
the median size of all the generated trees and filter out those whose size is far from this value
(difference greater than 1 or 2 leaves from the median value). Finally, we select as typical tree
S̃θ the one that shows the smallest χ2 distance between the vector θ and the vector of observed
frequencies of events.

3.3.2 Biological datasets

To test our method, we selected 5 biological datasets from the literature:

AP - Acacia & Pseudomyrmex. This dataset was extracted from the work of Gómez-Acevedo
et al. [24]. The host tree includes 9 leaves and the symbiont tree includes 7 leaves. The dataset
has 22 multiple-associations.

MP - Myrmica & Phengaris. This dataset was extracted from the work of Jansen et al. [40]
and is composed of a pair of host and symbiont trees which have each 8 leaves. The dataset has
8 multiple-associations.

SBL - Seabirds & Lice, This dataset was extracted from the work of Paterson et al. [57].
The host tree includes 15 leaves and the symbiont tree includes 8 leaves. The dataset has 15
multiple-associations.

SFC - Smut Fungi & Caryophillaceus plants. This dataset was extracted from the work of
Refrégier et al. [65]. The host tree includes 15 leaves and the symbiont tree includes 16 leaves.
The dataset has 4 multiple-associations.

SFCsimple - Smut Fungi & Caryophillaceus plants. This is the same dataset as the previous
one, except that it has no multiple associations. The authors in [5] created the SFCsimple
dataset because in Coala it was impossible to use datasets with multiple associations. With
AmoCoala we can study not only SFCsimple , but also the SFC dataset where there are four
symbiont species that are associated each to two host species.

The choice of these datasets was dictated by: (1) the availability of the data in public
databases, (2) the desire to cover for situations as widely different as possible in terms of the
topology of the trees and the presence of multiple associations, and (3) the possibility to compare
the results with those presented in [5].

3.4 Results and Discussion

We tested the model on both the synthetic and the datasets. We present here the results for
all datasets, however giving a particular attention to the SFC dataset (Figure 3.10) and to the
SFCsimple dataset (Figure 3.11).
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3.4.1 Experimental setting

Parameter setting using AmoCoala

All datasets were processed using AmoCoala configured with the same parameters. For each
dataset, we generated N = 2000 vectors in the first round. For each vector, M = 1000 symbiont
trees were generated using the method described in Section "Evolution of symbionts in Amo-
Coala" . These trees have a size at most twice the one of the real symbiont tree, otherwise
the tree was discarded as being too different from the original one. The tolerance value used
in the first round was τ1 = 0.1. We ran R = 3 rounds and we defined τi = 0.25. Notice that
τ1 ×N = 200 defines the size Q of the quantile set which must be produced in each new round.
Thus, after the last round, we have τ3 ×Q = 50 accepted vectors.

Behaviour of the algorithm

In this section, we check if the algorithm is able to produce trees S̃ similar in terms of number
of multiple associations and of size to the original symbiont tree S. We expect that in the
first round, where the vectors are sampled uniformly at random, the simulated trees differ from
S. However, after each round, the method tends to select vectors producing trees near to the
original one. Observe that we expect the generated tree to be slightly bigger in terms of number
of multiple associations and of size compared to the original symbiont S. This is due to the
fact that during the simulations, if we have a horizontal or a vertical spread, we simulate the
symbiont tree choosing the topology and the leaf associations, identical to those observed in the
original symbiont tree. For each generated vector, we simulated M = 1000 symbiont trees, we
calculated the average number of multiple associations and the average size, and we plotted the
frequencies of each value. We produce these plots for the 3 rounds.

Self-test

Here we controlled if, given a dataset (H,S, φ) and a specific probability vector θ, we produce a
simulated symbiont tree S̃θ as explained in the Section Evolution of symbionts in AmoCoala.
We want to know if, running AmoCoala on a host tree H, a symbiont tree S̃θ′ and the associa-
tions between leaves φ, among the vectors accepted on the last round there is one θ′ that is close
to θ. The distance that we use between the vectors θ = 〈pc, pd, ps, pl〉 and θ′ = 〈qc, qd, qs, ql〉 is
the χ2.

3.4.2 Results on the Synthetic Datasets

We present now the results for the five datasets. We gave more importance to the results for the
datasets SFC and SFCsimple because this were the ones that were analysed in [5] and thus it is
possible to compare the results of the two models, Coala and AmoCoala.

Behaviour of the algorithm

We discuss here the results for the SFC dataset. Figure 3.12 shows for each round, given a vector,
the average number of multiple associations of the simulated symbiont trees. The original dataset
has 4 multiple associations. We see that during the simulation this value is observed. Notice that
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in the second and third rounds, there is a tendency to have more than 4 multiple associations:
most of the vectors have an average of multiple associations between 5 and 6.

Figure 3.13 shows for each round, given a vector, the average size of the simulated symbiont
trees. The original dataset has 31 vertices, we see that during the simulation this value is
observed. Notice that in second and third rounds, there is a tendency to have a size bigger
than 31: indeed, most of the vectors have an average size between 35 and 40. As before, this
is probably due to the fact that during the simulations, if we have a horizontal or a vertical
spread, we simulate the symbiont tree choosing the topology and the leaf associations identical
to those observed in the original symbiont tree. Thus, if a spread happens more than once in
a host vertex, the subtree of the symbiont tree will be copied more than once. However, this is
a rare event in practice as shown empirically by our experiments where we have symbiont trees
very near to the real tree.

In general, we find the same characteristics (as concerns both number of multiple associations
and size) between the original and the simulated symbiont trees, in all the datasets with multiple
associations used (Figures 3.14, 3.16 and 3.18 for the number of multiple associations for the
datasets AP, MP and MP respectively, Figures 3.15, 3.17 and 3.19 for the size of the trees for
the datasets AP, MP and MP respectively). The number of multiple associations expected is
present in the histogram, but it is not the mode, probably due to the method to simulate S̃ with
horizontal and vertical spreads.

The dataset SFCsimple does not present this behaviour. The number of multiple associations
is equal to zero (Figure 3.20) and the average size of the simulated symbiont trees is close to the
size of the original tree (Figure 3.21). This is probably due to the fact that SFCsimple does not
have multiple associations and the method to simulate S̃ with horizontal and vertical spreads is
not used.

Self-test

We applied the self-test to the synthetic datasets obtained from the real ones. For those obtained
from the SFC dataset, we see that running AmoCoala under the parameter value S̃θ, we can
find, among the vectors accepted in the last round, a vector close to θ. Table 3.2 shows for each
setting: the probability vector θ, the probability vector θ′, the χ2 distance d(θ, θ′), the cluster
where θ′ appears and how many vectors this cluster has. The results show that if we produce a
tree from a vector θ, then this vector is close to those accepted at the end of the algorithm.

We obtain the two bigger χ2 distances with the vectors that present the lowest probability
of cospeciations. This is due to the fact that, in the case of coevolution, usually there is a big
probability of cospeciations. When this value is low, it is difficult to simulate good symbiont
trees, as the symbiont is not following the host anymore and potentially every phylogenetic tree
would be possible for the symbiont. We found the same type of results for all the used datasets:
AP(Table 3.3), MP (Table 3.4), SBL (Table 3.5) and SFCsimple (Table 3.6).

3.4.3 Results with the Biological Datasets

In the case of the biological datasets, to see if the algorithm really simulates horizontal and verti-
cal spreads but also if the new distance (dMAS) accepts the good vectors, we list the histograms
of distances, event probabilities and number of vertical and horizontal spreads obtained at the
end of each one of the 3 rounds (Figures 3.22, 3.23 and 3.24). As we expect, in the case of
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Table 3.2: Result of the self-test for the SFC synthetic datasets

θ = 〈pc, pd, ps, pl〉 θ′ = 〈qc, qd, qs, ql〉 χ2 cluster #vectors

〈0.7, 0.1, 0.1, 0.1〉 〈0.779, 0.130, 0.079, 0.012〉 0.399 2 16
〈0.8, 0.15, 0.01, 0.04〉 〈0.82, 0.114, 0.028, 0.04〉 0.167 4 6
〈0.75, 0.01, 0.16, 0.08〉 〈0.834, 0.004, 0.115, 0.0474〉 0.214 1 31
〈0.7, 0.05, 0.02, 0.23〉 〈0.752, 0.017, 0.004, 0.227〉 0.239 2 11
〈0.6, 0.2, 0, 0.2〉 〈0.519, 0.268, 0.002, 0.211〉 0.192 2 12
〈0.55, 0, 0.2, 0, 25〉 〈0.729, 0.006, 0.262, 0.004〉 0.292 1 18
〈0.45, 0.1, 0.15, 0.3〉 〈0.672, 0.000, 0.157, 0.170〉 0.599 3 9
〈0.4, 0.2, 0.1, 0.3〉 〈0.478, 0.358, 0.005, 0.159〉 0.602 5 3

Table 3.3: Result of the self-test for the AP synthetic datasets

θ = 〈pc, pd, ps, pl〉 θ′ = 〈qc, qd, qs, ql〉 χ2 cluster #vectors

〈0.7, 0.05, 0.02, 0.23〉 〈0.757, 0.0292, 0.0211, 0.1926〉 0.260 3 14
〈0.6, 0.2, 0, 0.2〉 〈0.7075, 0.0308, 0.0055, 0.2563〉 0.854 1 17
〈0.55, 0, 0.2, 0, 25〉 〈0.8931, 0.0374, 0.0409, 0.0285〉 1.375 3 2
〈0.45, 0.1, 0.15, 0.3〉 〈0.7799, 0.0314, 0.0136, 0.1751〉 1.421 2 12
〈0.4, 0.2, 0.1, 0.3〉 〈0.4844, 0.0232, 0.0076, 0.4848〉 1.35 5 4

Table 3.4: Result of the self-test for the MP synthetic datasets

θ = 〈pc, pd, ps, pl〉 θ′ = 〈qc, qd, qs, ql〉 χ2 cluster #vectors

〈0.7, 0.1, 0.1, 0.1〉 〈0.834, 0.035, 0.02, 0.111〉 0.7629 1 25
〈0.8, 0.15, 0.01, 0.04〉 〈0.198, 0.418, 0.015, 0.37〉 2.126 2 9
〈0.7, 0.05, 0.02, 0.23〉 〈0.607, 0.019, 0.237, 0.137〉 1.106 2 12
〈0.6, 0.2, 0, 0.2〉 〈0.734, 0.025, 0.031, 0.21〉 0.958 3 11
〈0.55, 0, 0.2, 0, 25〉 〈0.6, 0.00, 0.325, 0.074〉 0.7163 4 9
〈0.45, 0.1, 0.15, 0.3〉 〈0.409, 0.015, 0.426, 0.15〉 1.251 2 16
〈0.4, 0.2, 0.1, 0.3〉 〈0.702, 0.0403, 0.034, 0.223〉 1.272 1 35

Table 3.5: Result of the self-test for the SBL synthetic datasets

θ = 〈pc, pd, ps, pl〉 θ′ = 〈qc, qd, qs, ql〉 χ2 cluster #vectors

〈0.7, 0.1, 0.1, 0.1〉 〈0.858, 0.022, 0.026, 0.094〉 0.811 2 22
〈0.8, 0.15, 0.01, 0.04〉 〈0.79, 0.168, 0.028, 0.014〉 0.34 3 10
〈0.75, 0.01, 0.16, 0.08〉 〈0.737, 0.013, 0.167, 0.083〉 0.0731 1 20
〈0.7, 0.05, 0.02, 0.23〉 〈0.752, 0.008, 0.017, 0.224〉 0.346 2 17
〈0.6, 0.2, 0, 0.2〉 〈0.671, 0.034, 0.024, 0.272〉 0.939 1 29
〈0.55, 0, 0.2, 0, 25〉 〈0.667, 0.003, 0.213, 0.117〉 0.74 1 22
〈0.45, 0.1, 0.15, 0.3〉 〈0.439, 0.001, 0.298, 0.262〉 0.839 4 2
〈0.4, 0.2, 0.1, 0.3〉 〈0.411, 0.006, 0.337, 0.246〉 1.233 1 24
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Table 3.6: Result of the self-test for the SFCsimple synthetic datasets

θ = 〈pc, pd, ps, pl〉 θ′ = 〈qc, qd, qs, ql〉 χ2 cluster #vectors

〈0.7, 0.1, 0.1, 0.1〉 〈0.723, 0.152, 0.113, 0.012〉 0.593 1 23
〈0.8, 0.15, 0.01, 0.04〉 〈0.794, 0.159, 0.007, 0.04〉 0.065 2 20
〈0.75, 0.01, 0.16, 0.08〉 〈0.706, 0.006, 0.15, 0.137〉 0.292 3 15
〈0.7, 0.05, 0.02, 0.23〉 〈0.657, 0.007, 0.01, 0.326〉 0.579 4 6
〈0.6, 0.2, 0, 0.2〉 〈0.56, 0.206, 0.00, 0.234〉 0.164 3 10
〈0.55, 0, 0.2, 0, 25〉 〈0.76, 0.001, 0.229, 0.01〉 0.528 1 25
〈0.45, 0.1, 0.15, 0.3〉 〈0.59, 0.006, 0.207, 0.197〉 0.945 4 9
〈0.4, 0.2, 0.1, 0.3〉 〈0.346, 0.27, 0.001, 0.383〉 0.815 5 3

a dataset with multiple associations, the histograms of the number of vertical and horizontal
spreads contain also values bigger than zero. We see further that the representative distance
histograms for the accepted parameter vectors decrease at every round. This means that our
method that relies on the distance dMAS accepts vectors of simulated trees that are increasingly
more similar to the original symbiont tree.

At the end of the third round, AmoCoala performs a hierarchical clustering procedure to
group the final list of accepted parameter vectors. Table 3.7 shows the cluster for the SFC and
SFCsimple datasets. In the study of Baudet et al. [5], Coala was tested with the SFCsimple
dataset. One question is whether using the same dataset with AmoCoala, the cluster patterns
are the same or not.

We compared our results in Table 3.7 with the results in Table 3 of the Supplementary
Material of [5]. We observe that the results are very similar. This means that if a dataset does
not have multiple associations, the results obtained with AmoCoala are very close of those
obtained with Coala. Notice that both methods are stochastic. Thus the results cannot be
identical.

Next, we considered the real dataset SFC with multiple associations proposed in [65], where
the reconciliations presented for the SFC dataset have from 0 to 3 cospeciations, no duplication,
12 to 15 host switches and 0 to 2 losses. It is impossible for us to calculate the number of
events in a parsimony framework, because we do not have for now a parsimonious algorithm
for computing optimal reconciliations in the case of a dataset with multiple associations (we are
working on one). However, we know that the sum of events (cospeciation, duplication and host
switch), excluding the loss event, is equal to the number of internal vertices of the symbiont tree.
The symbiont tree (that is the same for SFC and SFCsimple ) has 15 internal vertices. Based on
the Refrégier’s data, we expect to have events with the following probabilities: between 0% and
20% for cospeciations (from 0 to 3 events), 0% for duplications (no duplications), between 80%
and 100% for host-switches (from 12 to 15 events) and between 0% and 13% for losses (from
0 to 2 events). In Table 3.7, the most similar result to the expected one according to [65] is
the cluster 2 for the SFC dataset, because it exhibits zero probability of duplication and high
probability of host switch. It is also important to note that the number of vectors that are part
of this cluster is high. The results obtained with AmoCoala which allows to consider the whole
dataset SFC with multiple associations, are thus closer to the result presented in [65] than those
that were obtained by Coala which ignores such multiple associations. This shows again the
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importance of taking into account the latter.

Table 3.7: Representative probability vectors produced by AmoCoala at round 3 while pro-
cessing the biological datasets SFC and SFCsimple .

Dataset Cluster pc pd ps pl #vectors

SFC

1 0.531 0.004 0.282 0.183 19
2 0.226 0.004 0.543 0.228 14
3 0.898 0.020 0.040 0.042 12
4 0.859 0.062 0.002 0.077 5

SFCsimple

1 0.437 0.002 0.357 0.204 20
2 0.417 0.274 0.003 0.306 19
3 0.850 0.002 0.005 0.144 5
4 0.005 0.418 0.003 0.575 4
5 0.144 0.001 0.548 0.308 2

3.5 Conclusion and Open Problems

In this work, we extended the algorithm of Coala to make the model more realistic. The new
model, that we called AmoCoala, allows for multiple associations, meaning that a symbiont can
be associated to more than one host. In AmoCoala, it is possible to estimate the probabilities
of the “classical events” (cospeciation, duplication, host switch and loss) and also the number of
times that the new events, horizontal and vertical spreads, are present. These two events allow
to study datasets that contain multiple associations. The model uses set-labelled trees and a
new distance, called MAS (which is an extension of the MAAC distance [23]), to compare two
trees set-labelled trees. We tested AmoCoala on both synthetic and real datasets. We saw that
AmoCoala simulated symbiont trees that are slightly bigger in terms of number of multiple
associations and of size than the original symbiont S. This is due to the fact that during the
simulations, if we have a horizontal or a vertical spread, we simulate the symbiont tree choosing
the topology and the leaf associations identical to those observed in the original symbiont tree.
We also used a self-test to check if, for a dataset and its evolutionary history given by the θ

parameter, AmoCoala predicts well the expected vector θ. Finally, we applied AmoCoala to
the SFC dataset with multiple associations [65]. We checked if the algorithm really simulated
horizontal and vertical spreads but also if the new distance (dMAS) accepted the good vectors. As
expected, AmoCoala simulated a number of vertical and horizontal spreads bigger than zero.
We saw also that the representative distance values for the accepted parameter vectors decrease
at every round of the algorithm. This means that our method, that relies on the MAS distance,
accepts vectors for the simulated trees that are increasingly more similar to those of original
symbiont tree. Based on Refrégier’s data, we expected to have zero probability of duplication
and high probability of host-switch. We indeed find this. The results obtained with AmoCoala
using the SFC dataset with multiple associations are thus closer to the expected value (based
on Refrégier’s data) than what Coala can get. This demonstrates the importance of having a
method that takes into account multiple associations.
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The accuracy of the results obtained depends on the choice of the metric used for comparing
trees. Designing a new metric that takes in account also if the number of vertical and horizontal
spreads observed are similar to the number of spread expected would be one future direction to
follow. Another interesting direction would be to change the model and the probability of spread
depending on the type of symbiotic association. Indeed, in the case of endosymbiosis, we expect
the probability of spread to be lower.
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Figure 3.10: Dataset SFC: Host (blue) and symbiont (yellow) trees together with their leaf
associations (grey lines). The figure was created using TreeMap3 [11].
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Figure 3.11: Dataset SFCsimple : Host (blue) and symbiont (yellow) trees together with their
leaf associations (grey lines). The figure was created using TreeMap3 [11].
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Figure 3.12: Histogram of the average number of multiple associations obtained on the simulated datasets
derived from the SFC dataset. For each cost vector, M = 1000 symbiont trees are generated. Each line
represents a round of AmoCoala. The histogram shows the average number of multiple associations of
the simulated symbiont trees, given a cost vector.
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Figure 3.13: Histogram of the average number of tree size obtained on the simulated datasets derived
from the SFC dataset. For each cost vector, M = 1000 symbiont trees are generated. Each line represents
a round of AmoCoala. The histogram shows the average tree size of the simulated symbiont trees, given
a cost vector.
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Figure 3.14: Histogram of the average number of multiple associations obtained on the simulated datasets
derived from the AP dataset.For each cost vector, M = 1000 symbiont trees are generated. Each line
represents a round of AmoCoala. The histogram shows the average number of the multiple associations
of the simulated symbiont trees, given a cost vector.
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Figure 3.15: Histogram of the average number of tree size obtained on the simulated datasets derived
from the AP dataset. For each cost vector, M = 1000 symbiont trees are generated. Each line represents
a round of AmoCoala. The histogram shows the average tree size of the simulated symbiont trees, given
a cost vector.
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Figure 3.16: Histogram of the average number of multiple associations obtained on the simulated datasets
derived from the MP dataset.For each cost vector, M = 1000 symbiont trees are generated. Each line
represents a round of AmoCoala. The histogram shows the average number of multiple associations of
the simulated symbiont trees, given a cost vector.
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Figure 3.17: Histogram of the average number of tree size obtained on the simulated datasets derived
from the MP dataset. For each cost vector, M = 1000 symbiont trees are generated. Each line represents
a round of AmoCoala. The histogram shows the average tree size of the simulated symbiont trees, given
a cost vector.
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Figure 3.18: Histogram of the average number of multiple associations obtained on the simulated datasets
derived from the SBL dataset. For each cost vector, M = 1000 symbiont trees are generated. Each line
represents a round of AmoCoala. The histogram shows the average number of multiple associations of
the simulated symbiont trees, given a cost vector.
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Figure 3.19: Histogram of the average number of tree size obtained on the simulated datasets derived
from the SBL dataset. For each cost vector, M = 1000 symbiont trees are generated. Each line represents
a round of AmoCoala. The histogram shows the average tree size of the simulated symbiont trees, given
a cost vector.
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Figure 3.20: Histogram of the average number of multiple associations obtained on the simulated datasets
derived from the SFCsimple dataset.For each cost vector, M = 1000 symbiont trees are generated. Each
line represents a round of AmoCoala. The histogram shows the average number of multiple associations
of the simulated symbiont trees, given a cost vector.
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Figure 3.21: Histogram of the average number of tree size obtained on the simulated datasets derived
from the SFCsimple dataset. For each cost vector, M = 1000 symbiont trees are generated. Each line
represents a round of AmoCoala. The histogram shows the average tree size of the simulated symbiont
trees, given a cost vector.
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Figure 3.22: Results for the SFC dataset at round 1: First row: 4 event probability histograms (for
cospeciation, duplication, host switch and loss) and 2 number of event histograms (for vertical and hor-
izontal spreads) of all the simulated parameter vectors at round 1. Second row: 4 event probability
histograms (for cospeciation, duplication, host switch and loss) and 2 number of event histograms (for
vertical and horizontal spreads) of all the accepted parameter vectors at round 1. Third row: Represen-
tative distance histograms for all the simulated parameter vectors (first column) and accepted parameter
vectors (second column).



84 More Realistic Model Cophylogenetic Model

SF
C

.n
ex

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

05101520

1

6%

2%

10
%22

% 18
% 1

8%

13
%

7%

3%

SF
C

.n
ex

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
du

p

Density

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

051015202530

28
% 12

%14
% 10

% 10
% 7%

3%
4%

5%
1%

2%
2%

1%

SF
C

.n
ex

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

05101520

19
% 13

% 12
% 10

%10
%10

% 8%
6%

3%
2%

4%

12%
1

SF
C

.n
ex

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
lo

ss

Density

0.
0

0.
1

0.
2

0.
3

0.
4

051015202530

9%
9%

16
%

28
%

22
%

11
%

3%
3%

SF
C

.n
ex

ro
un

d 
2 
− 

si
m

ul
at

io
n

ve
rti

ca
l_

S
pr

ea
d

Frequency

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

01020304050

SF
C

.n
ex

ro
un

d 
2 
− 

si
m

ul
at

io
n

ho
riz

on
ta

l_
S

pr
ea

d

Frequency

2.
5

3.
5

4.
5

5.
5

010203040506070

SF
C

.n
ex

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

25
94

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

05101520

1%

11
%

2%

6%

20
% 16

% 14
%16

%

8%
6%

SF
C

.n
ex

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

25
94

p_
du

p

Density

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

01020304050

51
% 12

%12
% 4%

9%

2%
1%

0
3%

3%
1%

1%
1%

SF
C

.n
ex

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

25
94

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

051015202530

27
% 5%

9%
9%

10
%10

% 3%

9%

1%
2%

9%

1%
4%

1%

SF
C

.n
ex

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

25
94

p_
lo

ss

Density

0.
00

0.
10

0.
20

0.
30

051015202530

11
%

9%

15
%

30
%

16
%

16
%

3%

SF
C

.n
ex

ro
un

d 
2

ve
rti

ca
l_

S
pr

ea
d

Frequency

0.
6

0.
8

1.
0

1.
2

1.
4

05101520

SF
C

.n
ex

ro
un

d 
2

ho
riz

on
ta

l_
S

pr
ea

d

Frequency

2.
5

3.
5

4.
5

5.
5

0102030

SF
C

.n
ex

ro
un

d 
2 
− 

si
m

ul
at

io
n

D
is

ta
nc

e

Density

0.
15

0.
20

0.
25

05101520253035

1
01

%
0

01%
1%

4%
5%

8%
8%

7%

20
%32

% 13
%

SF
C

.n
ex

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

25
94

D
is

ta
nc

e

Density

0.
14

0.
18

0.
22

0.
26

05101520253035

1%
0

1%
0

0
2%

2%

7%
9%

17
% 15

% 14
%32

%
N

ex
us

 fi
le

: S
FC

.n
ex

H
os

t/P
ar

as
ite

 tr
ee

: 1
8/

16
 le

av
es

P
rio

r d
is

tri
bu

tio
n:

 2
00

0 
ve

ct
or

s
N

um
be

r o
f t

re
es

: 1
00

0 
tre

es
M

ax
im

um
 n

um
be

r o
f t

re
es

: 5
00

0 
tre

es
N

um
be

r o
f r

ou
nd

s:
 3

 ro
un

ds
Pe

rtu
rb

at
io

n:
 0

.0
10

0
To

le
ra

nc
es

: 0
.1

00
0,

0.
50

00
,0

.2
50

0
S

im
ul

at
io

n 
M

od
el

: 1
 −

 F
ro

m
 th

e 
ro

ot
 to

 th
e 

le
C

yc
lic

ity
 te

st
: 2

 −
 D

on
at

i e
t a

l.,
 2

01
4.

M
et

ric
: 4

 −
 E

V
E

N
TS

 A
N

D
 M

A
AC

−M
U

LT
. A

S
S

(a
lp

ha
1/

al
ph

a2
): 

0.
70

00
/0

.3
00

0
A

lp
ha

 (c
os

p.
,d

up
l.,

sw
itc

h,
lo

ss
): 

(1
.0

00
0,

1.
00

R
oo

t m
ap

pi
ng

 p
ro

ba
bi

lit
y:

 1
.0

00
0

Figure 3.23: Results for the SFC dataset at round 2: First row: 4 event probability histograms (for
cospeciation, duplication, host switch and loss) and 2 number of event histograms (for vertical and hor-
izontal spreads) of all the simulated parameter vectors at round 2. Second row: 4 event probability
histograms (for cospeciation, duplication, host switch and loss) and 2 number of event histograms (for
vertical and horizontal spreads) of all the accepted parameter vectors at round 2. Third row: Represen-
tative distance histograms for all the simulated parameter vectors (first column) and accepted parameter
vectors (second column).
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Figure 3.24: Results for the SFC dataset at round 3: First row: 4 event probability histograms (for
cospeciation, duplication, host switch and loss) and 2 number of event histograms (for vertical and hor-
izontal spreads) of all the simulated parameter vectors at round 3. Second row: 4 event probability
histograms (for cospeciation, duplication, host switch and loss) and 2 number of event histograms (for
vertical and horizontal spreads) of all the accepted parameter vectors at round 3. Third row: Represen-
tative distance histograms for all the simulated parameter vectors (first column) and accepted parameter
vectors (second column).
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Chapter 4

General Conclusion and Perspectives

In this Ph.D., we aimed at understanding and creating models and algorithms to study the
common evolutionary history of host and symbionts.

This study was focused on two main aspects. The first is the robustness of the model. The
objective in this case was to better understand the strengths and weaknesses of the parsimonious
reconciliation method. We analysed the robustness in the two cases: of “editing” (multiple
associations) and of “small perturbations” of the input (rooting problem). Notice that the first
case is in general due to the fact that in the parsimonious method, it is difficult to handle multiple
associations although there could also be errors present in the association of the leaves that is
given as input. The editing or perturbations we considered involved, respectively: (a) making all
possible choices of single symbiont-host leaf mapping in the presence of multiple associations (we
call this resolving the multiple associations into simple ones), and (b) re-rooting of the symbiont
tree. In both studies, we explored the influence of six cost vectors that are commonly used in
the literature.

We observed that the choice of leaf associations and the re-rooting may have a strong impact
on the variability of the reconciliation output. We also noticed that the host switch event has an
important role in particular for the rooting problem. Indeed, we showed that if we use a model
that contains host switches, the plateau property is no longer verified. It will be interesting to
better understand which role this event plays on the robustness of the model. For instance, it
would be interesting to know if, in the case where we have a reconciliation with more than one
plateau, the number of host switches in the optimal reconciliations is always the same. More
work must be done in this direction.

Given a same cost vector, in order to evaluate the similarity of the output of two different
optimal reconciliations, we could use the pattern of integers π = 〈nc, nd, ns, nl〉 representing the
number of each event that it contains. However, different optimal reconciliations may induce
such same pattern. A future work can be to study the robustness using a method that can better
distinguish two reconciliations.

Another important point is that the correctness of the input datasets depend not only on a
correct rooting. More in general, it is not easy to be sure of the correctness of a dataset and a
wrong phylogeny will affect the final result. For the future, it would be interesting to be able to
infer the phylogenetic information directly from the sequence data.

Finally, we noticed that using Eucalypt, we can enumerate all possible optimal reconcil-
iations, but it can happen that these reconciliations are time unfeasible. Another important
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work could thus be to find the suboptimal reconciliations, meaning reconciliations with a slightly
larger cost that are time feasible.

The second goal of the Ph.D. was to refine the existent reconciliation model and make it more
realistic. In the literature, there are different datasets with symbiont leaves associated to more
than one host leaf (multiple association case). A few recent algorithms treat this case, but in
limited ways. Most often, only the four “classical events" are used (cospeciation, duplication, host
switch and loss). In this study, we thus considered also the spread event. The latter corresponds
to the invasion of different hosts by a same symbiont. We developed a statistical method adding
such event to infer the probabilities of the the four “classical events".

To this purpose, we modified the model of Coala and we created a new one, AmoCoala.
This model allows multiple associations, meaning that a symbiont leaf can be associated to more
than one host leaf. Here the dataset is composed by a host tree H, a symbiont tree S and the
association between leaves φ that in this case is no longer a function from L(S) → L(H). It
can rather be viewed as a bipartite network on the set L(S) ∪ L(H) and encoded as a binary
adjacency matrix φ with size |L(S)| × |L(H)|. If the symbiont s is associated to the host h, the
value in the matrix φsh is 1, it is zero otherwise.

We tested AmoCoala on synthetic and on real datasets. Horizontal and vertical spread
events are simulated based on the probabilities associated to each host event. We controlled if
AmoCoala is able to produce trees S̃ similar in terms of number of multiple associations and
of size to the original symbiont tree S. We showed that, after each round, the method tends to
select vectors producing trees near to the original one, although the generated trees tend to be
slightly bigger in terms of both factors. This is due to the fact that, during the simulations, if
we have a horizontal or a vertical spread, we simulate the symbiont tree choosing the topology
and the leaf associations identical to those observed in the original symbiont tree. We also tested
AmoCoala using the real datasets SFC and SFCsimple . The two datasets are identical except
for the associations (SFCsimple has no multiple associations). Based on the study of Refrégier
et al., we expected that the reconciliation would have zero probability of duplication and high
probability of host switch. We showed that the results obtained with AmoCoala which allows
to consider the whole dataset SFC with multiple associations, are closer to the result presented
in [65] than those that were obtained by Coala which ignores such multiple associations. This
shows again the importance of taking into account the latter.

With AmoCoala it is now possible to directly study datasets where a symbiont is associated
to more than one host. The accuracy of the results obtained by our model depend on the distance
used to capture the similarity between trees. The accepted parameter vectors are obtained by the
ABC-SMC procedure and characterise the list of vectors that may explain the evolution of the
pair of host and symbiont trees given as input. In AmoCoala, we also developed a new distance,
namely MAS and denoted by dMAS , for comparing two set-labelled trees. The number of events
obtained during the simulation of a tree is important for choosing the accepted parameters: we
expected that such number would be similar to the number of expected events. This calculation
is not easy to do in the case of spread events. In fact, “classical events” (cospeciation, duplication,
host switch and loss) have the same probability everywhere in the tree, while the probability of
a vertical spread is specific to each vertex of the host tree. It would be interesting to be able to
infer a probability of spread that is general for the tree, that could then be used to choose the
accepted parameters.

One future work will be to include spread events in Eucalypt which would allow to reconcile
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trees where the symbionts are associated to more than one host. A more efficient exploration of
the parameter space allowing to handle larger trees and increase the efficiency of the procedure
is another important future issue. It will also be important to consider the case where the
phylogeny is not fully solved, for example when phylogenetic trees are not binary. In this study,
we used trees that are not too big (maximum 34 leaves). It would be important to increase
the efficiency of algorithm and allow to handle larger trees. Finally, we do not have to treat all
symbionts in the same way. For example, we could have a symbiont that lives inside the host,
what is called an endosymbiont. In this case, it may be more difficult for it to be involved in a
spread event. An interesting work would thus be to adapt the probability of spread according to
the type of symbiont.
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Appendix A

Eucalypt

A.1 Eucalypt - Algorithm 1

Algorithm 1: Finding the cost of an optimal solution
1 〈H,S, φ〉 and a cost vector 〈cc, cd, cs, cl〉
2 Output: Optimal cost
3 for s ∈ V (S) and h ∈ V (H) do
4 Initialise D(s, h),DST (s, h) to ∞
5 for l ∈ L(S) do
6 Initialise D(l, φ(l)) = 0

7 for a ∈ Anc(φ(l)) do
8 DST (l, a) = cl ∗ d(a, φ(l))

9 for s ∈ V (S) in post order with children s1,s2 do
10 for h ∈ V (H) in post order with children h1,h2 do
11 if h ∈ L(H) then
12 δd → cd + c(s1, h) + c(s2, h)

13 D(s, h) = min{δd, δs}
14 DST (s, h) = D(s, h)

15 else
16 δc → min{(cc+DST (s1, h1)+DST (p2, h2)), (cc+DST (p1, h2)+DST (p2, h1))}
17 δd → min{D(s1, h) +D(s2, h), D(s1, h) +DST (s2, h1) + cl, D(s1, h) +

DST (s2, h2) + cl, D(s2, h) +DST (s1, h1) + cl, D(s2, h) +DST (s1, h2) +

cl, DST (s1, h1) +DST (p2, h1) + 2cl, DST (p1, h2) +DST (p2, h2) + 2cl}
18 D(s, h) = min{δc, δd, δs}
19 DST (s, h) = min{D(s, h), cl +DST (s, h1), cl +DST (s, h2)}

20 return min{D(r(S), h)|h ∈ V (H)}
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A.2 Eucalypt - Algorithm 2

Algorithm 2: Enumerating all optimal solutions
1 Input: The dynamic programming matrix D
2 Output: All optimal solutions
3 for All cells root in D containing an optimal mapping of r(S) (or the unique cell mapping
r(s) to r(H)) do

4 currentCell → root

5 A stack M → ∅
6 do
7 while currentCell! = null do
8 if |List(current)| ≥ 1 then
9 //There are different sub-solutions for this mapping if M(currentCell) is

not in M then
10 Push(〈currentCell, 0〉) in M

11 currentSubsolution → 0th-element of M(currentCell)

12 else if M(currentCell) is the last element of M then
13 //In the final part of the solution I pass to consider the next option
14 Pop(〈currentCell, i〉) from M

15 Push(〈currentCell, i+ 1〉) in M

16 currentSubsolution → (i+ 1)th-element of M(currentCell)

17 else
18 //In the first part of the current solution, the mappings are the same

as for the previous one
19 〈cell, index〉 → M(currentCell)

20 currentSubsolution → indexth-element of M(currentCell)

21 else
22 //There is a unique possible sub-solution
23 Add to the solution the mapping relative to currentCell

24 currentSubsolution → 0th-element of List(currentCell)

25 //currentSubsolution is unique (or null if the vertex is a leaf)
26 currentCell = the next vertex following the pointers of

currentSubsolution (in post-order)

27 Output the solution
28 Pop from M until the first couple 〈s, i〉 is found for which i < |M(s)| − 1 and

the stack is not empty

29 while M is not empty ;



Appendix B

Robustness – Supplementary Material

B.1 Supplementary figures

Figure B.1 represents the SBL dataset (host and symbiont trees together with their leaf associ-
ations).

Figure B.1: Dataset SBL: host (left) and symbiont (parasite, on the right) trees together with
their leaf associations (middle). The figure was created using TreeMap3 [11].

B.2 Additional results

B.2.1 Changing associations for real datasets

Figures B.2 to B.6 contain the results for the SBL dataset with the cost vectors in C (except for
c = 〈0, 1, 1, 1〉 that appeared in the paper). Figures B.7 to B.79 then present the results for the
fourteen remaining datasets (AP, AS, CA, CP, FA, FE, GM, MF, MP, RM, SFC, SHA, TC and
TD) with all cost vectors in C. Only time-feasible reconciliations are retained.

Notice that in the case of the dataset CP, for the cost vectors c = 〈−1, 1, 1, 1〉, c = 〈0, 1, 1, 1〉,
c = 〈0, 1, 2, 1〉 and c = 〈0, 2, 3, 1〉, all the optimal reconciliations are cyclic, so that no time-
feasible reconciliation is retained. In the case of SHA, for all cost vectors c, there is only one
pattern for the most frequent optimal cost, so that there are no results to show. In the case
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of TD, we did not obtain any results for the cost vector c = 〈1, 1, 1, 1〉. Indeed, the number
of reconciliations was too large and our program could not handle all these solutions (due to
memory capacities).

Let us now comment some of the results. There are some cases where the dissimilarity for
a cost vector is always zero, and we checked that this is because the multisets of patterns are
equal. This is the case of AS for cost vectors c = 〈−1, 1, 1, 1〉, c = 〈0, 1, 1, 1〉, c = 〈0, 1, 2, 1〉
and c = 〈0, 2, 3, 1〉 (Figures B.13 to B.16); FA for cost vectors c = 〈0, 1, 2, 1〉, c = 〈1, 1, 3, 1〉
(Figures B.29 and B.32); FE for cost vector c = 〈0, 2, 3, 1〉 (Figure B.36); SFC for cost vector
c = 〈−1, 1, 1, 1〉 (Figure B.63); TC for all cost vectors in C (Figures B.69 to B.74) and TD for
cost vectors c = 〈−1, 1, 1, 1〉, c = 〈0, 1, 1, 1〉, c = 〈0, 1, 2, 1〉, c = 〈0, 2, 3, 1〉 and c = 〈1, 1, 3, 1〉
(Figures B.75 to B.79).

There are cases where there is only one optimal cost and there is only one non-zero dissimi-
larity. We checked that this is because there are exactly two multisets of patterns among all the
possible reconciliations. This is the case of AS for cost vectors c = 〈1, 1, 1, 1〉 and c = 〈1, 1, 3, 1〉
(Figures B.17 and B.18); CA for cost vector c = 〈1, 1, 1, 1〉 (Figure B.23).

Figure B.2: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations with
optimal cost 5 (right) obtained on the datasets derived from the SBL dataset by resolving the
multiple associations in all the possible ways and computed with the cost vector 〈−1, 1, 1, 1〉.

Figure B.3: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations with
optimal cost 11 (right) obtained on the datasets derived from the SBL dataset by resolving the
multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 2, 1〉.
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Figure B.4: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations with
optimal cost 17 (right) obtained on the datasets derived from the SBL dataset by resolving the
multiple associations in all the possible ways and computed with the cost vector 〈0, 2, 3, 1〉.

Figure B.5: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations with
optimal cost 9 (right) obtained on the datasets derived from the SBL dataset by resolving the
multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 1, 1〉.

Figure B.6: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations with
optimal cost 18 (right) obtained on the datasets derived from the SBL dataset by resolving the
multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 3, 1〉.
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Figure B.7: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations with
optimal cost 3 (right) obtained on the datasets derived from the AP dataset by resolving the
multiple associations in all the possible ways and computed with the cost vector 〈−1, 1, 1, 1〉.

Figure B.8: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations with
optimal cost 5 (right) obtained on the datasets derived from the AP dataset by resolving the
multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 1, 1〉.

Figure B.9: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations with
optimal cost 9 (right) obtained on the datasets derived from the AP dataset by resolving the
multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 2, 1〉.
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Figure B.10: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 13 (right) obtained on the datasets derived from the AP dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 2, 3, 1〉.

Figure B.11: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 7 (right) obtained on the datasets derived from the AP dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 1, 1〉.

Figure B.12: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 13 (right) obtained on the datasets derived from the AP dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 3, 1〉.
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Figure B.13: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 3 (right) obtained on the datasets derived from the AS dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈−1, 1, 1, 1〉.

Figure B.14: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 11 (right) obtained on the datasets derived from the AS dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 1, 1〉.

Figure B.15: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 17 (right) obtained on the datasets derived from the AS dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 2, 1〉.
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Figure B.16: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 23 (right) obtained on the datasets derived from the AS dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 2, 3, 1〉.

Figure B.17: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 19 (right) obtained on the datasets derived from the AS dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 1, 1〉.

Figure B.18: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 31 (right) obtained on the datasets derived from the AS dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 3, 1〉.
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Figure B.19: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 18 (right) obtained on the datasets derived from the CA dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈−1, 1, 1, 1〉.
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Figure B.20: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 22 (right) obtained on the datasets derived from the CA dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 1, 1〉.

Figure B.21: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 38 (right) obtained on the datasets derived from the CA dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 2, 1〉.

Figure B.22: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 50 (right) obtained on the datasets derived from the CA dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 2, 3, 1〉.
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Figure B.23: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 25 (right) obtained on the datasets derived from the CA dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 1, 1〉.

Figure B.24: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 58 (right) obtained on the datasets derived from the CA dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 3, 1〉.

Figure B.25: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 29 (right) obtained on the datasets derived from the CP dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 1, 1〉.
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Figure B.26: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 42 (right) obtained on the datasets derived from the CP dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 3, 1〉.

Figure B.27: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 1 (right) obtained on the datasets derived from the FA dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈−1, 1, 1, 1〉.

Figure B.28: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 5 (right) obtained on the datasets derived from the FA dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 1, 1〉.
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Figure B.29: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 7 (right) obtained on the datasets derived from the FA dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 2, 1〉.

Figure B.30: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 9 (right) obtained on the datasets derived from the FA dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 2, 3, 1〉.

Figure B.31: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 8 (right) obtained on the datasets derived from the FA dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 1, 1〉.



B.2 Additional results 105

Figure B.32: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 12 (right) obtained on the datasets derived from the FA dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 3, 1〉.

Figure B.33: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 5 (right) obtained on the datasets derived from the FE dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈−1, 1, 1, 1〉.

Figure B.34: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 6 (right) obtained on the datasets derived from the FE dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 1, 1〉.
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Figure B.35: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 8 (right) obtained on the datasets derived from the FE dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 2, 1〉.

Figure B.36: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 11 (right) obtained on the datasets derived from the FE dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 2, 3, 1〉.

Figure B.37: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 7 (right) obtained on the datasets derived from the FE dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 1, 1〉.
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Figure B.38: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 12 (right) obtained on the datasets derived from the FE dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 3, 1〉.

Figure B.39: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 10 (right) obtained on the datasets derived from the GM dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈−1, 1, 1, 1〉.

Figure B.40: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 13 (right) obtained on the datasets derived from the GM dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 1, 1〉.



108 Chapter B. Robustness – Supplementary Material

Figure B.41: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 20 (right) obtained on the datasets derived from the GM dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 2, 1〉.

Figure B.42: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 29 (right) obtained on the datasets derived from the GM dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 2, 3, 1〉.

Figure B.43: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 16 (right) obtained on the datasets derived from the GM dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 1, 1〉.
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Figure B.44: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 30 (right) obtained on the datasets derived from the GM dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 3, 1〉.

Figure B.45: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 9 (right) obtained on the datasets derived from the MF dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈−1, 1, 1, 1〉.

Figure B.46: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 10 (right) obtained on the datasets derived from the MF dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 1, 1〉.
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Figure B.47: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 14 (right) obtained on the datasets derived from the MF dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 2, 1〉.

Figure B.48: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 19 (right) obtained on the datasets derived from the MF dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 2, 3, 1〉.

Figure B.49: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 11 (right) obtained on the datasets derived from the MF dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 1, 1〉.
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Figure B.50: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 19(right) obtained on the datasets derived from the MF dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 3, 1〉.



112 Chapter B. Robustness – Supplementary Material

Figure B.51: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 9 (right) obtained on the datasets derived from the MP dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈−1, 1, 1, 1〉.

Figure B.52: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 12 (right) obtained on the datasets derived from the MP dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 1, 1〉.

Figure B.53: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 15 (right) obtained on the datasets derived from the MP dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 2, 1〉.
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Figure B.54: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 19 (right) obtained on the datasets derived from the MP dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 2, 3, 1〉.

Figure B.55: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 13 (right) obtained on the datasets derived from the MP dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 1, 1〉.

Figure B.56: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 20 (right) obtained on the datasets derived from the MP dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 3, 1〉.
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Figure B.57: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 5 (right) obtained on the datasets derived from the RM dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈−1, 1, 1, 1〉.

Figure B.58: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 6 (right) obtained on the datasets derived from the RM dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 1, 1〉.

Figure B.59: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 9 (right) obtained on the datasets derived from the RM dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 2, 1〉.
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Figure B.60: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 12 (right) obtained on the datasets derived from the RM dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 2, 3, 1〉.

Figure B.61: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 7 (right) obtained on the datasets derived from the RM dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 1, 1〉.

Figure B.62: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 13 (right) obtained on the datasets derived from the RM dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 3, 1〉.
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Figure B.63: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 15 (right) obtained on the datasets derived from the SFC dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈−1, 1, 1, 1〉.

Figure B.64: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 19 (right) obtained on the datasets derived from the SFC dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 1, 1〉.

Figure B.65: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 30 (right) obtained on the datasets derived from the SFC dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 2, 1〉.
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Figure B.66: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 40 (right) obtained on the datasets derived from the SFC dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 2, 3, 1〉.

Figure B.67: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 22 (right) obtained on the datasets derived from the SFC dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 1, 1〉.

Figure B.68: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 45 (right) obtained on the datasets derived from the SFC dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 3, 1〉.
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Figure B.69: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 7 (right) obtained on the datasets derived from the TC dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈−1, 1, 1, 1〉.

Figure B.70: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 9 (right) obtained on the datasets derived from the TC dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 1, 1〉.

Figure B.71: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 15 (right) obtained on the datasets derived from the TC dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 2, 1〉.
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Figure B.72: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 21 (right) obtained on the datasets derived from the TC dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 2, 3, 1〉.

Figure B.73: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 11 (right) obtained on the datasets derived from the TC dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 1, 1〉.

Figure B.74: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 21 (right) obtained on the datasets derived from the TC dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 3, 1〉.
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Figure B.75: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 7 (right) obtained on the datasets derived from the TD dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈−1, 1, 1, 1〉.

Figure B.76: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 16 (right) obtained on the datasets derived from the TD dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 1, 1〉.

Figure B.77: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 28 (right) obtained on the datasets derived from the TD dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 1, 2, 1〉.
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Figure B.78: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 38 (right) obtained on the datasets derived from the TD dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈0, 2, 3, 1〉.

Figure B.79: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with optimal cost 49 (right) obtained on the datasets derived from the TD dataset by resolving
the multiple associations in all the possible ways and computed with the cost vector 〈1, 1, 3, 1〉.
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B.2.2 Empirical distribution of the dissimilarity for real datasets

This section presents the results for the study of the empirical distribution of the dissimilarity
for real datasets. Figures B.80 to B.90 show the results for 15 datasets that present multiple
associations with the 6 cost vectors in C. Let us recall that for each biological dataset, we
generated 1000 datasets by permuting the labels of host and symbiont trees and keeping the
associations between them fixed.

There are some cases where the number of resolutions into simple associations is too large
(namely there are too many ways of resolving the multiple associations into simple ones). For
this reason, the results for the datasets AP, CA and RM could not be computed. In the case of
SHA, for all cost vectors c, there is only one pattern for the most frequent optimal cost and thus
there are no results to show.

Observe that for the dataset CP and for all cost vectors different from 〈1, 1, 1, 1〉 and 〈1, 1, 3, 1〉,
there are only cyclic reconciliations. As only time-feasible reconciliations are retained, there are
no results to show in this case (Figure B.81).

Figure B.90 shows the histograms for the dissimilarity derived from TD. In this case we did
not obtain any results for the cost vector c = 〈1, 1, 1, 1〉, because the number of reconciliations
was too large and our program could not handle all these solutions (due to memory capacities)
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Figure B.80: Histograms of the dissimilarity derived from the AS dataset with the cost vectors
in C. For each of them, the black histogram is obtained by resolving the multiple associations
in all the possible ways for the permuted datasets. The red lines are obtained by resolving the
multiple associations in all possible ways for the original dataset AS. The green crosses are the
freqdissim(AS).
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Figure B.81: Histograms of the dissimilarity derived from the CP dataset with the cost vectors
〈1, 1, 1, 1〉 and 〈1, 1, 3, 1〉. For each of them, the black histogram is obtained by resolving the
multiple associations in all the possible ways for the permuted datasets. The red lines are
obtained by resolving the multiple associations in all possible ways for the original dataset CP.
The green crosses are the freqdissim(CP ).
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Figure B.82: Histograms of the dissimilarity derived from the FA dataset with the cost vectors
in C. For each of them, the black histogram is obtained by resolving the multiple associations
in all the possible ways for the permuted datasets. The red lines are obtained by resolving the
multiple associations in all possible ways for the original dataset FA. The green crosses are the
freqdissim(FA).
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Figure B.83: Histograms of the dissimilarity derived from the FE dataset with the cost vectors
in C. For each of them, the black histogram is obtained by resolving the multiple associations
in all the possible ways for the permuted datasets. The red lines are obtained by resolving the
multiple associations in all possible ways for the original dataset FE. The green crosses are the
freqdissim(FE).
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Figure B.84: Histograms of the dissimilarity derived from the GM dataset with the cost vectors
in C. For each of them, the black histogram is obtained by resolving the multiple associations
in all the possible ways for the permuted datasets. The red lines are obtained by resolving the
multiple associations in all possible ways for the original dataset GM. The green crosses are the
freqdissim(GM).
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Figure B.85: Histograms of the dissimilarity derived from the MF dataset with the cost vectors
in C. For each of them, the black histogram is obtained by resolving the multiple associations
in all the possible ways for the permuted datasets. The red lines are obtained by resolving the
multiple associations in all possible ways for the original dataset MF. The green crosses are the
freqdissim(MF ).
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Figure B.86: Histograms of the dissimilarity derived from the MP dataset with the cost vectors
in C. For each of them, the black histogram is obtained by resolving the multiple associations
in all the possible ways for the permuted datasets. The red lines are obtained by resolving the
multiple associations in all possible ways for the original dataset MP. The green crosses are the
freqdissim(MP ).
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Figure B.87: Histograms of the dissimilarity derived from the SBL dataset with the cost vectors
in C. For each of them, the black histogram is obtained by resolving the multiple associations
in all the possible ways for the permuted datasets. The red lines are obtained by resolving the
multiple associations in all possible ways for the original dataset SBL. The green crosses are the
freqdissim(SBL).
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Figure B.88: Histograms of the dissimilarity derived from the SFC dataset with the cost vectors
in C. For each of them, the black histogram is obtained by resolving the multiple associations
in all the possible ways for the permuted datasets. The red lines are obtained by resolving the
multiple associations in all possible ways for the original dataset SFC. The green crosses are the
freqdissim(SFC).
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Figure B.89: Histograms of the dissimilarity derived from the TC dataset with the cost vectors
in C. For each of them, the black histogram is obtained by resolving the multiple associations
in all the possible ways for the permuted datasets. The red lines are obtained by resolving the
multiple associations in all possible ways for the original dataset TC. The green crosses are the
freqdissim(TC).
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Figure B.90: Histograms of the dissimilarity derived from the TD dataset with the cost vectors
in C. For each of them, the black histogram is obtained by resolving the multiple associations
in all the possible ways for the permuted datasets. The red lines are obtained by resolving the
multiple associations in all possible ways for the original dataset TD. The green crosses are the
freqdissim(TD).
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B.2.3 Changing associations for simulated datasets

Figures B.91 to B.155 show the results for the simulated datasets Dx% with all cost vectors in
C. Only time-feasible reconciliations are retained.

Observe that sometimes some of the results are missing. This happens in the following three
cases: (a) when the experiments did not finish due to the large computation time (this happened
for CAx% with x=15, 20, 25, 30, 40, 45, 50 for all the cost vectors in C; RHx% with x=10, 15,
20, 25, 30, 35, 40, 45, 50 for all the cost vectors in C; TDx% with x=10, 15, 20, 25, 30, 35, 40,
45, 50 for the cost vector 〈1, 1, 1, 1〉), (b) when the reconciliations for the dataset Dx% are all
time-unfeasible (this happened for CPx% with x=10, 15, 20, 25, 30, 35, 40, 45, 50 for the cost
vectors 〈−1, 1, 1, 1〉, 〈0, 1, 1, 1〉, 〈0, 1, 2, 1〉 and 〈0, 2, 3, 1〉; APx% with x=10 for the cost vector
〈−1, 1, 1, 1〉), (c) when there is only one multiset of patterns, either because it is the only one
generated, or because the other reconciliations are time-unfeasible.

In general, the number of optimal reconciliations and the dissimilarity increase with the
value of x. Observe that in MPx%, when we consider a low cost for the host switch (Fig-
ures B.127, B.128 and B.131), namely for the cost vectors 〈−1, 1, 1, 1〉, 〈0, 1, 1, 1〉 and 〈1, 1, 1, 1〉,
the number of optimal reconciliations is less than what is obtained for the other cost vectors
(Figures B.129, B.130 and B.132).

Observe also that for these simulated datasets, we did not explore the significance of the
dissimilarity observed.
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Figure B.91: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the APx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈−1, 1, 1, 1〉. Each line is a different APx% with x=15, 25, 30, 45, 50.
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Figure B.92: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the APx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 1, 1〉. Each line is a different APx% with x=15, 20, 25, 30, 40, 45, 50.



B.2 Additional results 131

8 10 11

Dataset AP_20%, cost vector <0;1;2;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
1

2
3

4
5

1 1

2

0.0

0.2

0.4

0.6

0.8

1.0

Dissimilarity opt_cost=11

Dissimilarity

P
ro

ba
bi

lit
y

0.05 0.06 0.07 0.08 0.09 0.10 0.11

8

Dataset AP_25%, cost vector <0;1;2;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
1

2
3

4
5

4

0.00

0.05

0.10

0.15

Dissimilarity opt_cost=8

Dissimilarity

P
ro

ba
bi

lit
y

0.10 0.15 0.20 0.25

9 10 12

Dataset AP_30%, cost vector <0;1;2;1>

opt_cost

N
b 

of
 D

at
as

et
s

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

2

1 1

0.0

0.2

0.4

0.6

0.8

1.0

Dissimilarity opt_cost=9

Dissimilarity

P
ro

ba
bi

lit
y

−1.0 −0.5 0.0 0.5 1.0

10 11 13

Dataset AP_40%, cost vector <0;1;2;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
1

2
3

4

1

3

1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Dissimilarity opt_cost=11

Dissimilarity

P
ro

ba
bi

lit
y

0.08 0.10 0.12 0.14 0.16

8 9 10 11 12

Dataset AP_45%, cost vector <0;1;2;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
1

2
3

4

3

2

1 1 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Dissimilarity opt_cost=8

Dissimilarity

P
ro

ba
bi

lit
y

0.00 0.05 0.10 0.15 0.20

8 9 10 11 12

Dataset AP_50%, cost vector <0;1;2;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
1

2
3

4
5

1

4

1 1

2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Dissimilarity opt_cost=9

Dissimilarity

P
ro

ba
bi

lit
y

0.00 0.05 0.10 0.15 0.20

Figure B.93: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the APx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 2, 1〉. Each line is a different APx% with x=20, 25, 30, 40, 45, 50.
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Figure B.94: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the APx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 2, 3, 1〉. Each line is a different APx% with x=20, 25, 30, 40, 45.
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Figure B.95: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the APx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 1, 1〉. Each line is a different APx% with x=15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.96: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the APx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 3, 1〉. Each line is a different APx% with x=20, 25, 30, 40, 45, 50.
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Figure B.97: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the ASx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈−1, 1, 1, 1〉. Each line is a different ASx% with x=10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.98: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the ASx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 1, 1〉. Each line is a different ASx% with x=10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.99: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the ASx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 2, 1〉. Each line is a different ASx% with x=10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.100: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the ASx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 3, 1〉. Each line is a different ASx% with x=10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.101: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the ASx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 1, 1〉. Each line is a different ASx% with x=10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.102: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the ASx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 3, 1〉. Each line is a different ASx% with x=10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.103: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the CPx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 1, 1〉. Each line is a different CPx% with x=10, 15, 25, 40, 45.
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Figure B.104: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the CPx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 3, 1〉. Each line is a different CPx% with x=10, 20, 25, 30, 35, 40, 45, 50.
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Figure B.105: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the FAx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈−1, 1, 1, 1〉. Each line is a different FAx% with x= 25, 30, 35, 40, 45, 50.
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Figure B.106: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the FAx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 1, 1〉. Each line is a different FAx% with x= 25, 30, 35, 40, 45, 50.
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Figure B.107: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the FAx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 2, 1〉. Each line is a different FAx% with x=25, 30, 35, 40, 45, 50.
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Figure B.108: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the FAx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 2, 3, 1〉. Each line is a different FAx% with x=25, 30, 35, 40, 45, 50.
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Figure B.109: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the FAx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 1, 1〉. Each line is a different FAx% with x=10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.110: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the FAx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 3, 1〉. Each line is a different FAx% with x=25, 30, 35, 40, 45, 50.
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Figure B.111: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the FEx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈−1, 1, 1, 1〉. Each line is a different FEx% with x=45.
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Figure B.112: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the FEx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 1, 1〉. Each line is a different FEx% with x=30, 35, 40, 45, 50.
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Figure B.113: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the FEx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 2, 3, 1〉. Each line is a different FEx% with x=45.
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Figure B.114: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the FEx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 3, 1〉. Each line is a different FEx% with x=30, 35, 40, 50.
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Figure B.115: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the GMx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈−1, 1, 1, 1〉. Each line is a different GMx% with x=15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.116: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the GMx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 1, 1〉. Each line is a different GMx% with x=15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.117: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the GMx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 2, 1〉. Each line is a different GMx% with x= 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.118: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the GMx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 1, 1〉. Each line is a different GMx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.119: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the GMx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 3, 1〉. Each line is a different GMx% with x= 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.120: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the GMx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 2, 3, 1〉. Each line is a different GMx% with x= 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.121: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the MFx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈−1, 1, 1, 1〉. Each line is a different MFx% with x = 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.122: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the MFx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 1, 1〉. Each line is a different MFx% with x = 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.123: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the MFx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 2, 1〉. Each line is a different MFx% with x = 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.124: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the MFx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 2, 3, 1〉. Each line is a different MFx% with x = 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.125: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the MFx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 1, 1〉. Each line is a different MFx% with x = 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.126: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the MFx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 3, 1〉. Each line is a different MFx% with x = 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.127: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the MPx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈−1, 1, 1, 1〉. Each line is a different MPx% with x = 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.128: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the MPx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 1, 1〉. Each line is a different MPx% with x = 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.129: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the MPx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 2, 1〉. Each line is a different MPx% with x = 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.130: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the MPx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 2, 3, 1〉. Each line is a different MPx% with x = 15, 20, 25, 30, 35, 40, 45, 50.



B.2 Additional results 169

8

Dataset MP_10%, cost vector <1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

2

0.0

0.2

0.4

0.6

0.8

1.0

Dissimilarity opt_cost=8

Dissimilarity

P
ro

ba
bi

lit
y

0.3 0.4 0.5 0.6 0.7

8

Dataset MP_15%, cost vector <1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
1

2
3

4
5

4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Dissimilarity opt_cost=8

Dissimilarity

P
ro

ba
bi

lit
y

0.00 0.02 0.04 0.06 0.08 0.10 0.12

8 9

Dataset MP_20%, cost vector <1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
2

4
6

8
10

7

1

0.00

0.05

0.10

0.15

Dissimilarity opt_cost=8

Dissimilarity

P
ro

ba
bi

lit
y

0.0 0.1 0.2 0.3 0.4 0.5

8

Dataset MP_25%, cost vector <1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
5

10
15

20
25

16

0.00

0.05

0.10

0.15

0.20

Dissimilarity opt_cost=8

Dissimilarity

P
ro

ba
bi

lit
y

0.0 0.1 0.2 0.3 0.4 0.5

8

Dataset MP_30%, cost vector <1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
2

4
6

8
10

8

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Dissimilarity opt_cost=8

Dissimilarity

P
ro

ba
bi

lit
y

0.0 0.1 0.2 0.3 0.4 0.5 0.6

8 9

Dataset MP_35%, cost vector <1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
5

10
15

20

14

2

0.00

0.05

0.10

0.15

0.20

0.25

Dissimilarity opt_cost=8

Dissimilarity

P
ro

ba
bi

lit
y

0.00 0.05 0.10 0.15 0.20 0.25 0.30

8 9

Dataset MP_40%, cost vector <1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
10

20
30

40

32

4

0.00

0.05

0.10

0.15

0.20

0.25

Dissimilarity opt_cost=8

Dissimilarity

P
ro

ba
bi

lit
y

0.0 0.1 0.2 0.3 0.4 0.5

8 9

Dataset MP_45%, cost vector <1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
10

20
30

40
50

35

1 0.00

0.05

0.10

0.15

Dissimilarity opt_cost=8

Dissimilarity

P
ro

ba
bi

lit
y

0.0 0.1 0.2 0.3 0.4 0.5 0.6

8 9

Dataset MP_50%, cost vector <1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
10

20
30

40
50

42

6

0.00

0.05

0.10

0.15

Dissimilarity opt_cost=8

Dissimilarity

P
ro

ba
bi

lit
y

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure B.131: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the MPx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 1, 1〉. Each line is a different MPx% with x = 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.132: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the MPx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 3, 1〉. Each line is a different MPx% with x = 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.133: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SBLx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈−1, 1, 1, 1〉. Each line is a different SBLx% with x= 10, 15, 20, 25, 30, 35, 40, 45,
50.
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Figure B.134: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SBLx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 2, 1〉. Each line is a different SBLx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.135: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SBLx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 2, 3, 1〉. Each line is a different SBLx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.136: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SBLx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 1, 1〉. Each line is a different SBLx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.137: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SBLx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 3, 1〉. Each line is a different SBLx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.138: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SFCx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈−1, 1, 1, 1〉. Each line is a different SFCx% with x= 10, 15, 20, 25, 30, 35, 40, 45,
50.
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Figure B.139: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SFCx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 1, 1〉. Each line is a different SFCx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.140: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SFCx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 2, 1〉. Each line is a different SFCx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.141: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SFCx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 2, 3, 1〉. Each line is a different SFCx% with x= 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.142: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SFCx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 1, 1〉. Each line is a different SFCx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.143: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SFCx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 3, 1〉. Each line is a different SFCx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.144: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SHAx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈−1, 1, 1, 1〉. Each line is a different SHAx% with x= 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.145: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SHAx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 1, 1〉. Each line is a different SHAx% with x= 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.146: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SHAx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 2, 1〉. Each line is a different SHAx% with x= 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.147: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SHAx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 2, 3, 1〉. Each line is a different SHAx% with x= 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.148: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SHAx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 1, 1〉. Each line is a different SHAx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.149: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the SHAx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 3, 1〉. Each line is a different SHAx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.



188 Chapter B. Robustness – Supplementary Material

7

Dataset TC_10%, cost vector <−1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

2

0.0

0.2

0.4

0.6

0.8

1.0

Dissimilarity opt_cost=7

Dissimilarity

P
ro

ba
bi

lit
y

−1.0 −0.5 0.0 0.5 1.0

7

Dataset TC_15%, cost vector <−1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

2

0.0

0.2

0.4

0.6

0.8

1.0

Dissimilarity opt_cost=7

Dissimilarity

P
ro

ba
bi

lit
y

−1.0 −0.5 0.0 0.5 1.0

4 7

Dataset TC_20%, cost vector <−1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1

2

0.0

0.2

0.4

0.6

0.8

1.0

Dissimilarity opt_cost=7

Dissimilarity

P
ro

ba
bi

lit
y

−1.0 −0.5 0.0 0.5 1.0

4 7

Dataset TC_25%, cost vector <−1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

2 2

0.0

0.2

0.4

0.6

0.8

1.0

Dissimilarity opt_cost=4

Dissimilarity

P
ro

ba
bi

lit
y

−1.0 −0.5 0.0 0.5 1.0

6 7

Dataset TC_30%, cost vector <−1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

2 2

0.0

0.2

0.4

0.6

0.8

1.0

Dissimilarity opt_cost=6

Dissimilarity

P
ro

ba
bi

lit
y

−1.0 −0.5 0.0 0.5 1.0

7

Dataset TC_35%, cost vector <−1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
2

4
6

8
10

8

0.00

0.05

0.10

0.15

0.20

0.25

Dissimilarity opt_cost=7

Dissimilarity

P
ro

ba
bi

lit
y

0.00 0.01 0.02 0.03

6 7

Dataset TC_40%, cost vector <−1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
1

2
3

4
5

4 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Dissimilarity opt_cost=6

Dissimilarity

P
ro

ba
bi

lit
y

0.00 0.05 0.10 0.15 0.20 0.25

4 5 6 7

Dataset TC_45%, cost vector <−1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
1

2
3

4
5

1

2 2

4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Dissimilarity opt_cost=7

Dissimilarity

P
ro

ba
bi

lit
y

0.000 0.001 0.002 0.003 0.004 0.005

3 4 5 6 7 8

Dataset TC_50%, cost vector <−1;1;1;1>

opt_cost

N
b 

of
 D

at
as

et
s

0
1

2
3

4
5

2

4

2

4

2 2

0.0

0.2

0.4

0.6

0.8

1.0

Dissimilarity opt_cost=4

Dissimilarity

P
ro

ba
bi

lit
y

−1.0 −0.5 0.0 0.5 1.0

Figure B.150: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the TCx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈−1, 1, 1, 1〉. Each line is a different TCx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.151: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the TCx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 1, 1〉. Each line is a different TCx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.152: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the TCx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 2, 1〉. Each line is a different TCx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.153: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the TCx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 2, 3, 1〉. Each line is a different TCx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.154: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the TCx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 1, 1〉. Each line is a different TCx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.
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Figure B.155: Barplots of optimal cost (left) and dissimilarity between pairs of reconciliations
with the most frequent optimal cost (right) obtained on the datasets derived from the TCx%

dataset by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈1, 1, 3, 1〉. Each line is a different TCx% with x= 10, 15, 20, 25, 30, 35, 40, 45, 50.
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B.2.4 Re-rooting: the plateau property

This section presents the results for the re-rooting experiment focusing on the plateau property.
Tables B.1 and B.2 contain the results for the 28 biological datasets evaluated with the 6 cost
vectors in C.

Notice that for 2 of the 28 datasets, namely PP and RH, we did not obtain any result for
the cost vector 〈1, 1, 1, 1〉, due to the long computational time.

Tables B.3 and B.4 are dedicated to the simulated datasets. Let us recall that for each
biological dataset D, we simulated 50 datasets, the whole set of which is being called D-sim,
relying on parameter values estimated on the corresponding biological dataset. Due to the large
number of simulated datasets, in these tables we present the results summarised. Notice that
for the simulated datasets, we did not obtain any results for the cost vector 〈1, 1, 1, 1〉, because
of the very long computational time.

In general, we observed between 1 and 5 plateaux in the simulated datasets and Tables B.3
and B.4 report the number of datasets exhibiting between 1 and 5 plateaux among each set of
50 simulated datasets. In three cases, that were not reported in these tables due to space limits,
we observe exactly 6 plateaux (these are CA-sim for the cost vector 〈1, 1, 2, 1〉, FE-sim for the
cost vectors 〈−1, 1, 1, 1〉 and 〈0, 1, 1, 1〉).
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Table B.1: Tables showing the results of the re-rooting for the first 16 biological datasets. Only
time-feasible reconciliations are retained. Each line shows a summary of the time-feasible rec-
onciliations obtained with all possible rootings for one dataset analysed with one cost vector.
Column A indicates the cost vector, column B shows the smallest optimal cost obtained among
all possible reconciliations, column C shows the number of plateaux, column D shows the optimal
reconciliation cost for the original root (with no value when there is no time-feasible solution),
column E indicates whether the root belongs to a plateau.

Dataset A B C D E

AP 〈−1; 1; 1; 1〉 1 1 5 no
AP 〈0; 1; 1; 1〉 4 1 6 no
AP 〈0; 1; 2; 1〉 6 1 11 no
AP 〈0; 2; 3; 1〉 9 1 15 no
AP 〈1; 1; 1; 1〉 7 1 7 yes
AP 〈1; 1; 3; 1〉 11 1 16 no
AS 〈−1; 1; 1; 1〉 1 1 3 no
AS 〈0; 1; 1; 1〉 10 1 11 no
AS 〈0; 1; 2; 1〉 15 1 17 no
AS 〈0; 2; 3; 1〉 20 1 23 yes
AS 〈1; 1; 1; 1〉 19 1 19 no
AS 〈1; 1; 3; 1〉 29 1 31 no
AW 〈−1; 1; 1; 1〉 3 1 6 no
AW 〈0; 1; 1; 1〉 8 1 10 no
AW 〈0; 1; 2; 1〉 14 1 17 no
AW 〈0; 2; 3; 1〉 19 1 23 no
AW 〈1; 1; 1; 1〉 13 1 14 no
AW 〈1; 1; 3; 1〉 25 1 28 no
CA 〈−1; 1; 1; 1〉 16 2 6 yes
CA 〈0; 1; 1; 1〉 21 1 10 yes
CA 〈0; 1; 2; 1〉 36 2 17 yes
CA 〈0; 2; 3; 1〉 49 2 23 no
CA 〈1; 1; 1; 1〉 25 1 14 yes
CA 〈1; 1; 3; 1〉 56 2 28 yes
CP 〈−1; 1; 1; 1〉 10 1 - no
CP 〈0; 1; 1; 1〉 19 1 - no
CP 〈0; 1; 2; 1〉 29 1 - no
CP 〈0; 2; 3; 1〉 49 1 - no
CP 〈1; 1; 1; 1〉 28 1 29 no
CP 〈1; 1; 3; 1〉 41 1 42 no
CT 〈−1; 1; 1; 1〉 9 2 - no
CT 〈0; 1; 1; 1〉 15 1 - no
CT 〈0; 1; 2; 1〉 27 2 - no
CT 〈0; 2; 3; 1〉 33 1 - no
CT 〈1; 1; 1; 1〉 20 1 20 yes
CT 〈1; 1; 3; 1〉 43 2 - no
EC 〈−1; 1; 1; 1〉 1 1 1 yes
EC 〈0; 1; 1; 1〉 6 2 6 yes
EC 〈0; 1; 2; 1〉 10 1 10 yes
EC 〈0; 2; 3; 1〉 14 1 14 yes
EC 〈1; 1; 1; 1〉 10 2 10 yes
EC 〈1; 1; 3; 1〉 16 1 16 yes
FA 〈−1; 1; 1; 1〉 0 1 1 no
FA 〈0; 1; 1; 1〉 5 1 5 yes
FA 〈0; 1; 2; 1〉 6 1 7 no
FA 〈0; 2; 3; 1〉 8 1 9 no
FA 〈1; 1; 1; 1〉 8 1 8 yes
FA 〈1; 1; 3; 1〉 12 1 12 yes

Dataset A B C D E

FD 〈−1; 1; 1; 1〉 31 1 34 no
FD 〈0; 1; 1; 1〉 42 1 44 no
FD 〈0; 1; 2; 1〉 63 1 66 no
FD 〈0; 2; 3; 1〉 106 1 - no
FD 〈1; 1; 1; 1〉 51 1 52 no
FD 〈1; 1; 3; 1〉 91 1 94 no
FE 〈−1; 1; 1; 1〉 -1 1 4 no
FE 〈0; 1; 1; 1〉 2 1 6 no
FE 〈0; 1; 2; 1〉 3 1 8 no
FE 〈0; 2; 3; 1〉 4 1 10 no
FE 〈1; 1; 1; 1〉 5 1 7 no
FE 〈1; 1; 3; 1〉 7 1 12 no
GL 〈−1; 1; 1; 1〉 -2 1 -2 yes
GL 〈0; 1; 1; 1〉 4 1 4 yes
GL 〈0; 1; 2; 1〉 7 1 7 yes
GL 〈0; 2; 3; 1〉 10 1 10 yes
GL 〈1; 1; 1; 1〉 10 1 10 yes
GL 〈1; 1; 3; 1〉 15 1 16 no
GM 〈−1; 1; 1; 1〉 7 1 10 no
GM 〈0; 1; 1; 1〉 11 1 13 no
GM 〈0; 1; 2; 1〉 17 1 20 no
GM 〈0; 2; 3; 1〉 26 1 29 no
GM 〈1; 1; 1; 1〉 15 1 16 no
GM 〈1; 1; 3; 1〉 27 1 30 no
IFL 〈−1; 1; 1; 1〉 -3 1 -1 no
IFL 〈0; 1; 1; 1〉 8 1 8 yes
IFL 〈0; 1; 2; 1〉 13 1 15 no
IFL 〈0; 2; 3; 1〉 18 1 21 no
IFL 〈1; 1; 1; 1〉 17 1 17 yes
IFL 〈1; 1; 3; 1〉 29 1 31 no
MF 〈−1; 1; 1; 1〉 5 1 6 no
MF 〈0; 1; 1; 1〉 8 1 10 no
MF 〈0; 1; 2; 1〉 11 1 12 no
MF 〈0; 2; 3; 1〉 15 1 16 no
MF 〈1; 1; 1; 1〉 10 1 11 no
MF 〈1; 1; 3; 1〉 16 1 18 no
MP 〈−1; 1; 1; 1〉 9 1 9 yes
MP 〈0; 1; 1; 1〉 11 1 11 yes
MP 〈0; 1; 2; 1〉 13 1 13 yes
MP 〈0; 2; 3; 1〉 18 1 18 yes
MP 〈1; 1; 1; 1〉 13 1 13 yes
MP 〈1; 1; 3; 1〉 17 1 17 yes
PML 〈−1; 1; 1; 1〉 2 1 2 yes
PML 〈0; 1; 1; 1〉 11 1 11 yes
PML 〈0; 1; 2; 1〉 19 1 19 yes
PML 〈0; 2; 3; 1〉 27 1 27 yes
PML 〈1; 1; 1; 1〉 18 1 18 yes
PML 〈1; 1; 3; 1〉 36 1 36 yes
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Table B.2: Tables showing the results of the re-rootings for the last 12 biological datasets.
Only time-feasible reconciliations are retained. Each line shows a summary of the time-feasible
reconciliations obtained with all possible rootings for one dataset analysed with one cost vector.
Column A indicates the cost vector, column B shows the smallest optimal cost obtained among
all possible reconciliations, column C shows the number of plateaux, column D shows the optimal
reconciliation cost for the original root (with no value when there is no time-feasible solution),
column E indicates whether the root belongs to a plateau.

Dataset A B C D E

PMP 〈−1; 1; 1; 1〉 -3 1 -3 yes
PMP 〈0; 1; 1; 1〉 8 1 8 yes
PMP 〈0; 1; 2; 1〉 14 1 14 yes
PMP 〈0; 2; 3; 1〉 20 1 20 yes
PMP 〈1; 1; 1; 1〉 18 1 18 yes
PMP 〈1; 1; 3; 1〉 31 1 31 yes
PP 〈−1; 1; 1; 1〉 1 1 1 yes
PP 〈0; 1; 1; 1〉 25 1 25 yes
PP 〈0; 1; 2; 1〉 37 1 37 yes
PP 〈0; 2; 3; 1〉 53 1 53 yes
PP 〈1; 1; 1; 1〉 ?? ? ?? ??
PP 〈1; 1; 3; 1〉 72 1 72 yes
RH 〈−1; 1; 1; 1〉 10 1 - no
RH 〈0; 1; 1; 1〉 27 1 28 no
RH 〈0; 1; 2; 1〉 45 1 - no
RH 〈0; 2; 3; 1〉 66 1 - no
RH 〈1; 1; 1; 1〉 ?? ? ?? ??
RH 〈1; 1; 3; 1〉 77 1 - no
RM 〈−1; 1; 1; 1〉 -1 1 -1 yes
RM 〈0; 1; 1; 1〉 2 1 2 yes
RM 〈0; 1; 2; 1〉 3 1 3 yes
RM 〈0; 2; 3; 1〉 4 1 4 yes
RM 〈1; 1; 1; 1〉 5 1 5 yes
RM 〈1; 1; 3; 1〉 7 1 7 yes
RP 〈−1; 1; 1; 1〉 0 1 0 yes
RP 〈0; 1; 1; 1〉 8 1 8 yes
RP 〈0; 1; 2; 1〉 12 1 12 yes
RP 〈0; 2; 3; 1〉 16 1 16 yes
RP 〈1; 1; 1; 1〉 13 1 13 yes
RP 〈1; 1; 3; 1〉 24 1 24 yes
SBL 〈−1; 1; 1; 1〉 4 1 4 yes
SBL 〈0; 1; 1; 1〉 7 1 7 yes
SBL 〈0; 1; 2; 1〉 11 1 11 yes
SBL 〈0; 2; 3; 1〉 14 1 14 yes
SBL 〈1; 1; 1; 1〉 9 1 9 yes
SBL 〈1; 1; 3; 1〉 18 1 18 yes

Dataset A B C D E

SC 〈−1; 1; 1; 1〉 -3 1 -3 yes
SC 〈0; 1; 1; 1〉 6 1 6 yes
SC 〈0; 1; 2; 1〉 10 1 10 yes
SC 〈0; 2; 3; 1〉 14 1 14 yes
SC 〈1; 1; 1; 1〉 14 1 14 yes
SC 〈1; 1; 3; 1〉 23 1 23 yes
SFC 〈−1; 1; 1; 1〉 4 1 12 no
SFC 〈0; 1; 1; 1〉 11 1 17 no
SFC 〈0; 1; 2; 1〉 19 1 27 no
SFC 〈0; 2; 3; 1〉 26 1 37 no
SFC 〈1; 1; 1; 1〉 17 1 21 no
SFC 〈1; 1; 3; 1〉 34 1 42 no
SHA 〈−1; 1; 1; 1〉 -5 1 -2 no
SHA 〈0; 1; 1; 1〉 6 1 8 no
SHA 〈0; 1; 2; 1〉 9 1 12 no
SHA 〈0; 2; 3; 1〉 13 1 17 no
SHA 〈1; 1; 1; 1〉 17 1 18 no
SHA 〈1; 1; 3; 1〉 22 1 25 no
SSA 〈−1; 1; 1; 1〉 -6 1 -6 yes
SSA 〈0; 1; 1; 1〉 2 1 2 yes
SSA 〈0; 1; 2; 1〉 3 1 3 yes
SSA 〈0; 2; 3; 1〉 4 1 4 yes
SSA 〈1; 1; 1; 1〉 10 1 10 yes
SSA 〈1; 1; 3; 1〉 12 1 12 yes
TC 〈−1; 1; 1; 1〉 5 3 7 no
TC 〈0; 1; 1; 1〉 8 1 9 no
TC 〈0; 1; 2; 1〉 12 1 15 no
TC 〈0; 2; 3; 1〉 17 1 21 no
TC 〈1; 1; 1; 1〉 10 1 11 no
TC 〈1; 1; 3; 1〉 19 2 21 no
TD 〈−1; 1; 1; 1〉 1 1 4 no
TD 〈0; 1; 1; 1〉 13 1 15 no
TD 〈0; 1; 2; 1〉 22 1 25 no
TD 〈0; 2; 3; 1〉 30 1 34 no
TD 〈1; 1; 1; 1〉 22 1 23 no
TD 〈1; 1; 3; 1〉 43 1 46 no



B.2 Additional results 197

Table B.3: Results of the re-rooting for the simulated datasets. Only time-feasible reconciliations
are retained. The columns Ni represent the number of datasets that have exactly i plateaux (for
1 ≤ i ≤ 5).

Dataset CostV ector N1 N2 N3 N4 N5

AP-sim 〈−1, 1, 1, 1〉 37 11 0 2 0
AP-sim 〈0, 1, 1, 1〉 35 12 1 1 0
AP-sim 〈0, 1, 2, 1〉 40 7 1 1 0
AP-sim 〈0, 2, 3, 1〉 41 7 0 1 0
AP-sim 〈1, 1, 3, 1〉 45 4 0 0 0
AW-sim 〈−1, 1, 1, 1〉 41 8 1 0 0
AW-sim 〈0, 1, 1, 1〉 34 14 1 0 0
AW-sim 〈0, 1, 2, 1〉 38 10 1 0 0
AW-sim 〈0, 2, 3, 1〉 39 8 2 0 0
AW-sim 〈1, 1, 3, 1〉 35 12 1 0 1
CA-sim 〈−1, 1, 1, 1〉 50 0 0 2 0
CA-sim 〈0, 1, 1, 1〉 46 2 1 0 0
CA-sim 〈0, 1, 2, 1〉 49 0 0 0 0
CA-sim 〈0, 2, 3, 1〉 47 3 0 0 0
CA-sim 〈1, 1, 3, 1〉 47 2 1 0 0
CP-sim 〈−1, 1, 1, 1〉 43 6 0 1 0
CP-sim 〈0, 1, 1, 1〉 34 9 5 1 1
CP-sim 〈0, 1, 2, 1〉 44 5 1 0 0
CP-sim 〈0, 2, 3, 1〉 46 2 2 0 0
CP-sim 〈1, 1, 3, 1〉 42 6 2 0 0
CT-sim 〈−1, 1, 1, 1〉 49 0 1 0 0
CT-sim 〈0, 1, 1, 1〉 47 1 2 0 0
CT-sim 〈0, 1, 2, 1〉 50 0 0 0 0
CT-sim 〈0, 2, 3, 1〉 49 1 0 0 0
CT-sim 〈1, 1, 3, 1〉 49 1 0 0 0
EC-sim 〈−1, 1, 1, 1〉 45 3 1 0 0
EC-sim 〈0, 1, 1, 1〉 41 6 1 0 0
EC-sim 〈0, 1, 2, 1〉 49 1 0 0 0
EC-sim 〈0, 2, 3, 1〉 47 2 0 0 0
EC-sim 〈1, 1, 3, 1〉 48 2 0 0 0
FA-sim 〈−1, 1, 1, 1〉 47 3 0 0 0
FA-sim 〈0, 1, 1, 1〉 47 3 0 0 0
FA-sim 〈0, 1, 2, 1〉 47 3 0 0 0
FA-sim 〈0, 2, 3, 1〉 47 3 0 0 0
FA-sim 〈1, 1, 3, 1〉 50 0 0 0 0

Dataset CostV ector N1 N2 N3 N4 N5

FE-sim 〈−1, 1, 1, 1〉 33 8 3 4 1
FE-sim 〈0, 1, 1, 1〉 34 8 3 3 1
FE-sim 〈0, 1, 2, 1〉 41 8 1 0 0
FE-sim 〈0, 2, 3, 1〉 38 7 2 3 0
FE-sim 〈1, 1, 3, 1〉 44 6 0 0 0
GL-sim 〈−1, 1, 1, 1〉 49 1 0 0 0
GL-sim 〈0, 1, 1, 1〉 48 2 0 0 0
GL-sim 〈0, 1, 2, 1〉 48 1 0 0 1
GL-sim 〈0, 2, 3, 1〉 49 0 1 0 0
GL-sim 〈1, 1, 3, 1〉 48 1 1 0 0
GM-sim 〈−1, 1, 1, 1〉 47 1 1 0 0
GM-sim 〈0, 1, 1, 1〉 45 4 1 0 0
GM-sim 〈0, 1, 2, 1〉 47 1 2 0 0
GM-sim 〈0, 2, 3, 1〉 48 1 0 1 0
GM-sim 〈1, 1, 3, 1〉 47 3 0 0 0
IFL-sim 〈−1, 1, 1, 1〉 46 4 0 0 0
IFL-sim 〈0, 1, 1, 1〉 44 6 0 0 0
IFL-sim 〈0, 1, 2, 1〉 47 3 0 0 0
IFL-sim 〈0, 2, 3, 1〉 47 3 0 0 0
IFL-sim 〈1, 1, 3, 1〉 48 2 0 0 0
MF-sim 〈−1, 1, 1, 1〉 42 8 0 0 0
MF-sim 〈0, 1, 1, 1〉 41 8 1 0 0
MF-sim 〈0, 1, 2, 1〉 43 6 1 0 0
MF-sim 〈0, 2, 3, 1〉 45 5 0 0 0
MF-sim 〈1, 1, 3, 1〉 43 6 1 0 0
MP-sim 〈−1, 1, 1, 1〉 44 3 1 1 1
MP-sim 〈0, 1, 1, 1〉 46 1 2 1 0
MP-sim 〈0, 1, 2, 1〉 46 3 1 0 0
MP-sim 〈0, 2, 3, 1〉 45 2 2 1 0
MP-sim 〈1, 1, 3, 1〉 47 2 1 0 0
PML-sim 〈−1, 1, 1, 1〉 50 0 0 0 0
PML-sim 〈0, 1, 1, 1〉 50 0 0 0 0
PML-sim 〈0, 1, 2, 1〉 48 2 0 0 0
PML-sim 〈0, 2, 3, 1〉 49 1 0 0 0
PML-sim 〈1, 1, 3, 1〉 45 4 0 0 0
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Table B.4: Results of the re-rooting for the simulated datasets. Only time-feasible reconciliations
are retained. The columns Ni represent the number of datasets that have exactly i plateaux (for
1 ≤ i ≤ 5).

Dataset CostV ector N1 N2 N3 N4 N5

PMP-sim 〈−1, 1, 1, 1〉 48 2 0 0 0
PMP-sim 〈0, 1, 1, 1〉 49 1 0 0 0
PMP-sim 〈0, 1, 2, 1〉 47 3 0 0 0
PMP-sim 〈0, 2, 3, 1〉 47 3 0 0 0
PMP-sim 〈1, 1, 3, 1〉 47 2 0 0 0
PP-sim 〈−1, 1, 1, 1〉 49 1 0 0 0
PP-sim 〈0, 1, 1, 1〉 47 3 0 0 0
PP-sim 〈0, 1, 2, 1〉 49 1 0 0 0
PP-sim 〈0, 2, 3, 1〉 49 1 0 0 0
PP-sim 〈1, 1, 3, 1〉 50 0 0 0 0
RM-sim 〈−1, 1, 1, 1〉 48 1 0 0 1
RM-sim 〈0, 1, 1, 1〉 47 1 1 0 1
RM-sim 〈0, 1, 2, 1〉 46 4 0 0 0
RM-sim 〈0, 2, 3, 1〉 48 2 0 0 0
RM-sim 〈1, 1, 3, 1〉 47 3 0 0 0
RP-sim 〈−1, 1, 1, 1〉 47 3 0 0 0
RP-sim 〈0, 1, 1, 1〉 47 3 0 0 0
RP-sim 〈0, 1, 2, 1〉 47 3 0 0 0
RP-sim 〈0, 2, 3, 1〉 47 3 0 0 0
RP-sim 〈1, 1, 3, 1〉 45 5 0 0 0
RH-sim 〈−1, 1, 1, 1〉 45 3 1 1 0
RH-sim 〈0, 1, 1, 1〉 44 5 0 1 0
RH-sim 〈0, 1, 2, 1〉 46 3 0 1 0
RH-sim 〈0, 2, 3, 1〉 46 4 0 0 0
RH-sim 〈1, 1, 3, 1〉 46 2 1 1 0
SBL-sim 〈−1, 1, 1, 1〉 45 4 2 0 0
SBL-sim 〈0, 1, 1, 1〉 44 4 1 0 0
SBL-sim 〈0, 1, 2, 1〉 47 1 1 0 0
SBL-sim 〈0, 2, 3, 1〉 47 2 0 0 0
SBL-sim 〈1, 1, 3, 1〉 44 5 0 0 0
SC-sim 〈−1, 1, 1, 1〉 45 4 1 0 0
SC-sim 〈0, 1, 1, 1〉 45 4 0 1 0
SC-sim 〈0, 1, 2, 1〉 46 4 0 0 0
SC-sim 〈0, 2, 3, 1〉 46 4 0 0 0
SC-sim 〈1, 1, 3, 1〉 48 2 0 0 0

Dataset CostV ector N1 N2 N3 N4 N5

SFC-sim 〈−1, 1, 1, 1〉 40 7 2 0 1
SFC-sim 〈0, 1, 1, 1〉 40 8 2 0 0
SFC-sim 〈0, 1, 2, 1〉 41 6 3 0 0
SFC-sim 〈0, 2, 3, 1〉 43 7 0 0 0
SFC-sim 〈1, 1, 3, 1〉 47 3 0 0 0
SHA-sim 〈−1, 1, 1, 1〉 46 4 0 0 0
SHA-sim 〈0, 1, 1, 1〉 48 2 0 0 0
SHA-sim 〈0, 1, 2, 1〉 44 4 2 0 0
SHA-sim 〈0, 2, 3, 1〉 46 3 1 0 0
SHA-sim 〈1, 1, 3, 1〉 47 1 2 0 0
SSA-sim 〈−1, 1, 1, 1〉 49 0 1 0 0
SSA-sim 〈0, 1, 1, 1〉 49 0 1 0 0
SSA-sim 〈0, 1, 2, 1〉 48 1 1 0 0
SSA-sim 〈0, 2, 3, 1〉 48 1 1 0 0
SSA-sim 〈1, 1, 3, 1〉 49 0 1 0 0
TC-sim 〈−1, 1, 1, 1〉 47 2 1 0 0
TC-sim 〈0, 1, 1, 1〉 48 1 1 0 0
TC-sim 〈0, 1, 2, 1〉 47 2 1 0 0
TC-sim 〈0, 2, 3, 1〉 48 2 0 0 0
TC-sim 〈1, 1, 3, 1〉 44 4 0 0 0
TD-sim 〈−1, 1, 1, 1〉 48 1 1 0 0
TD-sim 〈0, 1, 1, 1〉 48 1 1 0 0
TD-sim 〈0, 1, 2, 1〉 46 3 0 0 1
TD-sim 〈0, 2, 3, 1〉 48 1 1 0 0
TD-sim 〈1, 1, 3, 1〉 48 2 0 0 0
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B.2.5 Re-rooting at distance k, biological datasets

Figures B.158 to B.182 present the analysis on the re-rooting at distance k for the remaining
27 biological datasets (dataset MP appearing in the paper). Only time-feasible reconciliations
are retained. Figures are missing whenever the original positioning of the root did not produce
any time-feasible reconciliation (which corresponds also to no value in column D of Tables B.1
and B.2). This is the case for datasets CP (all cost vectors except 〈1, 1, 1, 1〉 and 〈1, 1, 3, 1〉),
CT (all cost vectors except 〈1, 1, 1, 1〉), FD (with cost vector 〈0, 2, 3, 1〉), PP (with cost vector
〈1, 1, 1, 1〉) and RH (all cost vectors except 〈0, 1, 1, 1〉). Notice also that for 2 of the 28 datasets,
namely FD and PP, we did not obtain any results for the cost vector 〈1, 1, 1, 1〉. Indeed, this cost
vector results in the longest computation time and those datasets contain large trees.
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Figure B.156: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset AP and all datasets derived from AP by re-rooting the symbiont tree at distance k from
the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.157: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset AS and all datasets derived from AS by re-rooting the symbiont tree at distance k from
the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.158: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset AW and all datasets derived from AW by re-rooting the symbiont tree at distance k
from the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.



B.2 Additional results 201

1 2 3
0.

0
0.

2
0.

4

CA <−1;1;1;1>

Distance to the Root

D
is

si
m

ila
rit

y

1 2 3

0.
0

0.
2

0.
4

CA <0;1;1;1>

Distance to the Root

D
is

si
m

ila
rit

y

1 2 3

0.
0

0.
2

0.
4

CA <0;1;2;1>

Distance to the Root

D
is

si
m

ila
rit

y

●

1 2 3

0.
0

0.
2

0.
4

CA <0;2;3;1>

Distance to the Root

D
is

si
m

ila
rit

y

1 2 3

0.
0

0.
2

0.
4

CA <1;1;1;1>

Distance to the Root

D
is

si
m

ila
rit

y

1 2 3

0.
0

0.
2

0.
4

CA <1;1;3;1>

Distance to the Root

D
is

si
m

ila
rit

y

Figure B.159: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset CA and all datasets derived from CA by re-rooting the symbiont tree at distance k from
the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.160: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset CP and all datasets derived from CP by re-rooting the symbiont tree at distance k from
the original root. The two plots correspond to the cost vectors 〈1; 1; 1; 1〉 and 〈1; 1; 1; 3〉. The
x-axis shows the distance k between the new and the original root. The y-axis shows the value
d of dissimilarity of the reconciliation patterns.
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Figure B.161: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset CT and all datasets derived from CT by re-rooting the symbiont tree at distance k
from the original root. The plot correspond to the cost vector 〈1; 1; 1; 1〉. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.162: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset EC and all datasets derived from EC by re-rooting the symbiont tree at distance k from
the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.163: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset FA and all datasets derived from FA by re-rooting the symbiont tree at distance k from
the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.164: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset FD and all datasets derived from FD by re-rooting the symbiont tree at distance k from
the original root. The four plots correspond to the 4 cost vectors in 〈−1; 1; 1; 1〉, 〈0; 1; 1; 1〉 ,
〈0; 1; 2; 1〉 and 〈1; 1; 1; 3〉. The x-axis shows the distance k between the new and the original
root. The y-axis shows the value d of dissimilarity of the reconciliation patterns.
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Figure B.165: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset FE and all datasets derived from FE by re-rooting the symbiont tree at distance k from
the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.166: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset GL and all datasets derived from GL by re-rooting the symbiont tree at distance k from
the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.167: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset GM and all datasets derived from GM by re-rooting the symbiont tree at distance k
from the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.168: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset IFL and all datasets derived from IFL by re-rooting the symbiont tree at distance k from
the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.169: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset MF and all datasets derived from MF by re-rooting the symbiont tree at distance k from
the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.170: Boxplots of the dissimilarities between reconciliations obtained for original dataset
PML and all datasets derived from PML by re-rooting the symbiont tree at distance k from the
original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the distance
k between the new and the original root. The y-axis shows the value d of dissimilarity of the
reconciliation patterns.
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Figure B.171: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset PMP and all datasets derived from PMP by re-rooting the symbiont tree at distance k
from the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.172: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset PP and all datasets derived from PP by re-rooting the symbiont tree at distance k
from the original root. The five plots correspond to the 5 cost vectors 〈−1; 1; 1; 1〉, 〈0; 1; 1; 1〉 ,
〈0; 1; 2; 1〉, 〈0; 2; 3; 1〉 and 〈1; 1; 1; 3〉. The x-axis shows the distance k between the new and the
original root. The y-axis shows the value d of dissimilarity of the reconciliation patterns.
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Figure B.173: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset RH and all datasets derived from RH by re-rooting the symbiont tree at distance k
from the original root. The plot corresponds to the cost vector 〈0; 1; 1; 1〉. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.174: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset RM and all datasets derived from RM by re-rooting the symbiont tree at distance k from
the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.175: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset RP and all datasets derived from RP by re-rooting the symbiont tree at distance k from
the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.176: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset SBL and all datasets derived from SBL by re-rooting the symbiont tree at distance k
from the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.177: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset SC and all datasets derived from SC by re-rooting the symbiont tree at distance k from
the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.178: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset SFC and all datasets derived from SFC by re-rooting the symbiont tree at distance k
from the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.179: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset SHA and all datasets derived from SHA by re-rooting the symbiont tree at distance k
from the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.180: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset SSA and all datasets derived from SSA by re-rooting the symbiont tree at distance k
from the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.181: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset TC and all datasets derived from TC by re-rooting the symbiont tree at distance k from
the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.182: Boxplots of the dissimilarities between reconciliations obtained for the original
dataset TD and all datasets derived from TD by re-rooting the symbiont tree at distance k from
the original root. The six plots correspond to the 6 cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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B.2.6 Re-rooting at distance k, simulated datasets

Figures B.185 to B.205 show the results for 14 sets of simulated datasets (each containing 50
datasets). Only time-feasible reconciliations are retained. Dataset FD contains the symbiont
tree with the largest number of leaves and our procedure did not produce simulated datasets
corresponding to this biological dataset. Moreover, notice that the cost vector 〈1, 1, 1, 1〉 is
always missing here as this cost vector induces the largest computation time.
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Figure B.183: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets AP-sim and all datasets derived from AP-sim by re-rooting the symbiont tree at distance
k from the original root. The six plots correspond to the cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.184: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets AS-sim and all datasets derived from AS-sim by re-rooting the symbiont tree at distance
k from the original root. The six plots correspond to the cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.185: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets AW-sim and all datasets derived from AW-sim by re-rooting the symbiont tree at dis-
tance k from the original root. The five plots correspond to the cost vectors 〈−1, 1, 1, 1〉 ,
〈0, 1, 1, 1〉, 〈0, 1, 2, 1〉, 〈0, 2, 3, 1〉, 〈1, 1, 3, 1〉. The x-axis shows the distance k between the new
and the original root. The y-axis shows the value d of dissimilarity of the reconciliation patterns.
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Figure B.186: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets CA-sim and all datasets derived from CA-sim by re-rooting the symbiont tree at distance
k from the original root. The six plots correspond to the cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.187: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets CP-sim and all datasets derived from CP-sim by re-rooting the symbiont tree at distance
k from the original root. The six plots correspond to the cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.188: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets CT-sim and all datasets derived from CT-sim by re-rooting the symbiont tree at distance
k from the original root. The five plots correspond to the cost vectors 〈−1, 1, 1, 1〉 , 〈0, 1, 1, 1〉,
〈0, 1, 2, 1〉, 〈0, 2, 3, 1〉, 〈1, 1, 3, 1〉. The x-axis shows the distance k between the new and the
original root. The y-axis shows the value d of dissimilarity of the reconciliation patterns.
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Figure B.189: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets EC-sim and all datasets derived from EC-sim by re-rooting the symbiont tree at distance
k from the original root. The five plots correspond to the cost vectors 〈−1, 1, 1, 1〉 , 〈0, 1, 1, 1〉,
〈0, 1, 2, 1〉, 〈0, 2, 3, 1〉, 〈1, 1, 3, 1〉. The x-axis shows the distance k between the new and the
original root. The y-axis shows the value d of dissimilarity of the reconciliation patterns.
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Figure B.190: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets FA-sim and all datasets derived from FA-sim by re-rooting the symbiont tree at distance
k from the original root. The six plots correspond to the cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.191: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets FE-sim and all datasets derived from FE-sim by re-rooting the symbiont tree at distance
k from the original root. The six plots correspond to the cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.192: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets GL-sim and all datasets derived from GL-sim by re-rooting the symbiont tree at distance
k from the original root. The five plots correspond to the cost vectors 〈−1, 1, 1, 1〉 , 〈0, 1, 1, 1〉,
〈0, 1, 2, 1〉, 〈0, 2, 3, 1〉, 〈1, 1, 3, 1〉. The x-axis shows the distance k between the new and the
original root. The y-axis shows the value d of dissimilarity of the reconciliation patterns.
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Figure B.193: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets GM-sim and all datasets derived from GM-sim by re-rooting the symbiont tree at
distance k from the original root. The six plots correspond to the cost vectors in C. The x-axis
shows the distance k between the new and the original root. The y-axis shows the value d of
dissimilarity of the reconciliation patterns.
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Figure B.194: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets IFL-sim and all datasets derived from IFL-sim by re-rooting the symbiont tree at dis-
tance k from the original root. The five plots correspond to the cost vectors 〈−1, 1, 1, 1〉 ,
〈0, 1, 1, 1〉, 〈0, 1, 2, 1〉, 〈0, 2, 3, 1〉, 〈1, 1, 3, 1〉. The x-axis shows the distance k between the new
and the original root. The y-axis shows the value d of dissimilarity of the reconciliation patterns.
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Figure B.195: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets MF-sim and all datasets derived from MF-sim by re-rooting the symbiont tree at distance
k from the original root. The six plots correspond to the cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Figure B.196: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets MP-sim and all datasets derived from MP-sim by re-rooting the symbiont tree at dis-
tance k from the original root. The six plots correspond to the cost vectors in C. The x-axis
shows the distance k between the new and the original root. The y-axis shows the value d of
dissimilarity of the reconciliation patterns.
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Figure B.197: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets PML-sim and all datasets derived from PML-sim by re-rooting the symbiont tree at
distance k from the original root. The five plots correspond to the cost vectors 〈−1, 1, 1, 1〉 ,
〈0, 1, 1, 1〉, 〈0, 1, 2, 1〉, 〈0, 2, 3, 1〉, 〈1, 1, 3, 1〉. The x-axis shows the distance k between the new
and the original root. The y-axis shows the value d of dissimilarity of the reconciliation patterns.
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Figure B.198: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets PMP-sim and all datasets derived from PMP-sim by re-rooting the symbiont tree at
distance k from the original root. The five plots correspond to the cost vectors 〈−1, 1, 1, 1〉 ,
〈0, 1, 1, 1〉, 〈0, 1, 2, 1〉, 〈0, 2, 3, 1〉, 〈1, 1, 3, 1〉. The x-axis shows the distance k between the new
and the original root. The y-axis shows the value d of dissimilarity of the reconciliation patterns.
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Figure B.199: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets PP-sim and all datasets derived from PP-sim by re-rooting the symbiont tree at distance
k from the original root. The five plots correspond to the cost vectors 〈−1, 1, 1, 1〉 , 〈0, 1, 1, 1〉,
〈0, 1, 2, 1〉, 〈0, 2, 3, 1〉, 〈1, 1, 3, 1〉. The x-axis shows the distance k between the new and the
original root. The y-axis shows the value d of dissimilarity of the reconciliation patterns.
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Figure B.200: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets RH-sim and all datasets derived from RH-sim by re-rooting the symbiont tree at distance
k from the original root. The five plots correspond to the cost vectors 〈−1, 1, 1, 1〉 , 〈0, 1, 1, 1〉,
〈0, 1, 2, 1〉, 〈0, 2, 3, 1〉, 〈1, 1, 3, 1〉. The x-axis shows the distance k between the new and the
original root. The y-axis shows the value d of dissimilarity of the reconciliation patterns.
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Figure B.201: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets RM-sim and all datasets derived from RM-sim by re-rooting the symbiont tree at dis-
tance k from the original root. The six plots correspond to the cost vectors in C. The x-axis
shows the distance k between the new and the original root. The y-axis shows the value d of
dissimilarity of the reconciliation patterns.
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Figure B.202: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets RP-sim and all datasets derived from RP-sim by re-rooting the symbiont tree at distance
k from the original root. The five plots correspond to the cost vectors 〈−1, 1, 1, 1〉 , 〈0, 1, 1, 1〉,
〈0, 1, 2, 1〉, 〈0, 2, 3, 1〉, 〈1, 1, 3, 1〉. The x-axis shows the distance k between the new and the
original root. The y-axis shows the value d of dissimilarity of the reconciliation patterns.
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Figure B.203: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets SBL-sim and all datasets derived from SBL-sim by re-rooting the symbiont tree at
distance k from the original root. The five plots correspond to the cost vectors 〈−1, 1, 1, 1〉 ,
〈0, 1, 1, 1〉, 〈0, 1, 2, 1〉, 〈0, 2, 3, 1〉, 〈1, 1, 3, 1〉. The x-axis shows the distance k between the new
and the original root. The y-axis shows the value d of dissimilarity of the reconciliation patterns.
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Figure B.204: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets SC-sim and all datasets derived from SC-sim by re-rooting the symbiont tree at distance
k from the original root. The five plots correspond to the cost vectors 〈−1, 1, 1, 1〉 , 〈0, 1, 1, 1〉,
〈0, 1, 2, 1〉, 〈0, 2, 3, 1〉, 〈1, 1, 3, 1〉. The x-axis shows the distance k between the new and the
original root. The y-axis shows the value d of dissimilarity of the reconciliation patterns.
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Figure B.205: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets SFC-sim and all datasets derived from SFC-sim by re-rooting the symbiont tree at
distance k from the original root. The five plots correspond to the cost vectors 〈−1, 1, 1, 1〉 ,
〈0, 1, 1, 1〉, 〈0, 1, 2, 1〉, 〈0, 2, 3, 1〉, 〈1, 1, 3, 1〉. The x-axis shows the distance k between the new
and the original root. The y-axis shows the value d of dissimilarity of the reconciliation patterns.
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Figure B.206: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets SHA-sim and all datasets derived from SHA-sim by re-rooting the symbiont tree at
distance k from the original root. The six plots correspond to the cost vectors in C. The x-axis
shows the distance k between the new and the original root. The y-axis shows the value d of
dissimilarity of the reconciliation patterns.
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Figure B.207: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets SSA-sim and all datasets derived from SSA-sim by re-rooting the symbiont tree at
distance k from the original root. The six plots correspond to the cost vectors in C. The x-axis
shows the distance k between the new and the original root. The y-axis shows the value d of
dissimilarity of the reconciliation patterns.
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Figure B.208: Boxplots of the dissimilarities between reconciliations obtained for all simulated
datasets TC-sim and all datasets derived from TC-sim by re-rooting the symbiont tree at distance
k from the original root. The six plots correspond to the cost vectors in C. The x-axis shows the
distance k between the new and the original root. The y-axis shows the value d of dissimilarity
of the reconciliation patterns.
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Modèles et algorithmes pour étudier l’histoire évolutive commune des hôtes et des
symbiotes.

Lors de cette thèse, je me suis intéressée aux modèles et aux algorithmes pour étudier
l’histoire évolutive commune des hôtes et des symbiotes.

Le premier objectif était d’analyser la robustesse des méthodes de réconciliation des
arbres phylogénétiques, qui sont très utilisées dans ce type d’étude. Celles-ci associent (ou
lient) un arbre, d’habitude celui des symbiotes, à l’autre, en utilisant un modèle dit basé
sur des évènements. Les évènements les plus utilisés sont la cospéciation, la duplication, le
saut et la perte. Les phylogénies des hôtes et des symbiotes sont généralement considérés
comme donnés, et sans aucune erreur. L’objectif était de comprendre les forces et les
faiblesses du modèle parcimonieux utilisé et comprendre comment les résultats finaux
peuvent être influencés en présence de petites perturbations ou d’erreurs dans les données
en entrée. Ici deux cas sont considérés, le premier est le choix erroné d’une association
entre les feuilles des hôtes et des symbiotes dans le cas où plusieurs existent, le deuxième
est lié au mauvais choix de l’enracinement de l’arbre des symbiotes. Nos résultats montrent
que le choix des associations entre feuilles et le choix de l’enracinement peuvent avoir un
fort impact sur la variabilité de la réconciliation obtenue. Nous avons également remarqué
que l’evènement appelé “saut” joue un rôle important dans l’étude de la robustesse, surtout
pour le problème de l’enracinement.

Le deuxième objectif de cette thèse était d’introduire certains evènements peu ou pas
formellement considérés dans la littérature. L’un d’entre eux est la “propagation”, qui
correspond à l’invasion de différents hôtes par un même symbiote. Dans ce cas, lorsque
les propagations ne sont pas considérés, les réconciliations optimales sont obtenues en
tenant compte seulement des coûts des évènements classiques (cospeciation, duplication,
saut, perte). La nécessité de développer des méthodes statistiques pour assigner les coûts
les plus appropriés est toujours d’actualité. Deux types de propagations sont introduites :
verticaux et horizontaux. Le premier type correspond à ce qu’on pourrait appeler aussi un
gel, à savoir que l’évolution du symbiote s’arrête et “gèle” alors que le symbiote continue
d’être associé à un hôte et aux nouvelles espèces qui descendent de cet hôte. Le second
comprend à la fois une invasion, du symbiote qui reste associé à l’hôte initial, mais qui
en même temps s’associe (“envahit”) un autre hôte incomparable avec le premier, et un
gel par rapport à l’évolution des deux l’hôtes, celui auquel il était associé au début et
celui qu’il a envahi. Nos résultats montrent que l’introduction de ces evènements rend le
modèle plus réaliste, mais aussi que désormais il est possible d’utiliser directement des
jeux de données avec un symbiote qui est associé plusieurs hôtes au même temps, ce qui
n’était pas faisable auparavant.

MOTS-CLEFS en français : Cophilogenie; parsimonie; méthodes basées sur des evène-
ments; robustesse; mesure pour la comparaison de reconciliations entre arbres; systèmes
hôtes/symbiotes; calcul approximatif Bayésien, spread.



Models and algorithms to study the common evolutionary history of hosts and sym-
bionts.

In this Ph.D. work, we proposed models and algorithms to study the common evolu-
tionary history of hosts and symbionts.

The first goal was to analyse the robustness of the methods of phylogenetic tree rec-
onciliations, which are a common way of performing such study. This involves mapping
one tree, most often the symbiont’s, to the other using a so-called event-based model.
The events considered in general are cospeciation, duplication, host switch, and loss. The
host and the symbiont phylogenies are usually considered as given and without any errors.
The objective here was to understand the strengths and weaknesses of the parsimonious
model used in such mappings of one tree to another, and how the final results may be
influenced when small errors are present, or are introduced in the input datasets. This
may correspond either to a wrong choice of present-day symbiont-host associations in
the case where multiple ones exist, or to small errors related to a wrong rooting of the
symbiont tree. Our results show that the choice of leaf associations and of root placement
may have a strong impact on the variability of the reconciliation output. We also noticed
that the host switch event has an important role in particular for the rooting problem.

The second goal of this Ph.D. was to introduce some events that are little or not
formally considered in the literature. One of them is the spread, which corresponds to
the invasion of different hosts by a same symbiont. In this case, as when spreads are
not considered, the optimal reconciliations obtained will depend on the choice made for
the costs of the events. The need to develop statistical methods to assign the most
appropriate ones therefore remains of actuality. Two types of spread are introduced:
vertical and horizontal. The first case corresponds to what could be called also a freeze in
the sense that the evolution of the symbiont “freezes” while the symbiont continues to be
associated with a host and with the new species that descend from this host. The second
includes both an invasion, of the symbiont which remains with the initial host but at the
same time gets associated with (“invades”) another one incomparable with the first, and a
freeze, actually a double freeze as the evolution of the symbiont “freezes” in relation to the
evolution of the host to which it was initially associated and in relation to the evolution
of the second one it “invaded”. Our results show that the introduction of these events
makes the model more realistic, but also that it is now possible to directly use datasets
with a symbiont that is associated with more than one host at the same time, which was
not feasible before.

Keywords in english: Cophylogeny; parsimony; event-based methods; robusness; mea-
sure for tree reconciliation comparison; host/symbiont system; approximate Bayesian
computation; spread.


