Théorie spectrale et de la diffusion pour les réseaux cristallins

par Daniel Alejandro Parra Vogel

Thèse de doctorat en Mathématiques

Sous la direction de Serge Richard.

Soutenue le 09-01-2017

à Lyon , dans le cadre de École Doctorale d'Informatique et Mathématiques (Lyon) , en partenariat avec Université Claude Bernard (Lyon) (établissement opérateur d'inscription) et de ICJ - Institut Camille Jordan (Villeurbanne, Rhône) (laboratoire) .

Le président du jury était Johannes Kellendonk.

Le jury était composé de Colette Anné, Dietrich Häfner, Françoise Bailly-Truc.

Les rapporteurs étaient Jérémy Faupin.


  • Résumé

    Dans cette thèse les théories spectrale et de la diffusion sur des graphes périodiques sont investigué. Le chapitre 1 présente des résultats de préservation de la nature fine du spectre pour des opérateurs de Schrödinger perturbés dans le cadre de cristaux topologiques perturbés. Le chapitre 2 étend ses résultats à des opérateurs du première ordre connu sous le nom de opérateurs de Gauss-Bonnet discrets. Finalement, le chapitre 3 présente des résultats de continuité de composantes spectrales pour des familles de opérateurs de Schrödinger magnétiques sur Z^d

  • Titre traduit

    Spectral and scattering theory for crystal lattices


  • Résumé

    In this thesis we investigate the spectral and scattering theories for crystal lattices. In chapter one we present results concerning the preservation of the nature of the spectrum for perturbed Schrödinger operators acting con perturbed topological crystals. In Chapter 2 we extend this results to some first order operators knowns as discrete Gauss-Bonnet operators. Finally, in chapter 3 we give some results dealing with the continuity of the spectrum for a family of magnetic Schrödinger operators acting on Z^d


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.