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Résumé détaillé de la thèse

La synchronisation a été un sujet important en automatique depuis des années. Rigoureuse-
ment parlant, le terme synchronisation désigne des comportements similaires ou corrélés de
deux ou plusieurs entités qui sont connectées par des réseaux virtuel ou physique. Au cours
de ces derniers siècles, des scientifiques ont tenté d’expliquer l’existence de l’ordre à travers le
concept de synchronisation. C Huygens est considéré comme un des pionniers à s’intéresser à
ce sujet en 1665. On peut citer un nombre remarquable de phénomènes synchronisés que l’on
peut observer que ce soit dans la nature, la biologie, les neurosciences, la physiologie et plus
récemment dans les réseaux sociaux.

La synchronisation peut être un moyen très efficace pour aborder un problème en ingénierie.
Par exemple, il existe un intérêt croissant aux problèmes de contrôle collaboratif. De tels
problèmes font intervenir plusieurs entités autonomes (aussi appelé agents) qui, à travers un ac-
couplement ou une connectivité approprié, tentent d’atteindre collectivement un objectif global.
On peut citer dans ce cas comme applications, des robots mobiles, des véhicules autonomes et
sans pilotes, les satellites, les contrôleurs de pollution d’air. Par ailleurs, la synchronisation joue
un rôle important dans la communication: vidéo, radiodiffusion, des équipements utilisant une
boucle à verrouillage de phase. Lorsque la synchronisation a lieu dan le cadre d’une intercom-
munication qui ne fait intervenir aucun protocole externe, on parle d’auto-synchronisation.
L’auto-synchronisation joue un rôle important en cryptographie, plus précisément en cryptogra-
phie symétrique avec l’utilisation des chiffreurs dits auto-synchronisants ou Self-Synchronizing
Stream Ciphers (SSSC) en anglais [76]. De tels chiffreurs peuvent être conçus à partir de
générateurs obtenus en utilisant des systèmes dynamiques. Ces systèmes dynamiques, dans le
contexte de la cryptographie, opèrent sur des corps finis tout en générant des séquences qui sont
assez complexes pour brouiller des informations qui doivent être transmises dans le secret. Ces
séquences générées doivent toutefois être auto-synchronisantes afin de garantir correctement le
déchiffrement de l’information transmise.

Dans cette thèse on s’intéresse à l’utilisation des SSSCs en cryptographie d’un point de
vue de la théorie du contrôle en automatique. Le principal résultat réside dans le concept
de la platitude qui combiné à des notions utilisées en théorie du graphe offre une approche
constructive et systématique de classes plus générales de SSSCs.

Le Chap̂ıtre 1 de la thèse aborde donc les notions et concepts de la théorie du contrôle qui
sont utiles pour la construction des SSSCs. Il illustre l’intérêt potentiel des systèmes dynamiques
LPV plats pour répondre à des problématiques en cryptographie. En effet ces systèmes LPV
sont des systèmes linéaires dont la représentation d’état dépend d’un vecteur de paramètres qui
varient dans le temps. Ils sont utilisés depuis bien des années en contrôle [2, 40, 69, 70, 83, 99]
et dans le domaine de l’observation ou filtrage [6, 52, 98, 106]. Les modèles LPV peuvent être
par exemple utilisés pour construire des contrôleurs programmables utilisés par exemple dans
le contrôle de l’espace aérien [95] ou le contrôle de véhicules [101]. En outres, ces modèles LPV
peuvent représenter des systèmes non linéaires sous certaines conditions bien définies. Ceci a
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RÉSUMÉ DÉTAILLÉ DE LA THÈSE

fait l’objet d’études dans [19] ou dans [79].
Un système linéaire à paramètre variant à une seule entrée et une seule sortie ou Single

Input Single Output (SISO) en anglais noté Σρ et défini sur un corps fini F est décrit par la
représentation d’espace d’état suivant:

Σρ :
{

xk+1 = Aρ(k)xk +Bρ(k)uk

yk = Cρ(k)xk +Dρ(k)uk
(1)

où k ∈ N correspond au temps discret, xk ∈ Fn correspond au vecteur d’état, uk ∈ F
correspond à l’entrée, yk ∈ F correspond à la sortie. Les matrices A ∈ F, B ∈ Fn×1, C ∈ F1×n et
D ∈ F1×1 correspondent respectivement à la matrice dynamique, la matrice d’entrée, la matrice
de sortie et la matrice de transfert direct. Comme on peut donc le voir dans l’Equation (1)
caractéristique d’un système LPV, le vecteur d’état dépend linéairement de l’entrée et de la
sortie du système. Cependant, les matrices A,B,C et D dépendent d’un vecteur de paramètres
ρ(k) =

[
ρ1(k), ρ2(k), ..., ρLρ(k)

]
∈ FLρ qui confèrent une dynamique non linéaire au système.

Ici Lρ désigne le nombre total de coefficients (éventuellement variables) non nuls des matrices.
En effet les paramètres variants ρi(k) sont définis comme des fonctions non linéaires ϕi en la
sortie yk: ρi(k) = ϕi(yk, yk−1, · · · ).

Une fois la définition des systèmes dynamiques LPV établie, on va établir ensuite une
correspondance avec les SSSCs à travers la notion de platitude que l’on définit ci-après. On
définit avant tout, pour tout entier positif k0, une réalisation que l’on notera par ρ, toute
séquence {ρ(k0), ρ(k0 + 1), . . .} de paramètres à temps variant. La définition d’un système LPV
est donc donnée d’un point de vue générique i.e pour presque toute réalisation ρ.

Définition 1 On dit que le système (1) est génériquement plat, si pour presque toute réalisation
ρ, il existe une variable yk, appelée sortie plate, telle qu’on puisse exprimer toutes variables du
système comme fonction des itérés antérieurs et ultérieurs de cette sortie plate. En d’autres
termes, il existe deux fonctions Fρ et Gρ paramétrisées par ρ telles que:{

xk = Fρ
(
yk+kF , . . . , yk+k′

F

)
uk = Gρ

(
yk+kG , . . . , yk+k′

G

) (2)

avec kF, k′F , kG et k′G des valeurs entières de Z.

La platitude est cependant une notion importante qui admet de divers et variés domaines
d’application comme dans la planification de trajectoire [25, 78], en contrôle prédictif ou encore
dans la gestion de contraintes [32, 43, 60]. Dans cette thèse, on va s’intéresser, au-delà d’une
simple vérification des sorties plates d’un système LPV, à la construction des systèmes LPV qui
admettent des sorties plates. Ceci revient donc d’après la définition 1, à construire des systèmes
LPV dont les variables s’expriment comme fonction de la sortie.

Il existe plusieurs approches qui permettent de caractériser les sorties plates d’un système
LPV. On peut citer:
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Résumé détaillé de la thèse

l’approche directe: elle consiste à exprimer par itérations successives les variables du
système comme fonction de la sortie. Il en résulte cependant que cette approche est
onéreuse même pour des systèmes de petite dimension et devient presque impossible à
adopter pour des systèmes de grande dimension.

l’approche basée sur le système inverse: il s’agit d’une approche qui utilise, lorsqu’il
existe, le système inverse à gauche du système LPV (1). Ce système inverse admet dans
ce cas une matrice dynamique notée P et qui s’exprime en fonction des matrices A,B,C
et D du système LPV.

Une caratérisation de la sortie plate basée sur le système inverse a été proposé pour les
systèmes linéaires switchés dans [80]. L’extension de cette caractérisation aux systèmes
LPV est immédiate, en considérant la fonction de commutation comme une fonction à
valeurs dans un ensemble indéterminé au lieu d’un ensemble fini qui est appelé modes.
Cette caractérisation est basée sur la notion de degré relatif d’un système dynamique [89]
que l’on rappelle ci-après:

Définition 2 Le degré relatif d’un système dynamique est le nombre minimal r

d’itérations à partir duquel la sortie yk+r à l’instant k + r est influencée par l’entrée
uk.

Dans le cas d’un système LPV (1), on montre que si le système admet un degré relatif r
alors, pour toute réalisation ρ, la sortie s’exprime par:

yk+r = Cρ(k+r)

k∏
l=k+r−1

Aρ(l)xk + T
r,0
ρ(k)uk (3)

où T
r,0
ρ(k) est une quantité définie suivant les valeurs de r par:

1. si r = 0 : T
0,0
ρ(k) 6= 0 pour tout entier relatif k

2. sinon si r <∞, alors r est le plus petit entier s tel que:

T
i,j
ρ(k) = 0 pour i = 0, . . . , s− 1 et j = 0, . . . , i,

T
s,0
ρ(k) 6= 0

(4)

pour tout entier relatif k ≥ 0 et pour toute réalisation ρ.

On a donc le théorème suivant qui permet de caractériser la sortie plate d’un système
LPV (1).

Théorème 1 ([34]) Si le système LPV (1) admet un degré relatif r, alors yk est une
sortie plate si et seulement si il existe un entier positif K tel que pour tout entier relatif
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RÉSUMÉ DÉTAILLÉ DE LA THÈSE

k ≥ 0 et pour toute séquence {ρ(k), . . . , ρ(k +K − 1 + r)} ∈ Θr+K , la condition suivante
est vérifiée:

Pρ(k+K−1:k+K−1+r)Pρ(k+K−2:k+K−2+r) · · ·Pρ(k:k+r) = 0 (5)

avec

Pρ(k:k+r) = Aρ(k) −Bρ(k)(Tr,0ρ(k))
−1Cρ(k+r)

k∏
l=k+r−1

Aρ(l) (6)

La preuve de ce théorème est constructive et permet en outres de montrer que l’état
interne xk ainsi que l’entrée uk du système LPV (1) s’expriment en fonction des itérés de
la sortie yk par:

xk =
K−1∑
i=0

[ i∏
j=1

Pρ(k−j:k−j+r)

]
(Tr,0ρ(k−1−i))

−1Bρ(k−1−i)yk−1−i+r (7)

et

uk = (Tr,0ρ(k))
−1yk+r − (Tr,0ρ(k))

−1Cρ(k+r)

k∏
l=k+r−1

Aρ(l)

·
K−1∑
i=0

[ i−1∏
j=0

Pρ(k−j−1:k−j−1+r)

]
(Tr,0ρ(k−1−i))

−1Bρ(k−1−i)yk−1−i+r

(8)

L’intérêt du Théorème 1 est qu’il offre une expression explicite des fonctions Fρ et Gρ

lorsque yk est une sortie plate. Cependant vérifier que yk est une sortie plate exigerait
de vérifier le produit 5 pour un nombre infini de réalisations ρ; ce qui ne peut être réalisé
dans la pratique. Pour cela, il sera proposé une approche basée sur les graphes orientés
que l’on décrira un peu plus bas.

Problème de la mortalité: il est à noter que l’égalité de l’Equation (5) n’est pas
nécessairement vérifiée pour tout produit de matrice Pρ(k:k+r) mais seulement pour un
nombre de séquences admissibles de telles matrices. Cette égalité est connue de façon
plus générale sous le nom de problème de mortalité qui est un problème indécidable ([12,
17, 90]). Il a cependant été proposé dans [89] une approche basée sur les semi-groupes
nilpotents de matrices vérifiant l’égalité (5).

Définition 3 (Semi-groupe nilpotent) Un semi-groupe S est un ensemble avec une
loi multiplicative associative interne. On dit qu’un semi-groupe S qui admet une élément
absorbant 0 est nilpotent s’il existe un entier t ∈ N∗ tel que tout produit de t éléments
appartenant à S est nul. Le plus petit entier t est appelé dans ce cas la classe de nilpotence
de S.
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Cette notion de semi-groupe nilpotent est intrinsèquement liée à la notion de triangulari-
sation simultanée. En effet le Théorème de Levitzky [92] dit qu’un ensemble de matrices
forme un semi-groupe nilpotent si et seulement si cet ensemble est simultanément trian-
gularisable autrement dit si et seulement si cet ensemble admet une base commune de
triangularisation.

On a donc le théorème suivant qui caractérise une sortie plate d’un système LPV.

Théorème 2 ([89]) Si la matrice Pρ(k:k+r) est triangularisable indépendemment de ρ,
alors yk est une sortie plate du système (1).

Cette dernière approche offre une complexité polynômiale, lorsque l’ensemble de matrices
est donné, pour vérifier si une sortie du système est plate ou non. L’inconvénient est
qu’elle n’est pas appropriée pour répondre à notre problématique à savoir la construction
de matrices qui doivent vérifier le Théorème 2.

Pour toutes les raisons énumérées ci-dessus, il sera proposé une approche complémentaire
basée sur les graphes orientés qui fournit des conditions nécessaires et suffisantes afin de car-
actériser les sorties plates d’un système LPV et plus encore qui fournit un moyen de construction
systématique de systèmes LPV qui admettent une sortie plate.

Approche basée sur les graphes orientés: Cette approche considère le système linéaire
structuré associé au système LPV (1) et qui est décrit par le système d’équations:

ΣΛ : xk+1 = IAxk + IBuk (9)

Ce système structuré exprime une forme simplifiée du système LPV. Ceci permet de traduire
les variables de ce dernier en termes de sommets d’un graphe orienté noté par G(ΣΛ). Les arcs
de ce graphe décrivant la dynamique du système LPV. Ainsi aux matrices Aρ(k) et Bρ(k) du
système LPV (1), on associe les matrices IA et IB du système structuré (9) dont les coefficients
sont des ′0′ et des ′1′; les variables non nulles des matrices du système LPV étant remplacées
par des coefficients ′1′ dans les matrices du système structuré.

Si on considère l’exemple suivant de matrices d’un système LPV

Aρ(k) =
(

1 ρ1(k)
0 ρ2(k)

)
, Bρ(k) =

(
0

ρ3(k)

)
Cρ(k) =

(
1 0

)
Dρ(k) = 0. (10)

alors les matrices du système structuré sont donnés par

IA =
(

1 1
0 1

)
, IB =

(
0
1

)

Le graphe orienté associé au système est donné par la Figure 1.
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u v2 v1

Figure 1: Graphe orienté du système linéaire structuré associé au système LPV (10).

On note par vF et u les sommets du graphe orienté G(ΣΛ) qui sont associés respectivement
à la sortie (supposée plate) et l’entrée du système LPV (1); et par X l’ensemble des sommets
de G(ΣΛ) associés aux composantes de l’état interne x du système LPV. A partir de ce graphe
orienté associé au système LPV (1), on établit trois conditions nécessaires et suffisantes données
par le théorème suivant:

Théorème 3 [16] Considérons le système linéaire structuré ΣΛ décrit par (9). La sortie yF

associée aux sommets vF ∈ X ∪ {u} est génériquement une sortie plate si et seulement si les
trois conditions suivantes sont vérifiées dans le graphe G(ΣΛ) associé:
C0. vF est un successeur de u autrement dit, il existe un chemin dans le graphe G(ΣΛ) qui
relie l’entrée à la sortie;
C1. tous les chemins simples1 {u}-{vF} reliant les deux sommets, associés à l’entrée et à la
sortie, sont de même longueur `(u,vF);
C2. tous les cycles du graphe couvrent au moins un élément de l’ensemble des sommets essen-
tiels2 Vess({u}, {vF}).

Ainsi l’approche graphe-orienté, à travers ces trois conditions, permet de caractériser de
façon plus aisée avec une complexité polynômiale les sorties plates du système LVP (1). Et
en se basant sur ces conditions, on peut aisément construire des schémas ou structures de
graphe qui donnent des systèmes LPV plats. Ce que ne permettait pas l’approche algébrique
(Théorème 1). De plus l’approche graphe-orienté fournit explicitement les valeurs du degré
relatif (Définition 2) et de l’entier K du Théorème 1. Ces valeurs sont données par les deux
propositions suivantes:

Proposition 1 ([34]) Le degré relatif r du système (1) est égal à `(u,vF) dans le graphe
orienté G(ΣΛ).

Proposition 2 ([34]) Si yFk est une sortie plate, alors l’entier K du Théorème 1 est
génériquement égal à la longueur maximale de tous les chemins simples {u}-X du graphe orienté
G(ΣΛ).

En combinant donc les deux approches algébrique et graphe-orienté, on obtient une car-
actérisation complète des sorties plates du système LPV (1) avec des expressions explicites des
variables xk et uk comme données par les Equations (7) et (8).

1un chemin simple est un chemin qui passe une et une seule fois par les sommets qu’il couvre.
2un sommet essentiel de l’entrée et de la sortie est un chemin qui appartient à l’intersection de tous les

chemins reliant l’entrée à la sortie.
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Nous sommes donc en mesure, grâce aux idées qui ont été développées jusqu’ici, d’établir le
lien entre les SSSCs et les systèmes dynamiques LPV plats tout en proposant une construction
systématique des SSSCs. C’est ce qui fera l’objet du Chapitre 2 de la thèse.

Rappelons avant tout que les SSSCs sont utilisés en cryptographie symétrique comme
chiffreurs à flot. De tels chiffreurs sont utilisés dans la transmission de données de façon sécurisée
à un débit trés élevé et via des appareils électroniques qui sont limités en ressources matérielles.
On distingue deux classes principales de chiffreurs à flots:

les chiffreurs dit synchrones (Synchronous Stream Ciphers ou SSC en anglais)

et les chiffreurs auto-synchronisants (SSSC) qui font donc l’objet d’étude de cette thèse.

L’avantage majeur de ces derniers par rapport aux premiers est qu’ils ne nécessitent au-
cun protocole supplémentaire de resynchronisation entre les entités qui échangent des données
sécurisées. L’utilisation des SSSCs est donc d’un intérêt crucial pour l’échange de communi-
cation sécurisée en groupe et permet par exemple à toute entité autorisée de s’insérer dans
une communication en cours sans qu’elle n’ait nullement besoin d’initialiser son dispositif de
communication avec les autres membres du groupe.

Les SSSCs sont décrits d’une façon générale à travers une forme dite canonique illustrée par
la Figure 2.

mk ck m̂ke e

zk ẑk

σssθ σssθ
...

...

ck−1

ck−M

ck−1

ck−M

...
...

Figure 2: Forme canonique d’un SSSC pour l = 1.

Les équations de chiffrement et de déchiffrement sont données par les Equations (11) et (12)
suivantes:zk = σssθ (ck−l−M+1, . . . , ck−l)

ck = e(zk,mk)
(11)

ẑk = σssθ (ck−l−M+1, . . . , ck−l)

m̂k = e(zk, ck)
(12)

où θ désigne un paramètre secret partagé par l’émetteur et le récepteur des messages chiffrés
échangés, σssθ est appelée fonction de filtrage et génère la suite chiffrante notée zk côté chiffreur
et ẑk côté déchiffreur. Ces suites chiffrantes dépendent des M précédents chiffrés ck. On voit
donc qu’il suffit au déchiffreur de recevoir les M symboles chiffrés précédant ck et transmis sans
erreur par le chiffreur pour pouvoir déchiffrer correctement ck.

Les études sur les SSSCs ont été initiées au début des années 90 par les travaux de Maurer
dans [74]. Dans la forme canonique des SSSCs, toute la complexité du schéma réside dans la
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fonction de filtrage σssθ ce qui est n’est pas évident à concevoir. Pour remédier à cela, Maurer
a proposé une construction de SSSCs basée sur des automates à mémoire finie (illustrée d’une
façon généralisée par la Figure 3), qui de façon récursive produira la même séquence de suite
chiffrante que la forme canonique.

mk ck m̂ke e−1

zk ẑk

gθ gθ

hθ hθ

qk q̂k

Figure 3: Architecture d’un SSSC basée sur un automate à mémoire finie.

L’automate à mémoire finie est caractérisé par le système d’équations suivant:{
qk+1 = gθ(qk, ck+b)
zk+b = hθ(qk)

(13)

où gθ correspond à la fonction de transition d’état de l’automate, qk désigne l’état interne et
zk la suite chiffrante générée par la fonction de filtrage hθ.

Suite aux travaux de Maurer, quelques constructions ont été proposées [29, 31, 51, 96] mais
ont été toutes cassées par des travaux de cryptanalyse dans [30, 56, 57, 58, 62]. Il y a cependant
un point commun à toutes ces constructions, c’est que la fonction de transition gθ dans (13) est
une fonction dite triangulaire ou T-function [63] en anglais.

Un des objectifs de la thèse est donc de proposer une classe plus générale de fonctions de
transition et qui ne sont pas nécessairement triangulaires. Les résultats sur la platitude des
systèmes LPV, notamment à travers les Equations (7) et (8) nous permettent d’ores et déjà
d’établir le lien entre les SSSCs et les systèmes LPV plats. On montre qu’on peut utiliser
le système LPV direct (1) comme chiffreur d’un SSSC et le système inverse du système LPV
comme déchiffreur. Ceci est traduit par la proposition suivante:

Proposition 3 ([36]) Si le système LPV (1) admet un degré relatif r et est plat, alors
l’automate à mémoire finie donnée par les systèmes d’équations suivants défini un SSSC:

qk+1 = Pρ(k:k+r)qk + Bρ(k)(Tr,0
ρ(k))−1yk+r

zk+r = Cρ(k+r)

k∏
l=k+r−1

Aρ(l)qk


q̂k+1 = Pρ(k:k+r)q̂k + Bρ(k)(Tr,0

ρ(k))−1yk+r

ẑk+r = Cρ(k+r)

k∏
l=k+r−1

Aρ(l)q̂k

En conclusion pour construire notre automate à mémoire finie qui peut être utilisé comme
un SSSC, on génère un graphe-orienté à partir des Conditions C0–C2 du Théorème 1. Ensuite
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on extrait de ce graphe un système LPV plat et son système inverse. Ces systèmes correpondent
à l’automate donné par la Proposition 3.

Dans la seconde partie de cette thèse, on s’intéresse à la sécurité d’algorithme auto-
synchronisant proposé dans la thèse. Dans un premier temps on étudie dans le Chapitre 3, la
sécurité physique de l’algorithme en réalisant une attaque par canaux cachés plus précisément
une analyse par consommation de courant sur un dispositif qui contient l’algorithme. Cette
analyse porte le nom de Correlation Power Analysis ou CPA en anglais et fut proposée dans
[18]. L’originalité des travaux de ce Chapitre 3, c’est qu’on propose ici une approche spec-
trale pour réaliser une attaque CPA, approche qui est basée sur la transformée de Fourier.
En effet l’objectif d’une attaque CPA est de retrouver des paramètres secrets de l’algorithme
en établissant une corrélation entre d’une part la consommation réelle de courant du disposi-
tif cryptographique attaqué et d’autre part une consommation hypothétique obtenue à partir
d’un modèle d’attaque. Et plus la corrélation est élevée, plus les valeurs de paramètres secrets
retrouvés sont fiables.

Les fonctions décrivant la consommation de courant sont ici des fonctions définies sur un
ensemble de mots binaires à valeurs réelles et notée par ϕ:

ϕ : {0, 1}n → R

Définition 4 (Transformée de Fourier) La transformée de Fourier de la fonction ϕ la fonc-
tion définie sur {0, 1}n par:

u 7→ ϕ̂(u) = 〈ϕ, χu〉 = 1√
2n

∑
x∈{0,1}n

ϕ(x)(−1)u·x.

On montre donc que cette transformée de Fourier conserve la norme de la fonction ϕ notée
‖ϕ‖. Autrement dit ‖ϕ‖ = ‖ϕ̂‖. Cette remarque sur la conservation de la norme est très utile
et constitue l’idée centrale qui permet de proposer une approche spectrale de la CPA en appli-
quant la transformée de Fourier à la consommation réelle de courant ϕ et à la consommation
hypothétique que l’on va notée par g.

On montre ensuite qu’en adoptant cette approche spectrale, on peut retrouver les paramètres
secrets utilisés dans un algorithme cryptographique, notamment les sous clés qui sont utilisées
comme entrée de fonctions non linéaires représentées par des bôıtes S ou Subtitution Box (S-
Box) en anglais. Ainsi on peut retrouver la valeur d’une sous clé utilisée comme entrée d’une
bôıte S pendant l’exécution d’un algorithme cryptographique en calculant la valeur qui maximise
la fonction F suivante:

F (k) =
∑

u∈{0,1}n
ϕ̂(u)ĝ(u)(−1)u·k. (14)
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Cette fonction n’est rien d’autre que la transformée de Fourier des transformées de Fourier
des fonctions ϕ et g. Elle peut donc être calculée aisément à l’aide d’un algorithme de calcul
de transformée de Fourier rapide ou Fast Fourier Transform algorithm en anglais (voir [22]).
Ce qui offre une complexité de calcul quasi linéaire en la taille n des mots binaires traités, soit
n2n.

Les résultats expérimentaux ont été réalisés avec succès sur la bôıte S de l’AES [1]. Cepen-
dant, les expériences réalisées sur l’algorithme SSSC basé sur un système LPV plat montre qu’il
est difficile de retrouver les sous clés qui sont utilisées en entrée des bôıtes S de l’algorithme.
Cette difficulté étant liée à la façon dont sont effectuées les opérations qui font intervenir les
bôıtes S.

Dans un deuxième temps, on traite de la sécurité théorique des SSSCs. En effet une question
naturelle qui émerge, suite aux cryptanalyses réalisées sur les SSSCs qui ont été construits, c’est
de savoir si l’on peut toutefois concevoir des SSSCs qui atteignent un certain niveau de sécurité
souhaité. Le Chapitre 4 apporte une réponse à cette question en considérant la forme canonique
des SSSCs. On traite plus précisément des notions d’indistingabilité introduites dans [47, 48].
Il s’agit donc d’étudier d’une part la résistance du schéma contre des attaques à clairs choisis
ou indistinguishability against Chosen Plaintext Attack (IND-CPA) en anglais et d’autre part
la résistance contre des attaques à chiffrés choisis ou indistinguishability against Chosen Cipher
Attack (IND-CCA) en anglais.

Pour étudier les résistances contre de telles attaques, on établit des jeux de sécurité [8]. Ces
jeux de sécurité font intervenir un adversaire ou un challenger noté A qui défi un oracle noté O

qui a accès à l’algorithme cryptographique et qui peut chiffrer ou déchiffrer des symboles clairs
ou symboles chiffrés que lui soumet l’adversaire A. Le but de ce dernier est de savoir lequel
de deux symboles clairs (respectivement chiffrés) soumis à l’oracle O a été chiffré (respective-
ment déchiffré) dans le cas d’une attaque IND-CPA (respectivement IND-CCA). Si l’adversaire
parvient à deviner le bon symbole chiffré ou déchiffré par l’oracle alors il gagne le jeux, sinon il
perd.

On montre donc à travers ces jeux de sécurité, que dans le cas des attaques IND-CCA le
schéma n’est pas résistant à cause de sa malléabilité [38].

Par contre le schéma est résistant contre les attaques IND-CPA [38]. Pour montrer ce
dernier résultat on se base sur les notions de fonction pseudo aléatoires ou Pseudo Random
Function (PRF) en anglais (voir [46, 8].) On montre que si la fonction de filtrage σssθ de la
forme canonique est une PRF alors le schéma est résistant conre les attaque IND-CCA. On
va plus long en relaxant cette condition et en introduisant une notion plus faible que celle des
PRF: il s’agit de la notion Weak Pseudo Random Function (WPRF) en anglais, qui permet de
mieux caractériser la propriété d’auto-synchronisation et qui donne cette fois-ci une condition
nécessaire et suffisante sur la fonction de filtrage pour que le schéma soit résistant contre les
attaques IND-CPA.

Le dernier chapitre, Chapitre 5 de la thèse, porte sur la représentation matricielle de fonc-
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tions vectorielles Booléennes [22] qui sont utilisées comme fonctions de transition d’un SSSC.
Ces représentations matricielles décrivent en fait une même fonction mais dans différentes bases.
Les matrices représentatives sont ici les matrices de corrélation, de Walsh, d’adjacence qui sont
de façon usuelle utilisées en cryptographie pour analyser les propriétés des fonctions vectorielles
Booléennes. On introduit une représentation matricielle supplémementaire qui est la matrice
polynômiale. Un des résulats fort de ce chapitre établit des relations entre les valeurs propres,
les espaces propres ainsi qu’une structure de graphe associée des matrices. Pour arriver à ces
résultats on utilise les notions de fonctions booléennes: la forme algébrique normale ou Alge-
braic Normal Form (ANF) en anglais [71]) et la forme numérique normale ou Numerical Normal
Form (NNF) en anglais (voir [24]).

L’application de ces représentations matricielles aux SSSCs, notamment la matrice de
corrélation, permet de dire si la fonction de transition d’un SSSC est une fonction triangu-
laire ou non. Ce résultat a été déjà établi dans la thèse de Parriaux [84]. On donne dans ce
chapitre un exemple qui confirme le résultat pour les SSSCs basés sur les systèmes LPV plat.
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Finalement j’adresse mes profonds remerciements à ma famille qui a fait preuve d’un soutien
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m’ont beaucoup encouragé et aidé.
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General Introduction

Synchronization has been an important topic in automatic control for years. Roughly speaking,
by synchronization, it is meant correlated (according to given criteria) behaviors of at least
two or more interconnected entities in virtual or physical networks. Throughout the past
centuries, scientists have attempted to explain the emergence of order through the concept of
synchronization. C. Huygens in 1665 can be considered as a pioneer. There is an outstanding
number of examples of synchronized phenomena (see [104]) borrowed from nature, biology,
neuroscience, physiology and more recently social networks.

Synchronization can be a very efficient way of tackling engineering issues as well. For
example, there is a growing interest in cooperative control problems. Such problems involve
several autonomous entities (also called agents) which try to collectively reach a global
objective by a suitable connectivity or couplings. The related applications are mobile robots,
unmanned and autonomous vehicles, satellites, air traffic control. Synchronization is also
central in communication: video, broadcasting, Phase Lock Loop-based equipments. When
synchronization must occur in a peer-to-peer communication setup without any external
control, it is called self-synchronization. It turns out that self-synchronization is central
in cryptography, more specifically, in symmetric cryptography involving the so-called Self-
Synchronizing Stream Ciphers (SSSC) (see [76]). Such ciphers are based on generators which
can take the form of dynamical systems operating on finite fields and must deliver complex
sequences. Those sequences are used to scramble the information to be safely transmitted. For
proper decryption, those sequences must be self-synchronized.

In this thesis, we aim at addressing SSSC-based cryptography in terms of control theoretical
concepts. The main result is that the concept of flatness together with graph-theory allows to
provide a convenient and systematic way to construct general classes of SSSC, the ciphers being
viewed as dynamical systems. The flatness (differential or difference) on one hand and the SSSC
on the other hand are detailed a little bit more below.

Differential flatness is a property of some continuous-time controlled dynamical systems
introduced in [42]. The counterpart for discrete-time systems is called difference flatness. For a
flat discrete-time system, the state variables as well as the input are written as a function of the
flat output (including forward and backward shifts in the output). Difference flatness has been
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GENERAL INTRODUCTION

first reported in [43, 103] although we should mention that a closely related notion, namely
the dynamic feedback linearization, was addressed earlier in [3]. Flatness-based control has
been involved in many applications and has an outstanding interest in, for instance, trajectory
planning as reported in [78, 25], predictive control and constraint handling as detailed in [32, 60].
The reader can also refer to the book [103] for further applications. Since in this thesis, only
discrete-time finite state dynamical systems are considered, the word flatness will be often used
for short without confusion. Chapter 1 will be devoted to characterization of flat output of
LPV systems. It will show how graph approach can be used to achieve such a characterization.

Self-Synchronizing Stream Ciphers were patented in 1946. This self-synchronization prop-
erty has many advantages and is especially relevant to group communications. Since 1960,
specific SSSC have been designed and are still used to provide bulk encryption (for Hertzian
line, RNIS link, . . . ) in military applications or governmental radio mobile networks. In the
early 90′s, studies have been performed in [74, 27] to propose secure designs of SSSC. These
works have been followed by effective constructions ([27, 96, 31]), but till now, all of these
SSSC have been broken ([57, 58, 56, 61, 62]) which motivates the search for new constructions
of SSSC.

It turns out that, all the constructions of SSSC that have been proposed in the literature are
based on T-function (for Triangular function, see [63]). In [81], it has been shown that a new
architecture of SSSC not restricted to T-functions can be designed using concepts and results
borrowed from Control Theory. In Chapter 2, it is shown that the consideration of the special
class of flat Linear Parameter Varying (LPV) systems, with the help of graph theory, allows for
a convenient and systematic design of SSSC admitting not exclusively T-functions.

The second part of the work is devoted to security. Regarding security, SSSC have intrinsic
interesting properties due to the specific architecture. For example, as each plaintext symbol
influences potentially all subsequent ciphertexts, they naturally have good diffusion properties
and are efficient against attacks based on plaintext redundancy. Furthermore, they can pre-
vent from traffic analysis as the information which is conveyed through the channel is encrypted
whether there is traffic or not. In the middle of the 90′s, a new kind of attack on cryptosystems,
called side-channel attack, has been developed with a pioneering work of P. Kocher [66]. Side-
channel attacks are attacks that exploit leakages of devices running a cryptographic algorithm.
These leakages can result from physical emanations such as power consumption, electromag-
netic radiations, temperature or execution time when running the algorithm. This is due to
Substitution Box (S-Box) used as nonlinear functions within a cryptographic algorithm and
that are also implemented in SSSC algorithms. Indeed, S-Box are highly sensitive to power
consumption and electromagnetic leakages. Although a cryptographic algorithm can be proved
secure theoretically, it is not ensured that the algorithm does not reveal secret information
when it is implemented in a device. Common side channel attacks are Simple Power Analysis
(SPA) and Differential Power Analysis (DPA). The aim of Chapter 3 is to propose a new and
simple approach to perform a Correlation Power Analysis (CPA) which is an advanced form of
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DPA. The approach is based on spectral theory, especially on Fourier transform of real valued
function over the set of binary words. We use hereafter this approach to perform a CPA attack
on the S-Box used within the designed LPV-based SSSC.

Considering theoretical security, we show in Chapter 4 that the canonical form of the
Self-Synchronizing Stream Cipher is not resistant against chosen ciphertext attack (IND-CCA
security) but can reach the resistance against chosen plaintext attack (IND-CPA security)
provided that the filtering function is pseudo random. We introduced a new family of functions
in order to characterize the security of the canonical SSSC from its filtering function. Those
functions are called Weak Pseudo Random Functions (WPRF) and provide a weaker property
than pseudo-randomness. A connection with the left-or-right indistinguishability (LOR-IND)
is made. This property provides a necessary and sufficient condition to characterize the
indistinguishablity of SSSC. The technical developments used to establish the security proof
follow similar lines than those used when dealing with symmetric encryption schemes based on
block ciphers.

Finally, the approach used in this thesis to design Self-Synchronizing Stream Cipher is
a mixed algebraic and graph theory approach. However, it is interesting to note that we can
make a general characterization of functions that can be used in the design of Self-Synchronizing
Stream Ciphers. The work of the paper [85] tackled this problem by giving a characterization
that is based on Walsh transform and matrix representation of vectorial boolean functions. The
aim of Chapter 5 is then devoted to results that are useful to establish such characterizations.
It gives a general and unified overview on matrix representations of vectorial boolean functions.
These results are not only useful to characterize self-synchronizing property of next-state func-
tion from spectral approach but are also really interesting in application of boolean function to
cryptography.
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Chapter 1

LPV Systems and
Characterization of Flatness

The aim of this chapter is to provide concepts from control theory that will be useful in the
design of Self-Synchronizing Stream Ciphers. It illustrates the potential interest of LPV flat
dynamical systems for cryptographic issues. The special class of LPV dynamical systems is
presented. Then the definition of difference flatness is introduced and is particularized for
LPV systems. First, necessary and sufficient conditions for an output to be difference flat are
established. They are expressed in terms of algebraic conditions that must be verified by the
state space matrices realization of the LPV system. It is shown how the combination of both
the algebraic conditions and additional graph-based conditions allows to define a complete and
tractable framework not only to find the flat outputs but also to explicit the functions of the
state and the input with respect to the flat output. The results in this chapter are published
in [34].
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1. LPV SYSTEMS AND CHARACTERIZATION OF FLATNESS

1.1 Linear Parameter Varying Systems

Linear Parameter Varying (LPV) systems are linear models whose state representation depends
on a parameter vector which may vary in time. Since several years, more and more attention
has been paid to these systems both in control [2] [83] [70] [99] [69] [40] and in observation
or filtering [6] [52] [106] [98]. The interest of LPV models is that they provide a systematic
procedure to design gain-scheduled controllers like in the area of aerospace control [95] or
vehicle control [101]. Besides, LPV models can represent nonlinear systems under appropriate
conditions. Such a purpose has been investigated in the works reported in [19] or in [79].

A Single Input Single Output (SISO) Linear Parameter-Varying (LPV) system denoted by
Σρ, defined over a field F, is described by the following state space representation:

Σρ :
{

xk+1 = Aρ(k)xk +Bρ(k)uk

yk = Cρ(k)xk +Dρ(k)uk
(1.1)

where k ∈ N stands for the discrete time, xk ∈ Fn is the state vector, uk ∈ F is the input, yk ∈ F
is the output. The matrices A ∈ Fn×n, B ∈ Fn×1, C ∈ F1×n and D ∈ F1×1 are respectively the
dynamical matrix, the input matrix, the output matrix and the direct transfer matrix. Such
a system is called Linear Parameter-Varying because it is written with a linear dependency
with respect to the state vector. The set of all the varying parameters of A, B, C and D are
collected on a vector denoted by ρ(k) =

[
ρ1(k), ρ2(k), ..., ρLρ(k)

]
∈ FLρ where Lρ is the total

number of non zero (possibly varying) entries. The matrices A, B, C and D do not necessarily
depend on all the parameters ρi(k). Such systems can exhibit nonlinear dynamics. Indeed, the
nonlinearity is obtained by defining the varying parameters ρi(k) as nonlinear functions ϕi of
the output yk (or a finite number of shifts) ρi(k) = ϕi(yk, yk−1, · · · ). Let us notice that the
notation ρi(k) (usual in the literature for LPV systems) is somehow abusive because it does
not reflect an explicit dependency with respect to the time k but on quantities indexed with k.
In the next section, we focus on the property of flatness for LPV systems.

1.2 Difference Flatness for LPV Systems

For a non negative integer k0, a sequence {ρ(k0), ρ(k0 + 1), . . .} will be called a realization and
denoted with ρ. The definition of a flat LPV system is given below in a generic sense, that is
for almost every realization ρ.

Definition 1.2.1 The system (1.1) is said to be generically flat if, for almost every realization
ρ, there exists a variable yk, called a flat output, such that all system variables can be expressed
as a function of the flat outputs and a finite number of its backward and forward shifts. In other
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words, there exist two functions Fρ and Gρ parametrized by ρ such that{
xk = Fρ

(
yk+kF , . . . , yk+k′

F

)
uk = Gρ

(
yk+kG , . . . , yk+k′

G

) (1.2)

where kF, k′F , kG and k′G are Z-valued integers.

Flatness is an important concept insofar as the applications of flatness (differential or dif-
ference) has a clear interest for trajectory planning [78, 25], predictive control or constraints
handling [43, 32, 60] for example. Difference flatness has been recently addressed in [59][97][80]
for nonlinear discrete-time systems. However, those works suffer from either poorly tractable
conditions or only sufficient conditions. Although flatness is closely related to controllability,
only proving controllability of a system may not be satisfactory in practice. Indeed, beyond
merely checking whether a system is flat or not, we should be not only interested in more
constructive issues like finding the flat outputs and finding the functions that explicit the de-
pendence of the state variables as well as the input with respect to the flat output. Those
functions are central since they provide a convenient way to reconstruct the state of a system
or to provide a feedforward control.

For LPV systems, several approaches can be used to characterize a flat output. They are
recalled below and their shortcomings are pointed out to motivate the graph-oriented approach
as a relevant complementary method. The discussion is illustrated through Example 1.2.1. It
corresponds to the particular state space matrices setting of (1.1) given below.

Example 1.2.1

Aρ(k) =
(

1 ρ1(k)
0 ρ2(k)

)
,

Bρ(k) =
(

0
ρ3(k)

)
,

Cρ(k) =
(

1 0
)
,

Dρ(k) = 0.

(1.3)

The state component x1
k is considered as the measured output, that is yk = x1

k.

1.2.1 Direct approach

This approach consists in trying to directly agree with the definition, that is attempting to
express the input and the state vector as a function involving exclusively shifts of the output.
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1. LPV SYSTEMS AND CHARACTERIZATION OF FLATNESS

For this example, yk is a flat output. Indeed, Definition 1.2.1 is satisfied with (1.2) which reads
x1
k = yk

x2
k = (ρ1(k))−1(yk+1 − yk)
uk = (ρ3(k))−1((ρ1(k + 1))−1yk+2

−(ρ1(k + 1))−1ρ2(k + 1)ρ2(k)(ρ1(k))−1(yk+1 − yk)
)

The problem of such an approach lies in that even for a small system, the task is not trivial
and becomes prohibitive when the dimension grows up. However, let us mention that efficient
algorithms involving elimination theory and symbolic computation can be used ([20]).

The next subsection is devoted to the conditions which must be fulfilled by (1.1) to guarantee
that a given output yk is flat.

1.2.2 Inverse system approach

First, it must be pointed out that for a given dynamics (first equation of (1.1)), yk is not
necessarily a flat output. It depends on the matrices C and D. Besides, for some specific
matrices A and B, it may happen that none of the matrices C and D yield to a flat output.
As a result, the conditions which guarantee that an output of (1.1) is flat must be expressed in
terms of properties verified by the 4-uple of state matrices A,B,C and D.

A flat output characterization based on the inverse system has been proposed in [80] for
switched linear systems. However, the extension to LPV systems is straightforward by consider-
ing the switching function as a function that takes values in a continuum rather than a finite set
(the modes). Before giving the theorem, we must recall the definition and the characterization
of the relative degree of (1.1) (see [89]).

Definition 1.2.2 The relative degree of a discrete-time dynamical system is the minimal num-
ber r of iterations such that its output yk+r at time k + r is sensitive to its input uk.

Now, let us particularize this general definition to the system defined by equation (1.1). To this

end, let us denote, for k2 ≥ k1, by
k1∏
l=k2

Aρ(l) the product of the matrices Aρ(l), from k2 down

to k1, and
k1∏
l=k2

Aρ(l) = 1n if k2 < k1, and introduce the quantity T
i,j
ρ(k) defined for j ≤ i as

T
i,j
ρ(k) = Cρ(k+i)

k+j+1∏
l=k+i−1

Aρ(l)Bρ(k+j) if j ≤ i− 1 and

T
i,i
ρ(k) = Dρ(k+i)

(1.4)

From (1.1), it holds that yk+1 = Cρ(k+1)Aρ(k)xk + T
1,0
ρ(k)uk + T

0,0
ρ(k+1)uk+1. Then, by iterating
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the output yk for i ≥ 1 and noticing that T
i,j
ρ(k+1) = T

i+1,j+1
ρ(k) , it follows that

yk+i = Cρ(k+i)

k∏
l=k+i−1

Aρ(l)xk +
i∑

j=0
T
i,j
ρ(k)uk+j (1.5)

Hence, if (1.1) admits a finite relative degree r, it follows from Definition 1.2.2 that:

1. r = 0 if T0,0
ρ(k) 6= 0 for all k

2. r <∞ is the least integer s such that for all k ≥ 0 and for all realization ρ.

T
i,j
ρ(k) = 0 for i = 0, . . . , s− 1 and j = 0, . . . , i,

T
s,0
ρ(k) 6= 0

(1.6)

Hence, it holds that

yk+r = Cρ(k+r)

k∏
l=k+r−1

Aρ(l)xk + T
r,0
ρ(k)uk (1.7)

Theorem 1.2.1 ([34]) If the LPV system (1.1) has a finite relative degree r, the follow-
ing condition that must hold for a positive integer K, for all k ≥ 0 and for all sequences
{ρ(k), . . . , ρ(k +K − 1 + r)} ∈ Θr+K

Pρ(k+K−1:k+K−1+r)Pρ(k+K−2:k+K−2+r) · · ·Pρ(k:k+r) = 0 (1.8)

with

Pρ(k:k+r) = Aρ(k) −Bρ(k)(Tr,0ρ(k))
−1Cρ(k+r)

k∏
l=k+r−1

Aρ(l) (1.9)

is equivalent to that yk is a flat output.

The result can be proved by using the inverse dynamical system of (1.1).
Proof. If the LPV system (1.1) has a finite relative degree r, the following dynamical

system can always be defined since T
r,0
ρ(k) is invertible.

x̂k+r+1 = Pρ(k:k+r)x̂k+r +Bρ(k)(Tr,0ρ(k))
−1yk+r

ûk+r = (Tr,0ρ(k))
−1(Cρ(k+r)

k∏
l=k+r−1

Aρ(l)x̂k+r − yk+r)
(1.10)

Iterating K − 1 times the first equation of (1.10) yields

x̂K+k+r = Pρ(K+k−1:K+k−1+r) · · ·Pρ(k:k+r)x̂k+r+
K−1∑
i=0

[ i∏
j=1

Pρ(K+k−j:K+k−j+r)

]
(Tr,0ρ(k−1−i+k))

−1Bρ(k−1−i+k)yk−1−i+k+r
(1.11)
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Let us define εk = x̂k+r − xk. Then εk verifies

εk+1 = x̂k+r+1 − xk+1

= Pρ(k:k+r)x̂k+r − Pρ(k:k+r)xk

= Pρ(k:k+r)εk

and then
εK+k = Pρ(K+k−1:K+k−1+r) · · ·Pρ(k:k+r)εk

Hence, after a finite transient time equal to K, since (1.8) holds, one has x̂k+r = xk for all
k ≥ 0. Hence, the state vector xk exclusively depends on shifted outputs if and only if (1.8)
holds and xk reads for all k ≥ 0 and for all sequences {ρ(k), . . . , ρ(k +K − 1 + r)} ∈ Θr+K

xk =
K−1∑
i=0

[ i∏
j=1

Pρ(k−j:k−j+r)

]
(Tr,0ρ(k−1−i))

−1Bρ(k−1−i)yk−1−i+r (1.12)

That is the LPV system (1.1) admits yk as flat output if and only if
Pρ(K+k−1:K+k−1+r) · · ·Pρ(k:k+r) = 0. �

Another way to prove Theorem 1.2.1 is to unfold (1.1).

Remark 1.2.1 From (1.1), xk = Aρ(k−1)xk−1 + Bρ(k−1)uk−1. Then, if the system admits a
finite relative degree r, one can infer from (1.7) that:

uk = (Tr,0ρ(k))
−1yk+r − (Tr,0ρ(k))

−1Cρ(k+r)

k∏
l=k+r−1

Aρ(l)xk (1.13)

Then, substituting (1.13) into the expression of xk above gives:

xk+1 = Aρ(k)xk + (Tr,0ρ(k))
−1Bρ(k)yk+r

−(Tr,0ρ(k))
−1Bρ(k)Cρ(k+r)

k∏
l=k+r−1

Aρ(l)xk

= Pρ(k:k+r)xk + (Tr,0ρ(k))
−1Bρ(k)yk+r

(1.14)

Iterating (1.14) K − 1 times and performing the change of variable k +K → k yields

xk =Pρ(k−1:k−1+r) · · ·Pρ(k−K:k−K+r)xk−K

+
K−1∑
i=0

[ i−1∏
j=0

Pρ(k−j−1:k−j−1+r)

]
(Tr,0ρ(k−1−i))

−1Bρ(k−1−i)yk−1−i+r
(1.15)

The right hand side of (1.15) giving the expression of xik (i = 1, . . . , n) is a multivariate
polynomial with indeterminates xik−K and yk−1−i+r. It follows that (1.2) holds for xk if and

10
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only if, for all sequences {ρ(k − K), . . . , ρ(k − 1 + r)} ∈ ΘK+r and for all k ≥ 0, (1.8) is
fulfilled. In this case, the explicit form of Fρ reads

xk =
K−1∑
i=0

[ i−1∏
j=0

Pρ(k−j−1:k−j−1+r)

]
(Tr,0ρ(k−1−i))

−1Bρ(k−1−i)yk−1−i+r (1.16)

The explicit form of Gρ involved in (1.2) is obtained by substituting (1.12) into (1.13):

uk = (Tr,0ρ(k))
−1yk+r − (Tr,0ρ(k))

−1Cρ(k+r)

k∏
l=k+r−1

Aρ(l)

·
K−1∑
i=0

[ i−1∏
j=0

Pρ(k−j−1:k−j−1+r)

]
(Tr,0ρ(k−1−i))

−1Bρ(k−1−i)yk−1−i+r

(1.17)

The relevance of Theorem 1.2.1 is that it provides an explicit form for Fρ and Gρ, assuming
that yk is a flat output. On the other hand, testing whether an output yk is flat or not requires
the knowledge of r and K and the test to calculate r and K would need the computation of the
product (1.8) for an infinite number of realizations ρ. Clearly, it is infeasible in practice. It will
be shown in Section 1.3 that with additional conditions borrowed from structural analysis and
expressed in terms of a digraph associated to the LPV system, a complete framework handling
those problems can be defined.

Considering Example 1.2.1 with the setting (1.3), one has Dρ(k) = 0, Cρ(k+1)Bρ(k) = 0
and Cρ(k+2)Aρ(k+1)Bρ(k) = ρ1(k + 1) · ρ3(k). If ρ1(k) and ρ3(k) never vanish, the relative
degree is r = 2. Hence T

2,0
ρ(k) = ρ1(k + 1) · ρ3(k) for all k ≥ 0. The matrix Pρ(k:k+2) =

Aρ(k) −Bρ(k)Cρ(k+1)Aρ(k+1)Aρ(k) reads

Pρ(k:k+2) =
(

1 ρ1(k)
−(ρ1(k + 1))−1 −(ρ1(k + 1))−1ρ1(k)

)
(1.18)

It turns out that Pρ(k+2:k+4)Pρ(k+1:k+3) = 0 for any realization ρ and thus, Equation (1.8) is
fulfilled and K = 2.

The explicit expressions of F and G are given by Equations (1.16) and (1.17) respectively:

11
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xk =
1∑
i=0

[ i−1∏
j=0

Pρ(k−j−1:k−j+1)

]
(T2,0
ρ(k−1−i))

−1Bρ(k−1−i)yk−i+1

= (T2,0
ρ(k−1))

−1Bρ(k−1)yk+1 + Pρ(k−1:k+1)(T2,0
ρ(k−2))

−1Bρ(k−2)yk

= 1
ρ1(k)ρ3(k − 1)

(
0

ρ3(k − 1)yk+1

)

+ 1
ρ1(k − 1)ρ3(k − 2)

 1 ρ1(k − 1)

− 1
ρ1(k) − 1

ρ1(k)ρ
1(k − 1)

( 0
ρ3(k − 2)yk

)

xk =

 yk
1

ρ1(k) (yk+1 − yk)


and

uk = (T2,0
ρ(k))

−1yk+2 − (T2,0
ρ(k))

−1Cρ(k+r)

k∏
l=k+r−1

Aρ(l)

·
K−1∑
i=0

[ i−1∏
j=0

Pρ(k−j−1:k−j+1)

]
(T2,0
ρ(k−1−i))

−1Bρ(k−1−i)yk+1−i

= 1
ρ1(k + 1)ρ3(k)yk+2 −

1
ρ1(k + 1)ρ3(k)Aρ(k+1)[2]Aρ(k)xk

= 1
ρ1(k + 1)ρ3(k)

[
yk+2 −

(
0 ρ2(k + 1)

)(1 ρ1(k)
0 ρ2(k)

) yk
1

ρ1(k) (yk+1 − yk)

]
uk = 1

ρ1(k + 1)ρ3(k)

[
yk+2 −

ρ2(k + 1)ρ2(k)
ρ1(k) (yk+1 − yk)

]

1.2.3 Mortality problem

It is worth pointing out that Pρ(k:k+r) is not imposed to satisfy (1.8) for every K products
but for admissible sequences of products checking (1.8). Such problem is closely related to the
notion of mortality. Indeed, it is said that a set of matrices is mortal if the zero matrix can be
expressed as the product of a finite number of matrices. And yet, from the papers [90, 12, 17],
except from some very special cases, the problem of checking mortality of a set of matrices is
unsolvable because it is an undecidable problem. This verification can be done in some special
cases by resorting to nilpotent semigroup as proposed in [89]. From a computational point of
view, the complexity of the nilpotent semigroup approach to generate matrices that fulfil (1.8)
is polynomial. The definition of nilpotent semigroup is recalled below.

Definition 1.2.3 (Nilpotent semigroup) A semigroup S is a set together with an associative
internal law. A semigroup S with an absorbing element 0 is said to be nilpotent if there exists
an integer t ∈ N∗ such that the internal law applied to any t elements of S is always equal to 0.
The smallest integer t is called the class of nilpotency of S.

12
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If S is a set of matrices, the associative internal law is the matrix multiplication. Hence,
applying the internal law to any t elements of S amounts to performing the product of t matrices
of S. The absorbing element is, in this case, the null matrix.

Nilpotent semigroup is also related to simultaneous triangularization. Indeed, from Levit-
sky’s Theorem [92], a set of matrices generate a nilpotent semigroup if and only if they are
simultaneously triangularizable (see Appendix B) and all of them admit exclusively zero as
eigenvalues.

Thus, we have the following theorem recalled from [89].

Theorem 1.2.2 If the matrix Pρ(k:k+r) can be triangularized independently of ρ, then yk is a
flat output for (1.1).

Actually, it is shown that if Theorem 1.2.2 holds, the uncountable set S of matrices defined
as S = {Pρ(k:k+r)|ρ(k : k + r) ∈ Θr+1} generates a nilpotent semigroup.

The problem of such an approach lies in that the structure of a semigroup assumes that
the matrices involved in the product commute. Hence, Theorem 1.2.2 is more conservative
than Theorem 1.2.1. This is precisely the issue regarding Example 1.2.1 with the setting (1.3).
Indeed, the set of matrices S = {Pρ(k:k+1) = Aρ(k) − Bρ(k)Cρ(k+1)Aρ(k+1)Aρ(k)|ρ(k : k + 1) ∈
Θ2} defined in (1.18) does not generate a nilpotent semigroup, although yk is actually a flat
output.

As a conclusion, the existing methods that apply for LPV systems must consider any realiza-
tion ρ. Symbolic computation can be a solution. However, the complexity of the algorithms for
checking the conditions is either exponential or polynomial but in the latter case, the conditions
are more conservative. The purpose of next Section 1.3 is to propose a complementary solution
with a graph-oriented approach. Necessary and sufficient conditions will be derived to check
whether a given output is flat or not. The corresponding algorithms to check the conditions
have the polynomial complexity O(n3).

1.3 Graph Approach to Characterize Flat Outputs

As a clue to tackle the problem, we consider the LPV system (1.1) as a particular realization
of a linear structured system. A structured linear discrete-time system is a system that admits
the form:

ΣΛ : xk+1 = IAxk + IBuk (1.19)

where xk ∈ Rn is the state vector and uk ∈ R the input. The matrices IA ∈ Rn×n and
IB ∈ Rn×1 are respectively the dynamical and the input matrices. By structured system, it is
meant a system where the entries of the matrices IA and IB are ’0’ or ’1’. If the entries aij of
IA (resp. bi of IB) are ’0’, it means that there are no relation between the state xik+1 at time
k + 1 and the state xjk at time k (resp. the state xik+1 at time k + 1 and the input uk). If the

13
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entries are ’1’, it means that there exists a relation. Hence IA and IB act as incident matrices.
In particular, in our context, to the entries ’1’ of the linear structured system ΣΛ are assigned
the non-zero (possibly time-varying parameters) of the LPV system (1.1).
Thereby, generic flatness for the LPV system (1.1) is equivalent to flatness of the structured
system (1.19). Thus, a graph-oriented approach, well dedicated to linear structured systems,
can be used to define generic flatness for the LPV system (1.1). It is shown below how the
combination of both the algebraic conditions of Theorem 1.2.1 and additional graph-based
conditions allows to define a complete and tractable framework to find the flat outputs and to
explicit the functions of the state and the input with respect to the flat output in a convenient
way. Having in mind this line, the technical developments are now detailed.

1.3.1 Necessary and sufficient conditions for flatness based on a di-
graph

A digraph denoted by G(ΣΛ), associated to the state equations (1.19) of the system ΣΛ describes
the dependence relation between the state components and the input. It involves a vertex set
V and an edge set E. The vertices represent the state and the input components of ΣΛ whereas
the edges model the static or the dynamic relations between these variables. More precisely,
V = X ∪ U where X is the set of state vertices defined as X =

{
x1, . . . , xn} and U is

the set of input vertices. In the case under consideration here, that is SISO system, U is a
singleton, that is U = {u}. The edge set is E = EA ∪ EB , with EA =

{
(xj,xi) |IA(i, j) 6= 0

}
and EB =

{
(u,xi) |IB(i) 6= 0

}
where IA(i, j) and IB(i) denote respectively the (i, j)th element

of the matrix IA and the ith element of the vector IB . The pair (vi,vj) denotes a directed
edge from the vertex vi ∈ V to the vertex vj ∈ V. The vertex vF will be associated to the flat
output.

• A directed path P is a sequence of successive edges directed in the same direction which
connect a sequence of vertices. It is said that the path P covers a vertex if this vertex is
the begin or the end vertex of one of the edges of P ;

• In a directed path from a vertex vi to a vertex vj, it is said that vj is a successor of vi

and conversely, vi is a predecessor of vj;

• A directed path is simple when every vertex occurs only once in this path;

• The length of a directed path P is equal to the number of the edges involved in P . We
denote by `(vi,vj) the minimal length of a path linking vi to vj;

• Vess(vi,vj) is the set of vertices, called essential vertices from vi to vj, which are common
to all the paths linking vi to vj whenever at least one path exists;

• Pred(vF) (resp. Succ(u)) is the set of all the predecessors (resp. successors) of vF (resp.
u).

14
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Let us recall the necessary and sufficient conditions which must be satisfied by a vertex
xi (i ∈ {1, . . . , n}) or u of the digraph G(ΣΛ) to be associated to a flat output yFk = xik

(i ∈ {1, . . . , n}) or yFk = uk of (1.19). The extension to any linear combination of xik and
possibly uk is then discussed.

Theorem 1.3.1 [16] Consider the structured linear discrete-time system ΣΛ described by
(1.19). The output denoted yF associated to a specific vertex vF ∈ X ∪ U is generically a
flat output if and only if, in the associated digraph G(ΣΛ), the following three conditions hold:
C0. vF is a successor of u;
C1. The length of all the {u}-{vF} simple paths is equal to `(u,vF);
C2. All the cycles cover at least an element of Vess({u}, {vF}).

Proof.
The proof is based on the structural and graphical subdivision of the system ΣΛ into 5

subsets Σi, i = 0, . . . , 4. The subsets are defined according to their position with regard to the
flat output and the input as depicted in Figure 1.1 and defined as follows:

• Σ0 merges the input vertex u, vertex vF and all the state vertices which are predecessors
of vF and which are reachable from u without necessarily covering vF i.e. the components
of Σ0 are U ∪ {vF} ∪

(
Pred(vF) ∩ Succ(u) ∩ {vi ∈ X, vF /∈ Vess({u},vi)}

)
;

• Σ1 merges all the state vertices which are predecessors of vF and which are reachable
from u only by covering vF, i.e. the components of Σ1 are Pred(vF) ∩ Succ(u) ∩ {vi ∈
X, vF ∈ Vess({u},vi)};

• Σ2 merges all the state vertices which are predecessors of vF but not successors of u i.e.
the components of Σ2 are Pred(vF) \ Succ(u);

• Σ3 merges all the state vertices which are successors of u but neither predecessors nor
successors of vF, i.e. the components of Σ3 are Succ(u) \

(
Succ(vF) ∪ Pred(vF)

)
;

• Σ4 merges all the state vertices which are not successors of u, not successors of vF and not
predecessors of vF i.e. the components of Σ4 are X \

(
Succ(u) ∪ Succ(vF) ∪ Pred(vF)

)
.

These vertices can be linked to Σ2 and Σ3.
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u
vF

X0 X1

X2

X3

X4

Σ0 Σ1

Σ2

Σ3

Σ4

Figure 1.1: Structural system subdivision of ΣΛ.

Note that this subdivision is unique and is motivated by the fact that it allows to characterize
yF as a flat output using the controllability and observability characteristics of each subsystem.
Indeed, we can make two important remarks on subsystems Σ2 and Σ4:

Remark 1.3.1 Subsystems Σ2 and Σ4 are not forced by the input u. So, it is clear that they
don’t involve any cycle (equivalently to a memorization operator), their state components will
go to zero after a finite transient time. Conversely, if they involve at least one cycle, some of
their state components will depend, at time k, on its own past value and so on the initial state
value. And yet, the initial state of these subsystems cannot be expressed only as a function of
the component associated to vF i.e. yF . Indeed, yF is not sensitive to the state of Σ4 and since
u is an input for Σ0, there isn’t any equation linking the present, past and future values of yF

to the state components of Σ2 only.

Remark 1.3.2 According to Definition 1.2.1, it is clear that yF associated to the vertex vF is
a flat output if and only if:

• The input can be expressed as a function of the past, present, future values of yF by
considering simultaneously subsystems Σ0 and Σ2 since yF is an output of only these two
subsystems;

• There exists an integer k0 such that for all k ≥ k0, all the state components of all the
subsystems are either equal to zero or can be expressed as a function of the past, present,
future values of yF .

We are now in position of proving the sufficiency and the necessity.
Sufficiency: When Condition C2 is satisfied, there is no cycle in subsystems Σ2 and Σ4. In
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this case and since these two subsystems are not forced by the inputs, after a finite time which
is equal to the length of the longest path in these two subsystems, all the state components of
these subsystems are equal to zero according to Remark 1.3.1.
Regarding subsystem Σ0, the generic dimension of the observability subspace of the structured
system ΣΛ, considering that yF associated to vF is the output and that u is unknown, is equal to
the length of the shortest {u}-{vF} path plus one i.e. `(u,vF) + 1 [15]. Moreover, considering
now that yF associated to vF is the output and that u is known, the generic dimension of the
observability subspace of the structured system ΣΛ is equal to the longest {u}-{vF} path plus
the length of all the disjoint cycles which are not covered by this path. Nevertheless, when
Conditions C0, C1 and C2 are valid, the longest {u}-{vF} path is also the shortest {u}-{vF}
and there are no cycles that are disjoint with these paths in Σ0. Therefore, if Conditions C0,
C1 and C2 are satisfied, u can be expressed generically using the present and the past values of
yF associated to vF. Furthermore, all the state components of Σ0 belonging to Vess(U, {vF})
can also generically be expressed using the present and the past values of yF since they are
generically observable considering that yF is the output [15]. Therefore, substituting the input
u and all the state vertices of all Vess(U, {vF}) by their expression in function of yF , there
exists a positive constant ν such that the linear structured system ΣΛ can be written as:

ΣΛ : xk+1 = IÃxk + φ(yFk , yFk−1, . . . , y
F
k−ν) (1.20)

where, as the cycles involve only elements of Vess(U, {vF}), the matrix IÃ is an adjacency
matrix for a digraph of a structured system having no cycles. Thus, IÃ is nilpotent and verifies
In
Ã

= 0. As a result, every state can be expressed as a function of the past, present and future
values of yF which is thereby a flat output according to Remark 1.3.2.

Necessity: If Condition C0 is not satisfied, then yF is not sensitive to u. As a result, the
input cannot generically be expressed using the past, present and future values of yF and yF

cannot be a flat output. Condition C0 is then necessary.
Condition C1 is not applicable to subsystems Σ1, Σ3 or Σ4. For subsystem Σ0, if Conditions C1
or C2 [i.e. if there exist cycles which cover the state components which are not in Vess(U, {vF})]
are not satisfied, the generic dimension of the observability subspaces with and without the input
knowledge are different. In this case, the input cannot generically be expressed using yF as
output. Indeed, if there exist paths u-vF with different lengths `1 6= `2, then the expression of
yF at time k, that is yFk , will involve at least uk−`1 and uk−`2 . It is the same when Σ0 involves
a cycle. Therefore, Conditions C1 and C2 are necessary for Σ0.
Only Condition C2 is applicable to Σ2. If it is not satisfied i.e. when there is a cycle in Σ2

involving a vertex xi, the expression of yFk will always contain at least a term xik−`3
in addition

to the uk−`. So, it is impossible to express the input using only the past, present and future
values of yF , and thus yF is not a flat output. Therefore, Condition C2 is necessary for Σ2.
Finally, assume that Condition C2 is not satisfied for Σ1, Σ3 or Σ4. In such a case, the
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state components of Σ1, Σ3 and Σ4 respectively depend on their initial state X1
0 , X3

0 and X4
0 .

However, neither X1
0 , X3

0 nor X4
0 are function of yF . Therefore, these state components cannot

be expressed as a function of exclusively the past, present and future values of yF . As a result,
yF cannot be a flat output. �

Remark 1.3.3 The conditions of Theorem 1.3.1 are generic. This means that they hold for
almost every realization ρ of the corresponding LPV system (1.1). However, for some specific
realizations ρ, they do no longer hold. This situation happens for example (and mainly) for the
realizations ρ which cancel the weight associated to an edge linking the input to the flat output.

Remark 1.3.4 Conditions C0-C2 of Theorem 1.3.1 can also be used as necessary and suf-
ficient conditions to check if an output y in the form of linear combinations of some xik

(i ∈ {1, . . . , n}) (and possibly uk) is flat. Indeed, let us define XL ⊆ X be the set of vari-
ables involved in the linear combination under consideration. It suffices to add in the digraph
G(ΣΛ) a fictitious state vn+1 without outgoing edges and with ingoing edges from the vertices vi

corresponding to the variables of XL (or XL ∪U if uk is considered in the linear combination).
considered in the linear combination (and y = u if u is considered in the linear combination) is
a flat output.

Remark 1.3.5 The computational complexity of the algorithms for checking the conditions is
of the same order as the algorithms used for finding successors and predecessors of vertex subsets
or for computing maximal linkings and essential vertices in a digraph. Thus, the complexity is
polynomial and is O(n3) [15].

1.3.2 Illustrative examples

Example 1.3.1 Consider the linear discrete-time system of the example discussed in Sec-
tion 1.1 with the setting (1.3). Its corresponding digraph is depicted in Figure 1.2. The compo-
nent x2 is not a flat output. Indeed, Condition C2 is not fulfilled since there is a cycle on v1

and v1 does not belong to Vess({u}, {v2}). On the other hand, x1 is a flat output since all the
Conditions C0, C1 and C2 are satisfied. That corroborates the result obtained from the direct
approach detailed in Section 1.1.

•
u

• •
v1 = vFv2

I I

Figure 1.2: Digraph associated to Example 1.3.1.

Example 1.3.2 Consider the linear discrete-time system represented by the digraph of Figure
1.3. The aim is to know if x1 is a flat output. Condition C0 is satisfied since there exists a
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path linking u to v1. There are two simple paths from u to v1 of length respectively equal to 2
and 3. Therefore, x1 cannot be a flat output since Condition C1 is not satisfied.

•
u

• • •
v1 = vF

v2v3

Figure 1.3: Digraph associated to Example 1.3.2

Example 1.3.3 Consider the linear discrete-time system represented by the digraph of Figure
1.4. The aim is to know if x1 is a flat output. Condition C0 is satisfied since there exists a path
linking u to v1. Moreover, Condition C1 is also satisfied because the two simple paths linking
u to v1 have the same length `(u,v1) = 2. On the other hand, Condition C2 is not satisfied
because there exists a cycle including v3 which does not belong to Vess({u}, {v1}). Thus, x1 is
not a flat output.

•
u

• •

•

v1 = vFv2

v3

I

Figure 1.4: Digraph associated to Example 1.3.3

Example 1.3.4 Consider the linear discrete-time system represented by the digraph of Figure
1.5. The aim is to know if x1 is a flat output. Condition C0 is satisfied since there exists a
path linking u to v1. Moreover, Condition C1 is also satisfied since there is only one simple
path linking u to v1. Furthermore, Condition C2 is satisfied since the cycles involve v1, v2

and v3 which are all elements of Vess({u}, {v1}). Thus, x1 is a flat output.

•
u

• • •
v1 = vFv2 v3

I

Figure 1.5: Digraph associated to Example 1.3.4

1.3.3 Connection with the algebraic conditions

The aim of this section is to make the connection between the quantities r (relative degree) and
K involved in Theorem 1.2.1 and graph properties of G(ΣΛ). Regarding r, it will be shown that
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the connection is straightforward. On the other hand, regarding K, making the connection is
not trivial. The proofs given below will be based on the same subdivision of the whole set of
states into 5 subsets Σi, i = 0, . . . , 4, as depicted in Figure 1.1.

Proposition 1.3.1 ([34]) The relative degree r of the system (1.1) is equal to `(u,vF) of
G(ΣΛ).

Proof. From Definition 1.2.2, let us merely consider the subsystem Σ0 of the subdivision
of G(ΣΛ) depicted in Figure 1.1. Indeed, subsystem Σ0 directly connects the input u and the
vertex vF assigned to the flat output. Then, the result holds as a straightforward consequence
of Condition C1 of Theorem 1.3.1. �

Proposition 1.3.2 ([34]) When yFk is a flat output, the integer K involved in Theorem 1.2.1
is generically equal to the maximal path length over all the simple {u}-X paths of G(ΣΛ).

Proof. First, let us notice thatK is equal to the minimal integer such that, for some sufficiently
large integer k, the state vector xk can be written as a function of yk−K+r, . . . , yk+r−1 only. Let
us denote with dM the maximal path length over all the simple {u}-X paths of G(ΣΛ). Since
the elements of Σ2 and Σ4 are not submitted to the input u, they are equal to zero after a finite
transient time and thus can always be expressed using yk−1+r, yk+r, yk+1+r,. . . , yk+dM−1+r.
Now, consider the subsystem Σ0. Since yF is a flat output, Condition C1 of Theorem 1.3.1
is fulfilled. Thus, the paths between u and vF have the same length which is equal to r,
according to Proposition 1.3.1. Hence, uk can be written as a function of yk+1,. . . ,yk+r. Thus,
every element of Σ0 can be written as a function of yk,. . . ,yk+r−1.
Regarding the subsystem Σ3, after a finite transient time, its elements can be considered as
having only u as input because the state components of Σ4 go to zero. There is no cycle in
Σ3 because the system being flat, the vertices are not essential. All its state vertices are linked
to u through simple paths of lengths less than dM . Thus, the corresponding state components
can be written as a function of uk−1,. . . ,uk−dM and so, after substituting the expressions of
uk−1, . . . , uk−dM , as a function yk+1−dM ,. . . ,yk+r−1.
Finally, let us consider Σ1. By the flatness assumption, it does not involve any cycle. Thus, the
state components can be expressed as a function of uk−1, uk−2,. . .uk−dM and so as a function
of yk+1−dM ,. . . , yk−1+r.
Therefore, K ≤ dM . On the other hand, since a vertex linked by a path of length dM to u
depends on uk+dM−1, then at least yk+dM−1+r is necessary to express it. Thus, K ≥ dM and
finally K = dM . �

Remark 1.3.6 If the system (1.1) is of dimension n, the number of vertices of G(ΣΛ) equals
n. It follows, from Proposition 1.3.2, that if yFk is a flat output of (1.1) then the integer K
involved in Theorem 1.2.1 is bounded by n.
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1.3.4 Search procedure for flat outputs

Considering the system (1.1), we can sum up the steps to find its flat outputs until the expression
of functions F and G of (1.2) as follow:

1. search flat outputs by considering the related digraph of (1.1) and by checking Condi-
tions C0–C2 of Theorem 1.3.1

2. find the relative degree r and the quantity K for the flat output by applying Propositions
1.3.1 and 1.3.2

3. finally find F and G by applying Equations (1.16) and (1.17).

Example 1.3.5 Let us consider the system of Example 1.2.1.

Aρ(k) =
(

1 ρ1(k)
0 ρ2(k)

)
, Bρ(k) =

(
0

ρ3(k)

)
Cρ(k) =

(
1 0

)
Dρ(k) = 0.

1. Search for the flat outputs with the graph-based condition
The graph of the linear structured system associated to the LPV system (1.3) is given in Fig-
ure 1.6.

u v2 v1

Figure 1.6: Digraph of the linear structured system associated to the LPV system (1.3). .

Let us find (if any) the flat outputs of (1.3) by checking the Conditions C0-C2. It follows
that :

• x2
k is not a flat output. Indeed, when considering v2, Condition C2 is not satisfied because

v1 does not belong to Vess({u}, {v2}) and there is a cycle that covers v1.

• x1
k is a flat output because, when considering v1 as output, Conditions C0-C2 are all

satisfied.

2. Find the relative degree r and the quantity K for the flat output
From Proposition 1.3.1, x1

k being a flat output, the relative degree r of the system (1.21) is
given by `(u,v1) = 2. From Proposition 1.3.2, K is given by the maximal simple path length
between the input and any component of the internal state. Hence, the quantity K equals 2
when considering the path that links u to v1.

3. Find the functions Fρ and Gρ

Considering x1
k as a flat output, it follows that Cρ(k) =

(
1 0

)
.
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1. LPV SYSTEMS AND CHARACTERIZATION OF FLATNESS

From the values K = 2 and r = 2, one can compute Pρ(k:k+2) from (1.9). We have that

T
2,0
ρ(k) = Cρ(k+2) ·Aρ(k+1) ·Bρ(k) = ρ1(k + 1) · ρ3(k).

and thus
Pρ(k:k+2) = Aρ(k) −

(
T

2,0
ρ(k)
)−1

Bρ(k)Cρ(k+2)Aρ(k+1)Aρ(k)

Pρ(k:k+3) =
(

1 ρ1(k)
−(ρ1(k + 1))−1 −(ρ1(k + 1))−1ρ1(k)

)
Hence, by applying (1.16) one has:

xk =

 yk
1

ρ1(k) (yk+1 − yk)


and from (1.17) one has :

uk = 1
ρ1(k + 1)ρ3(k)

[
yk+2 −

ρ2(k + 1)ρ2(k)
ρ1(k) (yk+1 − yk)

]
what gives the expressions of Fρ and Gρ.

Example 1.3.6 Let us consider the discrete-time dynamics of an unbalanced nonlinear dc mo-
tor studied in [68].θ(k + 1)

ω(k + 1)
I(k + 1)

 =

 1 Ts 0
p(k) · TsMgl/J 1− Tsb/J TsK/J

0 −TsK/L 1− TsR/L


θ(k)
ω(k)
I(k)



+

 0
0

Ts/L

uk

(1.21)

where Ts,M, g, l, b, J,K are the parameters of the physical system and p(k) ∈ [0.1, 1] is a
scheduling time-varying parameter. The system can be written as an LPV system like (1.1) with
state variables x1

k, x
2
k and x3

k respectively corresponding to θ(k), ω(k) and I(k). Letting ρ0(k) =
1, ρ1(k) = Ts, ρ2(k) = p(k)TsMgl/J , ρ3(k) = 1 − Tsb/J , ρ4(k) = TsK/J , ρ5(k) = −TsK/L,
ρ6(k) = 1− TsR/L and ρ7(k) = Ts/L, one has

Aρ(k) =

 1 ρ1(k) 0
ρ2(k) ρ3(k) ρ4(k)

0 ρ5(k) ρ6(k)

 , Bρ(k) =

 0
0

ρ7(k)

 .

Here, all the parameters ρi(k) have constant values except ρ2(k). In the sequel, to avoid too
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1.3 Graph Approach to Characterize Flat Outputs

heavy notation, since the first entry 1 of A does not correspond to a physical paramater, we
will keep 1 instead of ρ0(k) in the subsequent equations.
In the following, we describe the successive steps which define the complete framework, to find
the flat outputs and then to explicit the functions Fρ and Gρ characterizing those outputs. The
characterization will hold for any parameters, in particular for any values of p(k). This will
highlight the relevance of incorporating structural analysis in the complete framework.

v0 v3 v2 v1

Figure 1.7: Digraph of the linear structured system associated to the LPV system (1.21). The
vertex vi, i = 1, 2, 3 is associated to the component xik of the state x of (1.21) and v0 is
associated to the input uk.

1. Search for the flat outputs with the graph-based condition
The graph of the linear structured system associated to the LPV system (1.21) is given in Figure
1.7.

Let us find (if any) the flat outputs of (1.21) by checking the Conditions C0-C2. It follows
that :

• x2
k (resp. x3

k) is not a flat output. Indeed, when considering v2 (resp. v3), Condition C2
is not satisfied since v1 does not belong to Vess({v0}, {v2}) = {{v0}, {v3}, {v2}} (resp.
Vess({v0}, {v3}) = {{v0}, {v3}}) whereas there is a cycle on v1.

• x1
k is as flat output because, when considered v1 as output, Conditions C0-C2 are

satisfied.

2. Find the relative degree r and the quantity K for the flat output
From Proposition 1.3.1, x1

k being a flat output, the relative degree r of the system (1.21) is
given by `(v0,v1) = 3. From Proposition 1.3.2, K is given by the maximal simple path length
between the input and any component of the internal state. Hence, the quantity K equals 3 by
considering the path linking v0 to v1.

3. Find the functions Fρ and Gρ

Considering x1
k as a flat output, it follows that Cρ(k) =

(
1 0 0

)
.

From the values K = 3 and r = 3, one can compute Pρ(k:k+3) from (1.9). We have that

T
r,0
ρ(k) = Cρ(k+3) ·A

ρ(k+2)
ρ(k+1) ·Bρ(k) = ρ1(k + 2)ρ4(k + 1)ρ7(k).
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and thus
Pρ(k:k+3) = Aρ(k) −

(
T
r,0
ρ(k)
)−1

Bρ(k)Cρ(k+3)A
ρ(k+2)
ρ(k)

Pρ(k:k+3) =

 1 ρ1(k) 0
ρ2(k) ρ3(k) ρ4(k)
−P1(k) −P2(k) −P3(k)


with

P1(k) = 1 + ρ1(k + 2)ρ2(k + 1) +
(
ρ1(k + 1) + ρ1(k + 2)ρ3(k + 1)

)
ρ2(k)

P2(k) =
(
1 + ρ1(k + 2)ρ2(k + 1)

)
ρ1(k) + (ρ1(k + 1) + ρ1(k + 2)ρ3(k + 1))ρ7(k)

P3(k) =
(
ρ1(k + 1) + ρ1(k + 2)ρ3(k + 1)

)
ρ4(k)

Hence, by applying (1.16) one has:

xk = (Tr,0ρ(k−1))
−1Bρ(k−1)yk+2 + Pρ(k−1:k+2)(Tr,0ρ(k−2))

−1Bρ(k−2)yk+1

+ P
ρ(k−1:k+2)
ρ(k−2:k+1) (Tr,0ρ(k−3))

−1Bρ(k−3)yk

xk = 1
ρ1(k + 1)ρ4(k)

0
0
1

yk+2 + 1
ρ1(k)ρ4(k − 1)

 0
ρ4(k − 1)
−P3(k − 1)

yk+1

+ 1
ρ1(k − 1)ρ4(k − 2)

 ρ1(k − 1)ρ4(k − 2)
ρ3(k − 1)ρ4(k − 2)− ρ4(k − 1)P3(k − 2)
−P2(k − 1)ρ4(k − 2) + P3(k − 1)P3(k − 2)

yk

xk =



yk

yk+1

ρ1(k) + ρ3(k − 1)ρ4(k − 2)− ρ4(k − 1)P3(k − 2)
ρ1(k − 1)ρ4(k − 2) yk

yk+2

ρ1(k + 1)ρ4(k) −
P3(k − 1)

ρ1(k)ρ4(k − 1)yk+1+

−P2(k − 1)ρ4(k − 2) + P3(k − 1)P3(k − 2)
ρ1(k − 1)ρ4(k − 2) yk


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and from (1.17) one has :

uk =
(
T
r,0
ρ(k)
)−1
(
yk+3 − Cρ(k+3)A

ρ(k+2)
ρ(k) xk

)

= 1
ρ1(k + 2)ρ4(k + 1)ρ7(k)

[
yk+3−

 P1(k)
P2(k) + ρ1(k + 2)ρ4(k + 1)ρ5(k)
P3(k) + ρ1(k + 2)ρ4(k + 1)ρ6(k)


T

xk

]

where ’T’ stands for the transpose of the matrix.
Finally,

x1
k =yk

x2
k =yk+1

Ts
+
(

1− Tsb/J
Ts

− (2− Tsb/J)Ts(K/J)
)
yk

x3
k = J

T 2
sK

yk+2 − 2Tsb
J
yk+1

−
[(

1 + T 2
s p(k + 1)Mgl/J

)
+
(
2− Tsb/J

)
Ts/L+ T 2

s

(
2− Tsb/J

)2
K/J

]
yk

(1.22)

(1.23)

uk = JL

T 3
sK

(
yk+3 − P1(k) x1

k −
(
P2(k) + T 3

sK
2

LJ

)
x2
k +

(
P3(k) + T 2

sK
J

1−TsR
L

)
x3
k

)
(1.24)

what gives the expressions of Fρ and Gρ.

1.4 Conclusion

In this chapter, a mixed algebraic/graph-oriented approach has been proposed to characterize
flatness for discrete-time LPV systems. We have derived necessary and sufficient conditions in
terms of state space matrices realization of the LPV system. Those conditions allow to give
explicitly the functions expressing the state and the input in terms of the flat output. On the
other hand, we have considered LPV systems as linear structured systems. Resorting to addi-
tional graph-based conditions borrowed from structural analysis, by a (non trivial) combination
of both conditions, a complete and tractable framework to find the flat outputs and characterize
the flat outputs has been proposed. The use of the algebraic approach only would require an
infinite number of numerical tests. Another interesting point of view of this mixed approach
is that, it is not only useful to check if a given set of matrices satisfy (1.8), in other words
for analysis, but can also be applied to generate matrices that fulfil (1.8), in other words for
synthesis. This latter outcome will be central to the design of SSSC for cryptographic purposes
as shown in Chapter 2.
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Chapter 2

Flat LPV Systems and
Self-Synchronizing Stream
Ciphers

This chapter aims at showing the correspondence between flat LPV systems and Self-
Synchronizing Stream Ciphers which belong to one of the class of stream ciphers. Then, we
propose a new construction of Self-Synchronizing Stream Ciphers with a more general class
than the ones involving T-functions. The construction is based on the mixed algebraic/graph
approaches described in Chapter 1. The results in this chapter are published in [36].
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2.1 Introduction

Born from the imagination and intuition of historical strategists, cryptology - etymologically
the science of secrecy - owes its longevity to all those who, over the centuries, have discovered
new applications and revealed its potential. First reserved for military and diplomatic uses,
cryptology has been an integral part of our everyday life since the advent of the Internet.
Nowadays, this science of secrecy offers unrivaled opportunities to date. This science can be
seen as a fusion of two fields: cryptography and cryptanalysis.

Cryptography is the study and the design of cryptographic algorithms to protect data. The
original data to protect, called plaintext, are scrambled by a transmitter that uses cryptographic
algorithms and send it through a public channel to a receiver. This latter, when receiving the
scrambled data also called encrypted data, needs to recover the plaintext by resorting to reverse
operations using also cryptographic algorithms. One says that the emitter encrypts the plaintext
by using a cipher that is the encryption algorithm and conversely, one says that the receiver
decrypts the encrypted data by using a decipher that is the decryption algorithm.

On the other hand, cryptanalysis is the study of weakness within algorithms that are de-
signed by cryptographers. It involves attackers also called adversaries that try by using among
others statistical or algebraic-based theory to break encryption schemes by revealing secret
parameters that are used within these schemes.

These two fields can be seen as opposite and at the same time as complementary. Opposite
because cryptanalysis breaks what cryptography designs and complementary because they allow
each other to perform studies that are performed within these two fields.

Cryptography is used everywhere. People carry on them, without necessarily knowing,
many cryptographic devices: mobile phone, smart cards (credit cards, biometric passport, social
assurance card, pay-per-view cards), vehicle key start. Download applications on smartphones,
software updates are marked with digital signature. Communications between people using
Voice over IP or via social networks are encrypted with strong cryptographic algorithms.

Until the middle of the 70’s, the only way that allows two entities to communicate securely,
by using cryptography means, is to resort to symmetric cryptography. The transmitter uses
a secret key that is shared with the receiver. This requires that the two entities need to
communicate each other the secret key before initiating the exchange of encrypted data. In the
middle of the 70’s, Whitfield Diffie and Martin Hellman published a new concept that allows
two entities, that never met before, to be able to communicate without sharing a same secret:
it was the birth of asymmetric cryptography. Each entity owns a non-secret key called public
key from which anybody can send him an encrypted data and a secret key called private key
that allows him to decrypt encrypted data he received.
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Any protection of information using cryptography requires either symmetric cryptography
or asymmetric cryptography. And for a cryptographic system, it is a priority that one of the
following four services should be provided:

Confidentiality: guarantees that the content of the message is kept secret and protected
against unauthorized release

Authentication: guarantees the identity of the emitter of the message

Integrity: guarantees that the content of the message to protect has not be altered
during the transmission

Non-Repudiation: guarantees that the emitter of the message cannot deny sending the
message.

In this thesis, we tackle a problem that is related to symmetric cryptographic and that
guarantees confidentiality of data: that is the design of so-called Self-Synchronizing Stream
Ciphers, that will be developed in Section 2.3. The next section gives a general description on
symmetric cryptography.

2.2 Generalities on Symmetric Cryptography

When using symmetric cryptography to encrypt or protect data, the quantity of the data, the
device to process the cryptographic algorithms and the transmission speed of the encrypted
data are a concern. The emergence of asymmetric cryptography in the the 70’s with the public
key concept may let believe to a regression of the use of symmetric cryptography. But this
is certainly not the case. Indeed, architectures for symmetric key cryptographic algorithms
are more suitable for hardware implementation, and are used more and more because of the
number of devices needing lightweight cryptography increases. We recall the two families of
ciphers used in symmetric cryptography.

2.2.1 Block ciphers

Block ciphers are widespread in symmetric cryptography. They operate on blocks of data
i.e they can be seen as functions that map a n-bit data to a m-bit data. A block cipher
encryption function can be used in a combination way called mode of operation to provide
message authentication techniques, data integrity mechanisms, entity authentication protocols.
As block cipher, we can mention FEAL [102], DES [33], AES [1]. We recall some example of
mode of operation of block ciphers in Appendix A.1.

2.2.2 Stream ciphers

Stream ciphers are based on the so-called Vernam cipher where the plaintext (a binary string of
some length) is bitwise added to a (binary) secret key of the same length, in order to produce
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the ciphertext. The Vernam cipher is also called the one-time-pad because a new random secret
key must be used for every encryption.

For a stream cipher, it must be given an alphabet A, that is, a finite set of basic elements
named symbols. Hereafter, the index k will stand for the discrete-time. On the transmitter side,
a plaintext (also called information or message) m ∈M (M is the message space) consisting of
a string of symbols mk ∈ A is encrypted according to an encryption function e which depends
on a so-called running key (also called keystream) zk which is invertible for any prescribed zk.
Hence, the ciphering is performed with

ck+b = e(zk+b,mk) (2.1)

where e is the ciphering function, mk is the plaintext symbol and ck ∈ B is the ciphertext
symbol which belongs to an alphabet B usually (and assumed hereafter) identical to A. The
integer b ≥ 0 stands for a potential delay between the plaintext mk and the corresponding
ciphertext ck+b. This is explained by computational reasons, for instance pipelining (see [29]
for instance). Consequently, for stream ciphers, the way how to encrypt each plaintext symbol
changes on each iteration. The resulting ciphertext c ∈ C (C is called the ciphertext space), a
string of symbols ck, is conveyed through a public channel to the receiver.
At the receiver side, the ciphertext c is decrypted according to a decryption function d which
depends on the running key ẑk. The decryption function d obeys the following rule. For any
two keystream symbols ẑk+b, zk+b, it holds that

m̂k+b := d(ck+b, ẑk+b) = mk whenever ẑk+b = zk+b. (2.2)

From (2.2), it is clear that, beyond the equality of the secret keys, the running keys zk
and ẑk must be synchronized for a proper decryption. The distinct classes of stream ciphers
differ from each other by the way on how the keystreams are generated and synchronized. The
generators delivering the keystreams will be parametrized by a secret key denoted in the sequel
by θ.

2.2.2.1 Synchronous Stream Ciphers

Synchronous Stream Ciphers admit the equations:
qk = σs(qk−1)

zk = s(qk)

ck = e(zk,mk)

(2.3)

where σs is the next-state transition function, s acts as a filter and generates the keystream
zk. The value qk is the internal state of the cipher whose initial value is generated from a secret
key. This nonce is generated by applying a key scheduling process or a Linear Feedback Shift
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Register.
Among the huge variety of synchronous stream ciphers that exist, we can mention RC4,

SOSEMANUK [9], GRAIN [53], TRIVIUM [21].

2.2.2.2 Self-Synchronizing Stream Ciphers

Self-Synchronizing Stream Ciphers admit the equations:zk = σssθ (ck−l−M+1, . . . , ck−l)

ck = e(zk,mk)
(2.4)

where σssθ is the function that generates the keystream zk; l is a non-zero positive integer
standing for a possible delay. The keystream generator σssθ depends on past values of ck.
The number of past values is most often bounded and equals M , the delay of memorization.
Equation 2.4 is also known as the canonical form of the SSSC and is illustrated by Figure 2.1.

mk ck m̂ke e

zk ẑk

σssθ σssθ
...

...

ck−1

ck−M

ck−1

ck−M

...
...

Figure 2.1: Canonical form of SSSC for l = 1.

To decrypt a ciphertext ck and recover the right plaintext, it is necessary to have the right
past previous M ciphertexts. Hence, there is a synchronization delay that is exactly M . The
decipher equation is then given by:ẑk = σssθ (ck−l−M+1, . . . , ck−l)

m̂k = e(zk, ck)
(2.5)

The transmission of encrypted data through free-error channel are the ideal solution when
dealing with cryptographic protocols. However, it is difficult to have in reality such a channel,
and transmissions of ciphertexts are subject to errors such as bit tampering, bit insertion or
deletion. When faced to bit tampering, synchronous stream cipher can be used without need
of additional synchronization protocol, since a 1-bit error in the ciphertext will result in 1-bit
error in the recovered plaintext. However, this problem is catastrophic to block cipher that
handle data which are sequence of bits. On the other hand, insertion or deletion of one bit of
the ciphertext make a loss of synchronization both for block cipher and synchronous stream
cipher. The use of SSSC when facing this situation allows automatic resynchronization after a
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transient time, without the use of any synchronization mechanism.

We can summarize advantages of SSSC as :

• if a ciphertext is deleted, inserted or flipped, the SSSC will automatically resume proper
decryption after a short, finite and predictable transient time. Hence, SSSC does not
require any additional synchronization flags or interactive protocols for recovering lost
synchronization

• the self-synchronizing mechanism also enables the receiver to switch at any time into an
ongoing enciphered transmission

• any modification of ciphertext symbols by an active eavesdropper causes incorrect decryp-
tion for a fixed number of next symbols. As a result, an SSSC prevents active eavesdrop-
pers from undetectable tampering with the plaintext: message authenticity is guaranteed

• Finally, since each plaintext symbol influences a fixed number of following ciphertexts, the
statistical properties of the plaintext are thereby diffused through the ciphertext. Hence,
SSSC are very efficient against attacks based on plaintext redundancy and the property
of diffusion is structurally fulfilled.

We detail in the next section the different architecture related to Self-Synchronizing Stream
Ciphers.

2.3 Architectures of Self-Synchronizing Stream Ciphers

The defining property of self-synchronizing stream encryption is that a keystream bit depends
on a limited number M (the memory) of past keystream bits, and hence it suffices to have
received the last M + 1 ciphertext bits to correctly decrypt the current ciphertext bits. A
first architecture calls for a block cipher (AES,DES) in a 1-bit CFB mode (see Figure A.3) as
illustrated in Figure 2.2.
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+ ckmk

zk

Block
Cipher
(Ek)

h′ ...

Shift
register

...

Figure 2.2: SSSC in CFB mode. A shift register is used to gather the previous ciphertexts.
The output of the encryption algorithm Ek is filtered with a function h′ to produce a 1-bit
keystream zk that is XORed to the plaintext mk.

As alternative to the SSSC architecture in CFB mode, U. Maurer proposed in [74] several
design approaches for SSSC based on automata. The design replaces the shift register in CFB
mode based SSSC with serial and parallel combination of automata where each automaton
consists on a function associated to a shift register of reduced size (see Figure 2.3). This
architecture had led to the first one with finite state machine instead of simple shift register,
that provides secure and high speed SSSC.

+mk

h̃

zk

σss1θ σss2θ

σss3θ σss4θ

shift
register

shift
register

shift
register

shift
register

ck

Figure 2.3: Serial and parallel automata in the architecture proposed by Maurer.
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Later, Daemen and al. in [27] proposed another design based on the approach of Maurer
where the use of serial and parallel automata had been lighten in structure involving boolean
functions. In their design each component of the internal state is defined as a function of
previous components; the first component being defined as the last ciphertext generated by
the cipher. This gives rise to the so called Conditional Complementing Shift Register that was
used to design the SSSC called KNOT. The architecture of KNOT [27] is implemented in a
pipelined block cipher construction as a number of relatively simple rounds, called stages. This
architecture allows very high speed encryption for hardware. In [57], it had been shown that
KNOT presented some weaknesses that have been eliminated by improving it in a new SSSC
called ΥΓ. We can also mention other known SSSCs that admit a similar architecture: HBB
[96], SSS [51] and the family of MOUSTIQUE [29, 31]. They are described in Appendix A.2.

The resulting updating functions of all those constructions of SSSC were T-functions (see
Subsection 2.3.2) or conditionally complementing shift registers (as in MOUSTIQUE).

The keystream bit is computed as a Boolean function of these statebits, possibly making use
of pipelining (effectively adding bits to the internal state). This architecture guarantees that
the keystream bit is completely determined by the previous M ciphertext bits. The situation
of these architectures does not look very good as all concrete proposals have been broken and
for the moment there is not a single unbroken dedicated self-synchronizing stream cipher. This
motivates further investigations as proposed here.

2.3.1 Keystream generators for Self-Synchronizing Stream Ciphers

A well-admitted approach to generate the keystreams has been first suggest in [74]. It is based
on the use of state automata with finite input memory. This is typically the case in the cipher
MOUSTIQUE [31]. At the ciphering side, the automaton delivering the keystream takes the
form: {

qk+1 = gθ(qk, ck+b)
zk+b = hθ(qk)

(2.6)

where qk is the internal state. As previously stressed, the delay b is due to the fact that the
output (also called filtering) function h is pipelined with an a architecture involving b layers.
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mk ck m̂ke e−1

zk ẑk

gθ gθ

hθ hθ

qk q̂k

Figure 2.4: Automata architecture of SSSC.

If such an automaton has a finite input memory, it means that by iterating (2.6) a finite
number of times, there exists a function lθ and a finite integer M such that

qk = lθ(ck+b−1, . . . , ck+b−M ) (2.7)

and thus
zk+b = hθ(lθ(ck+b−1, . . . , ck+b−M )) (2.8)

Actually, the fact that the keystream symbol can be written in the general form involving a
function σssθ

zk+b = σssθ (ck−l, . . . , ck−l′) (2.9)

is a common feature of all the SSSC. The quantities l and l′ are integers in Z. Equation (2.9)
is the canonical equation.

Remark 2.3.1 The outcome of implementing the recursive form (2.6) instead of directly im-
plementing the canonical form (2.9) is that we can obtain complex nonlinear functions σssθ

by implementing simpler nonlinear functions gθ. The complexity results from the successive
iterations which act as composition operations.

At the deciphering side, the automaton takes the form:{
q̂k+1 = gθ(q̂k, ck+b)
ẑk+b = hθ(q̂k)

(2.10)

where q̂k is the internal state. Following the same reasoning, since gθ corresponds to the state
transition function of an automaton with finite input memory, it is clear that after a transient
time of maximal length equal to M , it holds that, for k ≥M ,

q̂k = qk and ẑk+b = zk+b (2.11)
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Hence, since the generators synchronize automatically after at most M iterations, the decryp-
tion is automatically and properly achieved after at most M iterations too. No specific syn-
chronizing protocol between the cipher and decipher is needed. This explains the terminology
Self-Synchronizing Stream Ciphers. The quantity M is called the synchronization delay.

To obtain a finite input memory feature, the solutions proposed in the open literature (see
[26] for example), call for state transition functions gθ in the form of shifts or T–functions
(T for Triangle), which are functions that propagate dependencies in one direction only. One
of the aim of this thesis is to show that it is possible to construct automata with finite input
memory and state transition functions that admit a more general form than T–functions and to
provide a systematic methodology of construction. The construction is based on the property
of flatness, a structural property borrowed from control theory. This property is considered for
the class of Linear Parameter-Varying (LPV) systems as motivated in Section 2.3.3.

2.3.2 Strict T-function

Design of SSSC which next state function are not strict T-function [63] remains a challenge. In
[81], the authors established promising new ideas regarding the design of a new class of SSSC
with a more general state resursive form (2.6). These ideas have been widely developed in
Parriaux’s Thesis [84] and led to a new design of SSSC. An effective construction of this class
based on nilpotent semi-group approach had been proposed in [88]. An interesting classification
of SSSC has been also established, showing that the next state function of an SSSC belongs to
three categories of function:

1. strict T-functions

2. conjugate of strict T-functions

3. functions not based on strict T-functions

For T-functions, each variable depends only on previous variables. Hence, the function in
(2.6) and (2.10) gθ : Fn+1 7→ Fn is a strict T-function if the output of its coordinate function
gjθ depends only on the j + 1 variables ck+b and qik, i = 0, . . . , j − 1:

gθ(qk, ck+b) =



g0(ck+b)
g1(q0

k, ck+b)
g2(q0

k, q
1
k, ck+b)

...
gn−1(q0

k, q
1
k, . . . , q

n−2
k , ck+b)


(2.12)

T-functions are in general functions where the only Boolean operations are bit-oriented
operations (additions, multiplications, subtractions, xor, or, and) and for which right shifts1 or
rotate operations are excluded.

1Note that left shifts are allowed since there are multiplication by 2.
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The aim of the next section is to show that it is possible to design SSSC without T-functions
when considering LPV systems as automata.

2.3.3 Particular case of LPV systems

The next proposition is essential to establish the correspondence between flat LPV systems and
SSSC and is a central point to show that we can design a new architecture of SSSC.

Proposition 2.3.1 ([36]) If the LPV system (1.1) has relative degree r and is flat, then the
finite state automata given by

qk+1 = Pρ(k:k+r)qk +Bρ(k)(Tr,0ρ(k))
−1yk+r

zk+r = Cρ(k+r)

k∏
l=k+r−1

Aρ(l)qk
(2.13)

along with
yk+r = zk+r + T

r,0
ρ(k)uk (2.14)

and 
q̂k+1 = Pρ(k:k+r)q̂k +Bρ(k)(Tr,0ρ(k))

−1yk+r

ẑk+r = Cρ(k+r)

k∏
l=k+r−1

Aρ(l)q̂k
(2.15)

along with
ûk+r = (Tr,0ρ(k))

−1(yk+r − ẑk+r) (2.16)

define an SSSC.

Proof. If (1.1) has relative degree r and is flat, (1.8) holds and thus, (2.13) is well defined and
can be identified with (2.6) while (2.15) is also well defined and can be identified with (2.10).
The property (1.8), that is flatness, ensures that (2.13) and (2.15) are automata with finite
input memory. The identification of (2.14) with (2.1) and the identification of (2.16) with (2.2)
gives respectively the encryption and decryption functions. � The following correspondences
hold:

• uk plays the role of mk (plaintext symbol)

• yk plays the role of ck (ciphertext symbol)

• zk+r = Cρ(k+r)

k∏
l=k+r−1

Aρ(l)qk is the keystream symbol of the cipher

• ẑk+r = Cρ(k+r)

k∏
l=k+r−1

Aρ(l)q̂k is the keystream symbol used for deciphering.
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• r plays the role of b (delay)

• the function (zk+r, uk) 7→ zk+r + T
r,0
ρ(k)uk plays the role of e (encryption function)

• the function (ẑk+r, yk+r) 7→ (Tr,0ρ(k))
−1(yk+r−ẑk+r) plays the role of d (decryption function)

• K plays the role of M (synchronization delay).

The nonlinearity is obtained by defining the values of the varying parameters ρi(k) as nonlinear
functions of the output yk (or a finite number of shifts), implemented in the form of so-called
S-Boxes ϕi: ρi(k) = ϕi(yk, yk−1, · · · )

Remark 2.3.2 Let us consider, from the system (1.1) the input uk as the plaintext and the
output yk as the ciphertext of a stream cipher. The first equality in (1.2) shows that if the
output yk of (1.1) is flat, an interesting correspondence with (2.7) can be made. Indeed, xk can
be used as a quantity from which, through a filtering function, the keystream symbol zk of an
SSSC can be derived. The second equation shows that it is possible to recover the input uk from
a finite number of shifted outputs yk. This is typically the central notion behind the decryption
part of an SSSC.

Remark 2.3.3 The encryption and decryption functions e and d are quite simple. This is a
common feature for SSSC. For example in the Boolean case, those functions are often nothing
but the exclusive or. Actually, the security is essentially based on the properties of the keystream
sequences.

The next state transition function gθ is not conjugated to a strict T-functions if the matrix
Pρ(k:k+r) is not triangular. However, as stressed in Subsection 1.2.3, verifying and choosing
non triangular matrices fulfilling (2.13) ( or also (1.8)) is an intricate problem which is closely
related to the notion of mortality. Furthermore, the problem under consideration here is more
intricate since the matrices Pρ(k:k+r) are not given but should be chosen. In other words, we are
not concerned with analysis but with synthesis. The method proposed here, that is the design
a flat LPV system (1.1) followed by deriving the automaton (2.13) (which will be, because of its
flatness property, with finite input memory and so self-synchronizing) constitutes an efficient
alternative to a very challenging direct design of the automaton (2.13). This approach is new in
cryptography and provides a general framework. However, from a control theory point of view,
the issue of designing a flat LPV system is a new paradigm. Indeed, in automatic control, we
are usually given a system and we have to check whether a system is flat or not and to check
for the flat outputs.

The aim of the next section is to show that, using the graph approach, developed in Sec-
tion 1.3 of Chapter 1, we can design SSSC based on flat LPV system. It is worth pointing out
that those graphs are considered in the case where the relative degree of the LPV system is
greater or equals 2. When r = 1 the only graphs that we can obtain correspond to systems
whose next state functions are strict T-functions or conjugates of a strict T-function.
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2.4 Construction of SSSC Based on Digraph

In this section, we tackle the problem of construction of SSSC by applying results that were
developed in Chapter 1 and having in mind the correspondence between SSSC and LPV systems
as shown in Subsection 2.3.3. More, we aim at designing a new class of SSSC where the state
transition matrices Pρ are not conjugated to a T-function.

2.4.1 Construction of flat LPV systems

Conditions C0-C2 are instrumental for the construction of flat dynamical systems. Indeed, a
systematic construction of digraphs fulfilling C0-C2 can be derived. It had been published in
[36] and is detailed below.

A digraph is parametrized by the triplet (n, r, na). The dimension n of the system (1.1)
corresponds to the number of vertices of the graph minus one (the vertex assigned to the
input). The relative degree r fulfilling (1.6) gives the number of edges in the main direct path.
The integer na defines the number of edges in the digraph G(Σρ) and can be freely chosen
provided it is less than the maximal number nM of edges. The expression of nM depends on
the construction and thus, will be given later on. The proposed construction of the digraph
involves the following steps.

Step 1: The digraph G(Σρ) corresponding to the system Σρ of dimension n involves n+ 1
vertices. The input is assigned to the vertex denoted by v0. The other n vertices are denoted
by v1, . . . ,vn. We want vr to be the vertex that corresponds to the flat output.

Step 2: Add the edges (vi,vi+1) with i = 0, . . . , r − 1. The relative degree being r, there
must have r edges which link v0 to vr. The resulting path will be called main direct path.

v0 v1 v2 vr−1 vr vi vn

Figure 2.5: Digraph obtained after completion of Steps 1-2. The vertex vr corresponds to the
flat output.

After Step 2, Conditions C0-C2 are fulfilled for vF = vr and the resulting digraph is
depicted in Figure 2.5. However, the corresponding dynamical system is quite trivial. The fol-
lowing steps provide a way of adding edges (vi,vj) while guaranteeing that Conditions C0-C2
are still fulfilled.

Step 3: Add the edges (vi,vi+1) for i = r, . . . , n−1 to avoid the situation with a vertex vj,
j = r + 1, . . . , n without predecessor. Indeed, if so, the dynamics of the corresponding vertex
vj would reduce to xjk+1 = 0 and clearly would be useless.

Step 4: Add the edges that link the vertex vr to any of the vertices of the graph (except
the vertex related to the input), that is the edges (vr,vi), i = 1, . . . , n.
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Step 5: Consider the vertices vi i = 1, . . . , r − 1, as starting vertices. For every vertex
vi, i = 1, . . . , r − 1, add the directed edge (vi,vj) with j = 1, . . . , i. Note that those edges
introduce cycles, including cycles of order 1, but those cycles satisfy Condition C2 since vi,
i = 0, . . . , r − 1 belong to Vess(u,vr).

The graph obtained after Steps 1-5 is depicted in Figure 2.6.

v0 v1 v2 vr−1 vr vr+1 vi vn

Figure 2.6: Graph obtained after Steps 1-5.

Step 6: Consider the vertices vi, i = r + 1, . . . , n. For every vertex vi, i = r + 1, . . . , n,
add the directed edge (vi,vj) with j = 1, . . . , r and j = i + 2, . . . , n. Let us notice that this
step generates cycles but Conditions C2 is still satisfied.

The resulting digraph after completion of Steps 1-6 is depicted in Figure 2.7.

v0 v1 v2 vr−1 vr vr+1 vi vn

Figure 2.7: Graph obtained after completion of Steps 1-6.

A simple counting leads to the maximal number of edges nM that can be added by following
the construction at Steps 1-6. One has:

nM = n · (n+ 1)
2 + r. (2.17)

The number of edges na of the triplet (n, r, na) must satisfy na ≤ nM .

Step 7: Remove nM − na edges. Insofar as Steps 1-6 guarantee that Conditions C0-C2
are fulfilled regardless whether the edges are actually added or not, Conditions C0-C2 are still
preserved after arbitrarily removing edges of the graph.

Remark 2.4.1 By considering the flat LPV system related to the graph of Figure 2.7, it follows
from Remark 1.3.6 that the integer K involved in Theorem 1.2.1 is bounded by the dimension n
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of this flat LPV system. Hence the synchronization delay M of the flat LPV system is bounded
by n.

2.4.2 Completion of the design

Let G(Σρ) be a digraph characterized by the triplet (n, r, na). We can derive the matrices
IA and IB of the structured linear system G(ΣΛ), from the adjacency matrix. The adjacency
matrix, denoted with I, of the digraph G(Σρ), is the (n+ 1)× (n+ 1) matrix whose each entry
(a)ij is defined as follows for 1 ≤ i, j ≤ n

(a)ij =
{

1 if there exists an edge from vj to vi

0 otherwise
(2.18)

Hence, the adjacency matrix associated to G(Σρ) is given by:

I =


0 ITB

0
ITA

...
0

 (2.19)

where ITA and ITB stand respectively for the transpose of IA and IB .
The varying parameter ρ4(k) is in practice implemented in the form of a so-called S-Box

whose entry is the flat output yk and possibly a finite number of backwards iterates. By
construction, any nonlinearity would lead to a flat LPV system and so to an SSSC. The approach
proposed here gives thereby a family of SSSC. The design of a specific SSSC is completed by
deriving the equations of Proposition 2.3.1. Actually, it can be shown (see next subsection)
that even for this simple example, the state transition matrix Pρ(k:k+2) is non triangular, which
corroborates that this method allows to provide a novel class of SSSC. Furthermore those SSSC
are really simple to build owing to the graph approach associated to LPV system.

2.4.3 Basic construction of a flat LPV-based SSSC

We now show that an SSSC involving state transition functions more general than T–functions
can be obtained even in a very simple case. Let us consider the graph depicted in Figure 2.8
which results from the construction given in the Subsection 2.4.1 for n = 2 and na = nM = 5
(maximal number of edges) and r = 2. The relative degree r being equal to 2, it means that
the component x2 of the state vector of the corresponding LPV system (1.1) will be the flat
output yk, that is the ciphertext. Hence, Cρ(k) = C = [0 1] and Dρ(k) = 0.
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v0 v1 v2

Figure 2.8: Digraph obtained for n = 2, r = 2, na = nM = 5. The flat output is yF = x2 and
corresponds to the vertex v2.

The adjacency matrix I of this graph and the structured matrices IA and IB are

I =

 0 1 0
0 1 1
0 1 1

 , IA =
(

1 1
1 1

)
, IB =

(
1
0

)
(2.20)

Each of the entries of IA and IB can be potentially replaced by a realization ρi(k) to construct
the matrices Aρ(k) and Bρ(k) of (1.1). Let us choose the functions ρi i = 1, 2, 3 of the first three
entries of A equal to 1. This finally leads to the following matrices Aρ(k) and Bρ(k):

Aρ(k) =
(

1 1
1 ρ4(k)

)
and Bρ(k) = B =

(
1
0

)

As stressed in Section 1.1, the varying parameter ρ4(k) is the output of an S-Box whose
entry is the flat output yk and possibly a finite number of backwards iterates.

To complete the design of the decipher (see (2.13) of Proposition 2.3.1), let us calculate the
matrix Pρ(k) (1.9) governing the state transition function of the automaton (2.13). One has
Pρ(k:k+2) = Aρ(k) −B · C ·Aρ(k+1) ·Aρ(k). One obtains

Pρ(k:k+2) =
(
−ρ4(k + 1) −ρ4(k) · ρ4(k + 1)

1 ρ4(k)

)

Let us point out that (1.8) holds for K = 2. Indeed, it’s a simple matter to see that
Pρ(k+1:k+3)Pρ(k:k+2) = 0. It corroborates that yk is a flat output (but it is, by construction of
the digraph).
It remains to show that the matrix Pρ(k:k+2) is not conjugate to a shift or to a T–function.
To this end, it must be shown that the matrices Pρ(k:k+2), for almost every realization ρ, can-
not be simultaneously triangularizable. The characteristic polynomial of Pρ(k:k+2) is given
by N(X) = X

(
X + (ρ4(k + 1) − ρ4(k))

)
. Hence, the eigenvalues of Pρ(k:k+2) are 0 and

ρ4(k) − ρ4(k + 1). It follows that the related eigenspace to the eigenvalues of Pρ(k:k+2) is
spanned by:

V1 =
(
−ρ4(k)

1

)
and V2 =

(
−ρ4(k + 1)

1

)
And yet, a necessary condition for simultaneous triangularization (see Theorem B.1.2) is that
the matrices Pρ(k:k+2) share a common eigenvector for any realization ρ. As a result, if the
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parameter ρ4(k) varies, the matrices Pρ(k:k+2) do not fulfill such a requirement. Clearly, even
in this very trivial example, we have shown that an SSSC with state transition function different
from a T–function can be obtained.

Let us notice that the graph approach that is proposed here provides T-function-based
next-state transition function when the relative degree r of the LPV system equals 1.

The next-state function gθ of a LPV-based SSSC is a T-function if and only if the inverse
transition matrix Pρ(k:k+r) is triangular. One has:

qik+1 = giθ(qk, ck) = Pρ(k:k+r)[i] · qk + δirck

where δir equals 1 if r = i and 0 if r 6= i. Pρ(k:k+r)[i] denotes the ith row of the matrix Pρ(k:k+r).
It follows that the output of each giθ(ck, qk), i = 1, . . . , n depends only on q0

k, . . . , q
i−1
k if and

only if Pρ(k:k+r) is a triangular matrix.

Theorem 2.4.1 Let Σ be a flat LPV system (1.1) of relative degree r = 1. Then the next-state
function f of an LPV-based SSSC (1.1) is conjugated to a T-function.

Proof. From (1.9), if r = 1, it follows that:

Pρ(k:k+1) = Aρ(k) − (T1,0
ρ(k))

−1Bρ(k)Cρ(k+1)Aρ(k).

As a consequence, the rows of Pρ(k:k+1) are the same as the ones of Aρ(k) except the first row
which coefficients are zero:

Pρ(k:k+1)) =



0 0 · · · 0
a21 a2,2 · · · a2,n

a31 a3,2 · · · a3,n
...

an1 an,2 · · · an,n


with Aρ(k) = (ai,j)1≤i,j≤n.

Each vertex vi is associated to the component xi. Since r = 1, according to the graph
construction of Subsection 2.4.1, the only possible edges in the graph G(Σρ) are the ones that
start from v1 or end at v1, and those that starting from each vertex towards its following
vertices. Thus, G(Σρ) has the form:
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u v1 v2 v3 vn

Figure 2.9: Graph construction related to a flat LPV system of relative degree r = 1.

It follows then that the reduced (n− 1)× (n− 1) matrix obtained by removing the first row
of Aρ(k) is strictly lower triangular: that is Pρ(k:k+1) is strictly lower triangular. � �

We give in the next section, a more general example of matrix Pρ that is not conjugated
to a T-function. To show that, we use Algorithm 1 known as Simultaneous Triangularization
Algorithm (STA) provided in [39].

2.5 Examples of construction of LPV-based SSSC without
T-functions

2.5.1 Example 1

Let us consider the graph of Figure 2.8, we give an example of matrix Aρ(k) with non-constant
coefficients in a finite field F = GF(16). The state matrix Aρ(k) related to this graph is a matrix
of dimension 2 given by

Aρ(k) =
(
ρ1(k) ρ2(k)

1 ρ3(k)

)
where

ρi(k) : GF(16)s −→ GF(16)
ck−1, . . . , ck−s 7→ yk

is assumed to be a surjective non-linear function. The inverse transition matrix Pρ(k:k+2) (1.9)
that characterizes the decryption and then the self-synchronization property, is given by

Pρ(k:k+2) = Aρ(k) +B · C ·Aρ(k+1) ·Aρ(k)

Then, the rows of the matrix Pρ(k) are inferred as

Pρ(k:k+2)[1] = Aρ(k)[1] +Aρ(k+1) ·Aρ(k)[2]

Pρ(k:k+2)[2] = Aρ(k)[2]

Hence,
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Pρ(k:k+2) =
(
ρ3(k + 1) ρ3(k) · ρ3(k + 1)

1 ρ3(k)

)

Since, ρ3(k) is surjective, we can assume that, after a long transient time, Pρ(k:k+2) takes all
the value in GF(16). Thus we need to find two instances of Pρ(k:k+2) that are not simultaneous
triangularizable to prove that Pρ(k:k+2) is not simultaneous triangularizable regardless to ρ(k).

Let

A1 =
(
α3 + 1 α+ 1

1 α2 + α

)
A2 =

(
α2 + α+ 1 α3 + α2 + 1

1 α3

)

We use a primitive element of GF(16) given by α with α4 = α+ 1. The matrix A1 is obtained
by considering ρ3(k) = α2 + α, ρ3(k + 1) = α3 + 1 and the matrix A2 is obtained for ρ3(k) =
α3, ρ3(k + 1) = α2 + α + 1. We show that A1 and A2 are not simultaneous triangularizable.
Note that we need to iterate the STA (see Algorithm 1 of Appendix B) until we find no common
eigenvectors for A1 and A2. The example is minimalist due to the considered graph.

For i = 1, 2, we denote by PAi(X) the characteristic polynomial, Sp(Ai) the spectrum and
V(Ai) the eigenvectors of Ai.

• Compute the eigenvectors of A1: PA1(X) = X(X+α3 +α2 +α+1). Then Sp(A1) =
{0, α3 + α2 + α+ 1} and

V(A1) =
{
λ1

(
α2 + α

1

)
, λ2

(
α3 + 1

1

)}
λ1, λ2 ∈ GF(16)

• Compute the eigenvectors of A2: PA2(X) = X(X+α3 +α2 +α+1). Then Sp(A1) =
{0, α3 + α2 + α+ 1} and

V(A2) =
{
λ3

(
α3

1

)
, λ4

(
α2 + α+ 1

1

)}
λ3, λ4 ∈ GF(16)

It follows that A1 and A2 do not admit any common eigenvector. As a conclusion the
transition function related to the LPV-based SSSC is not conjugate to a T-function.

2.5.2 Example 2

The following example is to show how we can apply the STA algorithm 1 on a set of matrices
Pρ(k:k+r), obtained from a graph that generates a flat system, to show that the set is not
simultaneous triangularizable. For that, we show that there exist two instances of Pρ(k:k+r),
that do not have a common eigenvector. The LPV system is of dimension n = 6, relative degree
r = 3. The matrix Pρ(k:k+3) is obtained from the graph on Figure 2.10. For each k ∈ N, the
entries of Pρ(k:k+3) are given by polynomials ϕji : Fs −→ F, with F = GF (16). The expression
of Pρ(k:k+3) is given by:
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Pρ(k:k+6) =



ϕ1
1 ϕ2

1 ϕ3
1 ϕ4

1 ϕ5
1 ϕ6

1

1 ϕ2
2 ϕ3

2 0 ϕ5
2 ϕ6

2

0 1 0 ϕ4
3 ϕ5

3 ϕ6
3

0 0 ϕ3
4 ϕ4

4 0 0
0 0 0 ϕ4

5 0 0
0 0 0 ϕ4

6 ϕ5
6 0


v0 v1 v2 v4 v5 v6v3

Figure 2.10: Graph structure related to the matrix P(ρ:k+6)

As ϕji take its values in F, it suffices to produce two instances of P(ρ:k+6) and show that
these two instances do not share a common vector.
For example, consider the following two instances of P(ρ:k+6):

Pρ(k1) =


α3+1 0 α3+α2+α+1 α+1 α2 α3+α2+α

1 α3+1 1 0 α3+α2+α 0
0 1 0 α2+α α3+α2 α3+α2+1
0 0 α 0 0 0
0 0 0 α3+α2+1 0 0
0 0 0 0 α+1 0


and

Pρ(k2) =


α3+α2+α+1 α3 α3+α2+α+1 α3+α+1 1 α2

1 α2+α+1 α3+α2+1 0 α3+α2+α 0
0 1 0 α3+α2+α+1 α2+α α3+α2+1
0 0 α2 0 0 0
0 0 0 α+1 0 0
0 0 0 α2 α2+α+1 0


it can be checked that the only eigenvalue of Pρ(k1) is zero which eigenspace is spanned by the
vector v = (1, α, 0, 0, 0, α3). But v is not an eigenvector of Pρ(k2).
Indeed, Pρ(k2) × v = (α3 + α, α3 + α2 + α + 1, 0, 0, 0, 0). The characteristic polynomial of the
matrix Pρ(k2) is not split on F and its eigenvalues belong to an extension of F.

2.6 Test platform and specifications

The graph approach used to derive a flat LPV system provides a convenient way to design
an SSSC with arbitrary size of the internal state. Let us recall that the size of the SSSC
internal state is the dimension n of the LPV system. From a practical point of view, a large
dimension must be chosen to allow a sufficiently complex architecture for the sake of security.
The proposed graph-based approach is well suited to deal with high dimensions. The dimension
n = 40, which is compatible with security issues has been tested with success on an arduino
MEGA 2560 card (see Figure 2.12). Indeed, as the internal state components are 4-bit size, a
dimension 40 would provide a security level of 80 bits against time-memory trade-off attack.

The relative degree is given by r = 3. The choice of the value of the relative degree r is such
that, the powers of the matrix Pρ(k:k+r) offer a good diffusion delay. By definition the least
value s0 such that the matrix P s0

ρ(k:k+r) does not have any zero coefficient is called diffusion delay
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[4, 10], where P s0
ρ(k:k+r) stands for the power of Pρ(k:k+r) to s0. Another crucial point concerning

the relative degree is the increase in the algebraic degree of the polynomial coefficients of the
powers of the matrix Pρ(k:k+r). The higher the value of r and the faster the increase of the
algebraic degree. However, according to (1.9), a higher value of r would make the computation
of the coefficients of Pρ(k:k+r) prohibitive for hardware implementation, since this computation
involves products of S-Box. A value r = 3 provides a better compromise diffusion delay and
coefficients complexity of the matrix Pρ(k:k+r).

The number of edges is given by na = 782, that is the number of non-zero coefficients in the
matrix Aρ(k) minus 1. Hence, we set 80 coefficients of the matrix Aρ(k) as variable coefficients
(or polynomial coefficients) that correspond to the same S-Box parametrized by 4-bit secret
keys. Then, the subkeys size is 320 bits. The remaining 701 non-zero coefficients of the matrix
are set to 1. The S-Box is defined as the inverse function on the Galois field GF (16) plus α2

that is x 7−→ 1
x

+ α2 where α is a primitive element of GF (16).
Figure 2.11 illustrates the required number na of edges (that is the number non-zero coeffi-

cients) to avoid coefficients equal zero in the matrix Pρ(k:k+r) after n iterations.

Figure 2.11: Non-zero diffusion delay probability with respect to the number na of non-zero
coefficients in the inverse transition matrix Pρ(k:k+3).

We do not provide the complete specification here. The test platform is made of three wired
arduino MEGA 2560 card.
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Figure 2.12: Arduino mega 2560 card

The supervisor depicted in Figure 2.13 describes the interconnection between the cards.
Card 1 and card 3 are wired to temperature sensors that collect the plaintext data. Those
cards can encrypt the data and send them to the card 2 that decrypts them. The platform also
allows to perform desynchronization between the cards by setting randomly the internal state
of the card that plays the role of cipher. It is also possible to alter the ciphertext that is sent
to the decipher: this also produces a desynchrozination. However there is a maximum delay of
40 iterations to reach a resynchronization between the cards.

2.7 Conclusion

A systematic and general construction of Self Synchronizing Stream Ciphers based on flat Linear
Parameter Varying (LPV) dynamical systems has been proposed. It is based on algebraic
conditions guaranteeing flatness of the LPV system and so the self-synchronizing property,
those conditions being interpreted in terms of the structure of the graph associated to the LPV
dynamical system. It has been shown that such an approach allows to enlarge the existing
classes of SSSC, more precisely, to obtain non triangular SSSC. Two control-theoretical issues
have been treated to this end: as a new paradigm, the construction of flat dynamical systems
and the notion of mortality.
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Figure 2.13: Supervisor
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Chapter 3

Spectral Approach for
Correlation Power Analysis

This chapter provides a new approach to perform Correlation Power Analysis (CPA) attack.
Power analysis attacks are side channel attacks based on power consumption measures on a
device running a cryptographic algorithm with a CMOS-technology-based circuitry. Unlike
most of CPA attacks that are based on statistical attacks, we propose a new approach based on
spectral analysis. The interest lies in the reduction of the attack complexity. The complexity is
quasi linear in the size of the table of values of the S-Box whereas it is quadratic with statistical
attacks. It is shown that it can be easily extended to a so-called multidimensional attack. The
results in this chapter are published in [50].
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3.1 Introduction

The Correlation Power Analysis (CPA) is a method that allows to recover the secret information
(usually the secret key) embedded in the silicon of an electronic component [18]. It consists in
measuring the power consumption while running operations that involve the secret information.
This method has been introduced in 2004 by researchers of Gemplus Company (Eric Brier,
Christophe Clavier and Francis Olivier) in [18]. The attack follows the work of Paul Kocher
proposed in 1999 [67]. The electric circuits that perform the computation in the processor are
designed from a technology known as CMOS (Complementary Metal Oxide Semiconductor) [5].
A general description of this technology is provided in [73]. The outcome of CMOS architectures
(see Figure 3.1) lies in fast transitions but, on the other hand, they are sensitive to power
consumption or electromagnetic leakage.

Power analysis attacks are based on the general principle that the instantaneous power
consumption of a cryptographic device, based on CMOS technology, depends on the data it
processes and on the operation it performs [77]. During a symmetric encryption, those oper-
ations are in general processed by a nonlinear function called S-Box parametrized by a secret
parameter [33, 1]. Usually, CPA attacks computes a Pearson correlation coefficient for each sub-
key hypothesis that leads to a quadratic overall complexity [100, 91]. The attack can be applied
to any encryption algorithm involving S-Boxes. This is usually the case of Self-Synchronizing
Stream Cipher whose next-state transition function involves an S-Box and that guarantees con-
fusion properties. To show the feasibility of the attack, we experiment it on the AES S-Box
and the LPV-based SSSC that we have designed.

3.2 Preliminaries on Spectral Analysis

Having in mind a CPA attack based on spectral considerations, preliminaries on Fourier analysis
must be recalled. It is worth pointing out that the suggested attack is based on a power
consumption measurement on a component that processes binary data as input. Hence, the
measurement can be modeled as a real-valued function over the set of binary words. This
section is devoted to prerequisites on Fourier analysis of this class of functions.

Let Φ be the set of real valued functions over the set of n-dimensional binary words:

Φ =
{
ϕ : {0, 1}n → R

}
For any two functions ϕ and ψ in Φ, let us define the scalar product of ϕ and ψ as:

〈ϕ,ψ〉 =
∑

x∈{0,1}n
ϕ(x)ψ(x).
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This scalar product is a symmetric bilinear form that confers to this set the structure of a
2n-dimensional Euclidean vector space over R.

The norm associated to this scalar product is:

‖ϕ‖ =
√
〈ϕ,ϕ〉 =

√ ∑
x∈{0,1}n

ϕ(x)2

The norm of a function ϕ in Φ is called the energy of ϕ.
The well-known Cauchy-Schwarz inequality holds:

∀ϕ,ψ ∈ Φ,
∣∣〈ϕ,ψ〉∣∣ ≤ ‖ϕ‖ × ‖ψ‖ (3.1)

where
∣∣·∣∣ stands for the absolute value.

The canonical basis of the space Φ is the family of characteristic functions of singletons
which are by definition, for all vectors u ∈ {0, 1}n, the functions denoted by δu and defined by:

δu : x 7→

{
1 if x = u

0 otherwise
(3.2)

This basis is clearly orthonormal according to the above scalar product.
Each function ϕ ∈ Φ can be expressed in this basis as:

ϕ =
∑

u∈{0,1}n
ϕ(u)δu.

Another basis of the space Φ is the basis of the so-called Walsh functions.

Definition 3.2.1 (Walsh functions [49]) The Walsh functions are the functions of Φ defined
for any u ∈ {0, 1}n by :

χu : x 7→ 1√
2n

(−1)u·x

where x · u = u1x1 + u2x2 + · · ·+ unxn is the dot product over the space Fn2 of n–dimensional
binary words over the two elements field F2.

The Walsh functions are pairwise orthogonal. They are presented here with a normalization
coefficient equal to 1/

√
2n such that they provide an orthonormal basis as stated in the following

proposition.

Proposition 3.2.1 The family (χu)u∈{0,1}n of Walsh functions is an orthonormal basis of Φ.

Proof. Let u and v be two n-dimensional binary vectors. One has:

〈χu, χv〉 = 1
2n

∑
x∈{0,1}n

(−1)x·(u+v).
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If u = v then u+ v = 0. The above sum has 2n terms, all equal to 1. Then 〈χu, χu〉 = 1.
If u + v 6= 0, it has a non-zero component. Let ui + vi be this component. Then, the sum

over all the vectors x for which xi = 0 is the opposite of the sum over all the vectors x for which
xi = 1. It results that if u 6= v then 〈χu, χv〉 = 0. �

This family allows to express any function ϕ ∈ Φ in the basis of Walsh functions

ϕ =
∑

u∈{0,1}n
〈ϕ, χu〉χu.

Definition 3.2.2 (Fourier Transform) The Fourier spectrum of ϕ ∈ Φ is the family of coef-
ficients

(
〈ϕ, χu〉

)
u∈{0,1}n , of the expression of ϕ in the basis of Walsh functions, and the Fourier

transform of ϕ is the function in Φ defined on {0, 1}n as:

u 7→ ϕ̂(u) = 〈ϕ, χu〉 = 1√
2n

∑
x∈{0,1}n

ϕ(x)(−1)u·x.

The Fourier transform expresses a change of basis. Thus, the transformation is linear.
Moreover, it is isometric as stated in the following proposition.

Proposition 3.2.2 For any functions ϕ and ψ in Φ, one has:

〈ϕ,ψ〉 = 〈ϕ̂, ψ̂〉.

Proof.

〈ϕ̂, ψ̂〉 =
∑

x∈{0,1}n

1√
2n

∑
u∈{0,1}n

ϕ(u)(−1)u·x 1√
2n

∑
v∈{0,1}n

ψ(v)(−1)v·x

By inverting the summation order, it follows that

〈ϕ̂, ψ̂〉 = 1
2n

∑
u∈{0,1}n

∑
v∈{0,1}n

ϕ(u)ψ(v)
∑

x∈{0,1}n
(−1)(u+v)·x.

As this latter sum equals 2n if u = v and equals 0 elsewhere, the result holds. �

As a direct consequence of this proposition, it follows that for all functions ϕ in Φ, the
so-called Parseval equality holds (see [22])) and expresses the energy conservation law:

‖ϕ‖ = ‖ϕ̂‖ (3.3)

Proposition 3.2.3 (Effect of a translation [50]) For any vector a in {0, 1}n, let τa : t 7−→
t+ a be the translation of vector a. Let ϕ be a function in Φ, then for all vectors u ∈ {0, 1}n,
one has:

ϕ̂ ◦ τa(u) = (−1)u·aϕ̂(u).
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Proof.

ϕ̂ ◦ τa = 1√
2n

∑
x∈{0,1}n

ϕ(x+ a)(−1)u·x = 1√
2n

∑
y∈{0,1}n

ϕ(y)(−1)u·(y+a)

= (−1)u·aϕ̂(u) (3.4)

�

Proposition 3.2.4 (Fourier Transform of a constant [50]) Let k ∈ {0, 1}n. The Fourier
transform of the constant function x 7−→ k is:

k̂ = k
√

2nδ0.

Proof. By definition,

k̂(u) = 1√
2n

∑
x∈{0,1}n

k(−1)u·x = k√
2n

∑
x∈{0,1}n

(−1)u·x.

The latter sum equals 2n if u = 0 and 0 elsewhere, and the result holds. �

3.3 Modelling the Attack

3.3.1 Physical principles

Nowadays, digital circuits are often designed with CMOS (Complementary Metal Oxide Semi-
conductor) technology. The main characteristic lies in the output stage of the logical gates
that involves a pair of Field Effect Transistors (FET) with opposite polarity. The transistors
are combined symmetrically (push-pull architecture) such that they switch between two states:
on and off. The outcome of such architecture is that in a steady state mode, the current
consumption is almost null. On the other hand, when the output state of a gate changes, a
parasitic capacitor discharges in the complementary parasitic capacitor. This leads to power
consumption while a transition occurs.

As a consequence, the following assumption, which is the core idea of CPA is well-admitted:

Assumption 1 The power consumption of CMOS circuit is proportional to the number of logic
gates that switch [5].

From this assumption, two models of consumption can be considered: the Hamming weight
model and the Hamming distance model [18]. For a given calculus, the first model assumes
that the gates switch from the state 0 to the result of the calculus. It turns out that the model
is well suited for software implementations. The second model assumes that the gates switch
from an initial state that corresponds to the former calculus result to the state corresponding
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Figure 3.1: CMOS technology

to the result of the current calculus. It turns out that this model is more suitable for hardware
implementations.

3.3.2 Target of the Attack

Many symmetric ciphering algorithms such as DES [33] or AES [1] for instance are based
on alternate stages of linear and nonlinear calculations. The nonlinear stage is most often
implemented in the form of S-Boxes, each of one corresponding to a nonlinear function f from
{0, 1}n to {0, 1}m, whose input is the exclusive or (XOR) of a data d ∈ {0, 1}n and of an
unknown secret subkey k? ∈ {0, 1}n, and returns a quantity y ∈ {0, 1}m, that is

y = f(d+ k?).

Many strategies exist and allow to recover the secret key k?. A well know approach provided
in [73] is based on statistical means and uses Pearson correlation coefficients.

3.3.3 General CPA approach

The strategy used in the CPA attack consists of performing the attack in 5 steps [73] as illus-
trated in Figure 3.2.:

Step 1: choose intermediate result of the executed algorithm and hypothetical keys

Step 2: measure the power consumption and record the traces

Step 3: calculate hypothetical values from the intermediate values

Step 4: mapping the hypothetical values to power consumption values

Step 5: correlate the hypothetical power consumption values with the power traces.
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d1

d2

...

dD

plaintext or
ciphertext

k1 k2 · · · kK Key hypotheses

cryptographic
algorithm

y11 y12 · · · y1K

y21 y22 · · · y2K

...
yD1 yD2 · · · yDK

Hypothetical
intermediate

values
yij = f(di + kj)

power model

h11 h12 · · · h1K

h21 h22 · · · h2K

...
hD1 hD2 · · · hDK

hi,j = H?(yi,j)
Hypothetical

power
consumption

(Hamming-weight or Hamming-distance model)

t11 t12 · · · t1N

t21 t22 · · · t2N
Measured

power traces
...

tD1 tD2 · · · tDN

statistical
analysis

r11 r12 · · · r1N

r21 r22 · · · r2N

...
rK1 rK2 · · · rKN

Pearson
correlation Result

Figure 3.2: Block diagram of the different Steps of a general CPA attack.

In Step 1, the adversary chooses D random values (d1, d2, . . . , dD) (plaintext or ciphertext)
that will be used as input of the executed algorithm. He also chooses hypothetical values of
keys k1, . . . , kK that will be correlated to the right key k?.

In Step 2, the adversary records, using an oscilloscope, the power consumptions or traces
related to each random value di. Each trace is made of N samples and is denoted by
ti,j , i = 1, . . . , D, j = 1, . . . , N . This provides a matrix T = (ti,j).

In Step 3, for each random value di and hypothetical key kj , the adversary computes
hypothetical values yi,j = f(di + kj).

In Step 4, the adversary computes hypothetical power consumption values hi,j using either
the Hamming weight or Hamming distance model, with hi,j = HW(f(di + kj)) in the case of
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Hamming weight model or hi,j = HD(f(di + kj)) in the case of Hamming distance model.
This provides a matrix H = (hi,j).

Finally in Step 5, the adversary correlates column by column the entries of the matrices H
and T above by applying Pearson correlation (3.5) formula.

We recall that for two random variables X = (X1, . . . , XD), Y = (Y1, . . . , YD) the Pearson
correlation formula is given by:

ρ(X,Y ) =

D∑
i=1

(Xi − X̄) · (Yi − Ȳ )√√√√ D∑
i=1

(Xi − X̄)2 ·
D∑
i=1

(Yi − Ȳ )2

(3.5)

where X̄ corresponds to the mean of the random variable X.
In Step 5 the adversary computes then the correlation coefficients related to each hypotheti-

cal key value: ri,j = ρ(H.,i, T.,j), i = 1, . . . ,K, j = 1, . . . , N , where H.,i and T.,j are respectively
the column i of H and the column j of T . The secret key k? is recovered from the values of ri,j .
For example, if ki0 is a right hypothesis key for an index i0, then the values ri0,j , j = 1, . . . , N
or their mean are higher (i.e exceed a threshold value) than the other correlation coefficients
ri,j , i 6= i0.

In this chapter, the spectral approach based on Fourier transform allows to recover the
secret key k? without computing Pearson coefficient, but only to estimate the relevance of the
secret key that had been found. For that, we try to minimize the value of the error related to
the measurement of the power consumption or to the accuracy of the leakage model. In the
sequel we will consider the Hamming-Weight model for the leakage, as we are concerned with
software implementation. Indeed the implementation is realized on smart card based on an
AVR processor.

3.3.4 Spectral Approach

Like in the general case, the attack consists in performing ciphering operations with various
random inputs d1, d2, . . . , dD, chosen by the adversary, then, measuring the power consumption
during the calculation and finally, trying to infer the values of the secret subkey k?. In the
sequel we will denote the known data by d. Having in mind a smart card software implemen-
tation, according to the discussion in Section 3.3.1, the first model of leakage will be hereafter
considered and Assumption 1 applies. Let us notice that this is not restrictive because it is
easy to adapt the proposed attack to the second model. Thus, for a given calculus of an S-Box
with input d and secret subkey k?, the power consumption is proportional to the quantity ϕ(d)
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which admits the following expression:

ϕ(d) =
m∑
i=1

fi(d+ k?) + ε(d) + C, (3.6)

where:

• the first term is the model leakage, i.e. the Hamming weight of f(d+k?), with fi the i-th
Boolean component of the function f

• the second term is a random noise denoted ε(d). This noise is due to errors in measurement
and also on the accuracy of the model

• the third term is a constant C that corresponds to the power consumption of the device
which does not depend on d.

Let g be the function d 7→
m∑
i=1

fi(d). Equation (3.6) is rewritten as:

ϕ(d) = g(d+ k?) + ε(d) + C.

However, the subkey k assumed by the adversary may not be equal to the right secret key k?

and the leakage model may not be the right one. Hence, we must introduce an error depending
in particular on k. It is denoted by εk(d) and is defined as:

εk(d) = ϕ(d)− g(d+ k)− C. (3.7)

In an ideal situation, that is no noise, no mismatch, and in particular when k = k?, it should be
zero for any d ∈ {0, 1}n. Hence, we can define the objective of the attack as finding the value
of k which minimizes the quadratic error

E(k)2 = ‖εk‖2 =
∑

d∈{0,1}n
εk(d)2.

Based on Parseval’s Equality (3.3), the problem is equivalent to find k which is solution to:

arg min
k

E(k)2 =
∑

u∈{0,1}n
ε̂k(u)2 (3.8)

In the following, it is shown that a spectral approach to solve Equation (3.8) will be relevant
in terms of complexity of the underlying attack.

By applying the Fourier transform to Equation (3.7), it comes, for all vectors u ∈ {0, 1}n :

ε̂k(u) = ϕ̂(u)− (−1)u·kĝ(u)− C
√

2nδ0(u). (3.9)
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The interest of considering the Fourier transform is that discarding the value at the zero
vector eliminates the last term which corresponds to the consumption that does not depend on
the value of d. Hence, we define the functions ϕ̂? and ĝ? by zeroing the value at the zero vector,
that is:

ϕ̂?(u) =

ϕ̂(u) if u 6= 0

0 otherwise
and ĝ?(u) =

ĝ(u) if u 6= 0

0 otherwise
(3.10)

then finding a solution k of Equation (3.8) is equivalent to finding a solution k of

arg min
k

E(k)2 =
∑

u∈{0,1}n

(
ε̂?k(u)

)2 (3.11)

with
ε̂?k(u) = ϕ̂?(u)− (−1)u·kĝ?(u).

Expanding the terms in E(k)2 yields

E(k)2 =
∑

u∈{0,1}n
ϕ̂?(u)2 +

∑
u∈{0,1}n

ĝ?(u)2 − 2
∑

u∈{0,1}n
ϕ̂?(u)ĝ?(u)(−1)u·k (3.12)

On the right-hand side, only the last term depends on k. Hence and finally, the problem is
to find a solution k to

arg max
k

F (k) (3.13)

with

F (k) =
∑

u∈{0,1}n
ϕ̂?(u)ĝ?(u)(−1)u·k. (3.14)

Remark 3.3.1 The function F is, up to a factor 1/
√

2n, nothing but the Fourier transform of
the function:

u 7→ ϕ̂?(u)ĝ?(u)

3.3.4.1 Assessing the estimation reliability

From the above section, we assume that the attacker can choose any d ∈ {0, 1}n and knows
the exact instant when the operation f(d + k) is performed. To circumvent such a difficulty
which arises in practice, an enhancement of the attack should be proposed. We must memorize
the consumption ϕ(d) during a sufficient large time window ∆t (see Figure 3.5) to guarantee
that the computation of f(d + k?) will be actually performed. The resulting signal is called
a trace (see Figure 3.6). A trace has to be measured for all 2n values of d. Let us denote
by ϕt(d) the consumption at time t for the input value d. For a finite number of sample
times t in the time window ∆t, an estimation k of the secret subkey k? is computed from
(3.13). However, if k? is not involved in the operation performed at this time or if k? is
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actually involved but k is not equal to k?, the estimation of the right subkey k?, that is the
result of (3.13) will not be reliable. Thus, it is required to find a way of assessing this reliability.

To this end, similarly as in Subsection 3.3.2, let us introduce the quantity defined as:

Ft(k) =
∑

u∈{0,1}n
ϕ̂?t (u)ĝ?(u)(−1)u·k. (3.15)

where

ϕ̂t
?(u) =

ϕ̂t(u) if u 6= 0

0 otherwise
(3.16)

For brevity, let us denote by gk the function d 7→ g(d + k). It is recalled that this function
stands for the leakage model. Let us denote by ĝk the Fourier transform of gk and with the
same motivation as in Subsection 3.3.2, let us introduce ĝk? as the Fourier transform of g?k
defined as

ĝk
?(u) =

ĝk(u) if u 6= 0

0 otherwise
(3.17)

which allows to disregard the zero vector. According to Proposition 3.2.3, for all n–dimensional
binary vectors u, we have that ĝk?(u) = (−1)u·kĝ?(u). Hence, Equation (3.15) can be rewritten
as

Ft(k) = 〈ϕ̂?t , ĝk
?〉 (3.18)

Hence, for every sample time t in ∆t, it is aimed at finding k, that is finding the solution of

arg max
k

Ft(k) (3.19)

Any time t leads to a possible estimation k of k?. It is then necessary to find at which time,
this value k is relevant, in other terms, the time where there is a highly matching of k with k?.

The scalar product Ft(k) being computed for all sample times t in ∆t, we must detect
peaks. The more the matching between the measure and the model, including the key k and
the higher the peaks. Hence, the orthogonality is a way of assessing the matching. However,
since the detection of the peaks requires a comparison of Ft(k) for all sample times t in ∆t, a
normalization must be done. To this end, we introduce the following quantity which will be
called reliability coefficient.

rt(k) = Ft(k)
‖ϕ̂?t ‖ · ‖ĝk

?‖
= 〈ϕ̂?t , ĝk

?〉
‖ϕ̂?t ‖ · ‖ĝk

?‖

Noticing that ‖ĝ?k‖ = ‖ĝ?‖, the reliability coefficient turns into

rt(k) = Ft(k)
‖ϕ̂?t ‖ · ‖ĝ?‖

, (3.20)
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with a normalization which is independent from k. According to Cauchy-Schwarz inequal-
ity (3.1) it follows that rt(k) ∈ [0, 1]

Finally, the attack consists in the following steps:
Steps 1 : for every sample time t in ∆t, find the solution k of (3.19);
Steps 2 : for every solution k associated to a given sample time t in ∆t, compute rt(k) (see
Equation (3.20)) and detect the peaks among all the rt(k) with t ∈ ∆t. Those peaks correspond
to the times where the key k? match with the solution k of Steps 1.

Remark 3.3.2 If the time where f(d + k?) is computed is exactly known, there is no need to
perform Steps 2.

Let us comment on the complexity of the attack. The Fourier Transform of the function
u 7→ g?(u) can be computed off-line once and for all from the S-Box table of the leakage
model. The Fourier transform ϕ̂?t must be computed from experimental data for every time t
in ∆t. For every time t in ∆t, according to Remark 3.3.1, Ft(k) is computed with the Fourier
transforms of the functions u 7→ ϕ̂?t (u)ĝ?(u) and looking for the value of k that maximizes
the function Ft. Finally, the peaks are detected by computing rt(k) (see Equation (3.20)).
The Fourier transform calculation can be carried out by using a fast algorithm. A simple
divide-and-conquer butterfly algorithm exists for that purpose and is called the Fast Fourier
Transform (FFT) (see for example [22]). The complexity of this algorithm equals n 2n, which
is quasi linear in the size of the table of values of the involved function. As a result, the overall
complexity of the attack is quasi linear in the size of the S-Box table.

Remark 3.3.3 It is worth pointing out that the quantity in Equation (3.20) is related to the
usual Pearson correlation coefficient (3.5). This coefficient is widely used to evaluate relation-
ship between data. Hence, it is a popular choice for statistical analysis when it comes to perform
CPA attacks. The Pearson correlation coefficient of the functions ϕ and ψ in Φ is then given
by:

c(ϕ,ψ) =
∑
x∈{0,1}n

(
ϕ(x)−mϕ

)
×
(
ψ(x)−mψ

)√∑
x∈{0,1}n

(
ϕ(x)−mϕ

)2 ×√∑x∈{0,1}n
(
ψ(x)−mψ

)2 , (3.21)

where mϕ and mψ are the means of functions ϕ and ψ,given by:

mϕ = 1
2n

∑
x∈{0,1}n

ϕ(x) and mψ = 1
2n

∑
x∈{0,1}n

ψ(x)

In other words, Pearson coefficient c(ϕ,ψ) can be expressed as:

c(ϕ,ψ) = 〈ϕ−mϕ, ψ −mψ〉
‖ϕ−mϕ‖ · ‖ψ −mψ‖
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As it can be noticed that ϕ̂−mϕ = ϕ̂?, and as the Fourier transform is isometric, it follows
that the coefficient given by Equation (3.20) is nothing but the Pearson correlation coefficient
of the functions ϕt and gk. Thus, it results that the value of k given by maximizing F (k) in
Equation (3.14) is the same value that maximizes the Pearson correlation coefficient of ϕ and
gk.

The interest of the spectral analysis lies in low complexity calculation but also in the fact
that it can be easily extended to a so-called multidimensional attack as explained in the next
subsection.

3.3.4.2 Multidimensional attack

When computing the value of f(d + k?) in a software device, the processor computes sequen-
tially: first d+ k? and later the value of f(d+ k?). Thus, the unknown k? is involved at least
twice within a sufficient time window ∆t. We call multidimensional attacks, the attacks that
take into account the consumption at several instants. It can be expected that more reliable
results can be obtained.

The two-dimensional attack is presented thereafter because it is the one which will be used
in the experiments presented in Section 3.4 but it is straightforward to generalize it to any
higher finite dimension.

Let us consider two instants t1 and t2. Let us denote by f1(d+k?) and f2(d+k?) the values
computed respectively at times t1 and t2. In our case, the function f1 is the identity since the
computation d + k? is considered and the function f2 is the S-Box implementing f(d + k?).
Let ϕ1 (resp. ϕ2) be the chip consumption at time t1 (resp. at time t2). We consider the two
dimensional vector of functions −→ϕ = (ϕ1, ϕ2) in a set Φ2 of functions {0, 1}n → R2. Let E1

the error value given by Equation (3.12) at time t1 and E2 be the error value at time t2. The
most likely value of k is the one minimizing the Euclidean norm of the two-dimensional vector
−→
E = (E1, E2). A direct computation shows that the value that minimizes this norm is the one
maximizing the value of

F (k) =
∑
u6=0

(
ϕ̂1(u)ĝ1(u) + ϕ̂2(u)ĝ2(u)

)
(−1)u·k,

where g1 and g2 are the sum of the components of f1 and f2. The leakage model at time t1 is
g1
k(d) = g1(d+ k) and at time t2 is g2

k(d) = g2(d+ k).
The scalar product to consider in Φ2 is the following:

∀−→ϕ = (ϕ1, ϕ2),
−→
ψ = (ψ1, ψ2) ∈ Φ2, 〈−→ϕ ,

−→
ψ 〉 = 〈ϕ1, ψ1〉+ 〈ϕ2, ψ2〉.
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The norm associated to this scalar product is:

∀−→ϕ = (ϕ1, ϕ2) ∈ Φ2, ‖−→ϕ ‖2 = ‖ϕ1‖2 + ‖ϕ2‖2.

Clearly, the multidimensional attack can be combined with the estimation approach de-
scribed above. Let −→ϕt be the two-dimensional power consumption vector at time t. Then
−→ϕt = (ϕ1

t , ϕ
2
t ), where ϕ1

t is the consumption at time t and ϕ2
t is the consumption at time

t + t2 − t1. The reliability coefficient between the power consumption (ϕ1
t , ϕ

2
t ) and the model

(g1
k, g

2
k) is required to assess the quality of the estimation. This reliability coefficient for the

estimated value k at time t is computed as :

rt(k) =
〈(ϕ̂1

t

?
, ϕ̂2

t

?
), (ĝ1

k

?
, ĝ2
k

?
)〉

‖(ϕ̂1
t

?
, ϕ̂2

t

?
)‖ · ‖(ĝ1

?
, ĝ2

?
)‖
,

where, for i ∈ {1, 2}, ϕ̂it
?

and ĝik
?

are obtained by discarding the value at the zero vector, as
in (3.10).

By using fast Fourier transform algorithm, the multidimensional attack complexity still
remains quasi linear in the size of the S-Box.

3.4 Experimental Results

The Challenge An ATMega 163 smart card, involving an 8-bit AVR type processor, has
been programmed to process a cipher operation that involves f(di + ki), where f is the AES
S-Box, the ki’s are 8-bit secret key elements previously introduced in the card, the di’s are 8-bit
parameters introduced in the card by the adversary. The operation + denotes the bitwise xor
of bytes. The challenge of the adversary is to retrieve the secret values ki by measuring the
smart card consumption during calculations. For this purpose, the adversary uses a test bench.

The test bench The test bench (see Figure 3.3) involves the smart card, a smart card reader
and an oscilloscope. The oscilloscope is a picoscope 5444b with a 200 MHz bandwidth and a
sample rate of 1GS per second. The pins of the smart card are connected to the oscilloscope
via an adapter. The chip consumption is measured through the potential drop at a resistor
connected between the Vss of the card and the ground (see Figure 3.4). All these devices are
driven by a computer that implements the attack algorithm.

3.4.1 Application of the attack on a simple S-Box

Experimental protocol The attack consists in recovering four secret keys k1, k2, k3 and
k4 during a time window when the card processes sequentially f(d+ k1), f(d+ k2), f(d+ k3)
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Figure 3.3: Test bench.

22Ω–

+

Figure 3.4: Schematic of the power consump-
tion measurement.

and f(d+ k4) for 256 values of d ranging from 0 to 255.

In all subsequent figures, the upper signal is the I/O signal corresponding to the data
exchanges and the lower signal is the chip consumption.

Figure 3.5 is an example of consumption trace and the corresponding consumption sig-
nal. The time window ∆t during the computation of the four successive operations f(d + ki)
(i = 1, . . . , 4) is the range of time when the 256 traces of consumption are memorized in the os-
cilloscope. The 256 trace records are each composed of 40 000 samples. Figure 3.6 is a magnified
part of the time window ∆t.

Figure 3.5: Whole data exchanges (up) and the corresponding consumption signal (down).

It is crucial to synchronize properly the 256 consumption traces. For this purpose, the
consumption traces are synchronised with the instant given by the first falling edge of the I/O
signal that follows the calculation.

For every sample t, t ∈ {1, . . . , 40 000} of each 256 traces, the values ϕt(d), d ∈ {0, . . . , 255}
are extracted. Then, for every t, t ∈ {1, . . . , 40 000}, the Fourier transform of ϕt is computed.
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Figure 3.6: Zoom on the time range ∆t highlighting the first falling edge of the card response
used for the synchronization of the traces.

The secret key ki is evaluated by maximizing the function F given by Equation (3.14). Finally,
for this value of ki, the correlation coefficient is computed according to Equation (3.20).

Experimental results Three distinct scenarios have been considered:

i) an attack when the card computes the exclusive or of the secret k and the data d, that is
the operation d+ k

ii) an attack when the card computes the output of the S-Box, that is the operation f(d+k)

iii) a two dimensional attack that combines the two previous attacks involving the operation
d+ k followed by f(d+ k)

Figure 3.7, Figure 3.8 and Figure 3.9 show the reliability coefficient rt(k) given by equa-
tion (3.20) with respect to the time t, for the three respective situations. The attack is successful.
Indeed, the correlation peaks correspond to the instants when the operations are actually per-
formed and with the right secret key ki. Let us notice that in Figure 3.7 and Figure 3.9, there
are ghost peaks. However, they can be easily disregarded since they correspond to k = 0. One
possible explanation is that the value of d is loaded in a register previously containing the zero
value.
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Figure 3.7: Correlation peaks that correspond
to scenario i).

Figure 3.8: Correlation peaks that correspond
to scenario ii).

Figure 3.9: Correlation peaks that correspond to scenario iii). The two-dimensional attack considers
the times instants t and t+ 4.2µs.

Remark 3.4.1 Note that in the case where no key is found during the analysis, we have low
correlation peaks as illustrated in Figure 3.10. This can happen when the traces are not well
synchronised.

Figure 3.10: Correlation peaks when no key is found.
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3.4.2 Application of the attack to the algorithm THE CASCADE
We consider the following cipher equation for a LPV-based SSSC that has be designed. The
plaintext at the discrete time k is denoted by mk and the ciphertext at discrete time k by
dk = xk[2]. We denote the S-Box by S and the subkeys by SKi, i = 0, . . . , 21.

xk+1[0] = S(dk + SK0) · xk[0] + S(dk + SK1) · xk[1] + S(dk + SK2) · xk[2] + S(dk + SK3) · xk[3]
+S(dk + SK4) · xk[4] + S(dk + SK5) · xk[5] + S(dk + SK6) · xk[6] +mk

xk+1[1] = xk[0] + xk[1] + S(dk + SK7) · xk[2] + xk[6]
xk+1[2] = xk[1] + xk[2]
xk+1[3] = S(dk + SK8) · xk[1] + S(dk + SK9) · xk[2]
xk+1[4] = S(dk + SK10) · xk[1] + S(dk + SK11) · xk[2] + S(dk + SK12) · xk[3]
xk+1[5] = S(dk + SK13) · xk[1] + S(dk + SK14) · xk[2] + S(dk + SK15) · xk[3]

+S(dk + SK16) · xk[4]
xk+1[6] = S(dk + SK17) · xk[1] + S(dk + SK18) · xk[2] + S(dk + SK19) · xk[3]

+S(dk + SK20) · xk[4] + S(dk + SK21) · xk[5]
(3.22)

Let us recall that, during the first and second iterations of the encryption, the ciphertext
x[2] depends only on the initial internal state x0. The plaintext mk influences x[0] at the first
iteration, x[1] at the second iteration and x[2] at the third iteration. Then the corresponding
ciphertext of mk is xk+3[2].

Considering the encryption algorithm THE CASCADE, each ciphertext and plaintext are
nibble (4 bits). Then we need 16 traces of power consumption. The measurements are performed
for traces with 100 000 samples in order to cover the whole encryption operations (3.22). Note
that unlike an attack on a simple S-Box, the inputs di, i = 1, . . . , D of the attack are plaintext
and the inputs of the S-Box which is targeted within the cipher function are ciphertext that
are produced by the encryption function.

To perform the measurement, we then generate several random plaintexts by applying the
coupon collector’s context solution [41]. Then in order to get 16 different values of ciphertexts,
we need to generate about 16 log(16) ' 37 random plaintexts. Then we encrypt these plaintexts
by measuring the power consumption during the encryption operations.

The correlation peaks obtained from the attack are illustrated in Figure 3.11.
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Figure 3.11: Correlation peaks when performing CPA attack on the encryption algorithm THE
CASCADE.

Let us comment on the result. The correlation peaks show that there is high correlation
even for times t where no calculation of S-Box is performed. And the attack returns wrong
secret keys for several times t. These wrong secret keys result from intermediate multiplication
operations that are performed during the encryption. Indeed, the operations can be also seen
as nonlinear operations f(d + k) where k is an unknown value. Note that the multiplication
operations are implemented in constant time operations. This makes it possible to synchronize
properly the different traces. Otherwise, the synchronization of the traces would be impossible
to achieve.

A solution to find the right secret keys, would be to synchronize the traces by considering
the power consumption within an interval of time ∆t that matches exactly with calculation of
the output of the S-Box. Which is actually difficult to achieve.

Note also that we have implemented the multiplication operations as constant time opera-
tion to make the attack easy, but in the case where these operations are not implemented in
constant time, it would be very complicated to perform the attack by any means since it will
be very difficult to distinguish times when multiplication operations and S-Box computation
are performed.

3.5 Conclusion

A new approach of CPA attack has been proposed. Unlike usual approaches based on statistical
analysis, a spectral approach has been provided. It is based on a correlation quantity derived
from the Fourier transform of the power consumption signals. The attack can be applied to any
algorithms that involve S-Boxes whose input is the exclusive or of data with a secret subkey. A
Hamming weight leakage model has been used. The interest is the complexity of the attack is
quasi linear in the size of the S-Box table. Furthermore, it has been shown that it can be easily
extended to a so-called multidimensional attack. The attack has been successfully applied to
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the AES S-Box, but was less effective on the SSSC THE CASCADE owing to intermediate
operations in the update function of the encryption.

70



Chapter 4

Security Proof of the Canonical
Form of Self-Synchronizing
Stream Ciphers

The exiting SSSC mentioned in Chapter 2 have an issue related to security: they had been either
totally broken (KNOT, ΥΓ, MOSQUITO, HBB, SSS) or partially broken (MOUSTIQUE).
Furthermore the attacks were performed by applying Chosen Ciphertext Attacks (CCA). From
this, a natural question is raised: can we expect the design of secure SSSC ? and if yes which
security level can we expect for this design ?

In this chapter, we tackle the problem of security of SSSC by considering their canonical
form. And we introduce a weaker property to characterize and study the indistinguishablity
security of SSSC. The results in this chapter are published in [38].
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4.1 Introduction

In this chapter, we derive a result on the security of the canonical form of the Self-Synchronizing
Stream Ciphers. Let us recall that the canonical form of the Self-Synchronizing Stream Cipher
(SSSC) is constituted by the combination of a shift register (Figure 4.1), which acts as a state
register with the ciphertext as input, together with a filtering function that provides the running
key stream. It had been shown in [35] that the canonical form of the Self-Synchronizing Stream
Cipher is not resistant against chosen ciphertext attack (IND-CCA security) but can reach
the resistance against chosen plaintext attack (IND-CPA security) provided that the filtering
function is pseudo random. We introduced a new family of functions in order to characterize
the security of the canonical SSSC from its filtering function. Those functions are called Weak
Pseudo Random Functions (WPRF) and provide a weaker property than pseudo-randomness.
A connection with the left-or-right indistinguishability (LOR-IND) is made. This property
provides a necessary and sufficient condition to characterize the indistinguishablity of SSSC.
The technical developments used to establish the security proof follow similar lines than those
used when dealing with block cipher symmetric encryption schemes.

4.2 Canonical Form of the Self-Synchronizing Stream Ci-
pher

4.2.1 Generalities on SSSC

A conventional way for designing an SSSC is to resort to a shift-register-like architecture, giving
the so-called canonical representation of the SSSC [76]. It has also been studied in [84]. We
recall the canonical representation as depicted in Figure 4.1 and the equations that characterize
the cipher and decipher respectively (see also 2.2.2.2 of Chapter 2):

cipher:

zk = σssθ (ck−1, . . . , ck−n)

ck = zk ⊕mk

decipher:

ẑk = σssθ (ck−1, . . . , ck−n)

m̂k = ẑk ⊕ ck
(4.1)

where n is the dimension of the shift register, σssθ : {0, 1}n → {0, 1} denotes the filtering
function parametrized by the secret key θ and for every instant t, mk ∈ {0, 1} is the plaintext
symbol, ck ∈ {0, 1} is the ciphertext symbol, zk ∈ {0, 1} is the key stream symbol. The quantity
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ẑk ∈ {0, 1} is the key stream symbol on the deciphering side and m̂k ∈ {0, 1} is the recovered
plaintext symbol.

It is worth pointing out that all the results are established here in the Boolean case but still
hold when considering any other finite alphabet.

ck−1

ck−n

...

ck−1

ck−n

...

ck

...
...σssθ σssθ

mk m̂k

zk ẑk

Figure 4.1: Canonical form of a SSSC. Left: the encryption. Right: the decryption.

The secret key θ corresponds to some suitable parameters that select the function σss among
a family of filtering functions. The dimension of the shift register is given by the integer n.
The key stream symbol zk is the output of the filtering function. It only depends on the
secret key θ shared by the emitter (encryption side) and the receiver (decryption side) and
on n past values of the ciphertext. The ciphertext ck is worked out from an exclusive or of
the plaintext symbol mk and of the key stream symbol zk, and is conveyed through the public
channel. Since the generator function σss shares, at the transmitter and receiver sides, the same
values, namely the n past ciphertexts, then the receiver recovers the plaintext when it properly
received the last n ciphertext symbols. Indeed m̂k = mk whenever ẑk = zk. Finally, the
vector qk = (ck−1, . . . , ck−n) stands for the internal state. Then, it is clear that the generators
synchronize automatically after a finite transient time of length n. As a result, the dimension
n of the shift register defines the synchronization delay of the decipher.

The SSSC model defined by Equations (4.1) and depicted on Figure 4.1 remains a concep-
tual model that can be implemented by different architectures resulting from different design
approaches. The state transition function is described by the shift register. It is very simple
and is secret key independent. Therefore, the security relies entirely on the security of the
filtering function. Maurer’s approach is suggested in [74] as an alternative.

4.2.2 Encryption/decryption mechanisms of SSSC

In order to assess the security level reached by the canonical SSSC, it is necessary to formally
define the encryption and the decryption mechanisms.

Setup. A random secret key θ is randomly chosen from the key space for both the encryption
and the decryption algorithms.
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Encryption. For encrypting a message m consisting of ` binary symbols, the steps are the
following:

1. Randomly choose an n-dimensional binary vector as an initial state q0 of the shift register.

2. Randomly choose n binary symbols to build the synchronization sequence and concatenate
it with the message to be encrypted yielding a binary sequence m0, . . . ,mn+`−1. The first
n symbols are those of the synchronization sequence, and the other ones are those of the
message to be encrypted.

3. For each symbol at instant k,

(a) Compute the keystream symbol as zk = σssθ (qk).

(b) Compute the ciphertext symbol as ck = mk ⊕ zk.

(c) Update the shift register state by shifting its components and feeding it by the
computed ciphertext symbol ck to obtain the next state qk+1.

Decryption. For decrypting the cryptogram consisting of n + ` binary symbols, the steps
are the following:

1. Initialize the shift register state to any arbitrary value, for example the n-dimensional
zero vector q̂0 = 0.

2. For each symbol at instant k,

(a) Compute the keystream symbol as ẑk = σssθ (q̂k).

(b) Compute the plaintext symbol as m̂k = ck ⊕ ẑk.

(c) Update the shift register state by shifting its components and feeding it with the
computed ciphertext symbol ck to obtain the next state q̂k+1.

3. The first n decrypted symbols from the synchronization sequence are ignored. The de-
crypted message consists of the ` last decrypted symbols.

It is easy to check from (4.1) that the decryption procedure recovers the message m when
encrypted with the same secret key θ.

4.3 Security Criteria on the Filtering Function

In this section, we first recall what a Pseudo Random Function is, and then we define a new
security criterion on the filtering function that characterizes the security of the SSSC.
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4.3.1 Pseudo Random Functions

A family of functions is said to be Pseudo Random Function (PRF), [46, 8], if it is compu-
tationally indistinguishable from the set of all the functions. This means that for polynomial
complexity adversaries, a Pseudo Random Function behaves as if it was a true randomly chosen
function.

The Pseudo Random property is assessed by the so-called PRF-game that involves an adver-
sary B, challenged to guess whether a given function is either a true random function, randomly
chosen from the set of all the functions, or is an element of the family. The entries of the algo-
rithm B are an integer n together with an oracle that, on request for an n-dimensional vector,
returns the value of the function.

The PRF-game. For the parameter n, let us consider a family of functions fθ : {0, 1}n →
{0, 1}, θ ∈ {0, 1}n. The steps of the game are the followings:

1. The oracle chooses a random bit b ∈ {rf,prf}. If b = prf (pseudo random world) then it
randomly chooses a function f = fθ in the family of pseudo random functions. If b = rf
(random world), it randomly chooses a Boolean function f in the set of all 22n Boolean
functions {0, 1}n → {0, 1}.

2. The challenger asks the oracle for the values of f(qi) for inputs q1, . . . , xη. The number η
of queries the challenger is allowed to perform is bounded by a polynomial in n.

3. After the η queries, the challenger must answer a binary value b̂ that means that the
challenger guesses that the chosen function was pseudo random (̂b = prf) or was purely
random (̂b = rf). If b̂ = b then the challenger wins.

The adversary B does not know in which world she plays: pseudo random or random
world? Let Prprf(B = prf) be the probability that B answers prf given that it plays in the
pseudo random world and let Prrf(B = prf) be the probability that B answers prf given that it
plays in the random world. In the first case, the answer of B is correct, and in the second case,
it is wrong. The advantage of B in the PRF-game is by definition:

Advprf(B) =
∣∣∣Prprf(B = prf)− Prrf(B = prf)

∣∣∣
A family of Boolean functions is said to be pseudo random if the maximum advantage of any

polynomial adversary is negligible. And a function of the real number x is said to be negligible
if it decreases faster that the inverse of any polynomial in x as x grows to infinity.

Remark 4.3.1 For a family of functions to be PRF, it is necessary that the number of its
elements increases faster than any polynomial in the security parameter n. If not, the exhaustive
search algorithm has polynomial complexity. In a cryptographic context, the secret key selects
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an element of the family. So, the key size must be greater than the logarithm of any power of
n. In practice, an n-bit long key is admissible.

4.3.2 Weak Pseudo Random Functions

In this section, we define a new family of functions with a weaker property than the pseudo
random functions defined in the previous section and that is more suitable to assess the security
of Self Synchronizing Stream Ciphers.

A Weak Pseudo Random Function, WPRF for short, is an element of a family of weak
pseudo random functions. Such a family is computationally indistinguishable from the family
of all functions. The WPRF property is defined by the so-called WPRF-game defined further.

Given a WPRF-family, the WPRF-game challenger is challenged to guess whether a given
function presented to her is either an element of the family or a random function. In order
to answer the challenge, the challenger can ask for help from an oracle. The difference with
PRF-game lies in the form of the requests to the oracle.

The WPRF-game. For the parameter n let us consider a family of functions fθ : {0, 1}n →
{0, 1}, θ ∈ {0, 1}n. The steps of the game are the following.

1. The oracle chooses a random bit b ∈ {rf,wprf}. If b = rf, then it randomly chooses a
function in the set of all 22n functions {0, 1}n → {0, 1}. Otherwise, if b = wprf, then it
chooses a random parameter θ that defines a random element f = fθ of the WPRF-family.
The oracle keeps secret the chosen bit and the goal of the challenger is to guess it.

2. The challenger asks the oracle for responses to requests. The input of the request is a
polynomial length string of bits m1 · · ·mk. The response of the oracle is the sequence of
couples

(
qi, f(qi)

)
i∈{0,...k}, where:

q0 is chosen at random by the oracle

for i = 1 to k, qi = (qi−1 << 1) +
(
mi ⊕ f(qi)

)
,

x << 1 denotes the left shift of the binary vector x by one and the symbol + stands for
concatenation.

3. After a polynomial number η of queries, the challenger answers a binary value b̂ ∈
{rf,wprf} which means that the function f chosen by the oracle is either random or
weak pseudo random.

Remark 4.3.2 The sequence of couples transmitted by the oracle at Step 2 corresponds exactly
to the parameters and the values of the canonical SSSC filtering function during the encryption
process of the message m. Given this sequence, the cryptogram is deduced by:

ci = mi ⊕ f(qi).
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Conversely, knowing the cryptogram of a given message, it is possible to infer the sequence
transmitted by the oracle. The parameter qi consists of the vector whose components are the
latter cryptogram symbols and the value is given by:

f(qi) = ci ⊕mi.

Remark 4.3.3 As the initial value is randomly chosen by the oracle, the challenger cannot
predict which parameters qi will be returned by the oracle.

The advantage of a challenger B in a WPRF game is defined in the same manner as in the
PRF game:

Advwprf(B) =
∣∣∣Prwprf(B = wprf)− Prrf(B = wprf)

∣∣∣.
4.3.3 Pseudo random functions are weak pseudo random functions

Proposition 4.3.1 ([38]) If a family of functions is pseudo random, then it is weak pseudo
random.

Proof. Given a family of functions F, one has to prove that if a challenger against the weak
pseudo random property of F exists, then a challenger against the pseudo random property can
be derived.

Let B a challenger against the weak pseudo random function family. We construct a chal-
lenger A against the pseudo random function family, that will act for B as a weak pseudo
random oracle. The precise definition of A is:

1. On request of a length k sequence m1 · · ·mk from B, the challenger A chooses a random
value q0 ∈ {0, 1}n, computes q1, . . . , qk as qi = (qi−1 << 1) + mi, asks the oracle for the
values f(qi) and transmits them to B.

2. After a polynomial number q of such queries, the challenger B answers. If B answers rf,
then A answers rf, and if B answers wprf, then A answers prf.

We now prove that the challenger A so constructed has the same advantage as the challenger
B. This follows from the fact that the challenger A gives the same answer as B. Thus A wins
at the same time as B. And yet, as A acts for B as a WPRF oracle, one has Prprf(A = prf) =
Prwprf(B = wprf) and Prrf(A = rf) = Prrf(B = rf). It follows that Advprf(A) = Advwprf(B), and
then, if B has a non negligible WPRF-advantage, then A has a non negligible PRF-advantage
too. �

4.4 Indistinguishability and Security Games

The framework used here to assess the security of SSSC is the one defined in [8] for symmetric
encryption schemes. The notions of security games is used within this framework. They are
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based on security concepts introduced by Goldwasser and Micali [47, 48]. The first concept
is the semantic security, which is a computational analogue to the Shannon perfect secrecy.
It means that an adversary cannot recover any bit of information of the plaintext from the
ciphertext. However, the semantic security does not allow to fluently deal with security proof.
This leads the authors in [47, 48] to define another concept known as indistinguishability which
better facilitates proving the security of practical ciphers.

In order to characterize the security of the SSSC, we need a variant of the indistinguishability
property known as the left-or-right indistinguishability which implies the indistinguishability
property against an adaptive chosen plaintext attack.

4.4.1 Indistinguishability and IND-game

A cryptographic scheme is said to be secure, in the sense of indistinguishability, if a polynomial
complexity algorithm has a negligible advantage in distinguishing from which of two messages
(m0 and m1 it has provided) is the cryptogram presented to it. This is formalized by the
so-called IND-game.

This game involves two players: an algorithm A called adversary or challenger, and an
oracle. The game consists of the following steps:

1. The challenger chooses two messages m0 and m1 and provides the oracle with them.

2. The oracle randomly chooses a binary digit b ∈ {0, 1}, encrypts the message mb and
returns the cryptogram to the challenger.

3. The challenger is challenged to guess the value of b, that is which of the two messages has
been encrypted. The answer of the challenger is a binary value b̂. The challenger wins if
b = b̂.

Before giving her answer, the challenger can be supported by the oracle to decrypt cipher-
texts the challenger chooses (Chosen Ciphertext Attack, CCA) or to encrypt plaintexts the
challenger chooses (Chosen Plaintext Attack, CPA). Of course, in a CCA attack, the challenger
is not allowed to request the decryption of the challenge it has received.

For any b and b̂ in the set {0, 1}, let Prmb(A = b̂) be the probability that the challenger A

answers b̂ given the ciphertext which corresponds to the encryption of the message mb. The
advantage of A in this IND-game is by definition:

Adv(A) =
∣∣∣Prm0(A = 0)− Prm1(A = 0)

∣∣∣.
As m0 and m1 are randomly chosen with the same probability 1/2, it holds that

Adv(A) =
∣∣∣2Pr(b = b̂)− 1

∣∣∣,
where Pr(b = b̂) denotes the probability that A wins.
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If the challenger answers at random, then her advantage is null. If it always wins, or always
looses, then her advantage equals 1.

A cryptographic scheme is defined by a security parameter, which is for example the key
size. Such a scheme is said to be IND-secure if the advantage of any polynomial challenger is
negligible. A cryptographic algorithm is said to be IND-CCA if it is IND-secure during a CCA
attack. It is said to be IND-CPA if it is IND-secure during a CPA attack.

For the canonical SSSC, the security parameters are the size of the shift register which
equals the number of inputs of the filtering function and the size of the secret key.

4.4.2 Left-or-right indistinguishability and LOR-IND-game

Likewise the IND-game, the LOR-IND-game, namely left-or-right indistinguishability is de-
scribed in [7]. It involves two algorithms: the challenger A and an oracle. The game consists
of the following steps:

1. First, the oracle randomly chooses a bit b ∈ {0, 1}.

2. The challenger sends to the oracle a polynomial number of queries in the form of couples
of messages (mi

0,m
i
1). The oracle encrypts either the message mi

0 or the message mi
1

depending on the bit b chosen during Step 1. It returns to the challenger the cryptogram
ci of the message mi

b.

3. After a polynomial number of queries, the challenger is challenged to guess the value of
the bit b chosen by the oracle. The response of the challenger is a binary value b̂ ∈ {0, 1}.
The challenger wins if b = b̂.

Likewise the IND-game, the advantage of a challenger A in the LOR-IND-game is defined
by:

Adv(A) =
∣∣Prb=0(A = 0)− Prb=1(A = 0)

∣∣
=

∣∣2 Pr(b = b̂)− 1
∣∣

A ciphering scheme is said to have the LOR-IND property if any polynomial adversary has
a negligible advantage in the LOR-IND-game.

The following proposition states that the left-or-right indistinguishability introduced above
is a stronger property that the indistinguishability against a chosen plaintext attack.

Proposition 4.4.1 ([38]) If a ciphering scheme reaches the LOR-IND-CPA property, then it
reaches the IND-CPA property.

Proof. By contraposition, assume that a challenger A against the IND-CPA property
exists. A challenger B against the LOR-IND property is constructed from A:
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1. The challenger A chooses a first couple of messages (m0
0,m

0
1) that she sends to B, and B

sends directly theses messages to the LOR-IND oracle.

2. When A asks B for the cryptograms of a chosen plaintext message mi, the algorithm B

sends to the LOR-IND-oracle the couple with twice the same message : (mi,mi). The
cryptogram returned by the oracle thus corresponds to mi whatever the random bit b
chosen by the oracle. This cryptogram is returned to A.

3. After a polynomial number of queries, the challenger A returns a guess b̂ for b, and B

returns the same value.

The algorithm B so defined simulates for A an IND-CPA-oracle, and the advantage of B
equals the advantage of A. Thus, if an adversary against the IND-CPA property exists, then an
adversary against the LOR-IND property exists too. By contraposition, if the ciphering scheme
is LOR-IND-CPA secure, then it is IND-CPA secure. �

4.5 Security proof of the canonical SSSC

4.5.1 IND-CCA security of the canonical SSSC

The ideal case for a canonical SSSC is when the filtering function is randomly chosen among
all the 22n Boolean functions. This ideal case is not realistic as it would imply an exponential
key size. However, even in this situation, the following property holds:

Proposition 4.5.1 ([38]) The canonical SSSC cannot reach the IND-CCA security

Proof. Actually, this is due to the fact that the cryptograms produced by an SSSC are
malleable. Indeed, they can be modified at their end without effect on the beginning of the
plaintext.

Consider the special situation when the challenger provides m0 = 0 · · · 0, the message that
only involves symbols 0, and m1 = 1 · · · 1, the message that only involves symbols 1. It receives
a cryptogram c. It modifies only the last symbol of the cryptogram and asks the oracle to
decrypt. If the answer of the oracle starts with a sequence of 0, then c is the encryption of m0

and if it starts with a sequence of 1, then c is the encryption of m1. Following this strategy,
the challenger always wins. That completes the proof. �

On the other hand, it is shown in next session that the canonical SSSC can reach the
IND-CPA security.

4.5.2 IND-CPA security of the canonical SSSC

The main result of this section is to prove that the WPRF property of the filtering function
characterizes the IND-CPA security of the canonical SSSC.
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Proposition 4.5.2 ([38]) A canonical SSSC reaches the LOR-IND security if and only if the
filtering function is WPRF-family.

Proof. We first prove that if the filtering function of a canonical SSSC is WPRF-family,
then the SSSC reaches the LOR-IND security. In order to prove this property, we prove that if
a polynomial adversary A exists against the SSSC, then we can deduce a challenger B against
the WPRF property of the filtering function. Let B be defined as follows:

1. B chooses a random bit b ∈ {0, 1}.

2. For each received couple of messages (mi
0,m

i
1), the algorithm B asks for the WPRF oracle

the sequence of bits mi
b and receives from the oracle the sequence

(
xik, f(xik)

)
. From this

sequence, B computes a cryptogram c that it sends to A.

3. After a polynomial times of queries, the adversary A answers a bit b̂ ∈ {0, 1}. If b = b̂

then B answers wprf, and if b 6= b̂ then she answers rf.

It must be shown that if the advantage of A is non negligible, then the advantage of B is
non negligible too. From the definition of B, its advantage is:

Adv(B) =
∣∣Prwprf(b = b̂)− Prrf(b = b̂)

∣∣.
In the WPRF world, the challenger B acts for A as a true ciphering oracle. Thus, the advantage
of A is:

Adv(A) =
∣∣2Prwprf(b = b̂)− 1

∣∣
≤

∣∣2Prwprf(b = b̂)− 2Prrf(b = b̂)
∣∣+
∣∣2Prrf(b = b̂)− 1

∣∣ (4.2)

The first term of the right hand side of the inequality (4.2) is twice the advantage of B. More-
over, as in the random world, the answers of the WPRF oracle are random, the answers of B
to A are random too. As a consequence, the answer of B is random and the second term in the
second member of inequality (4.2) is null. It follows that:

Adv(A) ≤ 2Adv(B),

which proves the expected result.
It remains to prove the reciprocal: if the canonical SSSC reaches the LOR-IND-CPA security,

then the filtering function achieves the WPRF property. By contraposition, it is equivalent to
prove that if a WPRF challenger exists against the filtering function, then a LOR-IND adversary
can be constructed against the canonical SSSC.

Given a WPRF challenger B, then a LOR-IND adversary is constructed as follows:

1. On each query mi from the challenger B, the adversary A generates a random binary
sequence ai and sends to the LOR-IND oracle the couple (mi, ai).

81



4. SECURITY PROOF OF THE CANONICAL FORM OF
SELF-SYNCHRONIZING STREAM CIPHERS

2. The oracle encrypts either mi or ai according to the value of a random bit b ∈ {0, 1}
chosen once and for all. The oracle returns to A the corresponding cryptogram ci.

3. From the received cryptogram ci, the adversary A computes the values of the filtering
functions used by the oracle, assuming that the oracle has encrypted the message mi, and
transmits the sequence of couples

(
xik, f(xik)

)
to B.

4. After a polynomial number of queries, the challenger B returns an answer: rf or wprf. If
B answers wprf, then A returns b̂ = 0 and if B answers rf, then A returns b̂ = 1.

If the LOR-IND oracle chooses b = 0, then its answers to B correspond to the encryption
of the binary sequences provided by A, and B acts as an oracle for A in the WPRF world.
Conversely, if the LOR-IND oracle chooses b = 1, and as the sequences ai are random, B acts
as an oracle for A in the rf world. As a consequence, the advantage of B in the LOR-IND game
equals exactly the advantage of A in the WPRF game and that achieves the proof. �

From the above propositions, the following result holds:

Corollary 4.5.1 ([38]) If the filtering function of a canonical SSSC is PRF, then it achieves
the IND-CPA security.

Proof. Assume that the filtering function of a canonical SSSC is PRF. From Proposi-
tion 4.3.1, it is WPRF. From Proposition 4.5.2, the canonical SSSC also achieves the LOR-IND
security, and finally, from Proposition 4.4.1, it achieves the IND-CPA security too. �

We can summarize all the security notions developed in this chapter by the following impli-
cations:

prf⇒ wprf⇔ LOR-IND-CPA⇒ IND-CPA

4.6 Conclusion

The cryptological complexity of the canonical form of the Self-Synchronizing Stream Cipher lies
in the filtering function. The maximum security is achieved when this function is a pure random
function. It has been shown that, even in this ideal case, this kind of cipher cannot reach the
IND-CCA security. This result consolidates the CCA attacks that have been performed on
existing SSSC [56, 30, 57]. This is due to the fact that the ciphertexts are malleable. Thus, the
maximum expected security is IND-CPA. In realistic implementation, the filtering is a pseudo
random function. We have proved that for such practical ciphers, the IND-CPA security can
be reached. The interest of the result lies in that it guarantees the existence of SSSC that can
be IND-CPA secure.

Finally, a weaker property than pseudo-randomness has been proposed. It had been called
WPRF. It allows to assess a stronger security level than indistinguishability, namely left-or-right
indistinguishability, against chosen plaintext attacks.
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Chapter 5

Matrix Representations of
Vectorial Boolean Functions and
Eigenanalysis

This chapter aims at giving a unified overview on the various representations of vectorial Boolean
functions, namely the Walsh matrix, the correlation matrix and the adjacency matrix. A
new representation called polynomial matrix is introduced. It is shown that those different
representations are similar. For a vectorial Boolean function with the same number of inputs
and outputs, an eigenanalysis of those representations is performed. It is shown how eigenvalues
and eigenvectors are related to the structure of the graph associated to this function. Also, we
give an example of LPV-based SSSC and, by considering the correlation matrix associated to
its state transition function, we show that it is not based on a T-function. To simplify the
reading of this chapter, the proof of the results are removed but can be found by the reader in
[37].
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5.1 Introduction

Vectorial Boolean functions [22] play an important role in cryptography as non-linear compo-
nents of symmetric algorithms [75]. They are also used in control theory to model discrete
dynamical systems [14]. Usual existing representations are presented such as the Walsh matrix,
the correlation matrix and the adjacency matrix (related to graph representations) [28] often
used in the analysis of cryptographic properties. Besides, we introduce a new representation
based on algebraic properties. We call this representation polynomial matrix.

It is shown that the representations describe the same function in different bases and
the bases are given explicitly. Then, the relations between these representations are proved.
For square matrices representing the vectorial Boolean functions, we perform the eigenanaly-
sis. Deep connections are established between the eigenvalues of those matrices, their related
eigenspaces and the structure of the graphs associated to the vectorial Boolean functions.

This chapter provides further results to the work of Parriaux’s Thesis [84]. They are useful to
classify different categories of state transition function of SSSC when considering the correlation
matrix of these functions. The results are also general and could be useful for people concerned
with theoretical aspects regarding vectorial Boolean functions and with practical applications
too. They are interesting in particular for cryptographic purposes.

5.2 Boolean functions representations

This section provides necessary prerequisites. The reader may refer to [22] for details. New
results are also presented here as important complements.
A Boolean function is a function from the vector space Fn2 to the set {0, 1}. Depending on
the context, the set {0, 1} is considered either as the two element field F2 (1 + 1 = 0) or as
a subset of the field C of complex number 1 + 1 = 2. We call such a function a (n)–function.
The various usual representations are the truthtable, the Fourier and the Walsh transform and
the polynomial representation. These are recalled below. It is clear that the convenience of a
specific representation depends on the properties it is expected to characterize.
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5.2.1 Fourier/Walsh transform

Let f be any complex-valued function on Fn2 . We recall from Definition 3.2.1 of Chapter 3
the Fourier transform of f denoted by f̂ , which is by definition the complex-valued mapping
Fn2 −→ C defined for u ∈ Fn2 by:

f̂(u) = 1√
2n
∑
x∈Fn2

f(x)(−1)x·u, (5.1)

where x · u = x0u0 + · · · + xn−1un−1 is the dot product of the two vectors x and u. This
transform is invertible and the inverse is given by:

̂̂
f = f (5.2)

And the Fourier transform is an expression of f in the orthogonal basis of the so-called Walsh
functions (see Definition 3.2.1), defined for all u ∈ Fn2 by:

χu :
Fn2 −→ C

x 7−→ 1√
2n

(−1)u·x. (5.3)

The expression of f in this basis is:

f =
∑
u∈Fn2

f̂(u)χu.

When f is represented by the vector corresponding to its truthtable, the Fourier trans-
form (5.1) also admits a matrix expression:

f̂ = Hf, (5.4)

where H is the so-called Hadamard matrix whose coefficient at row u ∈ Fn2 and column v ∈ Fn2
is:

Hu,v = 1√
2n

(−1)u·v. (5.5)

The Hadamard matrix H is invertible and its inverse is given by:

H−1 = H. (5.6)

As a result, it holds that
f = Hf̂

When dealing with Boolean functions, it is better to use the Walsh transform that has
nicer properties than the Fourier transform in most cases. The Walsh transform of a Boolean
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function f is the Fourier transform of its sign function fχ where fχ = (−1)f = 1 − 2f . The
Walsh transform of f is then the function f̂χ defined by:

f̂χ :
Fn2 −→ R

u 7−→ 1√
2n
∑
x∈Fn2

(−1)f(x)+x·u (5.7)

By applying the Parseval’s equality (3.3) to the sign function of Boolean functions, one has:

∑
u∈Fn2

[
f̂χ(u)

]2
=

∑
u∈Fn2

f̂χ(u)

2

= 2n (5.8)

5.2.2 Polynomial representations

This section is devoted to polynomial representations of (n)–functions. Two representations are
presented: Algebraic Normal Form (ANF) (see [71]) and Numerical Normal Form (NNF) (see
[24]).

Due to the equality, ∀a ∈ {0, 1} , a = a2, distinct polynomials may represent the same
Boolean function. In order to obtain the uniqueness of the representation, we only consider the
polynomials in the ring of multivariate polynomials whose exponents for each indeterminate
are at most one.

Let a and b be two elements of F2, it holds that ab = 1 if b ≤ a and ab = 0 elsewhere.
Polynomial representations are expressions of the function in the so-called basis of monomials
defined, for u ∈ Fn2 , by:

Fn2 −→ {0, 1}
x 7−→ xu

(5.9)

where
xu = xu1

1 · · ·xunn (5.10)

is called a monomial.

For any vector u in Fn2 , the support of u is defined by:

supp(u) =
{
i ∈ {1, . . . , n} | ui 6= 0

}
.

Definition 5.2.1 When x and u are two n–dimensional binary vectors, the notation x � u

means that the support of x is included in the support of u. The following equivalences holds:

x � u⇐⇒ ux = 1⇐⇒ ∀i ∈ {1, . . . , n} , xi ≤ ui. (5.11)
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5.2.2.1 Algebraic Normal Form (ANF)

Let us recall a multivariate polynomial representation of Boolean functions called Algebraic
Normal Form (ANF for short).

The ANF coefficients of a function f are, by definition, for u ∈ Fn2 ,

au =
∑
x∈Fn2

f(x)ux, (5.12)

where the sum is performed in the two-element field F2. They express the function f in the
basis of monomials as:

∀x ∈ Fn2 , f(x) =
∑
u∈Fn2

aux
u. (5.13)

5.2.2.2 Numerical Normal Form (NNF)

Let us recall another multivariate polynomial representation of Boolean functions called Nu-
merical Normal Form (NNF for short).

Unlike the ANF, the coefficients of the polynomial do not lie in the two element field F2

but in the field C of complex numbers. Notice that such a polynomial may not correspond to
a {0, 1} valued function.

The NNF coefficients of a complex valued function f are the complex coefficients of f
expressed in the basis of monomial functions. They are defined by:

f̃(u) =
∑
x∈Fn2

(−1)HW(x)−HW(u)f(x)ux =
∑

x∈Fn2 |x�u

(−1)HW(x)−HW(u)f(x), u ∈ Fn2

where HW denotes the Hamming weight function and the sum is performed in the field of
complex numbers. The expression of f in the basis of monomials is:

∀x ∈ Fn2 , f(x) =
∑
u∈Fn2

f̃(u)xu =
∑

u∈Fn2 |u�x

f̃(u) (5.14)

Likewise for the Fourier transform, a matrix relation exists between a function f described
by its truthtable and its NNF:

f̃ = Zf, (5.15)

where Z is a 2n-dimensional square matrix whose coefficient at row u ∈ Fn2 and column v ∈ Fn2
is given by:

Zu,v = (−1)HW(v)−HW(u)uv.
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x 000 001 010 011 100 101 110 111
fe(x) 010 100 001 101 010 101 010 110

Table 5.1: Truthtable of function fe

The matrix Z is invertible and the inverse is the so-called monomial matrix defined by:

Z−1 = M (5.16)

where the coefficient at row x ∈ Fn2 and column u ∈ Fn2 of M is given by Mx,u = xu. As a
result, one has f = Mf̃ .

5.3 Vectorial Boolean functions representations

A vectorial Boolean function is, by definition, a function from Fn2 to Fm2 . It can be considered
as a vector of m (n)–functions. We call such a function an (n,m)–function. Vectorial Boolean
functions have been extensively discussed in [23]. For any vectorial Boolean function f , it is
possible to define different matrix representations denoted by Af , Cf ,Wf , andPf . They are
respectively named adjacency, correlation, Walsh and polynomial matrices. For brevity, the
superscript of the matrices is omitted when the corresponding function is clear. Let fe be the
function defined by the table of values of Table 5.1. This function is used throughout the rest
of the paper to illustrate the results.

5.3.1 Adjacency matrix

The adjacency matrix of f is denoted by A. It is the expression of f in the basis of the
characteristic functions (δu)u∈Fn2 , defined by Equation (3.2).

Definition 5.3.1 (Adjacency matrix) Let f be an (n,m)–function. Its adjacency matrix
A is a 2n × 2m dimensional matrix for which each row indexed by x ∈ Fn2 is null except the
coefficient at the column y = f(x), which equals 1.

For example, the adjacency matrix of fe is:

Afe =



0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0


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The name adjacency matrix is inspired from graph theory [45]. When the number of inputs
equals the number of outputs, the function can also be represented by a labeled directed graph
G. Hereafter, we only consider directed graphs. Thus, for brevity but without any ambiguity,
we merely call them graphs. A graph is naturally associated to a (n, n)–function, where an arc
relates an input of the function to its image as defined below.

Definition 5.3.2 (Graph associated to a function (see [93])) Let f be an (n, n)–
function. The graph associated to f is defined by the set of vertices V = Fn2 and the set of arcs
E that are the ordered pairs (x, y) ∈ Fn2 × Fn2 such that y = f(x).

Now, let us recall some graph-theoretic terminology that is necessary in the further de-
velopment. Some notions of this terminology have also been defined in Chapter 1. For each
definition, the corresponding structure is illustrated for the function fe in Figure 5.1.

Definition 5.3.3 (Graph-related terminology (see [45]))

• An edge is an unordered pair of distinct vertices of the graph,

• An arc is a directed edge, i.e an ordered pair of distinct vertices. An arrow shows the
direction of the edge,

• A vertex x is said to be incident to a vertex y (or to be a preimage of a vertex y) if there
is an arc from x to y. The vertex 111 is incident to 110,

• The in-degree of a vertex is the number of vertices incident to that vertex. The in-degree
of vertex 000 is 0. The in-degree of vertex 010 is 3,

• The out-degree of a vertex is the number of vertices for which this vertex is incident to.
The out-degree of each vertex is 1, including vertex 101,

• A path is a sequence of vertices (x0, . . . , xk) such that, for each vertex, there is an arc
from xi to xi+1. The length of the path is the number of arcs involved in the sequence.
The sequence (110, 010, 001) is a path of length 2,

• A cycle is a path such that the starting vertex and the ending vertex are the same. The
sequence (010, 001, 100, 010) is a cycle of length 3,

• A junction is a vertex such that the in-degree is at least two. The multiplicity of the
junction is equal to the in-degree minus one. The vertex 101 is a junction of multiplicity
one. The vertex 010 is a junction of multiplicity two,

• The preimage set of a vertex is the set of vertices incident to that vertex. The preimage
set of the junction 010 is {000, 110, 100} and the preimage set of the junction 101 is
{011, 101},
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• A sink is a vertex with at least one incident vertex and such that it is not incident to any
other vertex but itself. Any sink defines a cycle of length one. The vertex 101 is a sink,

• A leaf is a vertex with no incident vertex. The vertices 000, 011 and 111 are the leaves of
the graph,

• A connected component is a set of vertices such that there is always a path (not
necessarily directed) that relates any two vertices of that set. The set of vertices
{111, 110, 000, 010, 100, 001} corresponds to one connected component and the set of ver-
tices {011, 101} corresponds to another connected component.

111 110 010

000 001

100 011

101

Figure 5.1: Graph associated to the function fe.

The claims in the following Remarks 5.3.1, 5.3.2 and 5.3.3 are straightforward:

Remark 5.3.1

• the graph associated to an (n, n)–function is such that there is one and only one arrow
starting from any of its vertices,

• the graph associated to a permutation contains neither leaf nor junctions,

• if a graph contains no leaf then it is the graph associated to a permutation and thus, it
contains no junction,

• if a graph contains no junction then it is the graph associated to a permutation and thus,
it contains no leaf.

Remark 5.3.2 As the set of vertices of the graph of a (n, n)–function is finite, the graph
contains at least one cycle.

Remark 5.3.3 If there is no leaf, then the graph is a union of cycles and it contains no
junction. Besides, each new leaf, either adds a new junction or increases the multiplicity of
an existing junction by one. As a consequence, the number of leaves equals the sum of the
multiplicities of the junctions.
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5.3.2 Walsh/correlation matrix

Correlation matrices have been defined in [28]. They are related to Walsh matrices by a mere
normalization coefficient.

Definition 5.3.4 (see [23]) The Walsh matrix of an (n,m)–function is the 2m × 2n dimen-
sional matrix W whose coefficients are defined at indexes u ∈ Fm2 and v ∈ Fn2 by:

Wu,v =
∑
x∈Fn2

(−1)u·f(x)+v·x. (5.17)

For all u ∈ Fm2 and all v ∈ Fn2 , the coefficient Wu,v is the number of times the Boolean
function x 7−→ u · f(x) equals the linear Boolean function x 7−→ v · x, minus the number of
times they differ.

For example, the Walsh matrix of the function fe is:

Wfe =



8 0 0 0 0 0 0 0
2 2 2 2 −2 −2 6 −2
0 −4 0 −4 4 0 −4 0
−6 −2 2 −2 2 −2 2 −2

0 8 0 0 0 0 0 0
2 2 2 2 −2 −2 −2 6
−4 0 −4 0 0 4 0 −4
−2 −6 −2 2 −2 2 −2 2


The row u ∈ Fm2 of the matrix W is the Walsh transform (up to a coefficient

√
2n ) of the

linear combinations of the coordinates of f defined by x 7−→ u · f(x), x ∈ Fn2 . The list of the
coefficients of the Walsh matrix of a function is called the spectrum of the function.

Definition 5.3.5 (see [28]) The correlation matrix of a (n,m)–function f is:

Cf = 2−nWf . (5.18)

Let us recall important results used further and which have been published in [86].
We are given an (n,m)–function g and a random variable X ∈ Fn2 whose value is described
by the probability law p : Fn2 −→ R that expresses the probability p(x) that X = x. We are
concerned with inferring the probability law q : Fm2 −→ R that describes the random variable
Y ∈ Fm2 defined by Y = g(X), q being defined by q(y) = Pr[g(X) = y]. Without any ambiguity,
the notation p (respectively q) refers either to the function or to the 2n (respectively 2m) column
vectors whose coordinate index x ∈ Fn2 (respectively y ∈ Fm2 ) has the value p(x) (respectively
q(y)).
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Proposition 5.3.1 (see [86]) Let g be an (n,m)–function and X be a random variable de-
scribed by the probability law p. Then the probability law q of the random variable Y = g(X) is
given by:

q = H−1CgHp. (5.19)

Remark 5.3.4 Let p̂ and q̂ be the respective Fourier transform of p and q as defined in Propo-
sition 5.3.1. It is also shown in [86] that

q̂ = Cgp̂ (5.20)

5.3.3 Reduced Walsh/correlation matrix

The reduced Walsh matrix is defined as follows.

Definition 5.3.6 (Reduced Walsh matrix) For a Walsh matrix W of dimension 2m × 2n,
its reduced matrix W ? of dimension (2m − 1)× (2n − 1) is the matrix deduced from W , where
the first row and the first column have been removed.

W ? =


W1,1 · · · W1,2n−1

...
...

W2m−1,1 · · · W2m−1,2n−1

 .

Remark 5.3.5 The same definition holds for the correlation matrix C.

It is interesting because it yields more homogeneous results. The purpose of the sequel is to
show that no information on f is lost with the reduced matrix, except for constant functions.

First, let us note that the first row of the correlation matrix always equals the 2n–dimensional
vector (2n, 0, . . . , 0). In the sequel, considerations on the first column are given.

Lemma 5.3.1 Let f be an (n)–function. Then, the quantity
∑

u∈Fn2 |u 6=0

f̂χ(u) is null if and only

if f is a constant function.

Lemma 5.3.2 An (n)–function f can be uniquely recovered from its last 2n − 1 Walsh coeffi-
cients provided that it is not a constant function.

Finally, we have the following result.

Proposition 5.3.2 ([37]) An (n,m)–function can be uniquely recovered from its reduced Walsh
matrix provided that it is not a constant function.
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5.3.4 Polynomial matrices

The extension of the NNF to an (n,m)–function gives rise to a 2m × 2n dimensional matrix
denoted with P . We call it the polynomial matrix of f , and the entry at row indexed by u ∈ Fm2
and column indexed by v ∈ Fn2 is defined by:

Pu,v =
∑
x∈Fn2

(−1)HW(x)−HW(v)f(x)uvx.

Note that the rows indexed by u ∈ Fn2 correspond to the NNF of the function fu and in
particular the rows for which HW(u) = 1 correspond to the NNF of the coordinate functions
of f . The matrix P expresses f in the basis of the polynomials, x 7−→ (−1)HW(x)−HW(v)vx,
v ∈ Fn2 . For example, the polynomial matrix of fe is

Pfe =



1 0 0 0 0 0 0 0
0 0 1 0 0 1 −1 −1
1 −1 −1 1 0 0 1 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 −2
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


In the same way as the ANF can be obtained by performing a modulo two reduction of the

NNF, we can define a modulo two reduction of the polynomial matrix P .

5.3.5 Reduced Polynomial matrix

Likewise for correlation matrix, we define the reduced form P ∗ of a polynomial matrix P

associated to an (n,m)–function f . Assuming that f is not constant, we will prove that f can
be recovered given the coefficients of P ?.

Definition 5.3.7 (Reduced polynomial matrix) For any polynomial matrix P of dimen-
sion 2m × 2n, its reduced matrix P ? of dimension (2m − 1)× (2n − 1) is the matrix deduced
from P , where the first row and column have been removed.

P ? =


P1,1 · · · P1,2n−1

...
...

P2m−1,1 · · · P2m−1,2n−1


The following lemma is similar to Parseval’s identity, and is based on the fact that for any

{0, 1} valued function f , one has
∑
x∈Fn2

f(x) =
∑
x∈Fn2

f2(x).
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Lemma 5.3.3 (see [49])
If f is a Boolean (n)–function then,∑

x∈Fn2

f(x) =
∑
x∈Fn2

∑
u∈Fn2

∑
v∈Fn2

f̃(u)f̃(v)xuxv. (5.21)

The next lemma expresses orthogonality between monomial functions.

Lemma 5.3.4 (see [49]) Let s, u ∈ Fn2 then,∑
x∈Fn2

(−1)HW(x)xsux =
∑

x∈Fn2 |s�x�u

(−1)HW(x)

=

(−1)HW(u) if s = u

0 else

In particular, for s = 0,
∑
x∈Fn2

(−1)HW(x)ux =

1 if u = 0

0 else.

As a straightforward consequence of Lemma 5.3.4 and relation (5.14), the following remark
holds.

Remark 5.3.6 A Boolean function f is constant if and only if, for all nonzero vector
u ∈ Fn2 , f̃(u) = 0.

Remark 5.3.7 From Lemma 5.3.2, it can be inferred whether a Boolean function is a constant
function or not, given its 2n − 1 Walsh coefficients at the nonzero vectors.

The following result acts as a counterpart of Lemma 5.3.1 for NNF. They have been published
in [37].

Proposition 5.3.3 The Boolean function f is non constant if and only if the quantity∑
u∈Fn2 |u6=0

f̃(u)2−HW(u) is non null.

Proposition 5.3.4 Let f be a non constant Boolean (n)–function such that all the NNF coef-
ficients are known except f̃(0). Then f can be entirely recovered.

We are now able to prove that the reduced matrix P ? is sufficient to get the whole polynomial
matrix P .

Proposition 5.3.5 An (n,m)–function can be recovered from its reduced polynomial matrix
coefficients, provided that it is not a constant function.
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5.3.6 Similarity relations between the matrix representations

We prove in this subsection, for m = n, similarity relations that relate the polynomial matrix P ,
the correlation matrix C = 2−nW and the adjacency matrix A (with complex coefficients). We
also show that, when the coefficients of the adjacency matrix A and of the polynomial matrix P
are considered in F2, there exists a similarity transform that relates them. This relation allows
to simplify the analysis of the eigenstructures of these matrices. This is typically the case for
the issue addressed in Section 5.4.

The result below allows to relate the correlation matrix (or the Walsh matrix) of a function
to the adjacency matrix of its graph.

Proposition 5.3.6 ([37]) Let f be an (n, n)–function, then its adjacency matrix A and its
correlation matrix C are related by:

A = H−1 CTH, (5.22)

where the matrix CT is the transpose of C and H is the Hadamard matrix (see (5.5)).

The result below allows to relate the polynomial matrix of a function to the adjacency
matrix of its graph.

Proposition 5.3.7 ([37]) Let f be an (n, n)–function, then, its polynomial matrix P and its
adjacency matrix A are related by :

P = M−1AM. (5.23)

where M is the monomial matrix defined by (5.16).

Remark 5.3.8 When they are reduced modulo 2, the entries of the matrices M and P can also
be considered as elements on F2, and then Proposition 5.3.7 still holds.

Considering Propositions 5.3.6 and 5.3.7 and taking into account the fact that a matrix and
its transpose are similar, we conclude that A,AT , P and C are similar matrices.

5.3.7 Matrix representation and composition

It has been noted in [28] that the correlation matrix of the composition of two functions is the
product of the correlation matrices of these functions. From Propositions 5.3.6 and 5.3.7, it is
clear that this property holds for the adjacency matrix and for the polynomial matrix. As a
result, the following proposition holds.

Proposition 5.3.8 ([37]) If f is a Boolean (n,m)–function and g is a (p, n)–function then,
the matrix representations of the composition f ◦ g, for the adjacency matrix A, correlation
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matrix C and polynomial matrix P , are given by:

Af◦g = AgAf (5.24)

Cf◦g = CfCg (5.25)

Pf◦g = PfPg. (5.26)

The following relations between matrix product and function composition also hold for
reduced correlation and polynomial matrices.

Corollary 5.3.1 If f is an (n,m)–function and g is a (p, n)–function then:

C?f◦g = C?fC
?
g (5.27)

P ?f◦g = P ?f P
?
g , (5.28)

where C?f (resp. P ?f ) denotes the reduced correlation (resp. the reduced polynomial) matrix of
f .

5.4 Eigenanalysis of the matrix representation

Let f be an (n, n)–function, the adjacency matrix A, the polynomial matrix P and the cor-
relation matrix C are square matrices. This section is devoted to the eigenanalysis of these
matrices. Due to the similarity relations, the eigenvalue analysis can be done on any of them.
The study of the eigenvectors depends on the matrix under consideration. However, as the
adjacency matrix has exactly one nonzero component equal to 1 per row, the study is easier on
this matrix. As explained in Section 5.3.1, it is possible to associate a graph G to the function f .
This section establishes connections between the eigenanalysis of the matrix representations of
a vectorial Boolean function and its graph representation.

We show that the eigenvalues of the representation matrices are directly related to the
number of cycles, to their length and to the number of leaves in the graph G. It has been
mentioned in Section 5.3.6 that, the adjacency matrix A can be considered either as a C-
valued matrix or an F2-valued matrix. The eigenanalysis below is performed in the field C of
complex number, and thus, the eigenvectors are 2n-dimensional complex vectors. Hence, each
eigenvector can be indexed by the vertices of the graph G associated to the function f , since
those vertices are elements of Fn2 .

Section 5.4.1 is devoted to eigenvalues. In section 5.4.2, we show how to determine the
corresponding eigenvectors of the adjacency matrix from the graph G of the function f .

5.4.1 Eigenvalues

Proposition 5.4.1 ([37]) The eigenvalues of the matrices A,P and C are either zero or roots
of unity.
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The following proposition makes a connection between the eigenvalue zero and the leaves of
the graph G.

Proposition 5.4.2 ([37]) Let f be an (n, n)–function. Zero is an eigenvalue of the adjacency
matrix A of f if and only if there exists a leaf in the graph G of f .

Remark 5.4.1 The proof of Proposition 5.4.2 gives a construction of eigenvectors related to
the zero eigenvalue. There exists a simpler proof. Assuming that x ∈ {0, 1}n is a leaf, the
column x of the adjacency matrix A is null, which implies that the determinant of A is null too.
Since this determinant equals the product of the eigenvalues, this means that 0 is an eigenvalue
of A.
Conversely, if 0 is an eigenvalue of A, the kernel of the endomorphism associated to A is not
reduced to zero. Thus, this endomorphism is not surjective, which indicates that the graph of f
has a leaf.

Remark 5.4.2 If f is an (n, n)–function, let E0 be the eigenspace of the eigenvectors associated
to the eigenvalue zero of the adjacency matrix A of f . Then, the dimension of E0 equals the
number of leaves in the graph G of f .
If v is an eigenvector of the eigenvalue 0 for the adjacency matrix A then, Av = 0, and this is
equivalent to vf(x) = 0 for all x ∈ Fn2 . Hence, it follows that the support of v is included in the
set of the leaves of the graph and then E0 is spanned by the vectors ey as defined in the proof
of Proposition 5.4.2 where y is a leaf of the graph.

Remark 5.4.3 The eigenvectors defined in the proof of Proposition 5.4.2 shows that eigenvec-
tors can be interpreted as functions. Indeed, let f be an (n, n)–function and g an (n)–function.
If g ◦ f = 0 then the truthtable of g is an eigenvector for the eigenvalue 0 of Af . Conversely,
assume that g is an eigenvector of Af associated to the eigenvalue 0 such that all its components
are either zero or one then, g ◦ f = 0.
Note that whenever the eigenvectors of the adjacency matrix of f associated to 0 are obtained
as explained in the proof of Proposition 5.4.2, we can determine all the Boolean functions g
for which Remark 5.4.3 applies. They belong to the set of all linear combinations with {0, 1}
coefficients of the eigenvectors associated to 0. There is not any other one. Hence, if there are
` leaves in the graph G, there are exactly 2` (n)–functions g such that g ◦ f = 0.

We are now interested in nonzero eigenvalues. From Proposition 5.4.1, those eigenvalues are
roots of unity.

Proposition 5.4.3 ([37]) Let f be an (n, n)–function, α be a nonzero eigenvalue of the adja-
cency matrix of f and let v be an eigenvector for the eigenvalue α. Let ` be the order of α and
x ∈ {0, 1}n be a n-dimensional binary vector. If the component vx of vector v is nonzero, then
the length of the ultimate cycle of the connected component of the graph G that contains x is
multiple of `.
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x1

x2

x3

x`′

x f(x) f2(x)

f i(x)

=

f

Figure 5.2: Cycle of vertices. The vertex x of the connected component is connected to its
ultimate cycle by a path of length i whose elements are the iteration of the (n, n)–function f
on the vertex x. This path is

(
x, f(x), f2(x), . . . , f i(x) = x1

)
Now, let us deal with the dimension of the eigenspaces. Let us denote by Eα the eigenspace

associated to the eigenvalue α of the adjacency matrix of the (n, n)–function f . As stated at
the beginning of Section 5.4, each eigenvector v associated to α can be indexed by the vertices
of the graph G. Thus, the support of v is defined as:

supp(v) = {x ∈ Fn2 | vx 6= 0}

Proposition 5.4.4 ([37]) Let α be a nonzero eigenvalue of the adjacency matrix of the (n, n)–
function f and C be a connected component of the graph G whose ultimate cycle length is multiple
of the order of α. Then, the subspace of Eα of the vectors whose support is included in C is of
dimension 1.

The following proposition gives the dimension of the eigenspace Eα.

Proposition 5.4.5 ([37]) Let α be a nonzero eigenvalue of the adjacency matrix of an (n, n)–
function. The dimension of the vectorspace Eα equals the number of cycles in the graph G whose
length are multiple of the order of α.

According to Remark 5.3.2, there always exists a cycle in the graph and thus 1 is always an
eigenvalue of the adjacency matrix.

Corollary 5.4.1 Let f be an (n, n)–function. The function f is an involution if and only if
the eigenvalues of its adjacency matrix are either −1 or 1.

5.4.2 Eigenvectors

In this section, we are interested in identifying the eigenvectors associated to the eigenvalues
for the adjacency matrix A, the polynomial matrix P and the correlation matrix C. Unlike
eigenvalues, eigenvectors are basis-dependent. Due to Proposition 5.3.7, eigenvectors of P and
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C are easily deduced from eigenvectors of the adjacency matrix A. For each matrix, there is a
natural way to derive a basis of the eigenspaces from the graph of the function.

5.4.2.1 Eigenvectors of the adjacency matrix A

The following proposition shows that the eigenvectors of the adjacency matrix A corresponding
to the zero eigenvalue are deduced from the junctions of the graph G of the function f .

Proposition 5.4.6 ([37]) Assume that the vertex y is a junction of the (n, n)–function f and
let x1 and x2 be two incident vertices of this junction. Let ex1 (respectively ex2 ) be the 2n-
dimensional vector such that all its components are null except the one at coordinate x1 (re-
spectively x2) which equals 1. Then, the vector e = ex1 − ex2 is an eigenvector of the matrix
AT for the eigenvalue 0.

Remark 5.4.4 According to Remark 5.3.3, from each junction of multiplicity k in G, it is
possible to get k independent eigenvectors of AT for the eigenvalue 0.

Remark 5.4.5 Conversely, if v is an eigenvector of AT for the eigenvalue 0, then the support
of v is included in the set of preimages of junctions in the graph G of f .

Proposition 5.4.7 Let L = (x0, . . . , x`−1) be a cycle of length ` of the graph G associated to an
(n, n)–function, and α be a `th root of unity. Then, for i in {0, . . . , `− 1}, the complex number
αi is an eigenvalue of the adjacency matrix A. For every i ∈ {0, 1, . . . , `− 1}, an eigenvector v
of αi associated to the transpose matrix AT of A is given by:

vxj =

αi(`−j) if xj ∈ L

0 elsewhere.
(5.29)

Proposition 5.4.8 ([37]) The trace of the adjacency matrix of f is the number of cycles of
length one.

Remark 5.4.6 As the trace is invariant under similarities, Proposition 5.4.8 also holds for
polynomial and correlation matrices.

Remark 5.4.7 The result of Proposition 5.4.8 can be proved by noticing that for x ∈ Fn2 , the
coefficient Ax,x belonging to the main diagonal of the adjacency matrix A equals 1 if and only
if the vector f(x) = x. Then the result holds, as the trace of a matrix is the sum of the main
diagonal coefficients.

As an example, we show how to derive the eigenstructures of Afe based on the graph of
Figure 5.1.
According to Proposition 5.4.6, the four eigenvectors associated to 0 are related to:
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• the junction 010 with preimage set {000, 100, 110} and thus multiplicity two,

• the junction 101 with preimage set {011, 101} and thus multiplicity one.

The eigenvectors are denoted by a0, a1, a2, a3 and can be derived as follows.

a0 = ex1 − ex5 =



1
0
0
0
−1

0
0
0


, a1 = ex1 − ex7 =



1
0
0
0
0
0
−1

0



a2 = ex5 − ex7 =



0
0
0
0
1
0
−1

0


, a3 = ex4 − ex6 =



0
0
0
1
0
−1

0
0


According to Proposition 5.4.7, due to the cycle (101, 101), the following vectors are eigen-

vectors for the eigenvalues 1.

a4 =



0
0
0
0
0
1
0
0


a5 =



0
1
1
0
1
0
0
0


.

These two eigenvectors are obtained from the cycles of length one and three respectively in
the graph.
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5.4 Eigenanalysis of the matrix representation

According to Proposition 5.4.7, the following eigenvectors exist and are respectively associ-

ated to the eigenvalues  and 2, where  = 1 + ı
√

3
2 is a primitive cube root of unity.

a6 =



0


2

0
1
0
0
0


, a7 =



0
2



0
1
0
0
0


.

The eigenvectors of the correlation and polynomial matrices can be respectively obtained by
applying the Hadamard matrix H given by (5.5) and the monomial matrix M given by (5.16)
to the vectors a0, a1, a2, a3, a4, a5, a6.
It is shown in the sequel that, from the eigenvectors of the adjacency matrix A, the change of
basis of Proposition 5.3.6 and of Proposition 5.3.7 can be used to determine respectively the
eigenspaces of the correlation matrix C and the polynomial matrix P .

5.4.2.2 Eigenvectors of the correlation matrix C

From (5.22), the eigenvectors of C can be deduced from those of AT . If v is an eigenvector for
AT , then, due to (5.4), the Fourier transform of v, denoted by v̂ = Hv is an eigenvector of the
Walsh matrix W and so of the correlation matrix C. Therefore:

∀y ∈ Fn2 , v̂y =
∑
x∈Fn2

vx(−1)x·y. (5.30)

If v is an eigenvector of AT associated to the eigenvalue 0, then from Remark 5.4.5, the support
of v is included in the set of preimages of the junctions in the graph G.

Due to Equation (5.18), the eigenvalues of the Walsh matrix W are merely the eigenvalues
of the ones of the correlation matrix C times 2n. Thus, the eigenvectors are the same.

5.4.2.3 Eigenvectors of the polynomial matrix P

The eigenvectors of the polynomial matrix P can also be deduced from those of the adjacency
matrix A by applying (5.23). If v is an eigenvector of A then ṽ = Zv is an eigenvector of P .
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Therefore:
∀y ∈ Fn2 , ṽy =

∑
x∈Fn2

(−1)HW(x)−HW(y)yxvx.

In the case when v is an eigenvector of A associated to the eigenvalue 0, the support of v is
included in the set of the leaves of the graph G.

5.5 Application to Self-Synchronizing Stream Cipher

In Parriaux’s thesis [84], it had been shown that the correlation matrix Cgθ of the state transition
function gθ in (2.6) determines whether gθ is based on a T-function or not. This provides a
more general approach to characterize the category of state transition function. The approach
provided in Section 2.5 of Chapter 2 is straightforward but works only for LPV systems, since
in this case the expression of the inverse transition matrix Pρ(k:k+r) characterizes entirely the
triangular structure of gθ.

Note that gθ can be expressed as a (n,m)-function when the base field is F2. For a sake for
simplicity we will denote in the sequel gθ by g.

Let us consider the partial function gc : Fn2 × Fn2 with gc(qk) = g(qk, c), and c ∈ Fns2 . We
recall the following Proposition from [87].

Proposition 5.5.1 Assume that the system (2.6)–(2.10) is finite-time self-synchronizing. And
let us consider its state transition function g and the related partial functions gc, c ∈ Fns2 . Then
g is not based on a T-function if all the reduced correlation matrices C?gc, are not simultaneously
triangularizable.

We show in the following example that the LPV-based SSSC designed from the graph
approach in Chapter 2 provides a state transition function g that is not based on a T-function.

Example 5.5.1 Let us consider the system of dimension n = 2 in Example 2.5.1, where the
parameters are elements of the finite field F2. The input matrix Aρ(k) is given by:

Aρ(k) =
(
ρ1(k) ρ2(k)

1 ρ3(k)

)

with
ρi(k) : F2 −→ F2

ck 7→ f(ck)

We consider all the functions ρi, i = 1, 2, 3 as the identity function. From Equation (1.9),
we have ns = 3 and the inverse transition matrix Pρ(k:k+2) is given by:

Pρ(k:k+2) =
(
ck+1 ck · ck+1

1 ck

)
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Hence, from (2.13), the partial state transition function reads:

gc : F2
2 → F2

2

(q1
k, q

2
k) 7−→

(
ck · q1

k + ck · ck+1 · q2
k + ck+2, q

1
k + ck · q2

k

)
The expressions of the eight partial functions gc, c ∈ F3

2 are provided in Table 5.2.

c

qk (0,0) (0,1) (1,0) (1,1)

000 (0,0) (0,0) (0,1) (0,1)
001 (1,0) (1,0) (1,1) (1,1)
010 (0,0) (0,0) (0,1) (0,1)
011 (0,1) (0,1) (1,1) (1,1)
100 (0,0) (0,1) (1,1) (1,0)
101 (1,0) (1,1) (0,1) (0,0)
110 (1,0) (1,1) (0,1) (0,0)
111 (0,0) (0,1) (1,1) (1,0)

Table 5.2: Table of the partial functions gc, with c = ckck+1ck+2 and qk = (q1
k, q

2
k).

The reduced correlation matrices are given by:

C?g000

0 4 0
0 0 0
0 4 0


C?g001

0 4 0
0 0 0
0 −4 0


C?g010

0 4 0
0 0 0
0 4 0


C?g011

0 0 0
0 4 0
0 −4 0



C?g100

0 0 4
0 4 0
4 0 0


C?g101

 0 0 4
0 −4 0
−4 0 0


C?g110

 0 0 4
0 −4 0
−4 0 0


C?g111

0 0 4
0 4 0
4 0 0


Table 5.3: Reduced correlation matrices of the partial functions gc associated to the transition
function g.

And applying Algorithm 1 of Simultaneous Triangularization (see Appendix B) on the set
of matrices C?gc , c ∈ F3

2 shows that these matrices are not simultaneously triangularizable. As
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conclusion the state transition function g is not based on a T-function according to Proposi-
tion 5.5.1.

5.6 Conclusion

In this chapter, a unified overview on the various representations of vectorial Boolean functions,
namely the Walsh matrix, the correlation matrix and the adjacency matrix, has been given. A
new representation called polynomial matrix has been introduced with an interest when dealing
with algebraic properties. It has been shown that those different representations are similar.
Then, an eigenanalysis of those representations has been performed. It has been shown that,
for all the representations, the eigenvalues are either zero or roots of unity. For a given vectorial
Boolean function with the same number of inputs and outputs, a link has been made between
the eigenvalues of its matrix representations and the structure of the graph assigned to this
function. The distinction between zero and nonzero eigenvalues plays an important role for that
purpose. Finally, the eigenspace associated to the eigenvalues of the matrix representations has
been studied. For nonzero eigenvalues, the corresponding eigenvectors can be determined from
the cycles of the graph. On the other hand, the eigenvector corresponding to the zero and
unique eigenvalue can be determined by the junctions of the graph.
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General Conclusions and
Perspectives

The aim of this thesis was to propose a new architecture of Self-Synchronizing Stream Ciphers
whose next-state function is not based on T-functions and by using LPV systems with flat
outputs.

In Chapter 1, an algebraic property has been proposed to characterize LPV systems with
flat outputs. A complementary approach based on digraph has been proposed and provides a
systematic way to design such LPV systems with flat outputs.

Chapter 2 focuses on SSSC and their representation as automata is provided. Thus a
complete framework has been proposed and it is shown how to design LPV-based SSSC and
how to replace the parameters within the obtained LPV system with cryptographic primitives
such as S-Boxes using secret keys.

Chapter 3 tackles physical security issues of the designed LPV-based SSSC. In particular a
spectral approach based on Fourier Transform is proposed in order to perform a side-channel
attack. This attack works on the S-Box used within the LPV-based SSSC and can be applied on
any other encryption algorithm that involves S-Boxes. Also a multidimensional attack has been
proposed from the Fourier transform approach and allows to perform the attack at different
times of the encryption process.

Chapter 4 focuses on theoretical security aspects of SSSC by considering their canonical
form. It gives a necessary and sufficient condition of the filtering function of the canonical form
of SSSC in order to achieve IND-CPA security. Besides it has been show that SSSC cannot
achieve IND-CCA security.

Finally Chapter 5 gives results on matrix representations of vectorial boolean functions.
The representations that are given are similar. Especially one of the representations that is the
correlation matrix characterizes the type of state transition function of a SSSC: that is whether
this function is based on a T-function or not. Furthermore, we show that the LPV-based SSSC
designed in this thesis admits a state transition function that is not based on a T-function.
This provides interesting perspectives to check the class of the state transition function from
other approaches that can provide SSSC, other than the graph approach.

The subjects on which we focused in this thesis still leave several questions open:
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Statistical SSSC. Statistical SSSC had not been tackled in this thesis. However it
remains an open topic in the literature [44, 54]. A statistical SSSC is such that the
synchronization delay is not bounded by any value and is a random variable. It then may
depend on a pattern of ciphertexts or/and the initial state of the scheme. In Chapter 1,
the graph-oriented approach provides sufficient and necessary structural conditions and
a systematic way to construct LPV systems with flat output that can be used as SSSC.
One can break this flatness property by altering one of these conditions. Besides, the
algebraic characterization of the flatness property ensures that a combination of flat LPV
system and non-flat LPV system can be also used as an SSSC. Hence the combination of
these two systems can be used to provide statistical SSSC. For example one can switch
between the two systems by checking whether previous ciphertexts match with a pattern
of given ciphertexts.

• Matrix diffusion. The synchronization property of the LPV-based SSSC is mainly
characterized by the inverse transition matrix. And this matrix is central in the study
of the security of the scheme. The non-zero coefficients of this matrix can be replaced
by S-Boxes as shown in Chapter 2, to increase the confusion of the scheme and make it
resistant against well-known attacks such as linear, differential or distinguishers attacks
[11, 64, 13, 65]. Hence the settings of the S-Boxes to achieve such resistances should be
studied in more details compared to the work of Section 2.6. The diffusion of the entries of
the inverse transition matrix Pρ(k:k+r) should be as complex as possible when considering
its successive powers.

• Hardware implementation. Specifications have been provided to the industrial partner
(Airbus Defence and Space) and have been implemented successfully on FPGA cards.
However it could be interesting to make the architecture more compact by improving the
circuitry for hardware, and also to reduce the cost of implementation by optimizing the
use of cryptographic primitives or subkeys generation in the hardware.

• Correlation Power Analysis. The CPA attack proposed in Chapter 3 requires the
calculation of the Fourier Transform of the leakage model g and then a number of traces
equals to 2n where n is the size of the input word of g. It would be interesting to see
whether the number of traces could be reduced. It means that the attack could be achieved
with an approximate value of the Fourier transform. In this case, the multidimensional
attack would have a further interest as it can combine reduced Fourier transform for
several leakage models. Furthermore, it remains to check how these improvements behave
with countermeasures that have been proposed to resist such attack [55], [72], [82], [105].
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Appendix A

Basics on Block Ciphers and
Self-Synchronizing Stream
Ciphers

A.1 Block ciphers

Block ciphers are used for symmetric encryption. This is an extension of simple substitution.
The data to encrypt is subdivided in blocks of the same length, for example 64 or 128 bi-
nary symbols. A keyed reversible transformation is then performed on each block, involving
an encryption algorithm denoted Ek, to get the corresponding ciphertext block. The inverse
transformation is performed in order to decrypt the ciphertext blocks. Block cipher is suitable
to perform securely encryption or decryption on a single block of data. But encrypting a long
plaintext for example requires to run repeatedly the block cipher within a mode of operation.
We describe many mode of operations that use block ciphers. Some of the modes of operation
act like SSSC.

The Electronic CodeBook mode (ECB) performs a simple substitution. The message to
encrypt is subdivided in block of the same length and all the blocks are encrypted the same
way. This mode of operation is not semantically secure [8].

m1 m2 m`· · ·

Ek Ek Ek

c1 c2 c`· · ·

Figure A.1: Electronic CodeBook mode (ECB). The ciphertext is subdivided in blocks and
every block is encrypted independently.
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The Cipher Block Chaining (CBC) mode is another way to perform a block encryption.
Here, the output block of the encryption algorithm Ek is XORed to the next block of the
plaintext. Then the resulting block is encrypted to produce the next output (the ciphertext).
Note that to decrypt a block mi of the plaintext, we only need the ciphertexts ci and ci−1 :
mi = ci−1 ⊕ E−1

k (ci). It turns out that this mode of operation can be used as SSSC on block
of data.

m1 m2 m`· · ·

+ + +

Ek Ek Ek

c1 c2 c`c0 · · ·

· · ·

· · ·

IV

Figure A.2: Chaining mode or Cipher Block Chaining (CBC) mode. The ciphertext block is
XORed to the next plaintext block such that every ciphertext block depends on the previous
blocks. This mode requires an Initial Vector (IV) block to start the chaining. This IV should be
generated randomly and shared through a secure channel between the emitter and the receiver.

In Cipher FeedBack (CFB) mode, the last ciphertext is used as input of the encryption algo-
rithm Ek to produce an output that is XORed to the next plaintext to get the next ciphertext.
This mode of operation is suitable to be used as SSSC to encrypt plaintext whose size is lower
than the block size (see also Section 2.3 of Chapter 2). A shift register is used in this case to
gather previous ciphertexts that are used as input of the encryption algorithm Ek.

IV Ek Ek · · · Ek

+ + +· · ·

c1 c2 · · · c`

m1 m2 m`

Figure A.3: Cipher FeedBack mode (CFB). The mask is obtained as the encryption of the
previous ciphertext block. An IV is then used to compute the first mask. The cipheretxt block
is the result of the mask XORed to the plaintext block.
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x+ 1 x+ 2 x+ 3

Ek Ek Ek

+ + +

c1 c2 c3

m1 m2 m3

Figure A.4: CTR mode or counter mode. The mask is obtained as the encryption of a counter
value that is initialized at given value x. The value of the counter is incremented, for each block,
and used to produce another mask that is XORed to the plaintext block to get the ciphertext
block.

A.2 Existing Self-Synchronizing Stream Cipher schemes
A.2.1 The Self-Synchronizing Stream Cipher HBB

HHB is a stream cipher designed by Palash Sarkar in [96]. The cipher operates in two modes:
a basic mode as a synchronous stream cipher and a self-synchronizing mode. It operates on
128-bit data block and its internal state is partitioned into a linear core of 512 bits denoted
LC and a non-linear core of 128 bits denoted NLC. The cores are updated by XORing a
register that contains previous ciphertexts with an expansion of the secret key. Unlike others
designed SSSC, HHB general structure is similar to a block cipher structure (internal state
update in many rounds, input and output are blocks). The following algorithm describes the
self-synchronizing mode of HBB: For a message M = M0 ‖ · · · ‖Mn−1 to be encrypted with a
key K of 128-bits, the corresponding ciphertext is given by the algorithm described below:

HBB(M ,K)
1. LC = EXP(K); F = Fold(K,64); NLC = F ‖ F̄
2. for i = 0 to 15 do (Timod4, LC,NLC) = Round(LC,NLC);
3. LC−1 = LC⊕ (T3 ‖ T2 ‖ T1 ‖ T0), NLC−1 = NLC;C−3 = T3;C−2 = T2;C−1 = T1;
4. for i = 0 to n− 1 do
5. (Ki,LCi,NLCi) = Round(LCi−1,NLCi−1);
6. Ci = Mi ⊕Ki;
7. LCi = Exp(K)⊕ (Ci ‖ Ci−1 ‖ Ci−2 ‖ Ci−3);
8. NLCi = Fold(K, 128)⊕ Ci ⊕ Ci−1 ⊕ Ci−2⊕Ci−3 ;
9. output C0 ‖ · · · ‖ Cn−1;

the function Fold(S,i) computes the sum on i-bit blocks of S, that is Fold(S,i) =
k∑
j=1

Sj

with |Sj | = i. And the function Exp(K) is an expansion of the key K that concatenates it
with its opposite: Exp(K) = K ‖ K̄. The lines 8 and 9 show that the internal state is a shift
of the previous ciphertexts. The function Round is a non-linear transformation that performs
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successive operations of permutation and transposition on the linear core and the non-linear core
to produce the keystream. Hence, the round function can be identified to a filtering function.
The corresponding figure is given in Figure A.5.

The keystream zk corresponds to Ki and the keystream generator σssθ is a combination of
the functions Round, Fold and Exp:zi = σssθ (Ci, Ci−1, Ci−2, Ci−3)

Ci = Ki ⊕Mi

with σssθ (Ci, Ci−1, Ci−2, Ci−3) = Round
(
Exp(K) ⊕ (Ci ‖ Ci−1 ‖ Ci−2 ‖ Ci−3),Fold(K, 128) ⊕

Ci ⊕ Ci−1 ⊕ Ci−2⊕Ci−3

)
[1].

Two cryptanalysis of HBB have been proposed: a known-plaintext attack in [62] that recov-
ers the whole key K in 266 HBB operations and a differential attack using chosen ciphertexts
in [58] that also recovers the whole key.

+Mi Ci

Ki

shift
registerROUND

LC
(512 bits)

NLC
(128 bits)

++ Fold(K)Exp(K)

Figure A.5: The Self-Synchronizing Stream Cipher HHB. One round of HBB.

A.2.2 The Self-Synchronizing Stream Cipher SSS

SSS is a self-synchronizing that belongs to SOBER stream ciphers family proposed in [51]. The
scheme allows self-synchronization, message authentication code and integrity. It is based on
16-bit operations and 16-bit blocks. Additions and multiplications related to the operations are
performed in the finite field GF(216). The internal state of the scheme is made of 17 blocks
of 16 bits called a vector of words. Update of the blocks relies on rotation operations, right
shifting, addition on GF(216) and XOR as illustrated in Figure A.6. The scheme uses a nonlinear
keyed function f . Despite the fact that the nonlinear function used in the scheme admits good
properties as a high nonlinearity, balanced and pairwise uncorellated, a very efficient attack has
been proposed against SSS in [30]. The way the function f is used and also the T-function-like
structure of the internal state defaults the scheme. The attack that has been performed is a
chosen ciphertext attack that can compute the output of the function f without knowing the
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key and hence recovers the entire secret key.

≫ f

r16 r15 + r14 r13 f r12 r11 r10 r9 r6 r2· · · · · · ≫ r1 r0

+

f

+ +

≫

f

+

+ ptct

Figure A.6: The Self Synchronizing Stream Cipher SSS. The symbol >>> stands for rotation
of the bits to the right, + stands for the addition on GF(16) and + stands for XOR.

A.2.3 Family of the Self-Synchronizing Stream Cipher MOUSTIQUE.

The SSSC MOUSTIQUE [31] belongs to a family of SSSC that are KNOT, ΥΓ, MOUSQUITO
and that had been designed by Daemen et al. They had been upgraded subsequently after a
weakness was find in their design.

The SSSCs belonging to MOUSTIQUE SSSC family, admit all an architecture that relies on
the one proposed by Maurer [74]. Daemen and al. pointed out that is was not very efficient to
recompute the whole function gθ based on serial and parallel automata as proposed by Maurer.
And their schemes have been designed to be efficient in one hand relatively to security with
regard to more general attacks than the ones considered by Maurer; and in the other hand
relatively to speed and easy implementation for hardware.

In the new architecture that they propose, the update function gθ in Equation (2.10) is im-
plementing in a shift-register-like architecture called Complementing Shift Register (CCSR (see
Figure (A.7))). It makes the computation of the internal state more complex. The architecture
is pipelined providing a very fast gate delay. There is no key used in the filtering function, be-
cause the inputs of the filtering function are unknown values that depend on the key and have
been calculated by the CCSR. Like the other designed SSSCs, the architecture is also based on
a T-function. One can observe that the propagation goes always in the direction of increasing
indexes. This guarantees that the influence of old ciphertext bits eventually vanishes, which
makes the resynchronization possible.

KNOT had been tweaked in ΥΓ after the authors discovered later a statistical imbalance in
the output function. Besides this security issue, another weakness has been discovered by Joux
and Muller in [57]. They proposed an attack based on differential cryptanalysis that detects
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collisions in the internal state register of the scheme. MOSQUITO [29] was an upgraded version
of ΥΓ. Despite the efficiency of its structure, considering speed and the complexity of the update
function, it has been broken in [56]. The weakness disclosed in MOSQUITO has been removed
and the scheme has been upgraded to MOUSTIQUE.

The improvement to MOUSTIQUE offers resistance against attacks that make previous
SSSC weak. However, in [61], the authors apply successfully a correlation keystream-based
attack by exploiting a weakness in the output of some boolean function used in the design of
MOUSTIQUE.
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Figure A.7: MOUSTIQUE SSSC. Architecture of SSSC of the family of MOUSTIQUE. The
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Appendix B

Simultaneous Triangularization

In [39], the author gave an algorithm that computes for a set of matrices A, provided that
A is simultaneous triangularizable, a matrix basis that triangularizes A. Furthermore, this
algorithm aborts if such basis does not exist. A sufficient condition of non-existence of such a
basis is that the matrices of A do not have a common eigenvector.
Before getting in details of the algorithm itself, we present some important definitions and
useful results.

Let E an n-dimensional vector space. Let B,B′, two bases of E, f a linear application on
E, A (resp. B) the matrix representation of f with respect to the basis B (resp. B′). If P is
the change of coordinate matrix from B to B′ then B = P−1AP .

B.1 Definition and property
Definition B.1.1 Let A = {A1, · · · , An} a set of matrices. The set A is simultaneous trian-
gularizable if there exists a basis S that triangularizes A, that is

S−1AjS = Tj ∀j ∈ {1, . . . , n}

where Tj is a triangular matrix. The matrix S is called a T-basis.

A set of matrices A is simultaneous triangularizable if and only if there exists nested subsets
{0} = V1 ⊂ V2 ⊂ · · · ⊂ Vn = E such that:

1. dimVi = i

2. ∀i, Aj is Vi-invariant, that is AjVi ⊂ Vi

In this case the T-basis S is given by S = (v1, . . . , vn) with vi ∈ Vi and where (vi) are
linearly independent. The notation S = (v1, . . . , vn) denotes the change of coordinate matrix
from a basis B (for instance the canonical basis) to the basis (vi). Hence Tj is the matrix
representation of the multiplication by bj with respect to the basis (vi).
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B. SIMULTANEOUS TRIANGULARIZATION

Theorem B.1.1 ([39]) Let A be a set of matrices that is V -invariant, where V is a k-
dimensional linear subset spanned by {v1, . . . , vk}. Let B be a basis of E containing (vi) and
the matrix S = (v1, . . . , vn). Then for each Aj ∈ A

S−1AjS =

k
←→

n−k
←→ A1j A2j l k

0 A3j l n−k

And the set A is simultaneously triangularizable if and only if both the set A1 =
{A11, . . . , A1n} and the set A3 = {A31, . . . , A3n} are simultaneously triangularizable.

Theorem B.1.2 ([39]) If A is simultaneously triangularizable then, the matrices Aj admit a
common eigenvector.

B.2 Simultaneous Triangularization Algorithm (STA)

The algorithm takes as input the set of matrices for which we want to check whether they
admit a basis S that triangularizes them together. The algorithm achieves the verification
in at most n iterations where during iteration k < n, a search for common eigenvector is
performed on a set of matrices of dimension n− k (Theorem B.1.2). If a common eigenvector
is found, another vector is computed from it and added to a family B of linearly independent
vectors. Actually, Theorem B.1.1 is applied by computing A3 and checking whether it admits
a common eigenvector. Here, one should mention that there is no need to check whether A1 is
simultaneous triangularizable since the process of the algorithm allows to have at each iteration
the matrix A1 as triangular matrix. If no common eigenvector is found at iteration k < n then
the algorithm aborts. Otherwise the algorithm is processed until iteration n where a T-basis is
inferred from B.

The algorithm requires a set of matrices on which the verification is performed and returns,
in case it exists, a basis B that triangularizes this set. Otherwise the algorithm aborts.

Algorithm 1 Simulatneous Triangularization Algorithm
Require: A1, . . . , AN
Ensure: B

Setup: B = ∅, Tj = Aj , S2 = In, k = 0
Step 1: find a common eigenvector v of T1, . . . , Tn. If one does not exists then abort
Step 2: set vk+1 = S2v, B = B ∪ {vk+1} , S1 = (v1, . . . , vk+1)
Step 3: if k + 1 = n go to Step 6. Else complete B to a basis of Fn with u1, . . . , u`
Step 4: set S2 = (u1, . . . , u`) S = (S1 S2) and

Tj =
(
0 In−(k+1)

)
S−1AjS

(
0

In−(k+1)

)
Step 5: set k = k + 1 and go to Step 1
Step 6: A is simultaneous triangularizable.
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B.2 Simultaneous Triangularization Algorithm (STA)

Remark B.2.1 For a given set of matrices, it suffices to find one of the smallest subsets of
matrices that are not simultaneously triangularizable in order to guarantee that the set is not
simultaneously triangularizable.
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[20] B. Buchberger. Gröbner bases: an algorithmic method in polynomial ideal theory. In
Multidimensinal Systems Theory - Progress, Directions and Open Problems in Multidi-
mensional Systems, pages 184–232. Reidel Publishing Company, 1985.

[21] Christophe De Cannière. Trivium: A stream cipher construction inspired by block
cipher design principles. In Information Security, 9th International Conference, ISC 2006,
Samos Island, Greece, August 30 - September 2, 2006, Proceedings, pages 171–186, 2006.

[22] C. Carlet. Boolean functions for cryptography and error-correcting codes. In Boolean
Models and Methods in Mathematics, Computer Science, and Engineering. Cambridge
Press, 2010.

xii



REFERENCES

[23] C. Carlet. Vectorial Boolean functions for cryptography. In Boolean Models and Meth-
ods in Mathematics, Computer Science, and Engineering. Cambridge Press, 2010.

[24] C. Carlet and P. Guillot. A new representation of Boolean functions. In Marc
Fossorier, Hideki Imai, Shu Lin, and Alain Poli, editors, Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes, vol. 1719 of Lecture Notes in Computer Science,
pages 731–731. Springer Berlin / Heidelberg, 1999. 10.1007/3-540-46796-3 10.

[25] A. Chamseddine, Y. Zhang, C.A. Rabbath, C. Join, and D. Theillol. Flatness-
based trajectory planning/replanning for a quadrator unmanned aerial vehicle. IEEE
Trans. on Aerospace and electronic systems, 2012.

[26] J. Daemen. Cipher and Hash function design, strategies based on linear and differential
cryptanalysis. PhD Thesis, Katholieke Universiteit Leuven, 1995.

[27] J. Daemen, R. Govaerts, and J. Vandewalle. On the design of high speed self-
synchronizing stream ciphers. In Proc. of the ICCS/ISITA’92 conference, 1, pages 279–
283, Singapore, November 1992.

[28] J. Daemen, R. Govaerts, and J. Vandewalle. Correlation matrices. In Fast Soft-
ware Encryption : Second International Workshop, LNCS 1008, pages 275–285. Springer-
Verlag, 1994.

[29] J. Daemen and P. Kitsos. The self-synchronizing stream cipher mosquito: es-
tream documentation, version 2. Technical report, e-Stream Project, 2005. Available
at:www.ecrypt.eu.org/stream/p3ciphers/mosquito/mosquito.pdf.

[30] J. Daemen, J. Lano, and B. Preneel. Chosen ciphertext attack on SSS. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/044, June 2005. Available online
at http://www.ecrypt.eu.org/stream/papers.html/044.pdf.

[31] Joan Daemen and Paris Kitsos. The self-synchronizing stream cipher moustique. In
Robshaw and Billet [94], pages 210–223.
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Résumé
Nous présentons dans le cadre de cette thèse une construction effective de chiffreurs par flot auto-synchronisants centrée
autour de la classe particulière des systèmes dynamiques Linear Parameter Varying (LPV). Il s’agit de systèmes dont la
représentation d’état admet une écriture affine par rapport à l’état et l’entrée mais dont les matrices de la représentation
dépendent de paramètres variants dans le temps. Cette dépendance peut se traduire par des fonctions non linéaires de la
variable de sortie. La dynamique résultante est donc non linéaire. Nous montrons que la propriété d’auto-synchronisation
est liée à une propriété structurelle du système dynamique à savoir la platitude. La platitude est une propriété algébrique qui
permet d’exprimer lorsque cela est possible les paramètres d’entrée et sortie d’un système dynamique en fonction de sa sortie
qui est appelée dans ce cas une sortie plate. Une caractérisation de la platitude est exprimée en termes des matrices d’état
du système dynamique. Une caractérisation complémentaire est proposée en termes de propriétés d’un graphe d’adjacence
associé. L’utilisation conjointe de la caractérisation algébrique et graphique donne lieu à une construction systématique
d’une nouvelle classe de chiffreurs auto-synchonisants.

Dans la deuxième partie de la thèse, nous nous intéressons à la sécurité de chiffreurs auto-synchronisants. Nous pro-
posons dans un premier temps une approche spectrale pour réaliser une attaque par canaux cachés. Cette approche offre une
complexité réduite par rapport aux approches classiques utilisées pour les attaques par canaux cachés. Nous donnons ensuite
une preuve de sécurité de la forme canonique d’un chiffreur auto-synchronisant basée sur la notion d’indistinguabilité. Une
condition nécessaire et suffisante pour caractériser l’indistinguabilité des chiffreurs auto-synchronisants est proposée. Finale-
ment, nous avons établi des résultats sur les propriétés de fonctions vectorielles booléennes qui permettent de caractériser
d’une façon générale les chiffreurs auto-synchronisants.

Mots clés: Systèmes LPV, platitude, chiffreur par flot auto-synchronisant, preuve de sécurité, attaque par canaux
cachés

Abstract
In this thesis, we present an effective construction of self-synchronizing stream ciphers based on the class of Linear Parameter-
Varying (LPV) dynamical systems. For such systems, the state-space representation admits an affine expression regarding
the input and the state but the state matrices depend on time varying parameters. This dependence can be expressed using
nonlinear functions of the output variable. Hence, the resulting dynamics of the system are nonlinear. We show that the
self-synchronization property is related to a structural property of the dynamical system known as flatness. Flatness is an
algebraic property that allows, when possible, the expression of the input and state parameters of a dynamical system as
functions of its outputs which is then called flat output. A characterization of the flatness is expressed in terms of state
matrices of the dynamical matrix. A complementary characterization is given in terms of properties of the related adjacency
graph. The combination of the algebraic and graph theory characterization gives a systematic construction of a new class
of self-synchronizing stream ciphers.

In the second part of the thesis, we tackle security aspects of self-synchronizing stream ciphers. We propose a spectral
approach to performing side channel attacks. This approach offers reduced complexity when compared with standard
approaches used for side channel attacks. We also give a security proof, based on the notion of indistinguishability, for the
canonical form of self-synchronizing stream ciphers. A neccessary and sufficient condition is proposed in order to characterize
the indistinguishability. Finally, we establish some results on vectorial boolean functions and properties they can be achieved
when trying to design Self-Synchronizing Stream Ciphers.

Keywords: LPV systems, flatness, self-synchronizing stream cipher, proof of security, side channel attack
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