Modeling spatial and temporal variabilities in hyperspectral image unmixing

par Pierre-Antoine Thouvenin

Thèse de doctorat en Signal, Image, Acoustique et Optimisation

Sous la direction de Nicolas Dobigeon et de Jean-Yves Tourneret.

Le président du jury était Christian Jutten.

Le jury était composé de Jean-Christophe Pesquet, Jérôme Idier, Mario Figueiredo, Véronique Serfaty, Stéphane May.

Les rapporteurs étaient Jean-Christophe Pesquet, Jérôme Idier.

  • Titre traduit

    Modélisation de la variabilité spectrale pour le démélange d’images hyperspectral


  • Résumé

    Acquises dans plusieurs centaines de bandes spectrales contiguës, les images hyperspectrales permettent d'analyser finement la composition d'une scène observée. En raison de la résolution spatiale limitée des capteurs utilisés, le spectre d'un pixel d'une image hyperspectrale résulte de la composition de plusieurs signatures associées à des matériaux distincts. À ce titre, le démélange d'images hyperspectrales vise à estimer les signatures des différents matériaux observés ainsi que leur proportion dans chacun des pixels de l'image. Pour cette analyse, il est d'usage de considérer qu'une signature spectrale unique permet de décrire un matériau donné, ce qui est généralement intrinsèque au modèle de mélange choisi. Toutefois, la signature d'un matériau présente en pratique une variabilité spectrale qui peut être significative d'une image à une autre, voire au sein d'une même image. De nombreux paramètres peuvent en être cause, tels que les conditions d'acquisitions (e.g., conditions d'illumination locales), la déclivité de la scène observée ou des interactions complexes entre la lumière incidente et les éléments observés. À défaut d'être prises en compte, ces sources de variabilité perturbent fortement les signatures extraites, tant en termes d'amplitude que de forme. De ce fait, des erreurs d'estimation peuvent apparaître, qui sont d'autant plus importantes dans le cas de procédures de démélange non-supervisées. Le but de cette thèse consiste ainsi à proposer de nouvelles méthodes de démélange pour prendre en compte efficacement ce phénomène. Nous introduisons dans un premier temps un modèle de démélange original visant à prendre explicitement en compte la variabilité spatiale des spectres purs. Les paramètres de ce modèle sont estimés à l'aide d'un algorithme d'optimisation sous contraintes. Toutefois, ce modèle s'avère sensible à la présence de variations spectrales abruptes, telles que causées par la présence de données aberrantes ou l'apparition d'un nouveau matériau lors de l'analyse d'images hyperspectrales multi-temporelles. Pour pallier ce problème, nous introduisons une procédure de démélange robuste adaptée à l'analyse d'images multi-temporelles de taille modérée. Compte tenu de la dimension importante des données étudiées, notamment dans le cas d'images multi-temporelles, nous avons par ailleurs étudié une stratégie d'estimation en ligne des différents paramètres du modèle de mélange proposé. Enfin, ce travail se conclut par l'étude d'une procédure d'estimation distribuée asynchrone, adaptée au démélange d'un grand nombre d'images hyperspectrales acquises sur une même scène à différents instants.


  • Résumé

    Acquired in hundreds of contiguous spectral bands, hyperspectral (HS) images have received an increasing interest due to the significant spectral information they convey about the materials present in a given scene. However, the limited spatial resolution of hyperspectral sensors implies that the observations are mixtures of multiple signatures corresponding to distinct materials. Hyperspectral unmixing is aimed at identifying the reference spectral signatures composing the data -- referred to as endmembers -- and their relative proportion in each pixel according to a predefined mixture model. In this context, a given material is commonly assumed to be represented by a single spectral signature. This assumption shows a first limitation, since endmembers may vary locally within a single image, or from an image to another due to varying acquisition conditions, such as declivity and possibly complex interactions between the incident light and the observed materials. Unless properly accounted for, spectral variability can have a significant impact on the shape and the amplitude of the acquired signatures, thus inducing possibly significant estimation errors during the unmixing process. A second limitation results from the significant size of HS data, which may preclude the use of batch estimation procedures commonly used in the literature, i.e., techniques exploiting all the available data at once. Such computational considerations notably become prominent to characterize endmember variability in multi-temporal HS (MTHS) images, i.e., sequences of HS images acquired over the same area at different time instants. The main objective of this thesis consists in introducing new models and unmixing procedures to account for spatial and temporal endmember variability. Endmember variability is addressed by considering an explicit variability model reminiscent of the total least squares problem, and later extended to account for time-varying signatures. The variability is first estimated using an unsupervised deterministic optimization procedure based on the Alternating Direction Method of Multipliers (ADMM). Given the sensitivity of this approach to abrupt spectral variations, a robust model formulated within a Bayesian framework is introduced. This formulation enables smooth spectral variations to be described in terms of spectral variability, and abrupt changes in terms of outliers. Finally, the computational restrictions induced by the size of the data is tackled by an online estimation algorithm. This work further investigates an asynchronous distributed estimation procedure to estimate the parameters of the proposed models.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.