Thèse soutenue

Etude de quelques modèles en imagerie photoacoustique

FR  |  
EN
Auteur / Autrice : Margaux Vauthrin
Direction : Faouzi TrikiLaurent Desbat
Type : Thèse de doctorat
Discipline(s) : Mathématiques Appliquées
Date : Soutenance le 03/07/2017
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Jean Kuntzmann (Grenoble)
Jury : Président / Présidente : Eric Bonnetier
Examinateurs / Examinatrices : Eric Soccorsi, Jérôme Boutet
Rapporteurs / Rapporteuses : Abdellatif El Badia, Kaïs Ammari

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Cette thèse porte sur l'étude de la méthode d'imagerie photoacoustique, une nouvelle modalité hybride permettant de combiner la haute résolution de l'imagerie par ultrasons et le contraste de l'imagerie optique. Nous y étudions en particulier le problème inverse associé et sa résolution : il se décompose en l'inversion de l'équation d'ondes et en celle de l'équation de diffusion optique, dont le but est de retrouver les paramètres optiques du milieu. Dans la première partie de cette étude nous développons un modèle permettant de prendre en compte les variations de la vitesse acoustique dans le milieu biologique. En effet, la plupart des méthodes d'inversion supposent une vitesse acoustique constante, ce qui est à l'origine d'erreurs dans les reconstructions. La deuxième partie de la thèse porte sur une étude mathématique du phénomène de limitation de la profondeur de l'imagerie photoacoustique. Nous calculons une estimation de stabilité du problème inverse dans le cas d'un milieu stratifié et nous montrons que la reconstruction se dégrade avec la profondeur. Nous étudions dans la dernière partie le phénomène photoacoustique en présence de nanoparticules métalliques : ces marqueurs permettent d'amplifier par des résonances le signal photoacoustique généré autour d'elles. Elles permettent ainsi une meilleure visibilité des tissus en profondeur. Nous explicitons ici le modèle mathématique de génération du signal photoacoustique, ainsi que la résolution théorique du problème inverse photoacoustique dans ce contexte.