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Abstract

Context. Component-based design is the process leading from given requirements and a set of predefined

components to a system meeting the requirements [86, 6, 16]. Components are abstract building blocks

encapsulating behavior. They can be composed in order to build composite components. Their composition

should be rigorously defined so that it is possible to infer the behavior of composite components from the

behavior of their constituents as well as global properties from the properties of individual components. It is,

however, generally not possible to ensure or verify the desired property using static verification techniques

such as model-checking or static analysis, either because of the state-space explosion problem or because the

property can only be decided with information available at runtime (e.g., from the user or the environment).

Runtime Verification (RV) [54, 61, 36, 87, 3] is an umbrella term denoting the languages, techniques, and

tools for the dynamic verification of system executions against formally-specified behavioral properties.

In this context, a run of the system under scrutiny is analyzed using a decision procedure: a monitor.

Generally, the monitor may be generated from a user-provided specification (e.g., a temporal-logic formula,

an automaton), performs a step-by-step analysis of an execution captured as a sequence of system states, and

produces a sequence of verdicts (truth-values taken from a truth-domain) indicating specification satisfaction

or violation.

Contributions. This thesis addresses the problem of runtime monitoring multi-threaded and distributed

component-based systems with multi-party interactions (CBSs). Although, neither the exact model nor

the behavior of the system are known (black box system), the semantic of such CBSs can be modeled

with labeled transition systems (LTSs). Inspiring from conformance testing theory, we refer to this as

the monitoring hypothesis. Our monitoring hypothesis makes our approach oblivious of (i) the behavior

of the CBSs, and (ii) how this behavior is obtained. We consider a general abstract semantic model of

CBSs consisting of a set of intrinsically independent components whose interactions are managed by several

schedulers. Using such an abstract model, one can obtain systems with different degrees of parallelism,

such as sequential, multi-threaded and distributed systems. When monitoring concurrent (multi-threaded
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and distributed) CBSs, the problem that arises is that a global state of the system is not available at runtime,

since the schedulers execute interactions even by knowing the partial state of the system. Moreover, in

distributed systems the total ordering of the execution of the interaction is not observable. A naive solution

to these problems would be to plug in a monitor which would however force the system to synchronize in

order to obtain the sequence of global states as well as the total ordering of the executions at runtime Such

a solution would defeat the whole purpose of having concurrent executions and distributed systems.

We define two approaches for the monitoring of multi-threaded and distributed CBSs. In both ap-

proaches, we instrument the system to retrieve the local events of the schedulers. Local events are sent to

an online monitor which reconstructs on-the-fly the set of global traces that are i) compatible with the local

traces of the schedulers, and ii) suitable for monitoring purposes, in a concurrency-preserving fashion.

Monitoring multi-threaded CBSs. In the multi-threaded setting the interactions are executed concur-

rently with a centralized scheduler. In this setting, we address the problem of online monitoring of any

logic-independent linear-time user-provided properties in multi-threaded CBSs described in the BIP (Be-

havior, Interaction, Priority) framework. BIP is an expressive framework for the formal construction of

heterogeneous systems. Our technique reconstructs on-the-fly the global states by accumulating the par-

tial states traversed by the system at runtime. We define transformations of components that preserve their

semantics and concurrency and, at the same time, allow to monitor global-state properties. We present

RVMT-BIP, a prototype tool implementing the transformations for monitoring multi-threaded BIP sys-

tems. Our experiments on several multi-threaded BIP systems show that RVMT-BIP induces a cheap

runtime overhead.

This part of the thesis has been published in [72, 71].

Monitoring distributed CBSs. In the distributed setting the interactions are executed concurrently with

several schedulers. Moreover, simultaneous execution of interactions by several schedulers is possible. In

this setting, we address the problem of runtime monitoring of distributed CBSs against user-provided prop-

erties expressed in linear-temporal logic and referring to global states. In this context, the reconstruction

of the global traces is done on-the-fly using a lattice of partial states encoding the global traces compati-

ble with the locally-observed traces. We implemented our monitoring approach in a prototype tool called

RVDIST. RVDIST executes in parallel with the distributed system and takes as input the events generated

from each scheduler and outputs the evaluated computation lattice. Our experiments show that, thanks to the

optimization applied in the online monitoring algorithm, (i) the size of the constructed computation lattice

is insensitive to the number of received events, (ii) the lattice size is kept reasonable and (iii) the overhead
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of the monitoring process is cheap.

This part of the thesis is under consideration for publication.
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Résumé

Contexte. La conception à base de composants est le processus qui permet à partir d’exigences et un

ensemble de composants prédéfinis d’aboutir à un système respectant les exigences. Les composants sont

des blocs de construction encapsulant du comportement. Ils peuvent être composés afin de former des

composants composites. Leur composition doit être rigoureusement définie de manière à pouvoir i) inférer le

comportement des composants composites à partir de leurs constituants, ii) déduire des propriétés globales

à partir des propriétés des composants individuels. Cependant, il est généralement impossible d’assurer

ou de vérifier les propriétés souhaitées en utilisant des techniques de vérification statiques telles que la

vérification de modèles ou l’analyse statique. Ceci est du au problème de l’explosion d’espace d’états et au

fait que la propriété est souvent décidable uniquement avec de l’information disponible durant l’exécution

(par exemple, provenant de l’utilisateur ou de l’environnement).

La vérification à l’exécution (Runtime Verification) désigne les langages, les techniques, et les outils

pour la vérification dynamique des exécutions des systèmes par rapport à des propriétés spécifiant formelle-

ment leur comportement. En vérification à l’exécution, une exécution du système vérifiée est analysée en

utilisant une procédure de décision : un moniteur. Un moniteur peut être généré à partir d’une spécifi-

cation écrite par l’utilisateur (par exemple une formule de logique temporelle, un automate) et a pour but

de détecter les satisfactions ou les violations par rapport à la spécification. Généralement, le moniteur est

une procédure de décision réalisant une analyse pas à pas de l’exécution capturée comme une séquence

d’états du système, et produisant une séquence de verdicts (valeur de vérité prise dans un domaine de vérité)

indiquant la satisfaction ou la violation de la spécification.

Contribution. Cette thèse s’intéresse au problème de la vérification de systèmes à composants multi-

thread et distribués. Nous considérons un modèle général de la sémantique et système à composants avec in-

teractions multi-parties: les composants intrinsèquement indépendants et leur interactions sont partitionées

sur plusieurs ordonnanceurs. Dans ce contexte, il est possible d’obtenir des modèles avec différents de-

grés de parallelisme, des systèmes séquentiels, multi-thread, et distribués. Cependant, ni le modèle ex-
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act ni le comportement du système est connu. Ni le comportement des composants ni le comportement

des ordonnanceurs est connu. Notre approche ne dépend pas du comportement exact des composants et

des ordonnanceurs. En s’inspirant de la théorie du test de conformité, nous nommons cette hypothèse :

l’hypothèse de monitoring. L’hypothèse de monitoring rend notre approche indépendante du comportement

des composants et de la manière dont ce comportement est obtenu. Lorsque nous monitorons des com-

posants concurrents, le problème qui se pose est celui de l’indisponibilité de l’état global à l’exécution. Une

solution naïve à ce problème serait de brancher un moniteur qui forcerait le système à se synchroniser afin

d’obtenir une séquence des états globaux à l’exécution. Une telle solution irait complètement à l’encontre

du fait d’avoir des exécutions concurrentes et des systèmes distribués. Nous définissons deux approches

pour le monitoring de système un composant multi-thread et distribués. Dans les deux approches, nous atta-

chons des contrôleurs locaux aux ordonnanceurs pour obtenir des événements à partir des traces locales. Les

événements locaux sont envoyés à un moniteur (observateur global) qui reconstruit l’ensemble des traces

globale qui sont i) compatibles avec les traces locales et ii) adéquates pour le monitoring, tout en préservant

la concurrence du système.

Monitoring des systèmes à composants multi-thread. Tout d’abord, nous nous intéressons aux prob-

lèmes du monitoring en ligne de propriétés temporelles linéaire et indépendantes de leur logique de spécifi-

cation. Nous considérons des systèmes à composants multi-threads décrits dans le framework BIP (Behav-

ior Interaction Priority), dans lequel les interactions peuvent être exécutées de manière concurrentes avec

un ordonnanceur central pour les interactions multi-partie. BIP est un cadre expressif pour la construction

formelle de systèmes hétérogènes. Notre technique reconstruit à la volée les états globaux par accumula-

tion des états partiels traversés par le système lors de son exécution. Nous définissons des transformations

de composants qui préservent leur sémantique et leur concurrence, et qui à la fois permet de vérifier des

propriétés sur les états globaux. Nous présentons RVMT-BIP, un outil prototype implémentant les transfor-

mations pour le monitoring de système BIP. Nos expérimentation sur plusieurs systèmes BIP démontrent

que RVMT-BIP n’induit qu’une faible dégradation des performances. Cette partie de la thèse a été publié

dans [72, 71]

Monitoring des systèmes à composants distribués. Deuxièmement, nous nous intéressons au problème

du monitoring des systèmes à composants avec interaction multi-partie pour des propriétés exprimées en

logique linéaire temporelle qui font référence aux états globaux. Dans ce contexte, la reconstruction des

traces globales est faite à la volée en utilisant un treilis des états partiels encodant les traces globales qui

sont compatibles avec les traces observés localement. Nous avons implémenté notre approche de monitor-
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ing dans un outil prototype appelé RVDIST. RVDIST s’exécute en parallèle avec le modèle distribué et

prend en entrée les événements générés par chacun des ordonnanceurs et produit le treillis des exécutions.

Nos expérimentations démontrent que, grâce a l’optimisation appliquée dans l’algorithme de monitoring en

ligne, (i) la taille du treillis construit ne dépend pas du nombre d’événements reçus, (ii) la taille du tri est

raisonnable, (iii) l’impact en terme de performance du processus de monitoring est faible. Cette partie de la

thèse est en cours de soumission et d’évaluation.

ix



x



Contents

1 Introduction 1

1.1 Runtime Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Component-Based Systems with Multi-Party Interactions (CBSs) . . . . . . . . . . . . . . . 2

1.3 Challenges of Monitoring Multi-threaded and Distributed CBSs . . . . . . . . . . . . . . . 4

1.4 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Monitoring User-Provided Specifications on Concurrent Systems 13

2.1 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Online Versus Offline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Synchronous Versus Asynchronous Distributed Systems . . . . . . . . . . . . . . . 14

2.1.3 Centralized Monitor Versus Decentralized Monitor . . . . . . . . . . . . . . . . . . 14

2.2 Monitoring Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Preliminaries and Notations 25

I Monitoring Component-Based Systems with Multi-Party Interactions (CBSs) 31

4 Abstract Semantic Model of Distributed, Multi-threaded and Sequential CBSs 33

4.1 Semantics of Distributed CBSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Semantics of Multi-Threaded CBSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Semantics of Sequential CBSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Observing a CBSs at Runtime 43

5.1 Observable trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xi



5.1.1 Observable Trace of a Multi-Threaded CBS . . . . . . . . . . . . . . . . . . . . . . 45

5.1.2 Observable Trace of a Sequential CBS . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Problem Statement: Monitoring the Trace of a CBS . . . . . . . . . . . . . . . . . . . . . . 45

6 Instrumenting CBSs 49

6.1 Composing Schedulers and Shared Components with Controllers . . . . . . . . . . . . . . . 50

6.1.1 Controllers of Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.2 Controllers of Shared Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1.3 Instrumentation of Multi-threaded CBSs . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Event Extraction from the Local Partial-Traces of the Instrumented System . . . . . . . . . 57

6.3 Correctness of Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Reconstructing and Monitoring the Global Trace 61

7.1 Construction of the Witness Trace of Multi-threaded CBS . . . . . . . . . . . . . . . . . . . 62

7.1.1 Witness Relation and Witness Trace . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1.2 Construction of the Witness Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1.3 Properties of Global-trace Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 66

7.1.4 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2 Construction of the Computation Lattice of Distributed CBSs . . . . . . . . . . . . . . . . . 69

7.2.1 Intermediate Operations for the Construction of the Computation Lattice . . . . . . 71

7.2.2 Algorithm Constructing the Computation Lattice . . . . . . . . . . . . . . . . . . . 75

7.2.3 Insensibility to Communication Delay . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2.4 Correctness of Lattice Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2.5 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2.6 Correctness of Formula Progression on the Lattice . . . . . . . . . . . . . . . . . . 90

II Implementation and Evaluation 95

8 The BIP Framework 97

8.1 Multi-Threaded BIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.2 Distributed BIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9 Monitoring Multi-Threaded BIP Models 105

9.1 Model Transformation to Construct the Witness Trace . . . . . . . . . . . . . . . . . . . . . 105

xii



9.1.1 Instrumentation of Atomic Components . . . . . . . . . . . . . . . . . . . . . . . . 106

9.1.2 Creating a New Atomic Component to Reconstruct Global States . . . . . . . . . . 107

9.1.3 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.1.4 Correctness of the Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.2 Implementation of Witness Trace Construction . . . . . . . . . . . . . . . . . . . . . . . . 117

10 Monitoring Distributed BIP Models 119

10.1 Model Transformation of Distributed BIP Models . . . . . . . . . . . . . . . . . . . . . . . 119

10.2 Implementation of Computation Lattice Construction . . . . . . . . . . . . . . . . . . . . . 122

11 Evaluation 123

11.1 Evaluation of Monitoring Multi-threaded CBS . . . . . . . . . . . . . . . . . . . . . . . . . 123

11.1.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11.1.2 Evaluation Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

11.1.3 Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

11.2 Evaluation of Monitoring Distributed CBS . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

11.2.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

11.2.2 Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

III Discussion 139

12 Related Work 141

12.1 Runtime Verification of Multi-Threaded Systems . . . . . . . . . . . . . . . . . . . . . . . 141

12.2 Runtime Verification of Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 144

13 Conclusions 147

13.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

13.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A Proofs 151

A.1 Proofs Related to the Approach for Monitoring Multi-Threaded CBS . . . . . . . . . . . . . 151

A.1.1 Proof of Property 7.4 (p. 64) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.1.2 Proof of Property 7.5 (p. 64) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.1.3 Intermediate Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.1.4 Proof of Theorem 7.14 (p. 68) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

xiii



A.1.5 Proof of Proposition 9.9 (p. 115) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.1.6 Proofs of Intermediate Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.1.7 Proof of Theorem 9.16 (p. 116) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.2 Proofs Related to the Approach for Monitoring distributed CBS . . . . . . . . . . . . . . . 162

A.2.1 Intermediate Definition and Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.2.2 Proof of Proposition 6.14 (p. 59) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.2.3 Proof of Property 7.18 (p. 71) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.2.4 Proof of Property 7.21 (p. 72) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.2.5 Proof of Proposition 7.30 (p. 81) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.2.6 Proof of Proposition 7.38 (p. 84) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.2.7 Proof of Proposition 7.39 (p. 84) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.2.8 Proof of Proposition 7.46 (p. 91) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.2.9 Proof of Theorem 7.47 (p. 92) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.2.10 Proof of Theorem 7.48 (p. 92) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B Tool User-Guides 171

B.1 RVMT-BIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.2 RVDIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

xiv



C
H

A
P

T
E

R

1
Introduction

1.1 Runtime Verification

Runtime Verification (RV) [77, 54, 61, 36, 87, 9, 34, 3] is a lightweight and effective technique to ensure

the correctness of a system at runtime, that is whether or not the system respects or meets a desirable be-

havior. It can be used in numerous application domains, and more particularly when integrating together

unreliable software components. Runtime verification complements exhaustive verification methods such

as model checking [22, 76], and theorem proving [55], as well as incomplete solutions such as testing [12]

and debugging [85]. In RV, a run of the system under inspection is analyzed incrementally using a decision

procedure: a monitor. This monitor may be generated from a user-provided high level specification (e.g.,

a temporal formula, an automaton). This monitor aims to detect violation or satisfaction w.r.t. the given

specification. Generally, it is a state machine processing an execution sequence (step by step) of the mon-

itored program, and producing a sequence of verdicts (truth-values taken from a truth-domain) indicating

specification fulfillment or violation. For a monitor to be able to observe the runs of the system, the system

should be instrumented in such a way that at runtime, the program sends relevant events that are consumed

by the monitor. Usually, one of the main challenges when designing an RV framework is its performance.

That is, adding a monitor in the system should not deteriorate executions of the initial system, time and

memory wise.
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2 1. INTRODUCTION

1.2 Component-Based Systems with Multi-Party Interactions (CBSs)

Component-based design consists in constructing complex systems from given requirements using a set

of predefined components [86]. Components are abstract building blocks encapsulating behavior. Each

component is defined as an atomic entity with some actions and interfaces. Components communicate

and interact with each other through their interfaces. They can be composed in order to build composite

components. Their composition should be rigorously defined so that it is possible to infer the behavior

of composite components from the behavior of their constituents as well as global properties from the

properties of individual components and the interactions between them. Each multi-party interaction is a set

of simultaneously-executed actions of the existing components [16].

The execution of a CBS with multi-party interactions is carried on using schedulers (also known as

processes or engines) managing the interactions. The architecture of schedulers and components provides

various types of CBSs in terms of functionality and different degrees of parallelism in the execution of the

interactions. The sequential setting is the simplest execution procedure, in the sense that the interactions are

carried out by the sequential execution of the participating components on a single thread of execution. For

performance reasons, in the multi-threaded setting, the execution of components is parallelized, so that the

components can run in multiple threads concurrently. Moreover, the highest level of parallelism is obtained

in the distributed setting, which is mainly considered for efficiency reasons. To achieve more performance,

doubling the frequency of processors consumes twice as much energy as doubling the number of processors

in the system which is efficiently distributed. Another reason for considering distributed systems is the

geographical location of components of the system. Processing local data and managing the local executions

requires dedicated computing units in specific locations.

According to its degree of parallelism, a CBS can be categorized as follows:

– Sequential (centralized or single-threaded): In a Sequential CBS, one scheduler is in charge of the

execution of the interactions of the system. Components notify the scheduler of their current states.

Then, the scheduler computes the possible interactions, selects one, and then sequentially executes the

actions of each component involved in the interaction. When components finish their executions, they

notify the scheduler of their new states, and the aforementioned steps are repeated. In this setting,

the execution of an interaction is not possible when some component is performing a computation.

Moreover, the global state of the system, which is the union of the states of the individual components,

is always defined. In this case, a global trace is represented by the sequence of global states obtained

after the execution of interactions. Indeed, the scheduler is aware of the global trace of the system.
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– Multi-threaded (decentralized with a centralized scheduler): In the multi-threaded setting, similar to

the centralized setting, one scheduler is in charge of the execution of the interactions, with the differ-

ence that each component executes on a separate thread and the scheduler is in charge of coordination.

The components can perform their corresponding actions independently after synchronization, and the

interactions become non atomic. That is, after starting an interaction, and before this interaction com-

pletes (meaning that certain components are still performing internal computations), the scheduler

can start another interaction among ready components. In this setting, the global state of the system

is not always defined since the scheduler executes interactions even by knowing the partial state of

the system, that is a snapshot of the system where at least one component is busy with its internal

computation. The scheduler is aware of the partial trace which is a sequence of partial states.

– Distributed (fully decentralized): In the distributed setting, the execution of interactions of a CBS is

distributed among several independent schedulers. In an implemented distributed CBS, schedulers

and components are interconnected (e.g., networked physical locations) and work together as a whole

unit to meet some requirements. The execution of a multi-party interaction is then achieved by send-

ing/receiving messages between the scheduler in charge of the execution of the interaction and the

components involved in the interaction [5]. In this setting, each scheduler along with its associated

components can be seen as a multi-threaded system, so that the computations of the components in the

scope of the scheduler are done concurrently. Moreover, the simultaneous execution of several inter-

actions managed by several schedulers is possible. Thus, the execution trace of a distributed system is

a partial trace. Each scheduler is aware of its execution trace, that is the locally observed partial-trace

consisting of a sequence of the partial states of components in the scope of the scheduler. A set of the

local partial-traces of the schedulers represents the execution trace of the system.

Example 1.1. Figure 1.1 depicts an abstract component-based system of four componentsA,B,C,D and a

set of multi-party interactions {ab, bc, cd}, that are synchronization of the actions of the components. From

a global state, an interaction can execute if all the participants are ready to execute that interaction. For

instance, executing interaction ab requires that componentsA andB are ready to execute their corresponding

actions allowing interaction ab. In this case, interaction ab is enabled. Let (A0, B0, C0, D0) be the initial

state of the system, where all the components are ready and all the interactions are enabled.

A B C D

ab bc cd

Figure 1.1: Depiction of an abstract CBS with four components and three interactions
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– In the sequential setting, interactions are executed atomically and sequentially by the central sched-

uler. The state of all participants in the interaction is changed in a single execution step. The states

of other components are not modified. From the initial state, the execution of interaction ab results in

the following global trace: (A0, B0, C0, D0) · ab · (A1, B1, C0, D0), where A1 and B1 are the next

global states of components A and B respectively.

– In the multi-threaded setting, for instance after triggering interaction ab, components A and B are

considered as busy components until they finish their corresponding computations. The associated

partial trace is: (A0, B0, C0, D0) · ab · (A⊥, B⊥, C0, D0) where X⊥ denotes the busy state of com-

ponent X . From the partial state (A⊥, B⊥, C0, D0), the scheduler can either execute interaction cd,

or wait for the busy components A or B to finish their internal computations.

– If the scheduler executes interaction cd, the corresponding partial trace is: (A0, B0, C0, D0) ·
ab · (A⊥, B⊥, C0, D0) · cd · (A⊥, B⊥, C⊥, D⊥).

– If component B finishes its computation and notifies the scheduler about its ready state, the

system moves to state (A⊥, B1, C0, D0), which is a partial state. From this state, the scheduler

can execute bc reaching (A⊥, B⊥, C⊥, D0) or cd reaching (A⊥, B1, C⊥, D⊥), or wait for the

ready state of component A to reach the global state (A1, B1, C0, D0).

– In the distributed setting, assuming the following partitioning of interactions {ab, bc} and {cd}, such

that the execution of each partition is managed by a corresponding scheduler, if two interactions ab and

cd are enabled, they can be executed concurrently by the two schedulers. Then the local observable

partial traces are as follows:

– Local partial trace of the first scheduler: (A0, B0, C0, D0) · ab · (A⊥, B⊥, ? , ? ),

– Local partial trace of the second scheduler: (A0, B0, C0, D0) · cd · (? , ? , C⊥, D⊥),

where ? denotes the unknown state.

1.3 Challenges of Monitoring Multi-threaded and Distributed CBSs

However, it is generally not possible to ensure or verify a desired behavior of such systems using static

verification techniques such as model-checking or static analysis, either because of the state-space explosion

problem or because the property can only be decided with information available at runtime (e.g., from the

user or the environment). In this thesis, we are interested in complementary verification techniques for

CBSs such as runtime verification. To this end, we propose techniques to runtime verify a component-based
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system against properties referring to the global state of the system. This implies in particular that properties

can not be projected and checked on individual components. In the following we point out the problems that

one encounters when monitoring CBSs at runtime.

Runtime verification of sequential CBSs requires an instrumentation technique to derive the sequence of

(existing) global states at runtime to the monitor. Such an instrumentation must ensure that the performance

of the instrumented system is close to the performance of the original system. Moreover, the instrumentation

should not alter the behavior of the initial system. One possible solution is to add the monitor as a new

component, which is allowed to observe the system by adding interactions. Such interactions should be

inserted carefully because they could modify the existing interactions and/or modify the behavior of the

components. Verification of sequential CBSs has been studied in [27, 38, 39], and is not the focus of this

thesis.

In the multi-threaded and distributed settings we deal with concurrent executions and partial states.

– Although, in the multi-threaded setting, components execute with a centralized scheduler and there

is a global clock and communication considered to be instantaneous and atomic, the global state of

the system (where all components are ready to perform an interaction) may never exist at runtime.

This causes the main problem when monitoring multi-threaded CBSs against properties referring to

the global state of the system.

Example 1.2. We consider the CBS presented in Example 1.1 (p. 3) to illustrate the monitoring chal-

lenges for a multi-threaded CBS. Although in the partial trace (A0, B0, C0, D0)·ab·(A⊥, B⊥, C0, D0)·
cd·(A⊥, B⊥, C⊥, D⊥) the total order of the executions is defined and observable by the central sched-

uler, the global trace of the system does not exist.

– Furthermore, the runtime monitoring of an asynchronous distributed system is a much more difficult

task, because in the distributed setting, (i) the execution of the system is more dynamic and parallel,

in the sense that each scheduler executes its associated actions concurrently and we have a set of par-

allel executions, (ii) neither a global clock nor a shared memory is used, hence, schedulers can have

different processing speeds and can suffer from clock drifts, and (iii) since the execution of interac-

tions is based on sending/receiving messages and delays in the reception of messages in asynchronous

communications are inevitable, the runtime monitor does not receive the events with the same order

as they are actually occurred. Therefore, events cannot be ordered based on time. The absence of

ordering between the execution of the interactions in different schedulers causes the main problem in

the distributed setting that is (i) the global state of the system does not exist, and (ii) the actual partial

trace of the system is not observable.
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Example 1.3. We consider again Example 1.1 (p. 3) to illustrate the monitoring challenges on a dis-

tributed CBS. The two local partial-traces (A0, B0, C0, D0)·ab·(A⊥, B⊥, ? , ? ) and (A0, B0, C0, D0)·
cd · (? , ? , C⊥, D⊥) are observable locally by their corresponding schedulers. The actual ordering be-

tween ab and cd is not observable by any of the schedulers or components. Moreover, sending these

local partial-traces to a central monitor through the associated events does not guarantee the reception

of the events in the same order as they have actually occurred. Therefore, the monitor has to take into

account the following possible partial traces:

– ab happened before cd: (A0, B0, C0, D0) · ab · (A⊥, B⊥, C0, D0) · cd · (A⊥, B⊥, C⊥, D⊥)

– cd happened before ab: (A0, B0, C0, D0) · cd · (A0, B0, C⊥, D⊥) · ab · (A⊥, B⊥, C⊥, D⊥)

– ab and cd happened concurrently: (A0, B0, C0, D0) · ab, cd · (A⊥, B⊥, C⊥, D⊥)

Consequently, the runtime monitor must i) find the total order of the events, ii) similarly to the multi-

threaded setting, reconstruct the global trace associated to each partial trace, and iii) evaluate the

possible global traces on-the-fly.

For monitoring such systems, we avoid synchronization to take global snapshots, which would go against

the parallelism of the verified system. The monitoring problem is even more complicated because no com-

ponent of the system can be aware of the global trace and the monitor needs to reconstruct the global trace

from the events emitted by schedulers at runtime, and then reason about their correctness. Our goal is to

provide methods that can be used for the verification of such CBSs by applying instrumentation techniques

to observe the global behavior of the systems while preserving their performance and initial behavior. Con-

sequently, the designed instrumentation technique should be defined formally and its correctness formally

proved.

1.4 Approach Overview

We define a monitoring hypothesis based on the definition of an abstract semantic model of CBS. The ab-

stract semantic system is composed of a non-empty set of components B and their joint actions which are

managed by a non-empty set of scheduler S. Each component B ∈ B is endowed with a set of actions

ActB . Joint actions of component, aka multi-party interactions, involve the execution of actions on several

components. An interaction is a non-empty subset of {ActB | B ∈ B}, such that at most one action of each

component is involved in an interaction. In addition, to model concurrent behavior, each atomic component

B ∈ B has internal actions which we model as a unique action β, such that each action of B is followed by
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the internal action β. The set of interactions in the system is distributed among a non-empty set of sched-

ulers S. Schedulers coordinate the execution of interactions and ensure that each multi-party interaction is

jointly executed. Our monitoring hypothesis is that the behavior of the monitored system complies to this

model. We argue that this model is abstract enough to encompass a variety of (component-based) systems,

and serves the purpose of describing the knowledge needed on the verified system and later guides their

instrumentation. A property ϕ specifies the desired runtime behavior of the system (referring to the global

state of the system) which has to be evaluated while the system is running. In this context, each scheduler

is only aware of its local partial-trace, that is a set of ordered local events (i.e., actions which change the

state of the system). Moreover, events from different schedulers are not totally ordered. In order to evaluate

the global behavior of the system consisting of several schedulers, it is necessary to find i) a set of possible

ordering among the events of all schedulers, that is, the set of compatible partial traces that could possibly

happen in the system, and ii) the set of global traces corresponding to the compatible partial traces.

Figure 1.2 (p. 9) presents an overview of our approach. Intuitively, our method consists in two steps,

(i) instrumentation of the abstract CBS to obtain system events and send them to the monitor, and (ii)

reconstruction of the compatible global trace(s) of the system and evaluate them on-the-fly by the monitor.

The instrumentation is done as follows:

– Each scheduler S ∈ S is composed with a controller. Each controller is in charge of detecting and

sending the events that occurred in the corresponding scheduler.

– A central monitor component (global observer) is added to the system. This new module receives the

events which occurred in schedulers and are sent by their associated controllers. The monitor works

in parallel with the system and applies an online monitoring algorithm upon the reception of each

event.

– In the multi-threaded setting the controller of the scheduler sends the events to the monitor with the

same order as they are occurred (we assume that communication channels are reliable). Although the

partial trace of the system exists and can be obtained through the events, the sequence of global states

of the system is not available.

– In the distributed setting where (i) we have more than one schedulers, (ii) we have possibly some

shared components (i.e., components in the scope of more than one scheduler), and (iii) schedulers do

not communicate together and only communicate with their own associated components, we compose

each shared component with a controller. The controller of a shared component only communicates

with the controllers of the schedulers whenever the shared components and the schedulers commu-

nicate. Indeed, in our abstract model, what makes the events of different schedulers to be causally
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related is only the shared components which are involved in several multi-party interactions managed

by different schedulers. In other words, the executions of two actions managed by two schedulers and

involving a shared component are definitely causally related, because each execution requires the ter-

mination of the other execution in order to release the shared component. To take into account these

existing causalities among the events, in the distributed setting, we employ vector clocks to define

the ordering of events. The controller of a shared component is used to resolve the ordering among

the events involving the shared component. Each event associated to the execution of a multi-party

interaction is labeled by a vector clock. Ordering of such events are defined based on their vector

clocks. The monitor receives the partially-ordered events representing the local partial-traces.

We propose two online monitoring methods for multi-threaded and distributed systems as follows:

– In the multi-threaded setting, the monitor is aware of the partial trace of a system, because the received

events are totally ordered and represent the actual execution of the system. We define the notion of

witness trace, which is intuitively the unique compatible global trace corresponding to the partial trace

of the multi-threaded CBS as if this CBS was executed on a single thread (sequential setting) with

the same sequence of the executed interactions. We introduce an online algorithm to reconstruct the

corresponding witness trace of the current execution which allows the monitor to verify any logic-

independent linear-time user-provided properties. Our method does not introduce any delay in the

detection of verdicts since it always reconstructs the maximal (information-wise) prefix of the witness

trace. Moreover, we show that our method is correct in the sense that it always produces the correct

witness trace (Theorem 7.14, p. 68). Note that our approach allows one to monitor any linear-time

property. Moreover, how the property is defined is irrelevant as one can use the approaches in [9, 35]

to synthesize a monitor which emits verdicts in a 4-valued domain. Our approach directly uses the

definition of a monitor as input and is thus compatible with the various approaches compatible with

the ones in [9, 35].

We introduce RVMT-BIP, a tool integrated in the BIP tool suite for runtime verification of multi-

threaded BIP systems.1 BIP (Behavior, Interaction, Priority) framework is a powerful and expressive

component framework for the formal construction of heterogeneous systems. BIP offers two pow-

erful mechanisms for composing components by using multiparty interactions and priorities. The

combination of interactions and priorities is expressive enough to express usual composition opera-

tors of other languages as shown in [15]. A BIP model is layered. The lowest layer contains atomic

components whose behavior is described by state machines with data and functions described in the

1RVMT-BIP is available for download at [70].
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Figure 1.2: Approach overview

C language. As in process algebras, atomic components can communicate by using ports. The second

layer contains interactions which are relations between communication ports of individual compo-

nents. Priorities are used to express scheduling policies by selecting among the enabled interactions

of the layer underneath. RVMT-BIP takes as input a BIP model and a monitor description which

expresses a property ϕ, and outputs a new BIP system whose behavior is monitored against ϕ while

running concurrently. We experiment with RVMT-BIP on several systems, where each system is

monitored against dedicated properties. Our experimental results show that RVMT-BIP induces a

cheap runtime overhead [72, 71].

– In the distributed setting, the monitor is aware of the local partial-traces of the schedulers. The monitor

computes all the compatible partial traces of the system with respect to the partial ordering of the
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received events. Each compatible partial trace could possibly happen in the system and would produce

the same events. We introduce an online algorithm to reconstruct the corresponding global trace for

each partial trace (using the similar technique used for reconstruction of the witness trace in the

multi-threaded setting). To represent the set of reconstructed compatible global traces we use the

general notion of computation lattice. A computation lattice has |S| orthogonal axes, with one axis

for each scheduler. The direction of each axis represents the system state evolution with respect to the

execution of interactions managed by the associated scheduler. Each path in the lattice represents a

compatible global trace of the system. We define a novel on-the-fly monitoring technique to evaluate

any Linear Temporal Logic (LTL) properties over the computation lattice. To this end, we define a

new structure of the computation lattice in which each node η of the lattice is augmented by a set of

formulas representing the evaluation of all the possible global traces from the initial node of the lattice

(i.e., initial state of the system) up to node η. We show that the constructed lattice is correct in the sense

that it encompasses all the compatible global traces (Proposition 7.38, p. 84, and Proposition 7.39,

p. 84). The given formula is monitored by progression over the constructed lattice, so that the frontier

node of the lattice contains a set of formulas, each of which corresponding to the evaluation of a

compatible global trace (Theorem 7.47, p. 92, and Theorem 7.48, p. 92). Furthermore, we introduce an

optimization algorithm to keep the size of the constructed lattice small by removing the unnecessary

nodes. We show that such an optimization on the one hand does not affect the evaluation of the system

and on the other hand increases the performance of the monitoring process.

We present an implementation of our monitoring approach in a tool called RVDIST. RVDIST is a

prototype tool written in the C++ programming language. RVDIST takes as input an LTL formula

and a sequence of events, then constructs and evaluate the computation lattice against the given LTL

property. Moreover, we present the evaluation of our monitoring approach on several distributed

systems carried out with RVDIST. Our experiments show that, thanks to the optimization applied in

the online monitoring algorithm, (i) the size of the constructed computation lattice is insensitive to

the the number of received events, (ii) the lattice size is kept reasonable and (iii) the overhead of the

monitoring process is cheap.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2 (p. 13) a state-of-the-art on monitoring

is presented. Chapter 3 (p. 25) introduces some preliminary concepts. The thesis is partitioned into three

parts.
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– Part I is the main theoretical part of this thesis. Chapter 4 (p. 33) defines an original abstract semantic

model of CBSs, suitable for monitoring purposes, and allowing to define a monitoring hypothesis for

the runtime verification of distributed CBSs. In Chapter 5 (p. 43) we define the observable trace of the

abstract model and explain the runtime monitoring problem based on the observable trace. Chapter 6

(p. 49) describes the instrumentation of the abstract model to generate the events of the system. In

Chapter 7 (p. 61) we introduce methods to reconstruct the corresponding global trace using the events

of the system. Such a global trace is suitable for online monitoring.

– Part II presents the implementation and evaluation of the theories introduced in Part I. In Chapter 8

(p. 97) we present the BIP framework. Chapter 9 (p. 105) describes RVMT-BIP, an implementation

of the monitoring approach on multi-threaded BIP models. Chapter 10 (p. 119) describes RVDIST,

an implementation of the monitoring approach for distributed CBSs. The tools are evaluated in Chap-

ter 11 (p. 123) using several examples.

– Part III consists in Chapter 12 (p. 141) presenting related work and their comparison with our ap-

proaches and Chapter 13 (p. 147) in which we conclude and present future work.

Complete proofs related to the correctness of the approach are given in Appendix A (p. 151). In Appendix B

(p. 171), we present the user guides of RVMT-BIP and RVDIST.

The part of this thesis associated to the monitoring multi-threaded CBS has been published in iFM 2016,

the 12th international conference on integrated Formal Methods [72] and in Formal Aspects of Computing

(FAC), a Springer journal [71]. The part of the thesis associated to the monitoring of distributed CBSs is

under consideration for publication.
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Monitoring User-Provided Specifications on

Concurrent Systems

Chapter abstract

In this chapter, we briefly introduce monitoring and we describe the different parameters that affect the

design of systems monitoring. We overview the work done on monitoring user-provided specification

on concurrent systems. In Chapter 12 (p. 141), we compare our approach to the related approaches

described in this chapter.

2.1 Monitoring

Monitoring or runtime verification (RV) is a dynamic analysis method aiming at checking whether a run

of the system under scrutiny satisfies a given property. The inputs to an RV system are: (i) a system to

be verified, and (ii) a set of properties to be checked against the system execution. The properties can be

expressed in a formal specification language (e.g., automata-based or logic-based formalism), or even as a

program in a general-purpose programming language. A runtime verification process typically consists of

the following three stages. First, from a property is generated a monitor, that is a decision procedure for the

property. This step is often referred to as monitor synthesis. The monitor is capable of consuming events

produced by a running system and emits verdicts according to the current satisfaction of the property based

on the history of received events. Second, the system under scrutiny is instrumented. The purpose of this

stage is to be able to generate the relevant events to be fed to the monitor. This step is often referred to

13
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as system instrumentation. Third, the execution of the system is analyzed by the monitor. This analysis

can occur either during the execution in a lock-step manner (online monitoring), or after the execution has

finished assuming that events have been written to a log (offline monitoring). This step is often referred to

as execution analysis.

2.1.1 Online Versus Offline

In online monitoring, the monitor is running alongside the monitored system and is expected to detect

satisfaction/violation to the desired properties as soon as they occur. The online monitor can either be inline

(internal) where it is included in the code of the system, or outline(external) where it exists as an external

entity [36]. Offline monitoring takes place after the system has terminated. Offline monitoring can be used

for instance for testing purposes, where the system is executed many times with different input parameters

and then the execution traces are evaluated by the monitor. Decentralized offline monitors may be used for

parallelizing the evaluation process of larg traces [53, 4].

2.1.2 Synchronous Versus Asynchronous Distributed Systems

The design of distributed systems affects greatly the design of the monitoring system. Synchronous dis-

tributed systems that depend on global clock are relatively easier to monitor than asynchronous distributed

systems, where each scheduler (process) has a local clock. In a synchronous distributed system, the monitor

can easily order the events generated by different schedulers and process them sequentially to evaluate the

desired property. However, in an asynchronous distributed systems clock drifts are inevitable and therefore,

the monitor can not use the timestamps of events from different schedulers to order the events. Instead, the

monitor uses the partial order induced by the communication between the distributed entities (schedulers or

processes) or indirectly through the shared elements (shared components) to order the events. Note that the

total order of concurrent events can not be determined in an asynchronous setting, therefore the monitor has

to consider all the possible total orders that could happened in the actual run.

2.1.3 Centralized Monitor Versus Decentralized Monitor

The runtime monitor can be either centralized as a single process or decentralized as a set of multiple

processes such that the monitoring tasks are distributed among them.
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Centralized Monitor

A centralized monitor receives the events from all schedulers, evaluates the desired property and emits the

corresponding verdict about the violation or satisfaction of the property. The central monitor is also respon-

sible for ordering the events it receives from the schedulers, which is a harder job if the system is asyn-

chronous. The central monitor resides on either, a new distributed entity dedicated to monitoring, or on one

of the existing schedulers. In [8], the authors present a framework for detecting and analyzing synchronous

distributed systems faults in a centralized manner using LTL properties. In [64], the authors present a mon-

itoring technique that uses symbolic composition of events with the monitor to detect satisfaction/violation

of LTL properties in an asynchronous distributed system.

Decentralized Monitor

Decentralized monitoring aims at decentralizing the monitoring load from one node to several monitor-

ing nodes [30, 29]. Each monitoring node is attached to one scheduler and receives the events from the

scheduler as soon as they happen. The decentralized design offers many advantages compared to the cen-

tralized design such as the absence of single point of failure, faster notification of failures or violations,

distributed memory and computation overload among the monitoring nodes. However, decentralized mon-

itors are required to communicate together to evaluate the correctness property leading to a complicated

design. In [83], the authors introduced a method for decentralized monitoring safety properties in dis-

tributed systems using the past-time linear temporal logic (PLTL). The monitors gain knowledge about the

state of the system by piggybacking on the existing communication among processes. In [13], the authors

introduce decentralized monitoring algorithms for runtime verification of sequential programs. In [11], the

authors presented a decentralized monitoring algorithm to verify LTL formulas for synchronous distributed

systems. Lattice-theoretic centralized and decentralized online monitoring has been studied in [21, 68].

Migration and choreography are two design approaches of decentralized monitor, described after.

Migration In the migrating monitors design, the monitor process migrates from a program process to

another with the objective of minimizing computation and communication overhead. In [11], the authors

present a runtime verification algorithm of LTL specifications for synchronous distributed systems, where

processes share a single global clock. The LTL formulas transferred across subsystems to gather local

information.

Choreography In the choreography design presented first in [23], the authors present a technique where

the LTL formula is divided into subformulas and the monitor nodes are arranged in a tree-like structure,
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such that each leaf node is responsible for evaluating local propositions, while the intermediate nodes ag-

gregate the results and forwards it upwards until the formula is evaluated. In [43], dynamic choreography is

proposed. The latter is similar to state choreography presented in [23], but rearranges the network of moni-

tors during execution, allowing monitoring dynamic properties such as the ones created or that has evolved

during runtime.

2.2 Monitoring Distributed Systems

In the following, we briefly describe some research efforts on monitoring distributed systems.

Distributed snapshots: determining global states of distributed systems. In [20], Chandy and Lamport

introduced the notion of global snapshot, which is the basis for almost all subsequent research on detecting

the truth value of stable predicates. A predicate is stable if it does not turn false once it becomes true. They

presented an algorithm by which a process in a distributed system determines a global state (consistent cut)

of the system during a computation.

Repeated snapshot Bouge [17] and Spezialetti and Kearns [88] have extended global snapshot method [20]

for repeated snapshot. By taking the global snapshot periodically, the truth value of a stable property can

be detected. In their work, processes can take several snapshots of the system in such a way that successive

phases of the algorithm do not interfere, and taking snapshots does not overflood the system. Nevertheless,

this approach does not work for unstable predicates which may be true only between two snapshots and not

at the time the snapshot is taken.

Detection of weak unstable predicates in distributed programs. In [49], Garg and Waldechel define a

class of unstable predicates called weak conjunctive predicates. A weak conjunctive predicate consists of a

conjunction of local predicates such as (p1 ∧ p2 ∧ · · · ∧ pn), where pi is evaluated in process i. It is defined

to be true in an execution if there exists a global state in the execution such that the expression evaluates to

true. In that paper, an algorithm for detecting such predicated is presented.

Detection of unstable predicates in distributed programs. In [48], Garg and Waldechel also define

strong conjunctive predicates which, like their weak counterparts, consist of a conjunction of local pred-

icates. The predicate evaluates to true (for a particular execution) when every sequence of global states

consistent with the execution contains a global state which satisfies the conjunctive boolean expression. In

other words, a strong conjunctive predicate is true if and only if the system will always reach a global state
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such that all local predicates hold. In that paper, an algorithm for detecting strong conjunctive predicates is

presented.

Detecting conjunctive channel predicates in a distributed programming environment. In [46], Garg

and Chase introduce the concept of a channel predicate and extend weak conjunctive predicates to include

predicates on the state of message channels. A channel is a uni-directional connection between any two

processes through which messages can be passed. A channel predicate is any boolean function of the

state of the channel. The authors restrict the channel predicates to a class called dynamically monotonic

predicates which can behave in some states as a send-monotonic predicate which can not be made true by

sending more messages along the same channel, and in other states as a receive-monotonic predicate which

is analogous, so that when it is false, it can not be made true by only receiving more messages.

Monitoring functions on global states of distributed programs. A global function is a function whose

domain is the set of all global states of a given execution. In [90], Tomlinson and Garg show how to monitor

the value of a global function in a distributed program while the program is executing. The authors discuss

relational global predicates of the form (x1 + x2 ≥ k), where xi is defined in process i. They proposed a

fully decentralized algorithm and generalized it to monitor the system in order to determine if there exists

a global state in which predicate x1 + x2 + · · · + xn > k holds. They examined the cases where xi is an

integer variable and where xi is a boolean variable.

Consistent global states of distributed systems: fundamental concepts and mechanisms. Babaoglu

and Marzullo [1] define two strategies for solving Global Predicate Evaluation in asynchronous distributed

systems by construction of the computation lattice. The first strategy is such that an active monitor queries

the rest of the system in order to construct the global state. The second strategy is such that a passive monitor

observes the system in order to construct its global states. Whenever processes execute an event, they notify

the passive monitor by sending the event.

Specification and verification of behavioral patterns in distributed computations. In [2], Babaoglu

and Raynal introduce the syntactic classes simple sequence and interval-constrained sequence of global

predicates that define sets of global states related through the notion of causality-preserving sequencing.

These classes admit Boolean expression over global states as building blocks and include temporal speci-

fications through causality-preserving sequencing and interval negation. They develop an online algorithm

for verifying the satisfaction of such formulas. The verification relies on a monitor which is internal to the

system and concurrently executing with the actual computation.



18 2. MONITORING USER-PROVIDED SPECIFICATIONS ON CONCURRENT SYSTEMS

A general approach to trace-checking in distributed computing systems. In [57], Jard and Jeron pro-

pose to check a distributed computation against regular properties which are described by finite-state au-

tomata. They consider the lattice of global states representing all possible observation of the distributed

computation. Some satisfaction is claimed when at least one path of the lattice is recognized be the automa-

ton whereas every satisfaction is claimed when each path of the lattice is recognized by the automaton. They

proposed an approach to check properties on traces, based on partial order theory.

Breakpoints and halting in distributed programs. In [66], Miller and Choi extend Chandy and Lam-

port’s algorithm for recording global state in [20] by introducing linked predicates, which describes a causal

sequence of local states where each state in the sequence satisfies a specific local predicate. Linked predi-

cates are used with hardware-based debugging tools such as logic-state analyzer. The behavior "an occur-

rence of local predicate p is causally followed by an occurrence of local predicate q" is an example of a

linked predicate. The satisfaction of these predicates corresponds to interesting point in the execution of

the distributed program, which is called breakpoints. The authors present a halting algorithm to halt the

computation at the breakpoints.

Detecting atomic sequences of predicates in distributed computations. In [56], Hurfin and Plouzeau

generalized linked predicates to a broader class called atomic sequences of predicates. In this class, the

occurrences of local predicates can be forbidden between adjacent predicates in a linked predicate. In other

words, they describe global properties by causal composition of local predicates augmented with atomicity

constraints. The behavior "an occurrence of local predicate p is causally followed by an occurrence of local

predicate q" could be expanded to include "q follows p and r never occurs in between" which is an example

of such predicates, where p, q and r could be evaluated in different processes.

On the fly testing of regular patterns in distributed computations. In [45], Formentin and Raynal in-

troduce regular pattern which is a class of properties of distributed computations and is based upon regular

expressions and includes linked predicates and atomic sequences. This class of properties allows the user

to specify an expected (or unwanted) behavior of a computation as sequences of relevant events or as se-

quence of local predicates that must be successively verified. These sequences are defined by a finite-state

automaton. For example pq∗r is true in a computation if there exists a sequence of consecutive local states

(s1, s2, · · · , sn) such that p is true in s1, q is true in s2, · · · , sn−1, and r is true in sn. In that paper, an algo-

rithm is defined, so that a computation verifies the property if and only if one of its causal path matches a

sequence. The detection algorithm works on the fly without building a complex and expensive data structure

such as a lattice.
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An efficient decentralized algorithm for detecting properties of distributed computation. In [50],

Garg and Tomlinson extend the results of [45] to introduce a class of behavior which includes regular

patterns as a special case. They designed a logic (called LRDAG) for expressing these properties and

presented an efficient decentralized algorithm for detecting formulas in the logic. They also defined a

class of algorithms called Efficient Passive Detection Algorithm (EPDA) to verify the LRDAG properties

of a distributed computation. They used the term passive because the algorithms can only observe the

computation, such that they can not initiate sending or receiving of messages and then can not alter the

original behavior of the observed computation.

Consistent detection of global predicates. In [24], Cooper and Marzullo present three algorithms for

detecting global predicates based on the construction of the lattice associated with a distributed execution.

The algorithms traverse the lattice of global states in an online manner. The first algorithm determines that

the predicate was possibly true at some point in the past; the second algorithm determines that the predicate

was definitely true in the past; while the third algorithm establishes that the predicate is currently true, but

to do so it may delay the execution of certain processes.

Reachability analysis on distributed executions. In [26], Diehl, Jard and Rampon present a verification

technique based on the execution trace of a distributed program, and they called it trace checking. The

authors introduce an algorithm for trace checking by building the lattice of all reachable states of the dis-

tributed system under test, based on the on-the-fly observation of the partial order of message causality.

Actually this work addresses the shortcoming of the work of Cooper and Marzullo [24] (the first to perform

a reachability analysis on the state space associated to a distributed execution), that is, the execution of some

processes must be delayed while waiting for an event.

Techniques and applications of computation slicing. In [68], Mittal and Garg developed computation

slicing, which was first introduced in [47] as an abstraction technique for analyzing traces of distributed

programs. Intuitively, a slice of a trace with respect to a specification p is a subtrace that contains all the

states of the trace that satisfy p. Note that the set of states that satisfy p may be large, so one could not

simply enumerate all of the states efficiently either in space or time. A slice contains all of the states that

satisfy p such that it is computed efficiently (without traversing the state space) and represented concisely

(without explicit representation of individual states). In that paper, a centralized offline algorithm for slicing

based regular predicate detection is presented.
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A distributed abstraction algorithm for online predicate detection. In [21], authors used the compu-

tation slicing approach for abstracting distributed computations with respect to a given regular predicate.

Computation slicing is an abstraction technique for efficiently finding the slice, without explicitly enumerat-

ing all such global states A slice contains the least number of global states of a distributed computation that

satisfy a given global predicate. The slice is updated incrementally with the arrival of every new relevant

event. In this work, a decentralized online monitoring algorithm is presented.

Detecting temporal logic predicates on distributed computations. In [73], Ogale and Garg present

a technique that allows efficient detection of a class of predicates which they call Basic Temporal Logic

BTL. An example of a BTL predicate would be a property based on local predicates and arbitrarily-placed

negations, disjunctions and conjunctions along with F (eventually) and G (globally) temporal operators.

They introduce the concept of basis, a compact representation of the subset of the computational lattice

containing exactly those global states (or cuts) that satisfy the predicate. In that paper, an offline algorithm

to compute a basis of a computation given any BTL predicates is presented.

Model-based runtime analysis of distributed reactive systems. In [8], Bauer et al. present a framework

for detecting and analyzing synchronous distributed systems faults in a centralized manner using local LTL

properties that require only a trace of the execution at the local node. Each node checks that specific safety

properties hold and if violated, sends a report to a centralized diagnosis engine that attempts to ascertain the

source of the problem and to steer the distributed system to a safe state.

Decentralized LTL monitoring In [11], the authors present an algorithm for distributing and monitoring

LTL formulas for synchronous distributed systems such that satisfaction or violation of the property can be

detected locally. In this setting, there exist multiple local monitors in the system. Each local monitor sees

only a distinct part of the global behavior, and observes a subset of some global event trace. Given an LTL

property ϕ, their goal is to create sound formula derived from ϕ that can be monitored on each local trace,

while minimizing inter-component communication.

Efficient decentralized monitoring of safety in distributed systems. In [83], Sen and Vardhan de-

sign a method for monitoring safety properties in distributed systems using the past-time linear temporal

logic (PLTL). However, their algorithm is not sound, meaning that the evaluation of some predicates and

properties may not be observed. This is due to the fact that monitors gain knowledge about the state of

the system by piggybacking on the existing communication among processes. That is, if processes rarely

communicate, then monitors exchange very little information and, hence, some violations of properties
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may remain undetected. In that paper, a tool called DIANA (distributed analysis) is introduced in order to

implement the proposed monitoring method.

Efficient online monitoring of LTL properties for asynchronous distributed systems. In [64], Massart

and Meuter define an online method to monitor the execution of asynchronous distributed systems. The

online monitor collects the trace and checks on-the-fly whether it satisfies a requirement, given by any LTL

property defined over finite sequences. Their method explores the possible configurations symbolically, as

it handles sets of configurations. Their proposed monitor is not always sensitive to all events, which results

in the reduction in the number of interleavings to explore. In their approach, each configuration separates

both kinds of events: optional events i.e., events that do not take part in a monitor move, and mandatory

events, i.e., events that take part in a monitor move.

Three-valued asynchronous distributed runtime verification. In [78], Scheffel and Schmitz studied

runtime verification of distributed asynchronous systems against properties expressed in Disributed Tempo-

ral Logic (DTL). DTL combines three-valued Linear Temporal Logic (LTL3) [10] with past-time Distributed

Temporal Logic (ptDTL). In that paper, a distributed system is modeled as multiple agents and each agent

has a local monitor. These monitors work together to check a property, but they only communicate by adding

some data to the messages already sent by the agents. They can not force their agent to send a message or

even communicate on their own.

Decentralized runtime verification of LTL specifications in distributed systems. In [69], a decentral-

ized algorithm for runtime verification of distributed programs is proposed. The algorithm is dedicated to

the 3-valued semantics of the linear temporal logic (LTL3) [10]. In that paper, they adapt the distributed

computation slicing algorithm for distributed online detection of conjunctive predicates, and also the lattice-

theoretic technique is adapted for detecting global-state predicates at run time.

Detecting temporal logic predicates on the happened-before model. In [82], Sen and Garg use Compu-

tation Tree Logic (CTL), for specifying properties of distributed computation. CTL properties are expressed

over a tree of all possible executions of the system and was first presented in [31]. Their method interprets

the property on a finite lattice of global states and checks that a predicate is satisfied for an observed single

execution trace of the program.

Detecting temporal logic predicates in distributed programs using computation slicing. In [80], Sen

and Garg used computation slicing for offline predicate detection in the subset of CTL with the following
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three properties; (i) temporal operators, (ii) atomic propositions are regular predicates and (iii) negation

operator is pushed onto atomic propositions. They called this logic Regular CTL plus (RCTL+), where plus

indicates that the disjunction and negation operators are included in the logic. In that paper, the authors

gave the formal definition of RCTL+. They implemented their predicate detection algorithms in a prototype

tool called Partial Order Trace Analyzer (POTA). Morover, the authors developed this work in [81], by

presenting the central online algorithm with respect to properties expressed in RCTL+.

2.2.1 Summary

Table 2.1 (p. 23) summarizes these research efforts on monitoring distributed systems. In this table, we

categorized the research efforts based on the monitoring methods which are either online or offline and the

type of behavioral predicates they verify.

Behavioral predicates (i.e., properties) can be partitioned into two main categories: global-state based

and non-global-state base. A global-state based predicate is predicate whose satisfaction or violation is

evaluated on the set of traversed global states of the system in the execution. For each global state, the

global-state predicate is evaluated to true or false. The global-state predicates can be further divided into

stable and unstable predicates. A predicate is said to be stable if it stays true once it becomes true for all

reachable states, e.g., deadlock, termination. An unstable predicate can become true and then later become

false.

Non-global-state based predicates can not be evaluated on a global state. The evaluation of a non-global-

state based predicates requires the global trace of the system, i.e., a sequence of causally related global states

with respect to the global behavior of the system. Variety of non-global-state based predicates are defined

so far, such as regular predicates, sequential predicates, regular pattern, labeled root directed acyclic graph

(LRDAG), and temporal predicates. However, temporal logic predicates are gaining increasing interests in

several application areas e.g., formal verification, model checking.

The work presented in this thesis falls into the online monitoring of non-global-state predicates.
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Preliminaries and Notations

Chapter abstract

In this chapter, we introduce some preliminary concepts and notations used throughout this thesis. We

present the notions of functions, pattern matching, sequences and map operator (which applies a function

to a sequence). We recall labeled transition systems (LTSs), which are used to define the semantics of

component-based systems. We present the bi-simulation relation between two LTSs. We define notations

related to distributed systems such as vector clock, happened-before relation and computation lattice.

Finally, we recall linear temporal logic which we use to formalize the requirement of systems.

Functions. For two domains of elements E and F , we note E → F the set of functions from E to F .

The fact that function f belongs to E → F is denoted f : E → F . For two functions v : X → Y

and v′ : X ′ → Y ′, the function obtained by overriding v images by v′ images is denoted by v\v′, where

v\v′ : X ∪X ′ → Y ∪ Y ′, and is defined as follows:

v\v′(x) =

 v′(x) if x ∈ X ′,
v(x) otherwise.

Example 3.1 (Functions). For two functions vn : N → N and vr : R → R such that vn(x) = x + 1 and

vr(x) = x÷ 2, the overriding function vr\vn(4.2) = 2.1 whereas vr\vn(4) = 5.

Pattern-matching. We shall use the mechanism of pattern-matching to concisely define some functions.

We recall an intuitive definition for the sake of completeness. Evaluating the expression:

25



26 3. PRELIMINARIES AND NOTATIONS

match expression with

| pattern_1→ expression_1

| pattern_2→ expression_2

. . .

| pattern_n→ expression_n

consists in comparing successively expression with the patterns pattern_1, . . . , pattern_n in

order. When a pattern pattern_i fits expression, then the associated expression_i is returned.

Sequences. For a finite set of elements E, a sequence s containing elements of E is formally defined by

a total function s : I → E where I is either the integer interval [0 . . n] for some n ∈ N, or N itself (the

set of natural numbers). Given a set of elements E, e1 · e2 · · · en is a sequence or a list of length n over

E, where ∀i ∈ [1 . . n] . ei ∈ E. The empty sequence is noted ε or [ ], depending on the context. The

set of (finite) sequences over E is noted E∗. E+ is defined as E∗ \ {ε}. The length of a sequence s is

noted length(s). We define s(i) as the ith element of s and s(i · · · j) as the factor of s from the ith to

the jth element. s(i · · · j) = ε if i > j. We also note pref(s), the set of non-empty prefixes of s, i.e.,

pref(s) = {s(1 · · · k) | 1 ≤ k ≤ length(s)}. Operator pref is naturally extended to sets of sequences.

Function max� (resp. min�) returns the maximal (resp. minimal) sequence w.r.t. prefix ordering of a set

of sequences. We define function last : E+ → E as last(s) = s(length(s)). For an infinite sequence

s = e1 · e2 · e3 · · ·, we define s(i · · ·) = ei · ei+1 · · · as the suffix of sequence s from index i on.

Example 3.2 (Sequences). For a sequence of natural numbers s = 3 · 18 · 7 · 30 · 24 · 1 · 12, the length of the

sequence is length(s) = 7, s(4) = 30, s(2 · · · 5) = 18 ·7 ·30 ·24, p1 = 3 ·18 ·7 and p2 = 3 ·18 ·7 ·30 ·24 ·1
are two elements of pref(s), last(s) = 12 and s(4 · · ·) = 30 · 24 · 1 · 12.

Map operator: applying a function to a sequence. For a sequence e = e1 · e2 · · · en of elements over E

of some length n ∈ N, and a function f : E → F , map f e is the sequence of elements of F defined as

f(e1) · f(e2) · · · f(en) where ∀i ∈ [1 . . n] . f(ei) ∈ F .

Example 3.3 (Map operator). For a sequence of natural numbers s = 3 · 18 · 7 · 30 · 24 · 1 · 12 and a function

vn : N→ N such that vn(x) = x+ 1, map vn s = 4 · 19 · 8 · 31 · 25 · 2 · 13.

Tuples. An n-tuple is an ordered list of n elements, where n is a strictly positive integer. By t[i] we denote

ith element of tuple t.

Example 3.4 (Tuples). For a 3-tuple u = (A, 12,@) we have u[1] = A, u[2] = 12 and u[3] = @.
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Labeled transition systems. Labeled Transition Systems (LTSs) are used to define the semantics of CBSs.

An LTS is defined over an alphabet Σ and is a 3-tuple (State,Lab,Trans) where State is a non-empty set

of states, Lab is a set of labels, and Trans ⊆ State × Lab × State is the transition relation. A transition

(q, a, q′) ∈ Trans means that the LTS can move from state q to state q′ by consuming label a. We abbreviate

(q, a, q′) ∈ Trans by q a−→Trans q
′ or by q a−→ q′ when clear from context. Moreover, relation Trans is

extended to its reflexive and transitive closure in the usual way and we allow for regular expressions over

Lab to label moves between states: if expr is a regular expression over Lab (i.e., expr denotes a subset of

Lab∗), q
expr−−→ q′ means that there exists one sequence of labels in Lab matching expr such that the system

can move from q to q′.

Observational equivalence and bi-simulation. The observational equivalence of two transition systems

is based on the usual definition of weak bisimilarity [67], where θ-transitions are considered to be unobserv-

able. Given two transition systems S1 = (Sta1,Lab ∪ {θ},→2) and S2 = (Sta2,Lab ∪ {θ},→2), system

S1 weakly simulates system S2, if there exists a relation R ⊆ Sta1 × Sta2 that contains the 2-tuple made of

the initial states of S1 et S2 and such that the two following conditions hold:

1. ∀(q1, q2) ∈ R,∀a ∈ Lab . q1
a−→1 q

′
1 =⇒ ∃q′2 ∈ Sta2 .

(
(q′1, q

′
2) ∈ R ∧ q2

θ∗·a·θ∗−−−−→2 q
′
2

)
, and

2. ∀(q1, q2) ∈ R .
(
∃q′1 ∈ Sta1 . q1

θ−→1 q
′
1

)
=⇒ ∃q′2 ∈ Sta2 .

(
(q′1, q

′
2) ∈ R ∧ q2

θ∗−→2 q
′
2

)
.

Equation 1. states that if a state q1 simulates a state q2 and if it is possible to perform a from q1 to

end in a state q′1, then there exists a state q′2 simulated by q′1 such that it is possible to go from q2 to q′2 by

performing some unobservable actions, the action a, and then some unobservable actions. Equation 2. states

that if a state q1 simulates a state q2 and it is possible to perform an unobservable action from q1 to reach a

state q′1, then it is possible to reach a state q′2 by a sequence of unobservable actions such that q′1 simulates

q′2. In that case, we say that relation R is a weak simulation over S1 and S2 or equivalently that the states of

S1 are (weakly) similar to the states of S2. Similarly, a weak bi-simulation over S1 and S2 is a relation R

such that R and R−1 = {(q2, q1) ∈ Sta2 × Sta1 | (q1, q2) ∈ R} are both weak simulations. In this latter

case, we say that S1 and S2 are observationally equivalent and we write S1 ∼ S2 to express this formally.

Vector clock. Lamport introduced logical clocks as a device to substitute for the global real time clock [60].

Logical clocks are used to order events based on their relative logical dependencies rather than on a “time”

in the common sense. Mattern and Fidge’s vector clocks [42, 65] are a more powerful extension (i.e.,

strongly consistent with the ordering of events) of Lamport’s scalar logical clocks. In a distributed system

with a set of schedulers {S1, . . . , Sm}, VC = {(c1, . . . , cm) | j ∈ [1 . .m] ∧ cj ∈ N} is the set of vector
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clocks, such that vector clock vc ∈ VC is a tuple of m scalar (initially zero) values c1, . . . , cm locally

stored in each scheduler Sj ∈ {S1, . . . , Sm} where ∀k ∈ [1 . .m] . vc[k] = ck holds the latest (scalar) clock

value scheduler Sj knows about scheduler Sk ∈ {S1, . . . , Sm}. Each event in the system is associated to

a unique vector clock. For two vector clocks vc1 and vc2, max(vc1, vc2) is a vector clock vc3 such that

∀k ∈ [1 . .m] . vc3[k] = max(vc1[k], vc2[k]). min(vc1, vc2) is defined in similar way. Moreover two vec-

tor clocks can be compared together such that vc1 < vc2 ⇐⇒ ∀k ∈ [1 . .m] . vc1[k] ≤ vc2[k] ∧ ∃z ∈
[1 . .m] . vc1[z] < vc2[z].

Example 3.5 (Vector clock). For a distributed system consisting of three schedulers {S1, S2, S3}, if the

value of the vector clock of scheduler S2 is (2, 4, 3), it means that 4 events have happened in scheduler

S2 and also scheduler S2 is aware of the occurrence of 2 first events of scheduler S1 and 3 first events of

scheduler S3. For two vector clocks vc1 = (2, 4, 3) and vc2 = (3, 2, 5), max(vc1, vc2) = (3, 4, 5). For two

vector clocks vc1 = (2, 4, 3) and vc2 = (4, 7, 4), we have vc1 < vc2.

Happened-before relation [60]. The relation� on the set of events of a system is the smallest relation

satisfying the following three conditions: (1) If a and b are events in the same scheduler, and a comes before

b, then a � b. (2) If a is the sending of a message by one scheduler and b is the reception of the same

message by another scheduler, then a� b. (3) If a� b and b� c then a� c. Two distinct events a and

b are said to be concurrent if a 6� b and b 6� a.

Vector clocks are strongly consistent with happened-before relation. That is, for two events a and b with

associated vector clocks vca and vcb respectively, vca < vcb ⇐⇒ a� b.

Example 3.6 (Happened-before relation). For three events e1 with the associated vector clock vc1 =

(2, 4, 3), e2 with the associated vector clock vc2 = (4, 7, 4), and e3 with the associated vector clock

vc3 = (3, 2, 5), we say that event e1 is happened before event e2 (denoted by e1 � e2), because vc1 < vc2.

Moreover, event e3 is concurrent with events e1 and e2.

Computation lattice [65]. The computation lattice of a distributed system is represented in the form of a

directed graph with m (i.e., number of schedulers that are executed in distributed manner) orthogonal axes.

Each axis is dedicated to the state evolution of a specific scheduler. A computation lattice expresses all the

possible traces in a distributed system. Each path in the lattice represents a global trace of the system that

could possibly have happened. A computation lattice L is a pair (N,�), where N is the set of nodes (i.e.,

global states) and� is the set of happened-before relations among the nodes.

Example 3.7 (Computation lattice). Let us consider a distributed system with two schedulers S1 and S2.

One event is occurred in scheduler S1 and two events in scheduler S2. The first event of schedulers S1 is



29

η0

η1 η2

η4

η3

Sch
ed

ule
r 2Scheduler 1

Figure 3.1: Computation lattice

concurrent with the first event of schedulers S2, whereas the second event of schedulers S2 is happened after

them. The occurrence of each event extends the lattice in the dedicated direction of the scheduler executed

the event. Figure 3.1 depicts the two dimensions computation lattice of such a system. The set of nodes

is {η0, η1, η2, η3, η4} and the set of happened-before relations is {η0 � η1, η0 � η2, η0 � η3, η1 �

η3, η2 � η3, η3 � η4}. Node η0 represents the initial state of the system. Node η1 represents the global

state of the system after the occurrence of the first event of scheduler S1 and before the occurrence of the

two events of scheduler S2. Node η3 represents the global state of the system after the occurrence of first

events of the schedules and before the second event of scheduler S2. Such a computation lattice has three

paths: (i) η0 · η1 · η3 · η4, (ii) η0 · η2 · η3 · η4, and (iii) η0 · η3 · η4. The path from node η0 to η3 represents

the state evolution of the system in case of the simultaneous occurrence of two concurrent events (that is the

first events of the schedulers).

Linear Temporal Logic (LTL) [75]. Linear temporal logic (LTL) is a formalism for specifying properties

of systems. An LTL formula is built over a set of atomic propositions AP . LTL formulas are written with

the following grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | Xϕ | ϕ1 U ϕ2

where p ∈ AP is an atomic proposition.

Let σ = q0 · q1 · q2 · · · be an infinite sequence of states and |= denotes the satisfaction relation. The

semantics of LTL is defined inductively as follows:

– σ |= p ⇐⇒ q0 |= p (i.e., p ∈ q0), for any p ∈ AP

– σ |= ¬ϕ ⇐⇒ σ 6|= ϕ

– σ |= ϕ1 ∨ ϕ2 ⇐⇒ σ |= ϕ1 ∨ σ |= ϕ2
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– σ |= Xϕ ⇐⇒ σ(1 · · ·) |= ϕ

– σ |= ϕ1 U ϕ2 ⇐⇒ ∃j > 0 . σ(j · · ·) |= ϕ2 ∧ σ(i · · ·) |= ϕ1, 0 6 i < j

An atomic proposition p is satisfied by σ when it is member of the first state of σ. σ satisfies formula ¬ϕ
when it does not satisfy ϕ. Disjunction of ϕ1 and ϕ2 is satisfied when either ϕ1 or ϕ2 is satisfied by σ. σ

satisfies formula Xϕ when the sequence of states starting from the next state of σ, that is, q1 satisfies ϕ.

ϕ1 U ϕ2 is satisfied when ϕ2 is satisfied at some point and ϕ1 is satisfied until that point.

Note that we use only the X and U modalities for defining the valid formulas in LTL. The other modali-

ties such as F (eventually), G (globally), R (release), etc. in LTL can be defined using the X and U modalities

such that for example:

– ϕ1 R ϕ2 = ¬(¬ϕ1 U ¬ϕ2). ϕ2 remains true until and including once ϕ1 becomes true. If ϕ1 never

become true, ϕ2 must remain true forever.

– Fϕ = T F ϕ. Eventually ϕ becomes true.

– Gϕ = F R ϕ = ¬F¬ϕ. ϕ always remains true.

Example 3.8 (LTL). The requirement stating that “Once the traffic light is green, it cannot become red

immediately” can be formalized in LTL as: G(green ⇒ ¬Xred). The requirement stating that “Once

red, the traffic light becomes green eventually” can be formalized in LTL as: G(red ⇒ Fgreen). The

requirement stating that “Once green, the traffic light becomes red eventually, after being yellow for some

time in between” can be formalized in LTL as: G(green ⇒ (green U yellow) U red). Suppose ϕx denotes

“process x is in critical state”. The requirement stating that “process 1 and 2 are never both in their critical

state at the same time (mutual exclusion)” can be formalized in LTL as: G(¬ϕ1 ∨ ¬ϕ2).
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Monitoring Component-Based Systems with

Multi-Party Interactions (CBSs)
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Abstract Semantic Model of Distributed,

Multi-threaded and Sequential CBSs

Chapter abstract

In this chapter, we define an abstract semantic model of component-based systems with multi-party

interactions, referred to as CBS. Since our model only rely on the semantics of CBS, which is given

in terms of LTSs, our abstract model is thus compatible with CBS frameworks and systems that have

their semantics that can be modeled with LTSs. Therefore, this model is abstract enough to encompass

a variety of (component-based) systems, and serves the purpose of describing the knowledge needed on

the verified system and later guides their instrumentation. In the following, we describe our assumptions

on the considered CBSs. To this end, we assume a general semantics to define the behavior of the system

under scrutiny in order to make our monitoring approach as general as possible. However, neither the

exact model nor the behavior of the system are known. Usually in runtime verification, the model of the

system is a black box whose behavior can be modeled as an LTS over some set of concrete actions of

the system. This model is generally unknown, except for predictive RV. In our context, we also do not

know the exact model but we have more information on the structure since we have a CBS. Inspiring from

conformance-testing theory [91], we refer to this hypothesis as the monitoring hypothesis. Consequently,

our monitoring approach can be applied to (component-based) systems whose behavior can be modeled

as described in the sequel.

33
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4.1 Semantics of Distributed CBSs

In the following, we present the architecture of our abstract semantic CBS which is used throughout this

thesis.

Architecture of the system. The system under scrutiny M is composed of components in a non-empty

set B =
¶
B1, . . . , B|B|

©
and schedulers in a non-empty set S =

¶
S1, . . . , S|S|

©
. Each component Bi is

endowed with a set of actions Act i. Joint actions of component, aka multi-party interactions, involve the

execution of actions on several components. An interaction is a non-empty subset of ∪|B|i=1Act i and we

denote by Int the set of interactions in the system. At most one action of each component is involved in an

interaction: ∀a ∈ Int .|a ∩ Act i|≤ 1. In addition, to model concurrent behavior, each atomic component

Bi has internal actions which we model as a unique action βi, such that each action of Bi is followed by

the internal action βi. Schedulers coordinate the execution of interactions and ensure that each multi-party

interaction is jointly executed (see Definition 4.3, p. 35).

Let us assume some auxiliary functions obtained from the architecture of the system.

– Function involved : Int → 2B \ {∅} indicates the components involved in an interaction. More-

over, we extend function involved to internal actions by setting involved(βi) = i, for any βi ∈¶
β1, . . . , β|B|

©
. Interaction a ∈ Int is a joint action if and only if |involved(a)|≥ 2.

– Function managed : Int → S indicates the scheduler managing an interaction: for an interaction

a ∈ Int , managed(a) = Sj if a is managed by scheduler Sj .

– Function scope : S→ 2B \ {∅} indicates the set of components in the scope of a scheduler such that

scope(Sj) =
⋃

a′∈{a∈Int | managed(a)=Sj}
involved(a′).

In the remainder, we describe the behavior of components, schedulers, and their composition.

Components. The behavior of an individual component is defined as follows.

Definition 4.1 (Behavior of a component). The behavior of a componentB is defined as an LTS (QB,ActB∪
{βB} ,→B) such that:

– QB = Qr
B ∪ Qb

B is the set of states, where Qr
B (resp. Qb

B) is the so-called set of ready (resp. busy)

states,

– ActB is the set of actions, and βB is the internal action,

– →B⊆
Ä
Qr
B ×ActB ×Qb

B

ä
∪
Ä
Qb
B × {βB} ×Qr

B

ä
is the set of transitions.
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Figure 4.1: Component Tank

Moreover, QB has a partition
¶
Qr
B, Q

b
B

©
.

Intuitively, the set of ready (resp. busy) statesQr
B (resp. Qb

B) is the set of states such that the component

is ready (resp. not ready) to perform an action. Component B (i) has actions in set ActB which are possibly

synchronous with the actions of some of the other components, (ii) has an internal action βB such that

βB 6∈ ActB which models internal computations of component B, and (iii) alternates moving from a ready

state to a busy state and from a busy state to a ready state, that is component B does not have busy to busy

or ready to ready move (as defined in the transition relation above).

Example 4.2 (Component). Figure 4.1 depicts a component Tank whose behavior is defined by the LTS

(Qr ∪Qb,Act ∪ {β} ,→) such that:

– Qr = {d, f} is the set of ready states and Qb =
¶
d⊥, f⊥

©
is the set of busy states,

– Act = {Drain,Fill} is the set of actions and β is the internal action,

– →=
¶

(d,Fill , d⊥), (d⊥, β, f), (f,Drain, f⊥), (f⊥, β, d)
©

is the set of transitions.

On the border, each • represents an action and provides an interface for the component to synchronize with

actions of other components in case of joint actions.

In the following, we assume that each component Bi ∈ B is defined by the LTS (QBi ,ActBi ∪
{βBi} ,→Bi) where QBi has a partition

¶
Qr
Bi
, Qb

Bi

©
of ready and busy states; as per Definition 4.1 (p. 34).

Schedulers. The behavior of a scheduler is defined as follows.

Definition 4.3 (Behavior of a scheduler). The behavior of a scheduler S is an LTS (QS ,ActS ,→S) such

that:

– QS is the set of states,

– ActS = ActγS ∪ActβS is the set of actions, where ActγS = {a ∈ Int | managed(a) = S} and ActβS =

{βi | Bi ∈ scope(S)},
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Figure 4.2: Abstract representation of a CBS

– →S⊆ QS ×ActS ×QS is the set of transitions.

ActγS ⊆ Int is the set of interactions managed by S, and ActβS is the set of internal actions of the

components involved in an action managed by S.

In the following, we assume that each scheduler S ∈ S is defined by the LTS (QS ,ActS ,→S) where

ActS = ActγS ∪ ActβS ; as per Definition 4.3. The coordination of interactions of the system i.e., the inter-

actions in Int , is distributed among schedulers. Actions of schedulers consist of interactions of the system.

Nevertheless, each interaction of the system is associated to exactly one scheduler (∀a ∈ Int , ∃!S ∈ S . a ∈
ActS). Consequently, schedulers manage disjoint sets of interactions (i.e., ∀Si, Sj ∈ S . Si 6= Sj =⇒
ActγSi ∩ ActγSj = ∅). Intuitively, when a scheduler executes an interaction, it triggers the execution of the

associated actions on the involved components. Moreover, when a component executes an internal action, it

triggers the execution of the corresponding action on the associated schedulers and also sends the updated

state of the component to the associated schedulers, that is, the component sends a message including its

current state to the schedulers. Note, we assume that, by construction, schedulers are always ready to receive

such a state update.

Remark 4.4. Since components send their updated states to the associated schedulers, we assume that the

current state of a scheduler contains the last state of each component in its scope.

Example 4.5 (Scheduler). To illustrate the behavior of scheduler, we give a CBS, depicted in Figure 4.2,

consisting of three components each of which is an instance of the component in Figure 4.1 (p. 35). The set

of multi-party interactions is Int = {{Drain1} ,Fill12, Drain23, {Fill3}} where Fill12 = {Fill1,Fill2}
and Drain23 = {Drain2,Drain3} are joint actions. Two schedulers S1 and S2 coordinate the execution of
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multi-party interactions such that managed({Drain1}) = managed(Fill12) = S1 and managed({Fill3}) =

managed(Drain23) = S2. For j ∈ [1 . . 2], scheduler Sj is defined as (QSj ,ActSj ,→Sj ) with:

– QSj = {l0, l1, l2, l3},

– ActγS1
= {{Drain1} ,Fill12}, ActβS1

= {β1, β2},

– ActγS2
= {Drain23, {Fill3}}, ActβS2

= {β2, β3},

– →S1= {(l0, β2, l0), (l1, β2, l1), (l1, β1, l0), (l2, β2, l1), (l3, β2, l0), (l2, β1, l3), (l3, {Drain1} , l2),

(l0, {Drain1} , l1), (l0,Fill12, l2)},

– →S2= {(l0, β2, l0), (l1, β2, l1), (l1, β3, l0), (l2, β2, l1), (l3, β2, l0), (l2, β3, l3), (l3, {Fill3} , l2),

(l0, {Fill3} , l1), (l0,Drain23, l2)}.

Definition 4.6 (Shared component). The set of shared components is defined as

Bs = {B ∈ B | |{S ∈ S | B ∈ scope(S)} |≥ 2} .

A shared component B ∈ Bs is a component in the scope of more than one scheduler, and thus, the

execution of the actions of B are managed by more than one scheduler.

Example 4.7 (Shared component). In Figure 4.2 (p. 36), component Tank2 is a shared component because

interaction Fill12, which is a joint action of Fill1 and Fill2, is coordinated by scheduler S1 and interaction

Drain23, which is a joint action of Drain2 and Drain3, is coordinated by scheduler S2.

The global execution of the system can be described as the parallel execution of interactions managed

by the schedulers.

Definition 4.8 (Global behavior). The global behavior of system M is the LTS (Q,GAct ,→) where:

– Q ⊆⊗|B|i=1Qi ×
⊗|S|
j=1QSj is the set of states consisting of the states of schedulers and components,

– GAct ⊆ 2Int ∪
⋃|B|
i=1{βi} \ {∅} is the set of possible global actions of the system consisting of either

several interactions and/or several internal actions (several interactions can be executed concurrently

by the system),

– →⊆ Q×GAct ×Q is the transition relation defined as the smallest set abiding to the following rule.

A transition is a move from state (q1, . . . , q|B|, qs1 , . . . , qs|S|) to state (q′1, . . . , q
′
|B|, q

′
s1 , . . . , q

′
s|S|

) on

global actions in set α ∪ β, where α ⊆ Int and β ⊆ ⋃|B|
i=1 {βi}, noted (q1, . . . , q|B|, qs1 , . . . , qs|S|)

α∪β−−→ (q′1, . . . , q
′
|B|, q

′
s1 , . . . , q

′
s|S|

), whenever the following conditions hold:



38 4. ABSTRACT SEMANTIC MODEL OF DISTRIBUTED, MULTI-THREADED AND SEQUENTIAL CBSS

C1: ∀i ∈ [1, |B|] .|(α ∩Act i) ∪ ({βi} ∩ β) |≤ 1,

C2: ∀j ∈ [1, |S|] .|(α ∪ β) ∩ActSj |≤ 1,

C3: ∀a ∈ α . (∃Sj ∈ S .managed(a) = Sj)⇒(
qsj

a→Sj q
′
sj ∧ ∀Bi ∈ involved(a) . qi

a∩Acti−−−−→Bi q
′
i

)
,

C4: ∀βi ∈ β . qi βi−→Bi q
′
i ∧ ∀Sj ∈ S . Bi ∈ scope(Sj) . qsj

βi−→Sj q
′
sj ,

C5: ∀Bi ∈ B \ involved(α ∪ β) . qi = q′i,

C6: ∀Sj ∈ S \managed(α) . qsj = q′sj .

where functions involved and managed are extended to sets of interactions and internal actions in the

usual way.

The above rule allows the components of the system to execute independently according to the decisions

of the schedulers. It can intuitively be understood as follows:

– Condition C1 states that a component can perform at most one execution step at a time. The executed

global actions (α ∪ β) contains at most one interaction involving each component of the system.

– Condition C2 states that a scheduler can perform at most one execution step at a time. The executed

global actions (α ∪ β) contains at most one action concerning each scheduler of the system.

– Condition C3 states that whenever an interaction a managed by scheduler Sj is executed, Sj and all

components involved in this multi-party interaction must be ready to execute it.

– Condition C4 states that internal actions are executed whenever the corresponding components are

ready to execute them. Moreover, schedulers are aware of internal actions of components in their

scope. Note that, the awareness of internal actions of a component results in transferring the updated

state of the component to the schedulers.

– Conditions C5 and C6 state that the components and the schedulers not involved in an interaction

remain in the same state.

An example illustrating the global behavior of the system depicted in Figure 4.2 (p. 36) is provided later and

described in terms of execution traces (see Example 4.10, p. 39).

Trace. At runtime, the execution of a CBS produces a trace. Intuitively, a trace is the sequence of traversed

states of the system, from some initial state and following the transition relation of the LTS of the system.

For the sake of simplicity and for our monitoring purposes, the states of schedulers are irrelevant in the trace

(since the desired property refers to the global states of the components in B), and thus we restrict the states

of the system to states of the components in B.
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To define the trace, we consider system M consisting of a set B of components (as per Definition 4.1,

p. 34) and a set S of schedulers (as per Definition 4.3, p. 35) with the global behavior as per Defini-

tion 4.8 (p. 37).

Definition 4.9 (Trace of a CBS). A trace of system M is a continuously-growing sequence (q0
1, . . . , q

0
|B|) ·

(α0 ∪ β0) · (q1
1, . . . , q

1
|B|) · · · (qk1 , . . . , qk|B|) · · ·, such that (q0

1, . . . , q
0
|B|) = init is the initial state of the

system where q0
1, . . . , q

0
|B| are the initial states of components B1, . . . , B|B| respectively and ∀i ∈ [0 . . k −

1] .(qi1, . . . , q
i
|B|)

αi∪βi−−−→ (qi+1
1 , . . . , qi+1

|B| ), where → is the transition relation of the global behavior of the

system and the states of schedulers are discarded.

The set of traces of system M is denoted by Tr(M). Since trace t ∈ Tr(M) has partial states where at

least one component is busy with its internal computation, trace t is referred to as a partial trace.

Example 4.10 (Trace). Two possible partial traces of the system in Example 4.5 (p. 36) (depicted in Fig-

ure 4.2, p. 36) are:1

– t1 = (d1, d2, d3) · {Fill12} · (⊥,⊥, d3) · {β1} · (f1,⊥, d3) · {{Drain1} , {Fill3}} · (⊥,⊥,⊥) · {β2} ·
(⊥, f2,⊥),

– t2 = (d1, d2, d3)·{Fill12, {Fill3}}·(⊥,⊥,⊥)·{β3}·(⊥,⊥, f3)·{β2}·(⊥, f2, f3)·{{Drain23} , β1}·
(f1,⊥,⊥).

Traces t1 and t2 are obtained following the global behavior of the system (Definition 4.8, p. 37).

– In trace t1, the execution of interaction Fill12 represents the simultaneous execution of (i) action

Fill12 in scheduler S1, (ii) action Fill1 in component Tank1, and (iii) action Fill2 in component

Tank2. After interaction Fill12, component Tank1 and Tank2 move to their busy state whereas the

state of component Tank3 remains unchanged. Moreover, the execution of internal action β2 in trace

t1 represents the simultaneous execution of (i) internal action β2 in component Tank2, (ii) action β2

in scheduler S1 and (iii) action β2 in scheduler S2. After the internal action β2, component Tank2

goes to ready state f2.

– In trace t2, the execution of global action {Fill12, {Fill3}} represents the simultaneous execution

of two interactions Fill12 and {Fill3}, that is the simultaneous executions of (i) action Fill12 in

scheduler S1, (ii) action Fill3 in scheduler S2, (iii) action Fill1 in component Tank1, (iv) action

Fill2 in component Tank2, and (v) action Fill3 in component Tank3. Trace t2 ends up with the

simultaneous execution of interaction Drain23 and the internal action of component Tank1.
1To facilitate the description of the trace, we represent each busy state as ⊥.
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Remark 4.11. The operational description of a CBS is usually more detailed. For instance, the execution

of conflicting interactions in schedulers needs first to be authorized by a conflict-resolution module which

guarantees that two conflicting interactions are not executed at the same time. Moreover, schedulers follow

the (possible) priority rules among the interactions, that is, in the case of two or more enabled interactions

(interactions which are ready to be executed by schedulers), those with higher priority are allowed to be

executed. Since we only deal with the execution traces of a distributed system, we assume that the obtained

traces are correct with respect to the conflicts and priorities. Therefore, defining the other modules is out of

the scope of this work.

Definition 4.12 (Monitoring hypothesis). The behavior of the CBS under scrutiny can be modeled as an

LTS as per Definition 4.8 (p. 37).

4.2 Semantics of Multi-Threaded CBSs

The abstract system M, defined in the previous section, consists of a set B of components (as per Defini-

tion 4.1, p. 34) and a set S of schedulers (as per Definition 4.3, p. 35). One can obtain a multi-threaded

CBS by limiting the number of schedulers to 1 (i.e., |S|= 1) and taking ActS = Int . The multi-threaded

system is denoted by M⊥. In this setting, all the actions are managed by one scheduler S, and according to

Definition 4.6 (p. 37) none of the components is shared, that is Bs = ∅.
Therefore, according to the semantics of the abstract CBS (see Definition 4.8 (p. 37), condition C2), the

global execution of M⊥ is restricted to a single execution of either a multi-party interaction or an internal

action of a component.

In the multi-threaded system M⊥, since all the interactions are managed by one scheduler, the trace is

defined based on the sequence of actions locally executed by the scheduler.

Definition 4.13 (Trace of multi-threaded CBS). A trace of system M⊥ is a continuously-growing sequence

(q0
1, . . . , q

0
|B|) · a0 · (q1

1, . . . , q
1
|B|) · · · (qk1 , . . . , qk|B|) · · ·, such that (q0

1, . . . , q
0
|B|) = init and ∀i ∈ [0 . . k −

1] .(qi1, . . . , q
i
|B|)

ai−→ (qi+1
1 , . . . , qi+1

|B| )∧ai ∈ ActS , where→ is the transition relation of the global behavior

of the system as per Definition 4.8 (p. 37) and the state of scheduler S is discarded.

Example 4.14 (Trace of multi-threaded CBS). One possible partial traces of the composite component

depicted in Figure 4.2 (p. 36) in multi-threaded setting is:

– t = (d1, d2, d3) · {Fill12} · (⊥,⊥, d3) · {β1} · (f1,⊥, d3) · {{Drain1}} · (⊥,⊥, d3) · {{Fill3}} ·
(⊥,⊥,⊥) · {β2} · (⊥, f2,⊥),
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Although in the partial state (f1,⊥, d3) two interactions Fill3 and Drain1 are enabled, the central scheduler

can only execute one at each execution step.

4.3 Semantics of Sequential CBSs

The general semantic system and the multi-threaded system are partial-state semantics of CBSs in which

concurrent executions is possible in the sense that schedulers are able to execute actions involving ready

components. To model sequential CBSs, we refer to the global-states semantics of atomic component in

which (i) transitions are atomic, (ii) interactions are executed sequentially by one scheduler, and (iii) the

execution of an interaction is not possible when some component is performing a computation. Similar

to the multi-threaded setting, in the sequential setting one scheduler is in charge of the execution of the

multi-party interactions. The sequential system is denoted by Ms.

Definition 4.15 (Behavior of a component with global-state semantics). For component B in partial-state

semantics with behavior (Qr
B ∪Qb

B,ActB ∪{βB} ,→B) as per Definition 4.1 (p. 34), the associated global-

state semantics version of B, denoted by B, is defined as an LTS (Qr
B,ActB,→B) such that the set of

transitions→B⊆ (Qr
B ×ActB ×Qr

B) is a set of moves from a ready state to another ready state.

Example 4.16 (Atomic component with global state). Figure 4.3 depicts component Tank , the global-state

semantics version of component Tank depicted in Example 4.1 (p. 35). The behavior of component Tank

is LTS (Q,Act ,→), such that:

– Q = {d, f} is the set of states,

– Act = {Drain,Fill} is the set of actions,

– →= {(f,Drain, d), (d,Fill , f)} is the set of transitions.

Definition 4.17 (Global behavior of sequential CBS). The behavior of sequential system Ms is similarly

defined based on the behavior of our abstract system M as per Definition 4.8 (p. 37), where |S|= 1, Qb
i and

βi for i ∈ [1, |B|] and ActβS are empty sets.
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Drain1 Fill12 Drain23 Fill3

Tank 2
Drain2Fill2

Tank 1
Fill1Drain1

Tank 3
Fill3Drain3

Figure 4.4: Composite component with global-state semantics

Accordingly, the trace of a sequential system Ms is a continuously-growing sequence (q0
1, . . . , q

0
|B|) ·

a0 · (q1
1, . . . , q

1
|B|) · a1 · · · (qk1 , . . . , qk|B|) · · · such that (q0

1, . . . , q
0
|B|) = init , qj+1

i ∈ Qr
i and aj ∈ Int for

all i ∈ [1 . .|B|], j ∈ [0 . . k]. Given a trace of a sequential system t = (q0
1, . . . , q

0
|B|) · a0 · (q1

1, . . . , q
1
|B|) ·

a1 · · · (qk1 , . . . , qk|B|), the sequence of interactions is defined as interactions(t) = a0 · a1 · · · ak−1.

In the sequential system, an execution trace is defined over the global states of the system whose com-

ponents states are ready, therefore the trace is referred to as global trace.

Example 4.18 (Sequential CBS). Figure 4.4 depicts the associated sequential composite component of

system Tank (see Figure 4.2, p. 36) consists of a set of components B = {Tank1,Tank2,Tank3} where

each Tank i is identical to the component in Figure 4.3 (p. 41). One of the possible global traces of such a

system is: (d1, d2, d3) · {Fill12} · (f1, f2, d3) · {{Drain1}} · (d1, f2, d3) · {{Fill3}} · (d1, f2, f3), such that

from the initial state (d1, d2, d3), where tanks are at state d, interaction Fill12 is fired and Tank1 and Tank2

move to state f . Then, Tank1 moves to state d by executing interaction Drain1, and finally by executing

interaction Fill3, Tank3 moves to state f .

Summary: In this chapter, we define the execution trace of the abstract semantic model in different set-

tings. The problem that arises is that, in the absence of a global clock, the actual execution trace of such a

model is not observable. In the next chapter, we investigate the observability issue of the execution trace at

runtime.
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5
Observing a CBSs at Runtime

Chapter abstract

In the previous chapter we defined the execution trace of the abstract semantic model of CBS in different

settings. However, in the distributed and multi-threaded settings, generally the execution trace is either

not fully-observable or not informative enough to be used for online monitoring. In this chapter, we

define the observable execution trace of such systems at runtime. The observable trace of the system

exists in the set of schedulers. Moreover, we illustrate the problem of runtime monitoring based on the

observable traces.

In the following, we consider a system M consisting of a set B of components as per Definition 4.1 (p. 34),

and a set S of schedulers as per Definition 4.3 (p. 35), with the global behavior as per Definition 4.8 (p. 37).

At runtime, the execution of such a system produces a partial trace as per definition Definition 4.9 (p. 39).

5.1 Observable trace

Although the partial trace of system M exists, it is not observable because it would require a perfect ob-

server having simultaneous access to the states of the components and knowing the order of the executed

interactions in several schedulers. Introducing such an observer (able to observe global states) in the system

would require all components to synchronize, and would defeat the purpose of building a distributed system.

Instead of introducing such an observer, first, we shall instrument the system (see Chapter 6, p. 49) to obtain

the locally observable partial-trace through the schedulers. Then, we reconstruct the global trace using the

local partial-traces of the system (see Chapter 7, p. 61).

43
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In the following we consider a partial trace t = (q0
1, . . . , q

0
|B|) · (α0 ∪ β0) · (q1

1, . . . , q
1
|B|) · · ·, as per

Definition 4.9 (p. 39). Each scheduler Sj ∈ S for j ∈ [1 . .|S|], observes a local partial-trace sj(t) which

consists in the sequence of the states of the components in its scope and actions it manages.

Definition 5.1 (Locally observed partial-trace). The local partial-trace sj(t) observed by scheduler Sj is

inductively defined on the partial trace t as follows:

– sj
ÄÄ
q0

1, . . . , q
0
|B|
ää

=
Ä
q0

1, . . . , q
0
|B|
ä
, and

– sj (t · (α ∪ β) · q) =

 t if Sj /∈ managed(α) ∧ (involved(β) ∩ scope(Sj) = ∅)
t · θ · q′ otherwise

where

– q =
Ä
q1, . . . , q|B|

ä
,

– θ = (α ∩ {a ∈ Int | managed(a) = Sj}) ∪ (β ∩ {βi | Bi ∈ scope(Sj)}),

– q′ = (q′1, . . . , q
′
|B|) with

q′i =


last(sj(t))[i] if Bi ∈ involved(θ) ∩ scope(Sj),

qi if Bi ∈ involved(θ) ∩ scope(Sj),

? otherwise (Bi 6∈ scope(Sj)).

We assume that the initial state of the system, that is init =
Ä
q0

1, . . . , q
0
|B|
ä
, is observable by all

schedulers. An interaction a ∈ Int is observable by scheduler Sj if Sj manages the interaction (i.e.,

Sj ∈ managed(a)). Moreover, an internal action βi, with i ∈ [1 . .|B|], is observable by scheduler Sj

if Bi is in the scope of Sj (i.e., Bi ∈ scope(Sj)). The state observed after an observable interaction or

internal action consists of the states of components in the scope of Sj , that is a state (q1, . . . , q|B|) where qi

is the new state of component Bi if Bi ∈ scope(Sj) and ? otherwise.

Example 5.2 (Locally observed partial-trace). The associated locally observed partial-trace of t1 and t2 of

Example 4.10 (p. 39) are:

– s1(t1) = (d1, d2, d3) ·{Fill12}·(⊥,⊥, ? ) ·{β1}·(f1,⊥, ? ) ·{{Drain1}}·(⊥,⊥, ? ) ·{β2}·(⊥, f2, ? ),

– s2(t1) = (d1, d2, d3) · {{Fill3}} · (? , d2,⊥) · {β2} · (? , f2,⊥),

– s1(t2) = (d1, d2, d3) · {Fill12} · (⊥,⊥, ? ) · {β2} · (⊥, f2, ? ) · {β1} · (f1, f2, ? ),

– s2(t2) = (d1, d2, d3)·{{Fill3}}·(? , d2,⊥)·{β3}·(? , d2, f3)·{β2}·(? , f2, f3)·{Drain23}·(? ,⊥,⊥).

For instance, the local partial-trace s1(t2) shows that scheduler S1 is aware of the execution of interac-

tion Fill12 but it is not aware of the occurrence of internal action β3 because component Tank3 is not in the
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scope of scheduler S1 and consequently the state of component Tank3 in the local partial-trace of scheduler

S1 is denoted by ? (except for the initial state). Moreover, scheduler S1 is aware of the occurrences of in-

ternal actions β2 and β1 but it is not aware of action Drain23 because scheduler S1 does not manage action

Drain23.

5.1.1 Observable Trace of a Multi-Threaded CBS

In multi-threaded system M⊥, since all the executions are managed by one scheduler S, the actual execution

partial trace t is the local partial-trace of the scheduler, that is s(t) = t. Hence, the partial trace of system

M⊥ is observable by scheduler S.

5.1.2 Observable Trace of a Sequential CBS

Similar to the multi-threaded setting, the execution trace of the sequential system Ms is observable by the

central scheduler. Moreover, the global state of Ms is always defined, so that the execution trace t is a

global trace. Therefore, one can directly use the sequence of the global states of the global trace t for

runtime monitoring [39]. The sequence of these states represents the evolution of the system at runtime.

Runtime monitor consumes these global states as input and outputs the corresponding verdicts.

5.2 Problem Statement: Monitoring the Trace of a CBS

Our aim is to runtime verify a CBS against properties referring to its global states. Although in our abstract

model defined in Section 4.1 (p. 34) each scheduler has its local clock, we use neither a global clock nor

a shared memory. On the one hand, this makes the execution of the system more dynamic and parallel

because we do not reconstruct global states with ready state of components at runtime. Thus, we avoid

synchronization to take global snapshots, which would go against the parallel execution of the verified

system. On the other hand, it complicates the monitoring problem because no component of the system

can be aware of the global trace. Since the execution of interactions in the implemented distributed system

is based on sending/receiving messages, communications are asynchronous and delays in the reception

of messages are inevitable. Moreover, the absence of ordering between the execution of the interactions

in several schedulers causes the main problem in this case: the actual global trace of the system is not

observable.

Example 5.3 (Monitoring problem in the distributed setting). Given the associated local partial-traces of the

partial trace t1 presented in Example 5.2 (p. 45), the actual ordering between the execution of interactions

Fill12 conducted by scheduler S1, and {Fill3} conducted by scheduler S2, is not determined.
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Although in the multi-threaded setting, components execute with a centralized scheduler, where i) there

is a global clock (which is the local clock of the scheduler), ii) communication is instantaneous and atomic,

and iii) the ordering between the executions is known, the global state of the system (where all components

are ready to perform an interaction) may never exist at runtime (see the partial trace in Example 4.14, p. 40).

Example 5.4 (Monitoring problem in the multi-threaded setting). To illustrate the monitoring problem in

the multi-threaded setting, let us consider the partial trace t presented in Example 4.14 (p. 40), that is

t = (d1, d2, d3) · {Fill12} · (⊥,⊥, d3) · {β1} · (f1,⊥, d3) · {{Drain1}} · (⊥,⊥, d3) · {{Fill3}} · (⊥,⊥,⊥) ·
{β2} · (⊥, f2,⊥). The centralized scheduler is locally aware of such partial trace. The sequence of observed

states is (d1, d2, d3) · (⊥,⊥, d3) · (f1,⊥, d3) · (⊥,⊥, d3) · (⊥,⊥,⊥) · (⊥, f2,⊥). Based on our assumption,

the desired property is defined over the global state of the system, and therefore, such a sequence of states

is not informative enough to be fed to the runtime monitor.

Our goal is to allow for the verification of our system M (as per Definition 4.8, p. 37) and the multi-

threaded version of M, that is M⊥ (see Section 4.2, p. 40), by formally instrumenting them to observe their

global behavior while preserving their performance and initial behavior.

First, in Chapter 6 (p. 49) we present an instrumentation for system M to obtain the observable partial

trace(s) and the associated events. Second, in Chapter 7, p. 61 according to the events of the system, we

reconstruct the global trace(s) of the system. Finally, the global trace(s) is(are) evaluated at runtime, so that

the reconstruction and verification are conducted simultaneously.

For a multi-threaded system M⊥, we propose an online monitoring algorithm accumulating the partial

states traversed by the system at runtime to reconstruct the associated global trace with global states. Such a

reconstructed global trace has the same execution ordering of the interactions and can be interpreted as the

equivalent global trace of the corresponding sequential system Ms (see Section 4.3, p. 41).

For a distributed system M with |S|> 1, we deal with a set of locally observed partial-trace. We propose

to build the computation lattice in which all the possible ordering of the executions are taken into account.

The computation lattice consists of a set of partially connected nodes. Each node represents a global states

of the system. A sequence of connected nodes in the lattice (a path of the lattice) represents a compatible

global trace of the system. The computation lattice is expanded as system M evolves at runtime. Of course

keeping all the nodes of the computation lattice from the initial state until the end of system’s run, would

impose a huge overhead to the system. Instead, we propose an online monitoring algorithm to evaluate

the lattice nodes as soon as they are generated. Moreover, we only keep those nodes of the lattice that

are needed for the possible future extension of the lattice, which results a relatively low overhead on the

system’s computation process.
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Summary: In this chapter, we defined what is observable in the abstract semantic model. In the next

chapter, we instrument the model so that executing the instrumented model produces the events associated

to the observable trace.
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6
Instrumenting CBSs

Chapter abstract

In this chapter, we propose an instrumentation method for the abstract semantic model of CBS. The

execution of the instrumented system generates the events associated to the partial trace of the model.

Events are sent to a central observer. We prove that the instrumentation is correct in the sense that the

behavior of the original system is preserved.

We define an instrumentation on the abstract CBS defined in Section 4.1 (p. 34), so that it can be applied

on both multi-threaded and distributed systems. In our abstract model, since schedulers do not interact

directly together by sending/receiving messages, the execution of an interaction by one scheduler seems

to be concurrent with the execution of all interactions by other schedulers. Nevertheless, if scheduler Sj

manages interaction a and scheduler Sk manages interaction b such that a shared component Bi ∈ Bs is

involved in a and b, i.e., Bi ∈ involved(a) ∩ involved(b), as a matter of fact, the execution of interactions

a and b are causally related. In other words, there exists only one possible ordering of a and b and they

could not have been executed concurrently. Ignoring the actual ordering of a and b would result in retrieving

inconsistent global states (i.e., states that do not belong to the original system). Our instrumentation must

detect and leverage such a causality among the executions. To this end, we employ vector clocks to define the

global order of executions. Moreover, to each scheduler and each shared component, we add a corresponding

component, its controller. The controller of a scheduler extracts and notifies the events of the scheduler. Any

state update of the system is known as an event. An event is either triggering an interaction which changes

the state of the involving components, or occurrence of the busy action of a component. The events of each

scheduler represent the observable local partial-trace of the scheduler. The controllers of schedulers and

49
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Components

Schedulers

Observer

event

Local traces −→ Compatible Global traces

S1Cs1 S2Cs2 · · · S|S|Cs|S|

B1 B2 · · · Bi
shared

Cbi · · · B|B|

Figure 6.1: Passive observer

the controllers of shared components interact whenever the scheduler and the shared components interact

in order to interchange vector clocks. Generated events are sent to a central online monitoring unit, that

is the observe. Whenever a scheduler executes an interaction, the associated controller of the scheduler

attaches the correct vector clock to this execution and notifies the observer about this event. The observer

runs in parallel with the system, collects the local events of the schedulers, and reconstructs the set of

possible global traces compatible with the locally observed partial-traces (Figure 6.1). The observer is

always ready to receive the events. Moreover, The observer does not force the system to send data and thus

does not modify the execution of the monitored system (it is a passive observer). For monitoring purposes,

the observer should be able to order the execution of interactions with respect to the received local events

appropriately. We shall prove that such observer does not violate the semantics nor the behavior of the

distributed system, that is, the observed system is observationally equivalent (see Section 3, p. 25) to the

initial system (see Property 6.14, p. 59).

In the following, we provide details of our instrumentation for an abstract semantic CBS to let schedulers

send their local events to an observer through their controllers.

6.1 Composing Schedulers and Shared Components with Controllers

We consider a CBS consisting of a set of components B =
¶
B1, . . . , B|B|

©
(as per Definition 4.1, p. 34) and

a set of schedulers S =
¶
S1, . . . , S|S|

©
where scheduler Sj = (QSj ,ActSj ,→sj ) manages the interactions

in ActγSj and is notified by internal actions in ActβSj , for Sj (as per Definition 4.3, p. 35). We attach to Sj a

local controller Cs
j in charge of

– sending the state updates (events) of Sj to the central observer, that corresponds to the local partial-

trace of Sj ,
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– computing the vector clock using shared components.

Moreover, for each shared component Bi ∈ S, we attach a local controller Cb
i to communicate with the

controllers of the schedulers that have Bi in their scope.

In the following, we define the controllers (instrumentation code) and the composition ⊗ as instrumen-

tation process.

6.1.1 Controllers of Schedulers

Controller Cs
j is in charge of computing the correct vector clock of scheduler Sj (Definition 6.1). It does so

through the data exchange with the controllers of shared components, i.e., the controllers in the set¶
Cb
i

∣∣∣ Sj ∈ S ∧Bi ∈ scope(Sj)
©
,

which are later defined in Definition 6.4 (p. 54).

Definition 6.1 (Controller of scheduler). Controller Cs
j is an LTS (QCsj ,RCsj ,→Cs

j
) such that:

– QCsj = 2[1 .. |B|]×VC is the set of states where 2[1 ..|B|] is the set of subsets of component indexes and

VC is the set of vector clocks;

– RCsj =
¶Ä“βi, ∅ä ∣∣∣ Bi ∈ scope(Sj)

©⋃ {(−, {rcv ibvcc}) | Bi ∈ scope(Sj) ∩Bs ∧ vc ∈ VC}⋃{(÷abvcc, send
) ∣∣∣ a ∈ ActγSj ∧ send ⊆ {send ibvcc | Bi ∈ scope(Sj) ∩Bs ∧ vc ∈ VC}

}
is the set

of actions;

– →Cs
j
⊆ QCsj ×RCsj ×QCsj is the transition relation defined as:

(I, vc)

Ä’abvc′c,{sendibvc′c | i∈involved(a)∧Bi∈Bs}
ä

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Cs
j

(I ∪ involved(a), vc′)

∣∣∣∣∣∣ a ∈ ActγSj∧

vc′ = inc(vc, j)


⋃(I, vc)

Ä“βi,∅ä
−−−−→Cs

j
(I \ {i} , vc)

∣∣∣∣∣∣ βi ∈ ActβSj


⋃(I, vc)

(−,{rcv ibvc′c})−−−−−−−−−→Cs
j

(I,max(vc, vc′)

∣∣∣∣∣∣ βi ∈ ActβSj ∧Bi ∈ Bs


where inc(vc, j) increments the jth element of vector clock vc.

When the controller Cs
j is in state (I, vc), it means that (i) I is the set of busy components in the scope
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of scheduler Sj , (ii) the execution of their latest action has been managed by scheduler Sj , and (iii) vc is the

current value of the vector clock of scheduler Sj .

An action in RCsj is a pair (x, y) where x is associated to the actions which send information from the

controller to the observer and y is associated to the actions in which the controller sends/receives information

to/from the controllers of shared components, such that

x ∈
{÷abvcc

∣∣∣ a ∈ ActγSj ∧ vc ∈ VC
}
∪
¶“βi ∣∣∣ i ∈ scope(j)

©
∪ {−}, and

y ⊆ {send ibvcc, rcv ibvcc | Bi ∈ scope(Sj) ∩Bs ∧ vc ∈ VC} can be intuitively understood as follows,

– action ÷abvcc consists in notifying the observer about the execution of interaction a with vector clock

vc attached.

– action “βi consists in notifying the observer about the internal action of component Bi. The last state

of component Bi is also transmitted to the observer.

– action − is used in the case when the controller does not interact with the observer,

– action send ibvcc consists in sending the value of the vector clock vc of the scheduler to the shared

component Bi,

– action rcv ibvcc consists in receiving the value of the vector clock vc stored in the shared component

Bi.

The set of transitions is obtained as the union of three sets which can be intuitively understood as follows:

– For each interaction a ∈ ActγSj managed by scheduler Sj , we include a transition with action

(÷abvc′c, {send ibvc′c
∣∣ Bi ∈ involved(a) ∩Bs

})
,

where ÷abvc′c is a notification to the observer about the execution of interaction a along with the value

of vector clock vc′, and actions in set {send ibvc′c | Bi ∈ involved(a) ∩Bs} send the value of the

vector clock vc′ to the shared components involved in interaction a. Moreover, the set of indexes of

the components involved in interaction a (i.e., in involved(a)) is added to the set of busy components;

and the current value of the vector clock is incremented.

– For each action associated to the notification of the internal action of component Bi (that is, βi),

we include a transition labeled with action (“βi, ∅) in the controller to send the updated state to the

observer. Moreover, this transition removes index i from the set of busy components.

– For each action associated to the notification of internal action of a shared component Bi ∈ Bs,

we include a transition labeled with action (−, {rcv ibvc′c}) in the controller to receive the value of
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CONT-SCH1
a ∈ Int qs

a−→Sj q
′
s qc

Ä’abvc′c,{sendibvc′c | i∈involved(a)∧Bi∈Bs}
ä

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Cs
j
q′c

(qs, qc)

Ä
a,
Ä’abvc′c,{sendibvc′c | i∈involved(a)∧Bi∈Bs}

ää
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→scj (q′s, q

′
c)

CONT-SCH2
i ∈ I qs

βi−→Sj q
′
s qc

Ä“βi,∅ä
−−−−→Cs

j
q′c

(qs, qc)

Ä
βi,
Ä“βi,∅ää

−−−−−−−→scj (q′s, q
′
c)

CONT-SCH3
i 6∈ I qs

βi−→Sj q
′
s qc

(−,{rcv ibvc′c})−−−−−−−−−→Cs
j
q′c

(qs, qc)
(βi,(−,{rcv ibvc′c}))−−−−−−−−−−−−→scj (q′s, q

′
c)

Figure 6.2: Semantic rules defining the composition controller / scheduler

the vector clock vc′ stored in the shared component to update the vector clock of the scheduler by

comparing the vector clock stored in the scheduler and the received vector clock from the shared

component.

Note that to each shared component Bi ∈ Bs, we also attach a controller in order to exchange the vector

clock among schedulers in the set {Sj ∈ S | Bi ∈ scope(Sj)}; see Definition 6.4 (p. 54).

Below, we define how a scheduler is composed with its controller. Intuitively, the controller of a sched-

uler ensures sending/receiving information among the scheduler, the associated shared components and the

observer.

Definition 6.2 (Semantics of Sj ⊗s Cs
j). The composition of scheduler Sj and controller Cs

j , denoted by

Sj ⊗s Cs
j , is the LTS (QSj ×QCsj ,ActSj ×RCsj ,→scj ) where the transition relation→scj⊆ (QSj ×QCsj )×

(ActSj ×RCsj )× (QSj ×QCsj ) is defined by the semantic rules in Figure 6.2.

The semantic rules in Figure 6.2 can be intuitively be understood as follows:

– Rule CONT-SCH1. When the scheduler executes an interaction a ∈ Int , the controller (i) updates the

vector clock by increasing its local clock, (ii) updates the set of busy components, (iii) notifies the

observer of the execution of a along with the associated vector clock vc′, and (iv) sends vector clock

vc′ to the shared components involved in a.

– Rule CONT-SCH2. When the scheduler is notified of an internal action of component Bi where i ∈ I
(that is, the scheduler has managed the latest action of componentBi) through action βi, the controller

transfers the updated state of component Bi to the observer through action “βi.
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(◊�Drain1, ∅)

◊�(Fill12, {send2})

(β̂2, ∅)

(−, {rcv2})
(β̂1, ∅)l1 l0 l2 l3

Fill12 β1

Drain1

β2β1

β2

Drain1
β2

β2

Scheduler S1 Controller Cs1

Figure 6.3: Controller attached to the scheduler

– Rule CONT-SCH3. When the scheduler is notified of an internal action of the shared component Bi

where i 6∈ I (that is, the scheduler has not managed the latest action of component Bi), the controller

receives the vector clock stored in component Bi and updates its vector clock.

Example 6.3 (Controller of scheduler). Figure 6.3 depicts the controller of scheduler S1 (initially presented

in Figure 4.2, p. 36). Actions (β̂1, ∅) and (β̂2, ∅) consist in sending the updated state to the observer. Actions

(◊�Drain1, ∅) and ◊�(Fill12, {send2}) consist in notifying the observer about the occurrence of interactions

managed by the scheduler. Moreover, send2 sends the vector clock to the shared component Tank2. The

controller receives the vector clock stored in the shared component Tank2 through action (−, {rcv2}) and

updates its vector clock. For the sake of simplicity, the variables attached to the transition labels are not

shown.

6.1.2 Controllers of Shared Components

Below, we define the controllers attached to shared components. Intuitively, the controller of a shared com-

ponent ensures data exchange among the shared component and the corresponding schedulers. A scheduler

sets its current clock in the controller of a shared component which can be used later by another scheduler.

Definition 6.4 (Controller of shared component). Local controller Cb
i for a shared component Bi ∈ Bs with

the behavior (Qi,Act i ∪ {βi} ,→i) is the LTS (Qcbi
,Rcbi ,→Cb

i
), where

– Qcbi
= VC is the set of states,

– Rcbi ⊆ {send jbvcc, rcv jbvcc | Sj ∈ S ∧Bi ∈ scope(Sj) ∧ vc ∈ VC} is the set of actions,

– →Cb
i
⊆ Qcbi ×Rcbi ×Qcbi is the transition relation defined asß

vc
{rcvjbvc′c}−−−−−−−→Cb

i
max(vc, vc′) | a ∈ Int ∧ a ∩Act i 6= ∅ ∧managed(a) = Sj

™
⋃ß

vc
{sendjbvcc}−−−−−−−→Cb

i
vc

∣∣∣∣ Sj ∈ S ∧Bi ∈ scope(Sj)

™
.
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CONT-SHA1
a ∈ Int a ∩Act i =

{
a′
}

managed(a) = Sj qb
a′−→i q

′
b qc

{rcvjbvc′c}−−−−−−−→Cb
i
q′c

(qb, qc)
(a′,{rcvjbvc′c})−−−−−−−−−→bci (q′b, q

′
c)

CONT-SHA2
qb

βi−→i q
′
b J = {j ∈ [1,m] | Bi ∈ scope(Sj)} qc

{sendjbvcc | j∈J}−−−−−−−−−−−→Cb
i
q′c

(qb, qc)
(βi,{sendjbvcc | j∈J})−−−−−−−−−−−−−−→bci (q′b, q

′
c)

Figure 6.4: Semantic rules defining the composition controller / shared component

The state of the controller Cb
i is represented by its vector clock. Controller Cb

i has two types of actions:

– action rcv jbvc′c consists in receiving the vector clock vc′ of scheduler Sj ,

– action send jbvcc consists in sending the vector clock vc stored in the controller Cb
i to scheduler Sj .

The two types of transitions can be understood as follow:

– For each action of componentBi, which is managed by scheduler Sj , we include a transition executing

action rcv jbvc′c to receive the vector clock vc′ of scheduler Sj and to update the vector clock stored

in controller Cb
i .

– We include a transition with a set of actions for all the schedulers that have component Bi in their

scope, that is {Sj ∈ S | Bi ∈ scope(Sj)}, to send the stored vector clock of controller Cb
i to the

controllers of the corresponding schedulers, that is
¶
Cs
j

∣∣∣ Sj ∈ S ∧Bi ∈ scope(Sj)
©

.

Definition 6.5 (Semantics ofBi⊗bCb
i ). The composition of shared componentBi and controller Cb

i , denoted

by Bi⊗b Cb
i , is the LTS (Qi×Qcbi , (Act i ∪ {βi})×Rcbi ,→bci) where the transition relation→bci⊆ (Qi×

Qcbi
)×

(
(Act i ∪ {βi})×Rcbi

)
× (Qi ×Qcbi ) is defined by the semantics rules in Figure 6.4.

The semantic rules in Figure 6.4 can be intuitively understood as follows:

– Rule CONT-SHA1. applies when the scheduler notifies the shared component to execute an action

part of an interaction. Controller Cb
i receives the value of the vector clock of scheduler Sj from the

associated controller Cs
j in order to update the value of the vector clock stored in controller Cb

i .

– Rule CONT-SHA2. applies when the shared component Bi finishes its computation by executing βi,

and controller Cb
i notifies the controllers of the schedulers that have component Bi in their scope,

through actions send j , for j ∈ J , where J is the set of indexes of schedulers which have the shared

component Bi in their scope. Actions send j sends the vector clock stored in controller Cb
i to con-

trollers Cs
j .
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f2 d2

f⊥2

d⊥2

β2

β2
Fill2

Drain2

{rcv 2}{rcv 1}

{send1, send2}

Figure 6.5: Controller of shared component Tank2

Example 6.6 (Controller of shared component). Figure 6.5 depicts the controller of the shared component

Tank2 (initially presented in Figure 4.2, p. 36). Action rcv1 (resp. rcv2) consists in the reception and

storage of the vector clock from scheduler S1 (resp. S2 ) upon the execution of interaction Fill12 (resp.

Drain23). Action {send1, send2} sends the stored vector clock to the schedulers S1 and S2 when the

component Tank2 performs its internal action β2.

6.1.3 Instrumentation of Multi-threaded CBSs

Following the instrumentation defined in Section 6.1.1 (p. 51), for the systems with a centralized scheduler,

since there is no shared component, the instrumentation is simply defined by only adding a controller to the

scheduler. The controller is in charge of sending the events corresponding to the local partial-trace (that is,

the partial trace of the system) to the central observer. The vector clock is discarded since the order of the

execution of interactions is known by the central scheduler. The events are sent to the observer in the same

order as they have occurred (we assume that communication channels are reliable).

Definition 6.7 (Controller of the scheduler of a multi-threaded CBS). Controller Cs is defined as an LTS

(QCs ,RCs ,→Cs) such that:

– QCs = {qc} is the singleton set of states;

– RCs =
¶“βi ∣∣∣ Bi ∈ B

©⋃ {â | a ∈ Int} is the set of actions;

– →Cs⊆ QCs ×RCs ×QCs is the transition relation defined as:ß
qc

â−→Cs qc

∣∣∣∣ a ∈ Int

™⋃®
qc
“βi−→Cs qc

∣∣∣∣∣ Bi ∈ B

´
Controller Cs has two actions. Action â consists in notifying the observer about the execution of inter-

action a. Action “βi consists in notifying the observer about the internal action of component Bi. The last

state of component Bi is also transmitted to the observer.

Definition 6.8 (Semantics of S⊗sCs). The composition of scheduler S and controller Cs, denoted by S⊗sCs,
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CONT-SCH1
a ∈ Int qs

a−→S q
′
s qc

â−→Cs qc

(qs, qc)
(a,̂a)−−−→sc (q′s, qc)

CONT-SCH2
qs

βi−→S q
′
s qc

“βi−→Cs qc

(qs, qc)

Ä
βi,“βiä
−−−−→sc (q′s, qc)

Figure 6.6: Semantic rules defining the composition controller / scheduler of multi-threaded CBS

is the LTS (QS ×QCs , Int ×RCs ,→sc) where the transition relation→sc⊆ (QS ×QCs)× (Int ×RCs)×
(QS ×QCs) is defined by the semantic rules in Figure 6.6.

Rule CONT-SCH1. When the scheduler executes an interaction a ∈ Int , the controller notifies the

observer of the execution of a.

Rule CONT-SCH2. When the scheduler is notified of an internal action of component Bi ∈ B through

action βi, the controller transfers the updated state of component Bi to the observer through action “βi.
6.2 Event Extraction from the Local Partial-Traces of the Instrumented

System

According to Definition 6.1 (p. 51) and Definition 6.4 (p. 54), the first action in the semantic rules of a

controlled scheduler or shared component corresponds to an interaction of the initial system. Thus, the

notion of trace is extended in the natural way by considering the additional semantics rules. Elements of

a trace are updated by including the new configurations and actions of controlled schedulers and shared

components.

Example 6.9 (Local partial-traces of the instrumented system). Consider Example 5.2 (p. 45), the local

partial-traces of the instrumented system for two partial traces t1 and t2 are:

– s1(t1) = (d1, d2, d3) ·
Å

Fill12,

Å ¤�Fill12b(1, 0)c, send2b(1, 0)c
ãã
· (⊥,⊥, ? ) ·

(
{β1} ,

(’{β1}, ∅
))
·

(f1,⊥, ? ) ·
Å
{Drain1} , ¤�{Drain1} b(2, 0)c

ã
· (⊥,⊥, ? ) ·

(
{β2} ,

(’{β2}, ∅
))
· (⊥, f2, ? ),

– s2(t1) = (d1, d2, d3) ·
Å
{Fill3} , ¤�{Fill3} b(0, 1)c

ã
· (? , d2,⊥) · ({β2} , (−, rcv1b(1, 0)c)) · (? , f2,⊥),

– s1(t2) = (d1, d2, d3) ·
Å

Fill12,

Å ¤�Fill12b(1, 0)c, send2b(1, 0)c
ãã
· (⊥,⊥, ? ) ·

(
{β2} ,

(’{β2}, ∅
))
·

(⊥, f2, ? ) ·
(
{β1} ,

(’{β1}, ∅
))
· (f1, f2, ? ),

– s2(t2) = (d1, d2, d3) ·
Å
{Fill3} , ¤�{Fill3} b(0, 1)c

ã
· (? , d2,⊥) ·

(
{β3} ,

(’{β3}, ∅
))
· (? , d2, f3)·

({β2} , (−, rcv1b(1, 0)c)) · (? , f2, f3) ·
Å

Drain23,

Å ¤�Drain23b(1, 0)c, send2b(1, 2)c
ãã
· (? ,⊥,⊥).
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For both traces t1 and t2, scheduler S2 is notified of the state update of component Tank2 (that is β2), but

scheduler S2 does not sent the associated event to the observer. Indeed, following the semantics rules of

composition of a scheduler and its controller (Definition 6.2, p. 53), a scheduler only sends the received

state from a component only if the execution of the latest action on this component has been managed by

this scheduler.

Definition 6.10 (Sequence of events). Let t be the partial trace of the system M and sj(t) = q0 · γ1 ·
q1 · · · γk−1 · qk−1 · γk · qk, for j ∈ [1 . .|S|], be the local partial-trace of scheduler Sj (as per Definition 5.1,

p. 44). The sequence of events of sj(t) is inductively defined as follows:

– event(q0) = ε,

– event (sj(t) · γ · q) =


event(sj(t)) · (a, vc) if γ is of the form (∗, (÷abvcc, ∗)) ,
event(sj(t)) · βi if γ is of the form (∗, (“βi, ∗)) ,
event(sj(t)) otherwise.

According to the semantic rules of composition Sj ⊗ Cs
j (see Definition 6.2, p. 53), controller Cs

j sends

information to the observer (actions denoted by ^ over them) when scheduler Sj (i) executes an interaction

a ∈ Act , or (ii) is notified by the internal action of a component which the execution of its latest action has

been managed by scheduler Sj .

Example 6.11 (Sequence of events). The sequences of events of local partial-traces in Example 6.9 (p. 57)

are:

– event(s1(t1)) : (Fill12, (1, 0)) · β1 · (Drain1, (2, 0)) · β2,

– event(s2(t1)) : (Fill3, (0, 1)),

– event(s1(t2)) : (Fill12, (1, 0)) · β2 · β1,

– event(s2(t2)) : (Fill3, (0, 1)) · β3 · (Drain23, (1, 2)).

Events of instrumented multi-threaded CBS. Sequence of events in a multi-threaded system is defined

in a similar way where the vector clocks are discarded.

Definition 6.12 (Sequence of events of multi-threaded CBS). Let t = q0 · a1 · q1 · · · ak−1 · qk−1 · ak · qk
be the partial trace of a multi-threaded CBS as per Definition 4.13 (p. 40). The sequence of events of t is

event(t) = a1 · · · ak−1 · ak ∈
(

Int ∪⋃|B|i=1 {βi}
)∗

.

In the multi-threaded setting the actual partial trace of the system is the local partial-trace of the central

scheduler, so that all the events are generated from a unique scheduler, therefore the sequence of events is

totally ordered.
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6.3 Correctness of Instrumentation

Following the instrumentation defined in Section 6.1 (p. 50), one can obtain a transformed system whose ex-

ecution at runtime generates the associated events. Furthermore, we shall prove that such an instrumentation

does not modify the initial behavior of the original system.

Definition 6.13 (Instrumented system). For a CBS consisting of a set of components B =
¶
B1, . . . , B|B|

©
where Bi = (Qi,Act i ∪ {βi} ,→i) (as per Definition 4.1, p. 34), a set of schedulers S =

¶
S1, . . . , S|S|

©
where Sj = (QSj ,ActSj ,→sj ) (as per Definition 4.3, p. 35), and with the global behavior (Q,GAct ,→)

(as per Definition 4.8, p. 37), the instrumented CBS is the set of components {S1 ⊗s Cs
1, . . . , S|S| ⊗s Cs

|S|,

B′1, . . . , B
′
|B|} where B′i = Bi ⊗b Cb

i if Bi ∈ Bs and B′i = Bi otherwise. We define the behavior of the

instrumented CBS as an LTS (Qc,GActc,→c) where:

– Qc ⊆
⊗|B|

i=1Q
′
i ×

⊗|S|
j=1(QSj × QCsj ) is the set of states consisting of the states of schedulers and

components with their controllers where Q′i = Qi ×Qcbi if Bi ∈ Bs and Q′i = Qi otherwise.

– GActc = GAct × {RCsj ,RCbi | Sj ∈ S ∧Bi ∈ Bs} is the set of actions,

– →c⊆ Qc ×GActc ×Qc is the transition relation.

Component Cs
j is the controller of scheduler Sj for j ∈ [1 . .|S|] as per Definition 6.1 (p. 51), and

component Cb
i is the controller of shared component and Bi as per Definition 6.4 (p. 54). An action of the

instrumented system consists of two synchronous actions; an action of the original system and the action of

the associated controllers to notify the observer about the occurrence of the action and/or the action of the

controllers to exchange vector clocks.

Proposition 6.14. (Q,GAct ,→) ∼ (Qc,GActc,→c).

Proposition 6.14 states that the LTS of the instrumented CBS (see Definition 6.13) is weakly bi-similar to

the LTS of initial CBS. Thus the composition of a set of controllers with schedulers and shared components

defined in Section 6.1 (p. 50) does not affect the semantics of the initial system.

Proof. The proof of Proposition 6.14 is in Appendix A.2.2 (p. 163).

Example 6.15 (Bisimulation between instrumented CBS and original CBS). Intuitively, by comparing

the associated local partial-traces of the partial trace t1 of the instrumented system presented in Exam-

ple 6.9 (p. 57) and the corresponding local partial-traces of the original system presented in Example 5.2 (p. 44),

we have:
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– s1(t1) = (d1, d2, d3) ·
Å

Fill12,

Å ¤�Fill12b(1, 0)c, send2b(1, 0)c
ãã
· (⊥,⊥, ? ) ·

(
{β1} ,

(’{β1}, ∅
))
·

(f1,⊥, ? ) ·
Å
{Drain1} , ¤�{Drain1} b(2, 0)c

ã
· (⊥,⊥, ? ) ·

(
{β2} ,

(’{β2}, ∅
))
· (⊥, f2, ? ),

– s2(t1) = (d1, d2, d3) ·
Å
{Fill3} , ¤�{Fill3} b(0, 1)c

ã
· (? , d2,⊥) · ({β2} , (−, rcv1b(1, 0)c)) · (? , f2,⊥).

By filtering out the actions of the controllers, we obtain the local partial-traces of the original system.

– s1(t1) = (d1, d2, d3) ·{Fill12}·(⊥,⊥, ? ) ·{β1}·(f1,⊥, ? ) ·{{Drain1}}·(⊥,⊥, ? ) ·{β2}·(⊥, f2, ? ),

– s2(t1) = (d1, d2, d3) · {{Fill3}} · (? , d2,⊥) · {β2} · (? , f2,⊥).

The sequence of interactions and partial states (consisting of the states of component Tank1, Tank2 and

Tank3) are similar in both systems. The actions of the controllers do not interfere the actions of the original

system. Each action of the instrumented system is followed by a simultaneous action of the corresponding

controller to generate and send the associated event.

Summary: In this chapter, we instrumented the model with abstract semantics to obtain the execution

events at runtime. In the next chapter, we use such events to monitor the desired property by reconstructing

the global trace of the system.
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Reconstructing and Monitoring the Global

Trace

Chapter abstract

In this chapter, we present how to reconstruct the global trace of the system using system’s events.

The reconstructed global trace is needed for online monitoring. We introduce two online global-trace

reconstruction methods. The first method is applicable for the multi-threaded CBS, where the generated

events are totally ordered. In this method, upon the reception of any event, we build, on-the-fly, the

unique equivalent global trace with the global state of the components, that is the witness trace. Witness

trace is given to an online monitor to evaluate the global states step by step. The second method is

more general and is applicable for the distributed CBS where the events are not globally ordered. In

this method, all the possible combinations of the occurrence of the events are taken into account with

respect to the vector clocks of the events. Thus, we provide a set of compatible global traces. Each

compatible global trace is the witness trace of a partial trace of the system that could have been the

actual partial trace of the system. We represent the set of reconstructed global trace as a computation

lattice. Each node of the lattice represents a global state of the system. A path in the lattice is a sequence

of causally-related nodes, started from the initial node (i.e., the initial state of the system). Each path

of the lattice represents a compatible global trace of the system. Moreover, we introduce a novel online

LTL monitoring technique on the constructed computation lattice, so that each nodes carries a set of

formula evaluating the set of paths end up with the node.

61
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In the previous chapter, we define how to instrument a CBS to have controllers generating events (i.e., the

state updates corresponding to the local partial-traces) sent to a central observer. The observer receives

two sorts of events: events related to the execution of an interaction in Int , referred to as action events,

and events related to internal actions in ∪i∈[1 ..|B|] ({βi} ×Qi), referred to as update events. (Recall that

internal actions carry the state of the component that has performed the action – the state is transmitted to

the observer by the controller that is notified of this action; see Chapter 4, p. 33). Hence, the set of action

events is defined as Ea = Int ×VC (Recall that in multi-threaded setting Ea = Int), and the set of update

events is defined as Eβ = ∪i∈[1 ..|B|] ({βi} ×Qi). The set of all events is denoted by E = Eβ ∪ Ea.

Two cases are considered when reconstructing the global trace:

1. If the system is a multi-threaded CBS with one scheduler, the observer constructs the witness trace of

the partial trace of the system, which allows monitoring the system against the properties referring to

the global state of the system.

2. If the system has more than one scheduler (i.e., distributed system), the observer constructs a compu-

tation lattice representing the set of compatible global traces of the system.

In the following, we present details about each above-mentioned case separately.

7.1 Construction of the Witness Trace of Multi-threaded CBS

It is possible to show that a multi-threaded system with partial-state semantics M⊥ is (weakly) bisimilar

to the corresponding sequential system with global-state semantics Ms (see [5], Theorem 1). Therefore,

any partial trace in multi-threaded system M⊥ is related to a global trace of the corresponding sequential

system Ms. A weak bisimulation relationR is defined between the set of states of the system in global-state

semantics (i.e., Q ⊆⊗|B|i=1Q
r
i) and the set of states of its partial-state system (i.e., Q⊥ ⊆⊗|B|i=1(Qr

i ∪Qb
i )),

such thatR = {(q, r) ∈ Q×Q⊥ | r β∗−→ q}. Any global state in partial-state semantics system is equivalent

to the corresponding global state in global-state semantics system, and any partial state (i.e., a global state

with at least one busy state) in partial-state semantics system is equivalent to the successor global state

obtained after stabilizing the system by executing busy interactions (which take place independently).

In the sequel, we consider a CBS with global-state semantics Ms and its partial-states semantics version

M⊥. Intuitively, from any partial trace of M⊥, we want to reconstruct on-the-fly the corresponding global

trace in Ms and evaluate a property which is defined over global states of Ms.
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q0

q0

· · · · · · · · · · · ·

q1 · · · qi−1 qi · · ·

β β β

Trace in partial-state semantics

Witness trace in global-state semantics

R

a1 β a2 β ai β ai+1

a1

RR R

a2 ai ai+1

R R R R

Figure 7.1: Witness trace built using weak bisimulation (R)

7.1.1 Witness Relation and Witness Trace

We define the notion of witness relation between traces in global-state semantics and traces in partial-state

semantics, based on the bisimulation between Ms and M⊥. Any trace of M⊥ is related to a trace of Ms,

i.e., its witness. The witness trace allows one to monitor the system in partial-state semantics (thus benefiting

from the parallelism) against properties referring to the global state of the system.

Definition 7.1 (Witness relation and witness trace). Given the bisimulation R between Ms and M⊥, the

witness relation W ⊆ Tr(Ms) × Tr(M⊥) is the smallest set that contains (init , init) and satisfies the

following rules:

– (t1 · a · q1, t2 · a · q2) ∈W, if a ∈ Int and (q1, q2) ∈ R,

– (t1, t2 · β · q2) ∈W, if (last(t1), q2) ∈ R;

whenever (t1, t2) ∈W.

If (t1, t2) ∈W, we say that t1 is a witness trace of t2.

Suppose that the witness relation relates a trace in partial-state semantics t2 to a trace in global-state

semantics t1. The states obtained after executing the same interaction in the two systems are bisimilar.

Moreover, any move through a busy interaction in M⊥ preserves the bisimulation between the state of t2

followed by the busy interaction in M⊥ and the last state of t1 in Ms.

Example 7.2 (Witness relation). Figure 7.1 illustrates the witness relation. State q0 is the initial state of Ms

and M⊥. In the trace of M⊥, gray circles after each interaction represent partial states which are bisimilar

to the global state that comes after the corresponding trace of Ms.

Example 7.3 (Witness trace). Let us consider t2 as a partial trace of system Tank with partial-state semantics

depicted in Figure 7.2 (p. 64), where t2 = (d1, d2, d3)·{Fill12}·(⊥,⊥, d3)·β1 ·(f1,⊥, d3)·{{Drain1}}·(⊥
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(d1, d2, d3)

(d1, d2, d3)

(⊥,⊥, d3) (f1,⊥, d3) (⊥,⊥, d3)

(f1, f2, d3) (d1, f2, d3)

R

Fill12 β1 Drain1

Drain1Fill12

R R R

Figure 7.2: An example of witness trace in system Tank

,⊥, d3). The witness trace corresponding to trace t2 is (d1, d2, d3) · {Fill12} · (f1, f2, d3) · {{Drain1}} ·
(d1, f2, d3).

The following property states that any trace in partial-state semantics and its witness trace have the same

sequence of interactions.

Property 7.4. ∀(t1, t2) ∈W . interactions(t1) = interactions(t2).

Proof. The proof is done by induction on the length of the sequence of interactions and follows from the def-

initions of the witness relation and witness trace. The proof of this property can be found in Appendix A.1.1

(p. 152).

The next property states that any trace in the partial-state semantics has a unique witness trace in the

global-state semantics.

Property 7.5. ∀t2 ∈ Tr(M⊥),∃! t1 ∈ Tr(Ms) .(t1, t2) ∈W.

Proof. This proof is done by contradiction. The proof of this property is given in Appendix A.1.2 (p. 152).

We note W(t2) = t1 when (t1, t2) ∈W.

Note that when running a system in partial-state semantics, the global state of the witness trace after an

interaction a is not known until all the components involved in a have reached their ready locations after the

execution of a. Nevertheless, even in non-deterministic systems, after a deterministic execution, this global

state is uniquely defined and consequently there is always a unique witness trace (that is, non-determinism

is resolved at runtime).

7.1.2 Construction of the Witness Trace

Given a trace in partial-state semantics, the witness trace is computed using function RGT (Reconstructor

of Global Trace). The global states (of the trace in the global-state semantics) are reconstructed from partial

states. We define a function to reconstruct global states from partial states.
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Definition 7.6 (Function RGT - Reconstructor of Global Trace). Function RGT : Tr(M⊥) −→ pref(Tr(Ms))

is defined as:

RGT(t) = discriminant(acc(event(t))),

where:

– acc : E −→ Q · (Int ·Q)∗ ·
Ä
Int · (Q⊥ \Q)

ä∗
is defined as:

• acc(event(init)) = acc(ε) = init ,

• acc(ζ · e) =


acc(ζ) · e · q if e ∈ Ea

map [x 7→ upd(q′, x)] (acc(ζ)) otherwise (e = (β, q′) ∈ Eβ),

where q = (q1, · · · , q|B|),∀i ∈ [1 . .|B|] . qi =


⊥ if i ∈ involved(e)

last(acc(ζ))[i] otherwise.

– discriminant : Q · (Int ·Q)∗ ·
Ä
Int · (Q⊥ \Q)

ä∗ −→ pref(Tr(Ms)) is defined as:

discriminant(t) = max�({t′ ∈ pref(t) | last(t′) ∈ Q})

with upd : {Qr
i}
|B|
i=1 ×

Ä
Q⊥ ∪ Int

ä
−→ Q⊥ ∪ Int defined as:

– upd(qi, a) = a, for a ∈ Int ,

– upd
Ä
qi, (q

′
1, . . . , q

′
n)
ä

= (q′′1 , . . . , q
′′
n),

where ∀k ∈ [1 . .|B|] . q′′k =


qi if k = i ∧ q′k ∈ Qb

k

q′k otherwise.

Function RGT uses helper functions acc and discriminant. First, function acc is an accumulator func-

tion which takes as input a sequence of events of a trace in partial-state semantics t (as per Definition 6.10,

p. 58) to construct the global trace. Function acc uses i) action events (i.e., e ∈ Ea) to extend the constructed

trace, and ii) the (information in the) update event (i.e., e ∈ Eβ) in order to update the partial states (i.e.,

states with busy states of components) using function upd. Then, function discriminant returns the longest

prefix of the result of acc corresponding to a trace in global-state semantics.

Note that because of the inductive definition of function acc, the events of the input trace can be pro-

cessed step by step by function RGT and allows to generate the witness incrementally. Moreover, such

definition allows to apply the function RGT to a running system by online monitoring execution of inter-

actions and partial states of components. Finally, we note that function RGT is monotonic (w.r.t. prefix

ordering on sequences).

Such an online computation is illustrated in the following example.
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Table 7.1: Values of function RGT for a sample input

Step
Input trace in partial semantics

t
Corresponding event

last(event(t))
Intermediate step

acc(event(t))
Output trace in global semantics

RGT(t)

0 (d1, d2, d3) ε (d1, d2, d3) (d1, d2, d3)

1
(d1, d2, d3).Fill12 .

(⊥,⊥, d3)
Fill12

(d1, d2, d3).Fill12 .
(⊥,⊥, d3)

(d1, d2, d3).Fill12

2
(d1, d2, d3).Fill12 .

(⊥,⊥, d3).β1.
(f1,⊥, d3)

(β1, f1)
(d1, d2, d3).Fill12 .

(f1,⊥, d3)
(d1, d2, d3).Fill12

3

(d1, d2, d3).Fill12 .
(⊥,⊥, d3).β1.

(f1,⊥, d3).Drain1 .
(⊥,⊥, d3)

Drain1

(d1, d2, d3).Fill12 .
(f1,⊥, d3).Drain1 .

(⊥,⊥, d3)
(d1, d2, d3).Fill12

4

(d1, d2, d3).Fill12 .
(⊥,⊥, d3).β1.

(f1,⊥, d3).Drain1 .
(⊥,⊥, d3).β2.

(⊥, f2, d3)

(β2, f2)
(d1, d2, d3).Fill12 .
(f1, f2, d3).Drain1 .

(⊥, f2, d3)

(d1, d2, d3).Fill12 .
(f1, f2, d3).Drain1

Example 7.7 (Applying function RGT). Table 7.1 (p. 66) illustrates Definition 7.6 (p. 65) on one trace of

system Tank with initial state (d1, d2, d3) followed by interactions Fill12, β1, Drain1 and β2. We comment

on certain steps illustrated in the table. At step 0, the outputs of functions acc and discriminant are equal

to the initial state. At step 1, the execution of interaction Fill12 generates an action event which adds two

elements Fill12 ·(⊥,⊥, d3) to traces t and acc(event(t)). At step 2, execution of β1 generate an update

event that has fresh information on component Tank2 which is used to update the existing partial states,

so that (⊥,⊥, d3) is updated to (f1,⊥, d3). At step 4, Tank2 becomes ready after β2, and the partial state

(f1,⊥, d3) in the intermediate step is updated to the global state (f1, f2, d3), therefore it appears in the

output trace.

7.1.3 Properties of Global-trace Reconstruction

We state some properties of global-trace reconstruction based on function RGT, namely the soundness and

maximality (information-wise) of the reconstructed global trace. To do so, we first start by stating some

intermediate lemmas on the computation performed by function RGT.

Lemma 7.8. ∀(t1, t2) ∈ W .|acc(event(t2))|= |t1|= 2s + 1, where s = |interactions(t1)|, acc is the ac-

cumulator used in the definition of function RGT (Definition 7.6, p. 65), and function interactions (defined

in Section 4.3, p. 41) returns the sequence of interactions in a trace (removing β).

Lemma 7.8 states that, for a given trace in partial-state semantics t2, the length of acc(event(t2)) is

equal to the length of the witness of t2 (i.e., t1).
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Lemma 7.9. ∀t ∈ Tr(M⊥) . let acc(event(t)) = (q0 · a1 · q1 · · · as · qs) in

∃k ∈ [1 . . s] . qk ∈ Q =⇒ ∀z ∈ [1 . . k] . qz ∈ Q ∧ qz−1
az−→ qz .

Lemma 7.9 states that, for a given trace in partial-state semantics t, if there exists a global state qk in

sequence acc(event(t)) such that qk ∈ Q, k ∈ [1 . . s], then all the states occurring before qk in sequence

acc(event(t)) are global states.

The next proposition states that the sequence of global states produced by function RGT (which is the

composition of functions discriminant and acc) follows the global-state semantics.

Proposition 7.10. ∀t ∈ Tr(M⊥) .

|discriminant(acc(event(t)))|≤ |acc(event(t))|
∧discriminant(acc(event(t))) = q0 · a1 · q1 · · · ad · qd =⇒ ∀i ∈ [1 . . d] . qi−1

ai−→ qi,

where acc (resp. discriminant) is the accumulator (resp. discriminant) function used in the definition of

function RGT (Definition 7.6, p. 65) such that RGT(t) = discriminant(acc(event(t))).

Proposition 7.10 states that, for any trace in partial-state semantics t, 1) the length of the output trace

of function RGT (i.e., discriminant(acc(event(t)))) is shorter than or equal to the length of the output

of function acc (i.e., acc(event(t))), and 2) the output trace of function RGT is a trace in global-state

semantics.

Example 7.11 (Illustration of Proposition 7.10). We illustrate Proposition 7.10 based on the execution trace

in Table 7.1 (p. 66). At step 0, the length of RGT(t) is equal to the length of acc(event(t)), whereas for

the next steps the length of acc(event(t)) is longer than the length of RGT(t). At step 4, the output trace

follow the global-state semantics, that is (d1, d2, d3)
Fill12−−−→ (f1, f2, d3).

Moreover, the last element of a given trace in partial-state semantics t is always the same as the last

element of output of acc(event(t)), as stated by the following lemma.

Lemma 7.12. ∀t ∈ Tr(M⊥) . last(acc(event(t))) = last(t).

Finally, any trace in partial-state semantics and its image through functions event and acc have the same

sequence of interactions, as stated by the following lemma.

Lemma 7.13. ∀t ∈ Tr(M⊥) . interactions(acc(event(t))) = interactions(t).

Based on the above lemmas, we have the following theorem which states the soundness and maximality

of the reconstructed global trace. That is, applying function RGT on a trace in partial-state semantics
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produces the longest possible prefix of the corresponding witness trace with respect to the current trace of

the partial-state semantics system.

Theorem 7.14 (On the reconstructed global trace with function RGT). ∀t ∈ Tr(M⊥) .

last(t) ∈ Q =⇒ RGT(t) = W(t)

∧ last(t) /∈ Q =⇒ RGT(t) = W(t′) · a,with

t′ = min�{tp ∈ Tr(M⊥) | ∃a ∈ Int ,∃t′′ ∈ Tr(M⊥) . t = tp · a · t′′ ∧ ∃i ∈ [1 . .|B|] .
(Bi.P ∩ a 6= ∅) ∧ (∀j ∈ [1 . . length(t′′)] . βi 6= σ′′(j))}

Theorem 7.14 distinguishes two cases:

– When the last state of a system is a global state (i.e., last(t) ∈ Q), none of the components are in a

busy location. Moreover, function RGT has sufficient information to build the corresponding witness

trace (RGT(t) = W(t)).

– When the last state of a system is a partial state, at least one component is in a busy location and

function RGT can not build a complete witness trace because it lacks information on the current state

of such components. It is possible to decompose the input sequence t into two parts t′ and t′′ separated

by an interaction a. The separation is made on the interaction a occurring in trace t such that, for the

interactions occurring after a (i.e., in t′′), at least one component involved in a has not executed any β

transition (which means that this component is still in a busy location). Note that it may be possible

to split t in several manners with the above description. In such a case, function RGT computes the

witness for the smallest sequence t′ (w.r.t. prefix ordering) as above because it is the only sequence for

which it has information regarding global states. Note also that such splitting of t is always possible

as last(t) /∈ Q implies that t is not empty, and t′ can be chosen to be ε.

In both cases, because of its inductive definition and monotonicity, RGT returns the maximal prefix of the

corresponding witness trace that can be built with the information contained in the partial states observed so

far.

The above explanation can be extended to a full proof which is given in Appendix A.1.4 (p. 156).

Example 7.15 (Illustration of Theorem 7.14). We illustrate the correctness of Theorem 7.14 based on the

execution trace in Table 7.1 (p. 66). At step 0, since the last element in the trace is the initial state we

can see that the output of function RGT is equal to the witness trace which is the initial state as well. At

step 5, the output of function RGT is a sequence which consists of the witness of sequence (d1, d2, d3) ·
Fill12 ·(⊥,⊥, d3) · β1 · (f1,⊥, d3) (i.e., (d1, d2, d3) · Fill12 ·(f1, f2, d3)) followed by Drain1. At this step,
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function RGT can not process partial states following interaction Drain1, because the component involved

in Drain1 is still busy.

7.1.4 Monitoring

One can reuse the results in [39] to monitor a multi-threaded system with partial-state semantics. One just

has to instrument this system by adding the controller (see Chapter 6, p. 49) to generate the corresponding

execution events at tuntime and apply function RGT over the sequence of events and plug a monitor for

a property on the global states of the system. At runtime, such monitor will (i) receive the sequence of

reconstructed global states (with ready state of components) corresponding to the witness trace, (ii) preserve

the concurrency of the system, and iii) state verdicts on the witness trace.

7.2 Construction of the Computation Lattice of Distributed CBSs

Contrarily the multi-threaded setting, in the distributed setting several schedulers execute actions concur-

rently so that it is not possible to extract the actual partial trace of the system by only observing the local

partial-traces. One can find a set of compatible partial traces, each of which can be considered as the actual

partial trace of the system with respect to the observed local partial-traces. Intuitively, the projection of each

compatible partial trace on a specific scheduler results the observed local partial-trace of the scheduler. A

naive monitoring solution is to construct the witness trace of each compatible partial-trace using the tech-

nique for the multi-threaded setting. Such a solution would result a huge computation process overhead,

because of the enormous number of compatible partial traces, specially for the distributed system with less

number of shared component and more concurrent events. Instead, we apply the global trace reconstruction

on a computation lattice, that is a multi-dimensional execution trace, and introduce a novel technique for

the monitoring of the computation lattice on-the-fly (see Section 7.2.5, p. 85). Such a computation lattice

encompasses all the compatible global trace of the system.

Computation Lattice The computation lattice is represented implicitly using vector clocks. The construc-

tion of the lattice mainly performs the two following operations: (i) creations of new nodes and (ii) updates

of existing nodes in the lattice. Action events lead to the creation of new nodes in the direction of the sched-

uler emitting the event while update events complete the information in the nodes of the lattice related to the

state of the component related to the event. The state of a nodes initially (after creation) is a partial state and

by updating the lattice it becomes a global state. Since the received events are not totally ordered (because

of potential communication delay), we construct the computation lattice based on the vector clocks attached
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to the received events. Note that we assume the events received from a scheduler are totally ordered.

We first extend the notion of computation lattice.

Definition 7.16 (Extended Computation lattice). An extended computation lattice L is a tuple (N, Int , ),

where

– N ⊆ Ql × VC is the set of nodes, with Ql =
⊗|B|
i=1

Ä
Qr
i

⋃¶⊥ji | Sj ∈ S ∧Bi ∈ scope(Sj)
©ä

and

VC is the set of vector clocks,

– Int is the set of multi-party interactions as defined in Section 4.1 (p. 34),

– =
¶

(η, a, η′) ∈ N × Int ×N | a ∈ Int ∧ η� η′ ∧ η.state
a−→ η′.state

©
,

where is the extended presentation of happened-before relation which is labeled by the set of multi-party

interactions and η.state referring to the state of node η.

We simply refer to extended computation lattice as computation lattice. Intuitively, a computation lattice

consists of a set of partially connected nodes, where each node is a pair, consisting of a state of the system

and a vector clock. A system state consists in the states of all components. The state of a component is

either a ready state or a busy state (as per Definition 4.1, p. 34). In this context we represent a busy state of

component Bi ∈ B, by ⊥ji which shows that component Bi is busy to finish the computation process of its

latest action which has been managed by scheduler Sj ∈ S. A computation lattice L initially consists of an

initial node initL = (init , (0, . . . , 0)), where init is the initial state of the system and (0, . . . , 0) is a vector

clock where all the clocks associated to the schedulers are zero. The set of nodes of computation lattice L
is denoted by L.nodes , and for a node η = (q, vc) ∈ L.nodes , η.state denotes q and η.clock denotes vc. If

(i) the event of node η happened before the events of node η′, that is η′.clock > η.clock and η � η′, and

(ii) the states of η and η′ follow the global behavior of the system (as per Definition 4.8, p. 37) in the sense

that the execution of an interaction a ∈ Int from the state of η brings the system to the state of η′, that is

η.state
a−→ η′.state , then in the computation lattice it is denoted by η a η′ or by η η′ when clear from

context.

Two nodes η and η′ of the computation lattice L are said to be concurrent if neither η.clock > η′.clock

nor η′.clock > η.clock . For two concurrent nodes η and η′ if there exists a node η′′ such that η′′ η and

η′′ η′, then node η′′ is said to be the meet of η and η′ denoted by meet(η, η′,L) = η′′.

The rest of this section is structured as follows. In Section 7.2.1 some intermediate notions are defined

in order to introduce our algorithm to construct the computation lattice in Section 7.2.2 (p. 75). In Sec-

tion 7.2.3 (p. 80) we discuss the correctness of the algorithm.
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7.2.1 Intermediate Operations for the Construction of the Computation Lattice

In the reminder, we consider a computation lattice L as per Definition 7.16 (p. 70). The reception of a

new event either modifies L or is kept in a queue to be used later. Action events extend L using operator

extend (Definition 7.17, p. 71), and update events update the existing nodes of L by adding the missing

state information into them using operator update (Definition 7.24, p. 73). By extending the lattice with

new nodes, one needs to further extend the lattice by computing joints of the created nodes (Definition 7.22,

p. 72) with the existing ones so as to complete the set of possible global traces.

Extension of the lattice. We define a function to extend a node of the lattice with an action event which

takes as input a node of the lattice and an action event and outputs a new node.

Definition 7.17 (Node extension). Function extend : (Ql × VC )× Ea → Ql × VC is defined as follows.

For a node η = ((q1, . . . , q|B|), vc) ∈ Ql ×VC and an action event e = (a, vc′) ∈ Ea,

extend(η, e) =


((q′1, . . . , q

′
|B|), vc′) if ∃j ∈ [1 . .|S|] .

(vc′[j] = vc[j] + 1 ∧ ∀j′ ∈ [1 . .|S|] \ {j} . vc′[j′] = vc[j′])

undefined otherwise ;

with ∀i ∈ [1 . .|B|] . q′i =


qi if Bi ∈ involved(a),

⊥ki otherwise.
where k = managed(a).index .

Node η said to be extendable by event e if extend(η, e) is defined. Intuitively, node η = (q, vc) rep-

resents a global state of the system and extensibility of η by action event e = (a, vc′) means that from the

global state q, scheduler Sj = managed(a), could execute interaction a. State ⊥ki indicates that component

Bi is busy and being involved in a global action which has been executed (managed) by scheduler Sk for

k ∈ [1 . .|S|].
We say that computation lattice L is extendable by action event e if there exists a node η ∈ L.nodes

such that extend(η, e) is defined.

Property 7.18. ∀e ∈ Ea .|{η ∈ L.nodes | ∃η′ ∈ Ql ×VC . η′ = extend(η, e)}|≤ 1.

Property 7.18 states that for any update event e, there exists at most one node in the lattice for which

function extend is defined (meaning that L can be extended by event e from that node).

Example 7.19 (Node extension). Considering the local partial-traces described in Example 6.11 (p. 58),

initially, the computation lattice consists of the initial node which has the initial state init , with an associated
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vector clock (0, 0), i.e., initL = ((d1, d2, d3), (0, 0)). As for the sequence of events in trace t1, node

((d1, d2, d3), (0, 0)) is extendable by event (Fill12, (1, 0)) because, according to Definition 7.17, we have:

extend(((d1, d2, d3), (0, 0)), (Fill12, (1, 0))) = ((⊥1
1,⊥1

2, d3), (1, 0)).

Furthermore, to illustrate Property 7.18, let us consider the extended lattice after event (Fill12, (1, 0))

which consists of two nodes, initial node ((d1, d2, d3), (0, 0)) and node ((⊥1
1,⊥1

2, d3), (1, 0)). When ac-

tion event (Fill3, (0, 1)) is received, we have extend(initL, (Fill3, (0, 1)) = ((d1, d2,⊥2
3), (0, 1)) whereas

extend(((⊥1
1,⊥1

2, d3), (1, 0)), (Fill3, (0, 1))) is not defined which shows that Property 7.18 holds on the

lattice.

We define a relation between two vector clocks to distinguish the concurrent execution of two interac-

tions such that both could happen from a specific global state of the system.

Definition 7.20 (Relation JL). Relation JL ⊆ VC ×VC is defined between two vector clocks as follows:

JL = {(vc, vc′) ∈ VC ×VC | ∃! k ∈ [1 . .|S|] . vc[k] = vc′[k]+1∧∃! l ∈ [1 . .|S|] . vc′[l] = vc[l]+1∧∀j ∈
[1 . .|S|] \ {k, l} . vc[j] = vc′[j]}.

For two vector clocks vc and vc′ to be in relation JL, vc and vc′ should agree on all but two clocks

values related to two schedulers of indexes k and l. On one of these indexes, the value of one vector clock

is equal to the value of the other vector clock plus 1, and the converse on the other index. Intuitively,

(η.clock , η′.clock) ∈ JL means that nodes η and η′ are associated to two concurrent events (caused by the

execution of two interactions managed by two different schedulers) that both could happen from a unique

global state of the system which is the meet of η and η′ (see Property 7.21). Example 7.23 illustrates relation

JL.

Property 7.21. ∀η, η′ ∈ L.nodes . (η.clock , η′.clock) ∈ JL =⇒ meet(η, η′,L) ∈ L.nodes .

Property 7.21 states that for two nodes η and η′ in lattice L such that (η.clock , η′.clock) ∈ JL, there

exists a node in lattice L as the meet of η and η′, that is meet(η, η′,L) ∈ L.nodes .

The joint node of η and η′ is defined as follows.

Definition 7.22 (Joint node). For two nodes η, η′ ∈ L.nodes such that (η.clock , η′.clock) ∈ JL, the joint

node of η and η′, denoted by joint(η, η′,L) = η′′, is defined as follows:

– ∀i ∈ [1 . .|B|] . η′′.state[i] =


η.state[i] if η.state[i] 6= ηm.state[i],

η′.state[i] otherwise;

– η′′.clock = max(η.clock , η′.clock);

where ηm = meet(η, η′,L).
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According to Property 7.21, for two nodes η and η′ in relation JL, their meet node exists in the lattice.

The state of the joint node of η and η′ is defined by comparing their states and the state of their meet. Since

two nodes in relation JL are concurrent, the state of component Bi for i ∈ [1 . .|B|] in nodes η and η′ is

either equal to the state of component Bi in their meet, or only one of the nodes η and η′ has a different

state than their meet (components can not be both involved in two concurrent executions). The joint node

of two nodes η and η′ takes into account the latest changes of the state of the nodes η and η′ compared to

their meet. Note that joint(η, η′,L) = joint(η′, η,L), because joint is defined for nodes whose clocks are

in relation JL.

Example 7.23 (Relation JL and joint node). To continue Example 7.19 (p. 71), the reception of action event

(Fill3, (0, 1)) extends the lattice in the direction of scheduler S2 because function extend is defined, that is:

extend(((d1, d2, d3), (0, 0)), (Fill3, (0, 1))) = ((d1, d2,⊥2
3), (0, 1)).

After this extension, the lattice has three nodes which are ((d1, d2, d3), (0, 0)), ((⊥1
1,⊥1

2, d3), (1, 0)) and

((d1, d2,⊥2
3), (0, 1)). According to Definition 7.20 (p. 72), the vector clocks of the two nodes of the lattice

((⊥1
1,⊥1

2, d3), (1, 0)) and ((d1, d2,⊥2
3), (0, 1)) are in relation JL (i.e., ((1, 0), (0, 1)) ∈ JL). Therefore,

following Definition 7.22 (p. 72), the joint node of the two above nodes is ((⊥1
1,⊥1

2,⊥2
3), (1, 1)), and their

meet is ((d1, d2, d3), (0, 0)).

Update of the lattice. We define a function to update a node of the lattice which takes as input a node of

the lattice and an update event and outputs the updated version of the input node.

Definition 7.24 (Node update). Function update : (Ql × VC ) × Eβ → Ql × VC is defined as follows.

For a node η = ((q1, . . . , q|B|), vc) and an update event e = (βi, q
′
i) ∈ Eβ with i ∈ [1 . .|B|] which is sent

by scheduler Sk with k ∈ [1 . .|S|]:
update(η, e) = ((q1, . . . , qi−1, q

′′
i , qi+1, . . . , q|B|), vc),

with q′′i =


q′i if qi = ⊥ki ,

qi otherwise.

An update event (βi, q
′
i) contains an updated state of some component Bi. By updating a node η in the

lattice with an update event which is sent from scheduler Sk, we update the partial state associated to η by

adding the state information of that component, if the state of component Bi associated to node η is ⊥ki .

Intuitively means that a busy state which is caused by an execution of an action managed by scheduler Sk

can only be replace by a ready state sent by the same scheduler Sk. Updating node η does not modify the

associated vector clock vc.
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Example 7.25 (Node update). To continue Example 7.23, let us consider node ((⊥1
1,⊥1

2, d3), (1, 0)) whose

state is a partial state (because of the lack of the state information of Tank1 and Tank2), and update

event (β1, f1) sent by scheduler S1. To obtain the updated node, we apply function update over the

node and the update event. We have: update(((⊥1
1,⊥1

2, d3), (1, 0)), (β1, f1)) which results updated node

((f1,⊥1
2, d3), (1, 0)). Although the state of the updated node is a partial state, it has more state information

then the state before update (i.e., (⊥1
1,⊥1

2, d3)). Concerning the initial node of the lattice and update event

(β1, f1), update(((d1, d2, d3), (0, 0)), (β1, f1)) = ((d1, d2, d3), (0, 0)).

Buffering events. The reception of an action event or an update event might not always lead to extending

or updating the current computation lattice. Due to communication delay, an event which has happened

before another event might be received later by the observer. It is necessary for the construction of the

computation lattice to use events in a specific order. Such events must be kept in a waiting queue to be used

later. For example, such a situation occurs when receiving action event e such that function extend is not

defined over e and none of the existing nodes of the lattice. In this case event e must be kept in the queue

until obtaining another configuration of the lattice in which function extend is defined. Moreover, an update

event e′ referring to an internal action of component Bi is kept in the queue if there exists an action event

e′′ in the queue such that component Bi is involved in e′′, because we can not update the nodes of the lattice

with an update event associated to an execution which is not yet taken into account in the lattice.

Definition 7.26 (Queue κ). A queue of events is a finite sequence of events inE. Moreover, for a non-empty

queue κ = e1 · e2 · · · er, remove(κ, e) = κ(1 · · · z − 1) · κ(z + 1 · · · r) with e = ez ∈ {e1, e2, . . . , er}.

Queue κ is initialized to an empty sequence. Function remove takes as input queue κ and an event in

the queue and outputs the version of κ in which the given event is removed from the queue.

Example 7.27 (Event storage in the queue). Let us consider trace t2 in Example 6.11 (p. 58), such that

all the events of scheduler S2 are received by the observer earlier than the events of scheduler S1. After

the reception of action event (Fill3, (0, 1)), since extend(((d1, d2, d3), (0, 0)), (Fill3, (0, 1))) is defined,

the lattice is extended in the direction of scheduler S2 and the new node ((d1, d2,⊥2
3)(0, 1)) is created. The

reception of update event (β3, f3) updates the newly created node ((d1, d2,⊥2
3)(0, 1)) to ((d1, d2, f3)(0, 1)).

After the reception of action event (Drain23, (1, 2)), since there is no node in the lattice where function

extend is defined over, event (Drain23, (1, 2)) must be stored in the queue, therefore κ = (Drain23, (1, 2)).
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Algorithm 7.1 MAKE

Global variables: L initialized to initL,
κ initialized to ε,
V initialized to (0, . . . , 0).

1: procedure MAKE(e, from-the-queue)
2: if e ∈ Ea then . if e is an action event.
3: ACTIONEVENT(e, from-the-queue)
4: else if e ∈ Eβ then . if e is an update event.
5: UPDATEEVENT(e, from-the-queue)
6: end if
7: end procedure

7.2.2 Algorithm Constructing the Computation Lattice

In the following, we define an algorithm based on the above definitions to construct the computation lattice

based on the events received by the global observer.

The algorithm consists of a main procedure (see Algorithm 7.1, p. 75) and several sub-procedures using

global variables lattice L (Definition 7.16, p. 70) and queue κ (Definition 7.26).

For an action event e ∈ Ea with e = (a, vc), e.action denotes interaction a and e.clock denotes vector

clock vc. For an update event e ∈ Eβ with e = (βi, qi), e.index denotes index i.

Initially, after the reception of event e from a controller of a scheduler, the observer calls the main

procedure MAKE(e, false). In the following, we describe each procedure in detail.

MAKE (Algorithm 7.1): Procedure MAKE takes two parameters as input: an event e and a boolean vari-

able from-the-queue . Parameters e and from-the-queue vary based on the type of event e. Boolean variable

from-the-queue is true when the input event e is picked up from the queue and false otherwise (i.e., event

e is received from a controller of a scheduler). Procedure MAKE uses two sub-procedures, ACTIONEVENT

and UPDATEEVENT. If the input event is an action event, sub-procedure ACTIONEVENT is called, and if

the input event is an update event, sub-procedure UPDATEEVENT is called. Procedure MAKE updates the

global variables.

ACTIONEVENT (Algorithm 7.2): Procedure ACTIONEVENT is associated to the reception of action

events and takes as input an action event e and a boolean parameter from-the-queue , which is false when

event e is received from a controller of a scheduler and true when event e is picked up from the queue.

Procedure ACTIONEVENT modifies global variables L and κ.

Procedure ACTIONEVENT has a local boolean variable lattice-extend which is true when an input

action event could extend the lattice (i.e., the current computation lattice is extendable by the input action
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Algorithm 7.2 ACTIONEVENT

1: procedure ACTIONEVENT(e, from-the-queue)
2: lattice-extend ← false

3: for all η ∈ L.nodes do
4: if ∃η′ ∈ Ql ×VC . η′ = extend(η, e) then
5: L.nodes← L.nodes ∪ {η′} . extend the lattice with the new node.
6: MODIFYQUEUE(e, from-the-queue, true) . event e is removed from the queue if it was

picked up from the queue.
7: lattice-extend ← true

8: break . stop iteration when the lattice is extended (Property 7.18, p. 71).
9: end if

10: end for
11: if ¬ lattice-extend then
12: MODIFYQUEUE(e, from-the-queue, false) . event e is added to the queue if it was not

picked up from the queue.
13: return
14: end if
15: JOINTS( ) . extend the lattice with joint nodes.
16: REMOVEEXTRANODES( ) . lattice size reduction.
17: if ¬ from-the-queue then
18: CHECKQUEUE( ) . recall the events stored in the queue.
19: end if
20: end procedure

event) and false otherwise.

By iterating over the existing nodes of lattice L, ACTIONEVENT checks if there exists a node η in

L.nodes such that function extend is defined over event e and node η (Definition 7.17, p. 71). If such

a node η is found, ACTIONEVENT creates the new node extend(η, e), adds it to the set of the nodes of

the lattice, invokes procedure MODIFYQUEUE, and stops iteration. Otherwise, ACTIONEVENT invokes

procedure MODIFYQUEUE and terminates.

In the case of extending the lattice by a new node, it is necessary to create the (possible) joint nodes. To

this end, in Line 15 procedure JOINTS is called to evaluate the current lattice and create the joint nodes. For

optimization purposes, after making the joint nodes procedure REMOVEEXTRANODES is called to eliminate

unnecessary nodes to optimize the lattice size.

After making the joint nodes and (possibly) reducing the size of the lattice, if the input action event

is not picked from the queue, ACTIONEVENT invokes procedure CHECKQUEUE in Line 18, otherwise it

terminates.
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Algorithm 7.3 UPDATEEVENT

1: procedure UPDATEEVENT(e, from-the-queue)
2: for all e′ ∈ κ do
3: if e′ ∈ Ea ∧ e.index ∈ involved(e′.action) then . check if there exists an action event in the

queue concerning component Be.index .
4: MODIFYQUEUE(e, from-the-queue, false) . event e is added to the queue if it was not

picked up from the queue.
5: return
6: end if
7: end for
8: for all η ∈ L.nodes do
9: η ← update(η, e) . update nodes according to Definition 7.24 (p. 73).

10: end for
11: MODIFYQUEUE(e, from-the-queue, true)
12: end procedure

Algorithm 7.4 MODIFYQUEUE

1: procedure MODIFYQUEUE(e, from-the-queue, event-is-used )
2: if from-the-queue ∧ event-is-used then
3: κ← remove(κ, e) . event e is removed from the queue if it is picked from queue and used.
4: else if ¬ from-the-queue ∧¬ event-is-used then
5: κ← κ · e . event e is added to the queue if it is not picked from queue and could not be used.
6: end if
7: end procedure

UPDATEEVENT (Algorithm 7.3): Procedure UPDATEEVENT is associated to the reception of update

events. Recall that an update event e contains the state update of some component Bi with i ∈ [1 . .|B|]
(e.index = i). Procedure UPDATEEVENT takes as input an update event e and a boolean value associated

to parameter from-the-queue . Procedure UPDATEEVENT modifies global variables L and κ.

First, UPDATEEVENT checks the events in the queue. If there exists an action event e′ in the queue

such that component Bi is involved in e′.action , UPDATEEVENT adds update event e to the queue using

MODIFYQUEUE and terminates. Indeed, one can not update the nodes of the lattice with an update event

associated to an execution which is not yet taken into account in the lattice.

If no action event in the queue concerned component Bi, UPDATEEVENT updates all the nodes of the

lattice (Lines 8-10) according to Definition 7.24 (p. 73).

Finally, the input update event is removed from the queue if it is picked from the queue, using MODI-

FYQUEUE.
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Algorithm 7.5 JOINTS

1: procedure JOINTS

2: JL ← JCOMPUTE . compute the pairs of the vector clocks of the nodes which are in JL.
3: while JL 6= ∅ do
4: for all η, η′ ∈ L.nodes such that (η.clock , η′.clock) ∈ JL do
5: L.nodes ← L.nodes ∪ {joint(η, η′,L)} . extend the lattice with the new joint node.
6: JL ← JL \ {(η.clock , η′.clock)}
7: end for
8: JL ← JCOMPUTE

9: end while
10: end procedure

MODIFYQUEUE (Algorithm 7.4): Procedure MODIFYQUEUE takes as input an event e and boolean

variables from-the-queue and event-is-used . Procedure MODIFYQUEUE adds (resp. removes) event e to

(resp. from) queue κ according to the following conditions. If event e is picked up from the queue (i.e.,

from-the-queue = true) and e is used in the algorithm to extend or update the lattice (i.e., event-is-used =

true), event e is removed from the queue (Line 3). Moreover, if event e is not picked up from the queue

and it is not used in the algorithm, event e is stored in the queue (Line 5).

JOINTS (Algorithm 7.5): Procedure JOINTS extends lattice L in such a way that all the possible joints

have been created. First, procedure JCOMPUTE is invoked to compute relation JL (Definition 7.20, p. 72)

among the existing nodes of the lattice and then creates the joint nodes and adds them to the set of the nodes

of the lattice. Then, after the creation of the joint node of two nodes η and η′, (η.clock , η′.clock) is removed

from relation JL. It is necessary to compute relation JL again after the creation of joint nodes, because new

nodes can be in relation JL. This process terminates when JL is empty.

Algorithm 7.6 JCOMPUTE

1: procedure JCOMPUTE

2: for all η, η′, η′′ ∈ L.nodes do
3: if η′′� η ∧ η′′� η′ then . if η and η′ are associated to two concurrent events.
4: JL = JL ∪ {(η.clock , η′.clock)} . η.clock and η′.clock are added to relation JL.
5: end if
6: end for
7: return JL
8: end procedure

JCOMPUTE (Algorithm 7.6): Procedure JCOMPUTE computes relation JL by pairwise iteration over all

the nodes of the lattice and checks if the vector clocks of any two nodes satisfy the conditions in Defini-
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Algorithm 7.7 CHECKQUEUE

1: procedure CHECKQUEUE

2: while true do
3: κ′ ← κ
4: for all z ∈ [1 . . length(κ)] do
5: MAKE(κ(z), true) . recall the events of the queue.
6: end for
7: if κ = κ′ then
8: break . break if none of the events in the queue is used.
9: end if

10: end while
11: end procedure

tion 7.20 (p. 72). The pair of vector clocks satisfying the above conditions are added to relation JL.

CHECKQUEUE (Algorithm 7.7): Procedure CHECKQUEUE recalls the events stored in the queue e ∈ κ
and executes MAKE(e, true), to check whether the conditions for taking them into account to update the

lattice hold.

Procedure CHECKQUEUE checks the events in the queue until none of the events in the queue can be

used either to extend or to update the lattice. To this end, before checking queue κ, in Line 3 a copy of queue

κ is stored in κ′, and after iterating all the events in queue κ, the algorithm checks the equality of current

queue and the copy of the queue before checking. If the current queue κ and copied queue κ′ have the same

events, it means that none of the events in queue κ has been used (thus removed), therefore the algorithm

stops checking the queue again by breaking the loop in Line 8.

Note, when the algorithm is iterating over the events in the queue, i.e., when the value of variable

from-the-queue is true, it is not necessary to iterate over the queue again (Algorithm 7.2, p. 76, Line 17).

Moreover, events in the queue are picked up in the same order as they have been stored in the queue (FIFO

queue).

Algorithm 7.8 REMOVEEXTRANODES

1: procedure REMOVEEXTRANODES

2: for all η ∈ L.nodes do
3: if ∀j ∈ [1 . .|S|],∃η′ ∈ L.nodes . η′.clock [j] > η.clock [j] then . if there exists a node with a

strictly greater clocks in the vector clock.
4: remove(L.nodes, η) . the node with the smaller vector clock is removed.
5: end if
6: end for
7: end procedure
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((d1, d2, d3), (0, 0))

((f1, f2, d3), (1, 0))((d1, d2, f3), (0, 1))

((f1, f2, f3), (1, 1))

((f1,⊥2
2,⊥2

3), (1, 2))

(? , (0, 2))

(a) Computation lattice

((f1, f2, d3), (1, 0))

((f1, f2, f3), (1, 1))

((f1,⊥2
2,⊥2

3), (1, 2))

(b) Optimized computation lattice

Figure 7.3: Computation lattice associated to trace t2 in Example 5.2

REMOVEEXTRANODES (Algorithm 7.8): For optimization reasons, after extending the lattice by an

action event, procedure REMOVEEXTRANODES is called to eliminate some (possibly existing) nodes of the

lattice. A node in the lattice can be removed if the lattice no longer can be extended from that node. Having

two nodes of the lattice η and η′ such that every clock in the vector clock of η′ is strictly greater than the

respective clock of η, one can remove node η. This is due to the fact that the algorithm never receives an

action event which could have extended the lattice from η where the lattice has already took into account an

occurrence of event which has greater clocks stamp than η.clock .

Remark 7.28. The reason to remove the extra nodes of the lattice can be explained as following. First, our

online algorithm is used for runtime monitoring purposes, and second, each node n represents the evaluation

of system execution up to node n. Hence, the nodes which reflect the state of the system in the past are not

valuable for the runtime monitor.

Example 7.29 (Lattice construction). Figure 7.3a depicts the computation lattice according to the received

sequence of events concerning trace t2 of Example 6.11 (p. 58). Node ((d1, d2, f3) , (0, 1)) is associated

to event (Fill12, (1, 0)) and node ((f1, f2, d3) , (1, 0)) is associated to event (Fill3, (0, 1)). Since these two

events are concurrent, joint node ((f1, f2, f3) , (1, 1)) is made. Node
((
f1,⊥2

2,⊥2
3

)
, (1, 2)

)
is associated to

event (Drain23, (1, 2)). Due to vector clock update technique, the node with vector clock of (0, 2) is not

created.

7.2.3 Insensibility to Communication Delay

Algorithm MAKE can be defined over a sequence of events received by the observer ζ = e1 · e2 · e3 · · · ez ∈
E∗ in the sense that one can apply MAKE sequentially from e1 to ez initialized by taking event e1, the initial

lattice initL and an empty queue.
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Proposition 7.30 (Insensitivity to the reception order). For any two sequences of events ζ, ζ ′ ∈ E∗, we haveÄ
∀Sj ∈ S . ζ ↓Sj= ζ ′ ↓Sj

ä
=⇒ MAKE(ζ) = MAKE(ζ ′), where ζ ↓Sj is the projection of ζ on scheduler

Sj which results the sequence of events generated by Sj .

Proposition 7.30 states that different ordering of the events does not affect the output result of Algo-

rithm MAKE. Note, this proposition assumes that all events in ζ and ζ ′ can be distinguished. For a sequence

of events ζ ∈ E∗, MAKE(ζ).lattice denotes the constructed computation lattice L by algorithm MAKE.

7.2.4 Correctness of Lattice Construction

Computation lattice L has an initial node initL which is the node with the smallest vector clock, and a

frontier node which is the node with the greatest vector clock. A path of the constructed computation lattice

L is a sequence of causally-related nodes of the lattice, starting from the initial node and ending up in the

frontier node.

Definition 7.31 (Set of the paths of a lattice). The set of the paths of a constructed computation lattice L is

Π(L) =
¶
η0 ·α1 ·η1 ·α2 ·η2 · · ·αz ·ηz | η0 = initL ∧∀r ∈ [1 . . z] .

Ä
ηr−1

αr ηr∨(∃N ⊆ L.nodes . ηr−1 =

meet(N,L) ∧ ηr = joint(N,L) ∧ ∀η ∈ N . ηr−1
aη

η ∧ αr =
⋃
η∈N aη)

ä©
, where the notions of meet

and joint are naturally extended over a set of nodes.

A path is a sequence of nodes such that for each pair of adjacent nodes either (i) the prior node is in

relation with the next node or (ii) the prior and the next node are the meet and the joint of a set of existing

nodes respectively. A path from a meet node to the associated joint node represents an execution of a set of

concurrent joint actions.

Example 7.32 (Set of the paths of a lattice). In the computation lattice L depicted in Figure 7.3a (p. 80),

there are three distinct paths that begin from the initial node ((d1, d2, d3) , (0, 0)) and end up to the frontier

node
((
f1,⊥2

2,⊥2
3

)
, (1, 2)

)
. The set of paths is Π(L) = {π1, π2, π3}, where:

– π1 = ((d1, d2, d3), (0, 0))·{Fill12}·((f1, f2, d3), (1, 0))·{{Fill3}}·((f1, f2, f3), (1, 1))·{Drain23}·
((f1,⊥2

2,⊥2
3), (1, 2)),

– π2 = ((d1, d2, d3), (0, 0))·{{Fill3}}·((d1, d2, f3), (0, 1))·{Fill12}·((f1, f2, f3), (1, 1))·{Drain23}·
((f1,⊥2

2,⊥2
3), (1, 2)),

– π3 = ((d1, d2, d3), (0, 0)) · {Fill12, {Fill3}} · ((f1, f2, f3), (1, 1)) · {Drain23} · ((f1,⊥2
2,⊥2

3), (1, 2)).

Let us consider system M with the global behavior (Q,GAct ,→) as per Definition 4.8 (p. 37). At

runtime, the execution of such a system produces a global trace t = q0·(α1∪β1)·q1·(α2∪β2) · · · (αk∪βk)·qk



82 7. RECONSTRUCTING AND MONITORING THE GLOBAL TRACE

as per Definition 4.9 (p. 39). Since the actual partial trace t is not observable due to the occurrence of

simultaneous and concurrent interactions and internal actions, partial trace t can be represented as a set of

compatible partial traces, which could have happened in the system at runtime.

Definition 7.33 (Compatible partial traces of a partial trace). The set of all compatible partial traces of

partial trace t is P(t) = {t′ ∈ Q · (GAct ·Q)∗ | ∀j ∈ [1 . .|S|] . t′ ↓Sj= t ↓Sj= sj(t)}.

Partial trace t′ is compatible with the partial trace t if the projection of both t and t′ on scheduler Sj ,

for j ∈ [1 . .|S|], results the local partial-trace of scheduler Sj . In a partial trace, for each global action

which consists of several concurrent interactions and internal actions of different schedulers, one can define

different ordering of those concurrent interactions, each of which represents a possible execution of that

global action. Consequently, several compatible partial traces can be encoded from a partial trace of the

distributed system M.

Note that two compatible traces with only difference in the ordering of their internal actions are consid-

ered as a unique compatible trace. What matters in the compatible traces of a partial trace is the different

ordering of interactions.

Example 7.34 (The set of compatible partial traces). Let us consider the partial trace t1 described in Exam-

ple 4.10 (p. 39), that is t1 = (d1, d2, d3) · {Fill12} · (⊥,⊥, d3) · {β1} · (f1,⊥, d3) · {{Drain1} , {Fill3}} ·
(⊥,⊥,⊥) · {β2} · (⊥, f2,⊥). The projection of t1 on each scheduler is represented as follow:

– t1 ↓S1= (d1, d2, d3) ·{Fill12}·(⊥,⊥, ? ) ·{β1}·(f1,⊥, ? ) ·{{Drain1}}·(⊥,⊥, ? ) ·{β2}·(⊥, f2, ? ),

– t1 ↓S2= (d1, d2, d3) · {Fill3} · (? , d2,⊥).

The set of compatible partial traces is P(t1) =
{
t11, t

2
1, t

3
1, t

4
1, t

5
1

}
where:

– t11 = (d1, d2, d3) · {Fill12} · (⊥,⊥, d3) · {β1} · (f1,⊥, d3) · {{Fill3} , {Drain1}} · (⊥,⊥,⊥) · {β2} ·
(⊥, f2,⊥),

– t21 = (d1, d2, d3) · {Fill12} · (⊥,⊥, d3) · {β1} · (f1,⊥, d3) · {{Drain1}} · (⊥,⊥, d3) · {{Fill3}} ·
(⊥,⊥,⊥) · {β2} · (⊥, f2,⊥),

– t31 = (d1, d2, d3) · {Fill12} · (⊥,⊥, d3) · {β1} · (f1,⊥, d3) · {{Fill3}} · (f1,⊥,⊥) · {{Drain1}} ·
(⊥,⊥,⊥) · {β2} · (⊥, f2,⊥),

– t41 = (d1, d2, d3) · {Fill12, {Fill3}} · (⊥,⊥,⊥) · {β1} · (f1,⊥,⊥) · {{Drain1}} · (⊥,⊥,⊥) · {β2} ·
(⊥, f2,⊥),

– t51 = (d1, d2, d3) · {{Fill3}} · (d1, d2,⊥) · {Fill12} · (⊥,⊥,⊥) · {β1} · (f1,⊥,⊥) · {{Drain1}} ·
(⊥,⊥,⊥) · {β2} · (⊥, f2,⊥).
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Since the desired property is defined over the global states, for monitoring purposes it is necessary to

obtain the global trace of the system with a sequence of global states. To this end, by inspiring the technique

introduced in Section 7.1.2 (p. 64) to reconstruct the witness trace, we define a function which takes as input

a partial trace of the distributed system (i.e., a sequence of partial states) and outputs an equivalent global

trace in which all the internal actions (β) are removed from the trace and instead the updated state after each

internal action is used to complete the states of the global trace.

Definition 7.35 (Function refineRβ). FunctionRβ : Q · (GAct ·Q)∗ −→ Q · (Int ·Q)∗ is defined as:

• Rβ(init) = init ,

• Rβ(σ · (α ∪ β) · q) =


Rβ(σ) · α · q if β = ∅,

map [x 7→ upd(q, x)] (Rβ(σ)) if α = ∅,

map [x 7→ upd(q, x)] (Rβ(σ) · α · q) otherwise;

with upd : Q× (Q ∪ 2Int) −→ Q ∪ 2Int defined as:

– upd((q1, . . . , q|B|), α) = α,

– upd
Ä
(q1, . . . , q|B|), (q

′
1, . . . , q

′
|B|)

ä
= (q′′1 , . . . , q

′′
|B|),

where ∀k ∈ [1 . . |B|] . q′′k =


qk if (qk /∈ Qb

k) ∧ (q′k ∈ Qb
k)

q′k otherwise.

FunctionRβ uses the (information in the) state after internal actions in order to update the partial states

using function upd.

By applying functionRβ over the set of compatible partial traces P(t), we obtain a new set of compat-

ible global traces which is (i) equivalent to P(t) (according to Definition 7.1, p. 63), (ii) internal actions are

discarded in the presentation of each global trace and (iii) contains maximal global states that can be built

with the information contained in the partial states observed so far.

A refined global trace Rβ(t) is said to be equal with a path η0 · α1 · η1 · α2 · η2 · · ·αz · ηz if Rβ(t) =

(η0.state) · α1 · (η1.state) · α2 · (η2.state) · · ·αz · (ηz.state).

Example 7.36 (Applying function Rβ). By applying function Rβ over the set of compatible partial traces

in Example 7.34 (p. 82) we have the refined traces (compatible global traces):

– Rβ(t11) = (d1, d2, d3) · {Fill12} · (f1, f2, d3) · {{Drain1} , {Fill3}} · (⊥, f2,⊥),

– Rβ(t21) = (d1, d2, d3) · {Fill12} · (f1, f2, d3) · {{Drain1}} · (⊥, f2, d3) · {{Fill3}} · (⊥, f2,⊥),

– Rβ(t31) = (d1, d2, d3) · {Fill12} · (f1, f2, d3) · {{Fill3}} · (f1, f2,⊥) · {{Drain1}} · (⊥, f2,⊥),
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– Rβ(t41) = (d1, d2, d3) · {Fill12, {Fill3}} · (f1, f2,⊥) · {{Drain1}} · (⊥, f2,⊥),

– Rβ(t51) = (d1, d2, d3) · {{Fill3}} · (d1, d2,⊥) · {Fill12} · (f1, f2,⊥) · {{Drain1}} · (⊥, f2,⊥).

In Section 5.1 (Definition 5.1, p. 44) we defined {s1(t), . . . , sm(t)}, the set of observable local partial-

traces of the schedulers obtained from partial trace t. According to Definition 6.10 (p. 58), from each local

partial-trace we can obtain the sequences of events generated by the controller of each scheduler, such that

the set of all the sequences of the events is {event(s1(t)), . . . , event(sm(t))} with event(sj(t)) ∈ E∗ for

j ∈ [1 . .|S|].
In the following, we define the set of all possible sequences of events that could be received by the

observer.

Definition 7.37 (Events order). Considering partial trace t, the set of all possible sequences of events that

could be received by the observer is Θ(t) = {ζ ∈ E∗ | ∀j ∈ [1 . .|S|] . ζ ↓Sj= event(sj(t))}.

Events are received by the observer in any order just under a condition in which the ordering of the local

events of a scheduler is preserved.

Proposition 7.38 (Soundness). ∀ζ ∈ Θ(t),∀π ∈ Π( MAKE (ζ) .lattice),∀j ∈ [1 . .|S|] . π ↓Sj= Rβ(sj(t)).

Proposition 7.38 states that the projection of all paths in the lattice on a scheduler Sj for j ∈ [1 . .|S|]
results in the refined local partial-trace of scheduler Sj .

The following proposition states the correctness of the construction in the sense that applying Algo-

rithm MAKE over a sequence of observed events (i.e., ζ ∈ Θ) at runtime, results in a computation lattice

which encodes a set of the sequences of global states, such that each sequence represents a global trace of

the system.

Proposition 7.39 (Completeness). Given a partial trace t as per Definition 4.9 (p. 39), we have

∀ζ ∈ Θ(t),∀t′ ∈ P(t),∃!π ∈ Π
Ä

MAKE (ζ) .lattice
ä
. π = Rβ(t′).

π said to be the associated path of the compatible partial-trace t′.

Applying algorithm MAKE over any of the sequence of events, constructs a computation lattice whose

set of paths consists on all the compatible global traces.

Example 7.40 (Existence of the set of compatible global traces in the constructed lattice). Let us consider

partial trace t1 presented in Example 4.10 (p. 39) and the set of all associated event of t1 that is presented in

Example 6.11 (p. 58). Events are received by the observer in order to make the lattice. Figure 7.4, illustrates

the associated constructed computation lattice using algorithm MAKE consists of 5 paths π1 to π5. The set of
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((d1, d2, d3), (0, 0))

((f1, f2, d3), (1, 0))((d1, d2,⊥), (0, 1))

((⊥, f2, d3), (2, 0))

((⊥, f2,⊥), (2, 1))

((f1, f2,⊥), (1, 1))

(a) Computation lattice

((d1, d2, d3), (0, 0))

((f1, f2, d3), (1, 0))((d1, d2,⊥), (0, 1))

((⊥, f2, d3), (2, 0))

((⊥, f2,⊥), (2, 1))

((f1, f2,⊥), (1, 1))

(b) Path π1

((d1, d2, d3), (0, 0))

((f1, f2, d3), (1, 0))((d1, d2,⊥), (0, 1))

((⊥, f2, d3), (2, 0))

((⊥, f2,⊥), (2, 1))

((f1, f2,⊥), (1, 1))

(c) Path π2

((d1, d2, d3), (0, 0))

((f1, f2, d3), (1, 0))((d1, d2,⊥), (0, 1))

((⊥, f2, d3), (2, 0))

((⊥, f2,⊥), (2, 1))

((f1, f2,⊥), (1, 1))

(d) Path π3

((d1, d2, d3), (0, 0))

((f1, f2, d3), (1, 0))((d1, d2,⊥), (0, 1))

((⊥, f2, d3), (2, 0))

((⊥, f2,⊥), (2, 1))

((f1, f2,⊥), (1, 1))

(e) Path π4

((d1, d2, d3), (0, 0))

((f1, f2, d3), (1, 0))((d1, d2,⊥), (0, 1))

((⊥, f2, d3), (2, 0))

((⊥, f2,⊥), (2, 1))

((f1, f2,⊥), (1, 1))

(f) Path π5

Figure 7.4: Computation lattice, all the associated paths and compatible global traces associated to the
partial trace t1 in Example 5.2 (p. 45)

compatible global traces (presented in Example 7.36, p. 83) can be extracted from the reconstructed lattice,

where πk = Rβ(tk1) for k ∈ [1 . . 5]. Paths π1 to π5 are associated paths of the compatible partial-traces t11
to t51 respectively.

7.2.5 Monitoring

In this section, we address the problem of monitoring an LTL formula specifying the desired global behavior

of the system.

In the usual case, evaluating whether an LTL formula holds requires the monitoring procedure to have

access to the global state of the system. In the previous section we introduced how to construct the compu-

tation lattice using the partially-ordered events. Although by stabilizing the system to have the ready state of

all components we could obtain a complete computation lattice using algorithm MAKE (see Section 7.2.2,

p. 75), that is the state of each node is a global state, instead, we propose an on-the-fly verification of an

LTL property during the construction of computation lattice.

There are many approaches to monitor LTL formulas based on various finite-trace semantics (see [9]).

One way of looking at the monitoring problem for some LTL formula ϕ is described in [11] based on

formula rewriting, which is also known as formula progression, or just progression. Progression splits a

formula into (i) a formula expressing what needs to be satisfied by the observed events so far and (ii) a new
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formula (referred to a future goal), which has to be satisfied by the trace in the future. We apply progression

over a set of finite partial-traces, where each trace consists in a sequence of (possibly) partial states, encoded

from the constructed computation lattice. An important advantage of this technique is that it often detects

when a formula is violated or validated before the end of the execution trace, that is, when the constructed

lattice is not complete, so it is suitable for online monitoring.

To monitor the execution of a distributed CBS with respect to an LTL property ϕ, we introduce a more

informative computation lattice by attaching to the each node of lattice L a set of formula. Given a compu-

tation lattice L = (N, ) (as per Definition 7.16, p. 70), we define an augmented computation lattice Lϕ

as follow.

Definition 7.41 (Computation lattice augmentation). Lϕ is a pair (Nϕ, ), where Nϕ ⊆ Ql×VC ×2LTL

is the set of nodes augmented by 2LTL, that is the set of LTL formulas. The initial node is initϕL =

(init , (0, . . . , 0), {ϕ}) with ϕ ∈ LTL the global desired property.

In the newly defined computation lattice, a set of LTL formulas is attached to each node. The set of

formulas attached to a node represents the different evaluation of the property ϕ with respect to different

possible paths form the initial node to the node. The state and the vector clock associated to each node and

the happened-before relation are defined similar to the initial definition of computation lattice (see Defini-

tion 7.16, p. 70).

The construction of the augmented computation lattice requires some modifications to algorithm MAKE:

– Lattice Lϕ initially has node initϕL = (init , (0, . . . , 0), {ϕ}).

– The creation of a new node η in the lattice with η.state = q and η.clock = vc, calculates the set of

formulas Σ associated to η using the progression function (see Definition 7.42). The augmented node

is η = (q, vc,Σ), where Σ = {prog(LTL′, q) | LTL′ ∈ η′.Σ ∧ (η′ η ∨ ∃N ⊆ Lϕ.nodes . η′ =

meet(N,L) ∧ η = joint(N,L))}. We denote the set of formulas of node η ∈ Lϕ.nodes by η.Σ.

– Updating node η = (q, vc,Σ) by update event e = (βi, qi) ∈ Eβ, i ∈ [1 . .|B|] which is sent by

scheduler Sj , j ∈ [1 . .|S|] updates all associated formulas Σ to Σ′ using the update function (see

Definition 7.43, p. 87), where Σ′ =
¶

updϕ(LTL, qi, j) | LTL ∈ Σ
©

.

Definition 7.42 (Progression function). prog : LTL×Ql −→ LTL is defined using a pattern-matching with
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p ∈ APi∈[1 ..|B|] and q = (q1, . . . , q|B|) ∈ Ql.

prog(ϕ, q) = match(ϕ) with

| p ∈ APi∈[1 ..|B|] →


T if qi ∈ Qr

i ∧ p ∈ qi
F if qi ∈ Qr

i ∧ p 6∈ qi
Xk
βp otherwise (qi = ⊥ki , k ∈ [1 . .|S|])

| Xk
βp→ Xk

βp

| ϕ1 ∨ ϕ2 → prog(ϕ1, q) ∨ prog(ϕ2, q)

| ϕ1Uϕ2 → prog(ϕ2, q) ∨ prog(ϕ1, q) ∧ ϕ1Uϕ2

| Gϕ→ prog(ϕ, q) ∧Gϕ

| Fϕ→ prog(ϕ, q) ∨ Fϕ

| Xϕ→ ϕ

| ¬ϕ→ ¬prog(ϕ, q)

| T → T

We define a new modality Xβ such that Xk
βp for p ∈ APi∈[1 ..|B|] and k ∈ [1 . .|S|] means that atomic

proposition p has to hold at next ready state of component Bi which is sent by scheduler Sk. For a sequence

of partial states obtained at runtime σ = q0 · q1 · q2 · · · such that σj = qj , we have σj |= Xk
βp ⇔ σz |= p

where z = min

Åß
r > j

∣∣∣∣ (σr−1 ↓Sk)
βi−→Sk (σr ↓Sk)

™ã
.

The truth value of the progression of an atomic proposition p ∈ APi for i ∈ [1 . .|B|] with a partial state

q = (q1, . . . , q|B|) is evaluated by true (resp. false) if the state of component Bi (that is qi) is a ready state

and satisfies (resp. does not satisfy) the atomic proposition p. If the state of component Bi is not a ready

state, the evaluation of the atomic proposition p is postponed to the next ready state of component Bi.

Definition 7.43 (Formula update function). updϕ : LTL×{Qr
i}
|B|
i=1 × [1 . .|S|] → LTL is defined using a



88 7. RECONSTRUCTING AND MONITORING THE GLOBAL TRACE

pattern-matching with qi ∈ Qr
i for i ∈ [1 . .|B|].

updϕ(ϕ, qi, j) = match(ϕ) with

| Xk
βp→


T if p ∈ AP i ∩ qi ∧ k = j

F if p ∈ AP i ∩ qi ∧ k = j

Xk
βp otherwise (p 6∈ APi ∨ k 6= j)

| ϕ1 ∨ ϕ2 → updϕ(ϕ1, qi) ∨ updϕ(ϕ2, qi)

| ϕ1 ∧ ϕ2 → updϕ(ϕ1, qi) ∧ updϕ(ϕ2, qi)

| ϕ1Uϕ2 → updϕ(ϕ1, qi)U updϕ(ϕ2, qi)

| Gϕ→ G updϕ(ϕ, qi)

| Fϕ→ F updϕ(ϕ, qi)

| Xϕ→ X updϕ(ϕ, qi)

| ¬ϕ→ ¬updϕ(ϕ, qi)

| T → T

| p ∈ APi∈[1 ..|B|] → p

Update function updates a progressed LTL formula with respect to a ready state of a component. Intu-

itively, a formula consists in an atomic proposition whose truth or falsity depends on the next ready state of

component Bi sent by scheduler Sk, that is Xk
βp where p ∈ AP i, can be evaluated using update function by

taking the first ready state of component Bi received from scheduler Sk after the formula rewrote to Xk
βp.

Example 7.44 (Formula progression and formula update over an augmented computation lattice). Let

consider the system presented in Example 5.2 (p. 45) with partial trace t2 and the associated sequence

of events presented in Example 6.11 (p. 58) and desired property ϕ = G(d3 ∨ f1). Lϕ initially has

node initϕL = ((d1, d2, d3), (0, 0), {ϕ}). By observing the action event (Fill12, (1, 0)), algorithm MAKE

creates new node η1 = ((⊥,⊥, d3), (1, 0), {ϕ}), because prog(G(d3 ∨ f1), (⊥,⊥, d3)) = prog((d3 ∨
f1), (⊥,⊥, d3)) ∧G(d3 ∨ f1) = T ∧G(d3 ∨ f1) = G(d3 ∨ f1) = ϕ.

By observing the action event (Fill3, (0, 1)), new node η2 = ((d1, d2,⊥), (0, 1), {Xβd3 ∧ ϕ}) is cre-

ated, because prog(G(d3 ∨ f1), (d1, d2,⊥)) = prog((d3 ∨ f1), (d1, d2,⊥))∧G(d3 ∨ f1) = Xβd3 ∧G(d3 ∨
f1) = Xβd3∧ϕ. Formula Xβd3 means that the evaluation of partial state (d1, d2,⊥) with respect to formula

(d3 ∨ f1) is on hold until the next ready state of component Tank3.

Consequently joint node η3 = ((⊥,⊥,⊥), (1, 1), {(Xβd3) ∧ (Xβd3 ∨ Xβf1) ∧ ϕ, (Xβd3 ∨ Xβf1) ∧
ϕ, (Xβd3 ∨ Xβf1) ∧ ϕ}) is made. The update event (β3, f3) updates both state and the set of formu-

las associated to each node as follows. Although initϕL and η1 remain intact, but node η2 is updated
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Table 7.2: On-the-fly construction and verification of computation lattice

step event constructed lattice

0 ε ((d1, d2, d3), (0, 0), {ϕ})

1

- receiving event Fill12(1, 0)

- extending by making a new node

- the formula projection of new node ((d1, d2, d3), (0, 0), {ϕ})

((⊥,⊥, d3), (1, 0), {ϕ})

2

- receiving event Fill3(0, 1)

- extending by making a new node

- extending by making the joint node

- the formula projection of new nodes

- three formulas attached to the frontier

represent the evaluation of three paths

- the node with vector clock (0, 0) can be removed

((d1, d2, d3), (0, 0), {ϕ})

((⊥,⊥, d3), (1, 0), {ϕ})((d1, d2,⊥), (0, 1), {Xβd3 ∧ ϕ})

((⊥,⊥,⊥), (1, 1), {(Xβd3) ∧ (Xβd3 ∨ Xβf1) ∧ ϕ, (Xβd3 ∨ Xβf1) ∧ ϕ, (Xβd3 ∨ Xβf1) ∧ ϕ})

3

- receiving event (β3, f3)

- updating states of the existing nodes

- updating the formulas of existing nodes
((d1, d2, d3), (0, 0), {ϕ})

((⊥,⊥, d3), (1, 0), {ϕ})((d1, d2, f3), (0, 1), {F})

((⊥,⊥, f3), (1, 1), {F, (Xβf1) ∧ ϕ, (Xβf1) ∧ ϕ})

4

- receiving event (β2, f2)

- updating states of the existing nodes

- updating the formulas of existing nodes
((d1, d2, d3), (0, 0), {ϕ})

((⊥, f2, d3), (1, 0), {ϕ})((d1, d2, f3), (0, 1), {F})

((⊥, f2, f3), (1, 1), {F, (Xβf1) ∧ ϕ, (Xβf1) ∧ ϕ})

5

- receiving event Drain23(1, 2)

- extending by making a new node

- the formula projection of new node

- the node with vector clock (0, 1) can be removed
((d1, d2, d3), (0, 0), {ϕ})

((⊥, f2, d3), (1, 0), {ϕ})((d1, d2, f3), (0, 1), {F})

((⊥, f2, f3), (1, 1), {F, (Xβf1) ∧ ϕ, (Xβf1) ∧ ϕ})

((⊥,⊥,⊥), (1, 2), {F, (Xβd3 ∨ Xβf1) ∧ (Xβf1) ∧ ϕ, (Xβd3 ∨ Xβf1) ∧ (Xβf1) ∧ ϕ})

6

- receiving event (β1, f1)

- updating states of the existing nodes

- updating the formulas of existing nodes

((d1, d2, d3), (0, 0), {ϕ})

((f1, f2, d3), (1, 0), {ϕ})((d1, d2, f3), (0, 1), {F})

((f1, f2, f3), (1, 1), {F,ϕ, ϕ})

((f1,⊥,⊥), (1, 2), {F,ϕ, ϕ})



90 7. RECONSTRUCTING AND MONITORING THE GLOBAL TRACE

to ((d1, d2, f3), (0, 1), {F}) because updϕ(Xβd3 ∧ ϕ, f3) = F . Moreover, node η3 is updated to η3 =

((⊥,⊥, f3), (1, 1), {F, (Xβf1) ∧ ϕ, (Xβf1) ∧ ϕ}).

The update event (β2, f2) updates nodes η1 and η3 such that η1 = ((⊥, f2, d3), (1, 0), {ϕ}) and η3 =

((⊥, f2, f3), (1, 1), {F, (Xβf1) ∧ ϕ, (Xβf1) ∧ ϕ}).

By observing the action event (Drain23, (1, 2)), the new node η4 = ((⊥,⊥,⊥), (1, 2), {F, (Xβd3 ∨
Xβf1) ∧ (Xβf1) ∧ ϕ, (Xβd3 ∨ Xβf1) ∧ (Xβf1) ∧ ϕ}) is created.

The update event (β1, f1) updates nodes η1, η3 and η4 such that η1 = ((f1, f2, d3), (1, 0), {ϕ}), η3 =

((f1, f2, f3), (1, 1), {F,ϕ, ϕ}) and η4 = ((f1,⊥,⊥), (1, 2), {F,ϕ, ϕ}).

Table 7.2 shows the step-by-step reconstructing and monitoring of the associated computation lattice.

The highlighted nodes are the removed nodes using Algorithm 7.8 (p. 79), but for the sake of better under-

standing we show them.

7.2.6 Correctness of Formula Progression on the Lattice

In Section 7.2 (p. 69), we introduced how from an unobservable partial trace t of a distributed CBS one can

construct a set of paths representing the set of compatible global-traces of t in form of a lattice. Furthermore,

in Section 7.2.5 (p. 85) we adapted formula progression over the constructed lattice with respect to a given

LTL formula ϕ. What we obtained is a directed lattice Lϕ starting from the initial node and ending up with

frontier node ηf . The set of formulas attached to the frontier node, that is ηf .Σ, represents the progression

of the initial formula over the set of path of the lattice.

Definition 7.45 (Progression on a partial trace). Function PROG : LTL×Q·(GAct ·Q)∗ → LTL is defined

as:

– PROG(ϕ, init) = ϕ,

– PROG(ϕ, σ) = ϕ′

– PROG (ϕ, σ · (α ∪ β) · q) = prog (UPD (PROG (ϕ, σ) ,Q) , q) where

– Q = {q[i] | βi ∈ β} is the set of updated states,

– function UPD : LTL×QR → LTL is defined as:

∗ UPD (ϕ, {ε}) = ϕ,

∗ UPD (ϕ,Qr ∪ {qi}) = updϕ (UPD (ϕ,Qr) , qi).

with QR ⊆ {q ∈ Qr
i | i ∈ [1 . .|B|]} the set of subsets of ready states of the components.
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Unobservable Global Trace t
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Local Partial-Trace S1(t)
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Figure 7.5: Approach overview

Function PROG uses functions prog (Definition 7.42, p. 86), updϕ (Definition 7.43, p. 87) and function

UPD . Since after each global action in the partial trace we reach a partial state(see Definition 4.9, p. 39),

function updϕ does not need to check among multiple partial states to find whose formula must be updated.

That is why PROG uses the simplified version of function updϕ by eliminating the scheduler index input.

Moreover functions prog modified in such way to take as input a partial state in Q instead of a state in Ql

because as we above mentioned, the index of schedulers does not play a role in the progression of an LTL

formula on a partial trace.

Given a partial state t as per Definition 4.9 (p. 39) and an LTL property ϕ, by ηf .Σ we denote the set

of LTL formulas of the frontier node of the constructed computation lattice Lϕ, we have the two following

proposition and theorems:

Proposition 7.46. Given an LTL formula ϕ and a partial trace t, there exists a partial trace t′ such that

PROG(ϕ, t′) = progression(ϕ,Rβ(t′)) with:

t′ =


t if last(t)[i] ∈ Qr

i for all i ∈ [1 . .|B|],

t · β · q otherwise.

Where β ⊆ ⋃i∈[1 ..|B|] {βi}, ∀i ∈ [1 . .|B|], q[i] ∈ Qr
i and progression is the standard progression function

on a global trace as described in [11].



92 7. RECONSTRUCTING AND MONITORING THE GLOBAL TRACE

Table 7.3: Overview of monitoring approaches w.r.t different settings

Setting Behavioral semantics Observable trace
What is obtained

after Instrumentation

Relation with the

actual global trace

Sequential
Global-state semantics for components

Interactions are managed by one scheduler
Global trace – –

Multi-threaded
Partial-state semantics for components

Interactions are managed by one scheduler
Partial trace Witness trace Bisimilar global trace

Distributed
Partial-state semantics for components

Interactions are managed by several schedulers
Local partial-traces Computation lattice

A set of compatible

global traces

Proposition 7.46 states that progression of an LTL formula on a partial trace of a distributed system (as

per Definition 4.9, p. 39) using PROG results similar to the standard progression of the LTL formula on the

corresponding refined global trace using progression if we allow the system to be stabilized by the execution

of β actions of busy components. Intuitively, our progression method over on a trace of a distributed system

follows the standard progression technique on a trace of a sequential system where the global state of the

system is always defined.

Theorem 7.47 (Soundness). For a partial trace t and LTL formula ϕ, we have

∀ϕ′ ∈ ηf .Σ,∃t′ ∈ P(t) .PROG(ϕ, t′) = ϕ′.

Theorem 7.47 states that each formula of the frontier node is derived from the progression of formula ϕ

on a compatible partial-trace of t.

Theorem 7.48 (Completeness). For a partial trace t and an LTL formula ϕ, we have:

ηf .Σ =
{

PROG(ϕ, t′)
∣∣ t′ ∈ P(t)

}
.

Theorem 7.48 states that the set of formulas in the frontier node is equal to the set of progression of ϕ

on all the compatible partial-traces of t.

Figure 7.5 (p. 91) depicts our monitoring approach for a distributed CBS.

Overview. Table 7.3 combines together all our monitoring approaches on different settings. In the sequen-

tial setting, we deal with a component-based system with global-state semantics in which the observable

trace is a global trace. Such global trace itself is suitable for runtime monitoring. For multi-threaded setting

the observable trace is a partial trace. The proposed instrumentation allows the observer to reconstruct the

witness trace of the observed partial trace. The unique witness trace is bisimilar to the global trace of the



7.2. CONSTRUCTION OF THE COMPUTATION LATTICE OF DISTRIBUTED CBSS 93

corresponding sequential system. For distributed setting we deal with a set of observable local partial-traces

associated to several schedulers. Each local partial-trace consists of the partial states of the components in

the scope of the corresponding scheduler and the actions that the scheduler manages. The events associated

to each local partial-trace are sent to the observer. The observer constructs and evaluate the computation

lattice on-the-fly. The computation lattice contains a set of global traces compatible with the partial trace of

the system.

Summary: In this chapter, we reconstructed on-the-fly the global trace using the events obtained from

the instrumented model with abstract semantics at runtime. Moreover, we introduced online monitoring

techniques for each execution setting. In the next chapters, we implement these techniques and evaluate

their performance by applying them on several case studies.
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Implementation and Evaluation
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The BIP Framework

Chapter abstract

In this chapter, for the sake of completeness, we provide a succinct description of the BIP framework

and refer to [5, 6] for the detailed and fully-formalized operational semantics. BIP is an implementation

of the general framework presented in Chapter 4 (p. 33), and allows us to evaluate our monitoring

approaches on actual implementations.

BIP (Behavior, Interaction, Priority) is a powerful and expressive framework for the formal construction

of heterogeneous systems. BIP supports a construction methodology of components as the superposition

of three layers: behavior, interaction, and priority. Layering favors a clear separation between behavior

and structure. The behavior layer describes the operational semantics of atomic components. Atomic com-

ponents are transition systems endowed with a set of local variables and a set of ports labeling individual

transitions. Ports are used for synchronization and communication with other components. Transitions can

be guarded by some constraints over local variables. Local variables of an atomic component can be sent

or modified through the interacting ports. The interaction layer defines a set of connectors over the ports

of atomic components describing the synchronizations (so-called interactions) between atomic components.

An interaction is a synchronous action among (some of) the components which have one of their ports

involved in the interaction. The priority layer describes scheduling policies for interactions. Composite

components are built from connected atomic components along with a set of priority rules.

97
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8.1 Multi-Threaded BIP Model

In this section we describe the behavior of a BIP model with partial-state semantics. We use such a model

to illustrate out monitoring approach on a multi-threaded component-based systems.

Atomic Components. An atomic component is endowed with a finite set of local variables X taking

values in a set Data. Atomic components synchronize and exchange data with other components through

ports.

Definition 8.1 (Port). A port pbxpc, where xp ⊆ X , is defined by a port identifier p and some data variables

in a set xp.

Variables attached to ports are purposed to transfer values between interacting components (see also

Definition 8.3, p. 99, for interactions). The variables attached to the port are also used to determine whether

a communication through this port can take place (see below).

Definition 8.2 (Atomic component with partial state in BIP). An atomic component in BIP is defined as a

tuple B = (P ∪ {β}, L ∪ L⊥, T,X), where P is the set of ports, β /∈ P is a special port dedicated for

internal action, L is the set of ready (control) locations, L⊥ is the set of busy locations such that L⊥∩L = ∅
and T ⊆

Ä
(L× P × G(X)× [ ]× L⊥) ∪ (L⊥ × {β} × true×F∗(X)× L)

ä
is the set of transitions, and

X is the set of variables.

G(X) denotes the set of Boolean expressions over X and F(X) the set of assignments of expressions

over X to variables in X . For each transition τ = (l, p, gτ , fτ , l
′) ∈ T , gτ is a Boolean expression over X

(the guard of τ ), fτ ∈ {x := fx(X) | x ∈ X ∧ fx ∈ F(X)}∗: the computation step of τ , a sequence of

assignments to variables.

The behavior of the atomic component is an LTS (Q,P ∪{β},→) whereQ = (L∪L⊥)×(X → Data)

is the set of states, and →= {((l, v), p(vp), (l′, v′)) ∈ Q × P ∪ {β} × Q | ∃τ = (l, p, gτ , fτ , l
′) ∈

T . gτ (v) ∧ v′ = fτ (v\vp)} is the transition relation.

A state is a pair (l, v) ∈ Q, where l ∈ (L ∪ L⊥), v ∈ X → Data is a valuation of the variables in X .

The evolution of states (l, v)
pbvpc−−−→ (l′, v′), where vp is a valuation of the variables xp attached to port p, is

possible if there exists a transition (l, pbxpc, gτ , fτ , l′), such that gτ (v) = true. As a result, the valuation v

of variables is modified to v′ = fτ (v\vp).

We use the dot notation to denote the elements of atomic components. e.g., for an atomic component B,

B.P denotes the set of ports of the atomic component B, B.L denotes its set of locations, etc.
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Interaction. For a given CBS build from a set of atomic component B =
¶
B1, . . . , B|B|

©
, we assume that

their respective set of ports are pairwise disjoint, that is for two i 6= j from {1 . .|B|}we haveBi.P∩Bj .P =

∅. Therefore
⋃|B|
i=1 {Bi.P} is defined as a set of all ports in the system. An interaction is a set of port defined

as follows.

Definition 8.3 (Interaction). An interaction a is a tuple (Pa, Fa), where Pa = {pibxic | pi ∈ Bi.P}i∈I is

the set of ports such that ∀i ∈ I .Pa ∩Bi.P = {pi} and Fa is a sequence of assignments to the variables in

∪i∈Ixi.

When clear from context, an interaction ({pbxpc}, Fa) consisting of only one port p is denoted by p.

Definition 8.4 (Composite component in BIP). A composite component M⊥ = Γ(B1, . . . , B|B|) is defined

from a set of atomic components B =
¶
B1, . . . , B|B|

©
and Γ = Int ∪ β where Int is the set of multi-party

interactions and β = {{βi}}|B|i=1 is the set of singleton busy interactions.

A state q of a composite component Γ(B1, . . . , B|B|) is an |B|-tuple q = (q1, . . . , q|B|), where qi =

(li, vi) is a state of atomic component Bi. The semantics of the composite component M⊥ is an LTS

(Q⊥,Γ,−→), where Q⊥ = B1.Q × . . . × B|B|.Q is the set of states and −→ is the least set of transitions

satisfying the global behavior defined in Definition 4.8 (p. 37).

Priorities. In composite components modeled in BIP, many interactions can be enabled at the same time,

introducing a degree of non-determinism in the product behavior. Non-determinism can be restricted by

means of priorities, specifying which of the interactions should be preferred among the enabled one.

Recall that, since we only deal with the execution traces of a component-based system, we assume that

the obtained traces are correct with respect to the priorities. Although our monitoring technique can be

applied on the prioritized BIP model, defining such a model is out of the scope of this work and only make

the model complex.

Remark 8.5. Behavior of a multi-threaded composite component in BIP follows the semantic rules de-

fined in Definition 4.17 (p. 41) which is interpreted by a centralized scheduler. Since in a multi-threaded

BIP model the scheduling process is done in another level which is not accessible by the users, we adapt

the instrumentation defined in Section 6.1.3 (p. 56) on the level of components and existing interactions.

Moreover, we do not present the model of BIP scheduler for multi-threaded setting.

Running example. We use a task system, called Task, to illustrate our monitoring approach on a multi-

threaded BIP model. The system consists of a task generator (Generator ) along with 3 task executors
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Figure 8.1: Atomic components of system Task
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Figure 8.2: Composite component of system Task

(Workers) that can run in parallel. Each newly generated task is handled whenever two cooperating workers

are available.

Example 8.6 (Multi-threaded composite component in BIP). Figure 8.2 depicts the corresponding compos-

ite component of system Task with partial-state semantics Γ(Worker1 ,Worker2 ,Worker3 ,Generator),

where each Worker i for i ∈ [1 . . 3] is identical to the component Worker and Generator is the component

depicted in Fig. 8.2.

– Figure 8.1a depicts a model of component Generator1 defined as follows:

– Generator .P = {deliverb∅c,newtaskb∅c, β},
– Generator .L = {hold , delivered ,⊥},
– Generator .T = {(hold , deliver , true, [ ],⊥), (⊥, β, true, [ ], delivered),

(delivered ,newtask , true, [ ],⊥), (⊥, β, true, [ ], hold)},
– Generator .X = ∅.

– Figure 8.1b depicts a model of component Worker defined as follows:

1For the sake of simpler notation, the variables attached to the ports are not shown.
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– Worker .P = {execb∅c,finishb∅c, resetb∅c, β},
– Worker .L = {free, done,⊥},
– Worker .T = {(free, exec, true, [ ],⊥), (⊥, β, true, [x := x+ 1], done),

(done,finish, (x 6 10), [ ],⊥), (⊥, β, true, [ ], free),

(done, reset , (x > 10), [ ],⊥)}, (⊥, β, true, [x := 0], free)},
– Worker .X = {x}.

To simplify the depiction of these components, we represent each busy location l⊥ as ⊥. The set of in-

teractions is Γ = {ex12 , ex13 , ex23 , r1 , r2 , r3 , f1 , f2 , f3 , nt} ∪ {{β1}, {β2}, {β3}, {β4}}, where

ex 12 = ({deliver , exec1, exec2}, [ ]) , ex 23 = ({deliver , exec2, exec3}, [ ]), ex 13 = ({deliver , exec1,

exec3}, [ ]), r1 = ({reset1}, [ ]), r2 = ({reset2}, [ ]), r3 = ({reset3}, [ ]), f1 = ({finish1}, [ ]),

f2 = ({finish2}, [ ]), f3 = ({finish3}, [ ]), and nt = ({newtask}, [ ]). One possible trace of system

Task is: (free, free, free, hold) · ex12 · (⊥, ⊥, free, ⊥) · β4 · (⊥, ⊥, free, delivered) · nt · (⊥, ⊥, free, ⊥).

8.2 Distributed BIP Model

In Section 8.1 (p. 98) we defined a multi-threaded BIP model relying on a single centralized scheduler for

executing all multi-party interaction. Such models allow parallelism between computation in the compo-

nents. However, concurrency between interactions is not possible (i.e., simultaneous execution of several

interactions) since they are executed within the same scheduler. In this section, we briefly represent a dis-

tributed BIP model which has been extensively studied in [5, 6, 18]. A distributed BIP model contains three

layers, i) the distributed atomic components, ii) the distributed schedulers, and iii) the conflict resolution

protocol components. The distributed version of the atomic components in BIP is obtained based on the

original atomic component as per Definition 8.2 (p. 98) with the difference that a separate port βj associated

to each corresponding scheduler Sj ∈ S is added.

Definition 8.7 (Distributed atomic component in BIP). Let B = (P ∪ {β}, L ∪ L⊥, T,X) be an atomic

component in BIP. The corresponding distributed atomic component is Bd = (P d, Ld, T d, Xd), such that:

– P ∪ {βj | j ∈ [1 . . |S|] ∧B ∈ scope(Sj)
} ⊆ P d,

– L ∪
¶
⊥jl | j ∈ [1 . . |S|] ∧B ∈ scope(Sj) ∧ l ∈ L

©
⊆ Ld,

– Xd = X ∪@, where @ is the set of variables used for conflict resolution purposes,

– For each set of transitions {(l, p, gτ , [ ], l′), (l′, β, true, fτ , l
′′)} ∈ T , we include a new set of transi-

tions {(l, p, gτ , [ ],⊥R[1]
l′′ ), (⊥R[1]

l′′ , βR[1], true, fτ ,⊥R[2]
l′′ ), . . . (⊥R[n]

l′′ , βR[n], true, [ ], l′′)} ∈ T d with
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Figure 8.4: Communication messages among Workerd1 and schedulers S1 and S2

R is a n-tuple where n = |{j ∈ [1 . .|S|] | B ∈ scope(Sj)}| such that ∀m ∈ [1 . . n] . R[m] ∈ {j ∈
[1 . .|S|] | B ∈ scope(Sj)} and ∀k ∈ [1 . . n− 1] . R[k] < R[k + 1].

These transitions send the update state of the component to the corresponding schedulers.

Definition 8.8 (Distributed scheduler in BIP). Scheduler S is defined as a tuple (P,L, T,X), such that:

– P is the set of ports such that
¶
{pia | a ∈ Int ∧managed(a) = S ∧Bi ∈ scope(S)∧ i ∈ [1 . . |B|]}∪

{βi | Bi ∈ scope(S) ∧ i ∈ [1 . . |B|]}
©
⊂ P ,

– L is the set of locations,

– X is the set of variables,

– T ⊆ L× P × L is the set of transitions.

Port pia ∈ S.P is associated to the notification of component Bi ∈ B involved in interaction a ∈ Int .

When the scheduler triggers an interaction, a set of notifications is sent to the component involved in the

interaction. Port βi is associated to the notification of the scheduler of the update state of componentBi ∈ B.
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Example 8.9 (Distributed BIP model). We present the distributed version of the model depicted in Fig-

ure 8.2 (p. 100) using two schedulers S1 ans S2 in charge of the execution of interactions. We partition the

set of interactions Γ into two classes Γ1 = {ex12 , ex13 , ex23} and Γ2 = {r1 , r2 , r3 , f1 , f2 , f3 ,nt} where

managed(Γ1) = S1 and managed(Γ2) = S2. Schedulers are connected with the distributed components

in their scope. Figure 8.3 (p. 102) shows the distributed version of component Worker presented in Fig-

ure 8.1b (p. 100). Each transition in Workerd corresponding to the execution of an action is followed by

two busy transitions labeled by β1 and β2 sending the updated state to schedulers S1 and S2 respectively.

Figure 8.4 (p. 102) shows the messages sent by the schedulers in order to trigger the associated actions

in component Workerd1 and the messages send by component Workerd1 to notify the schedulers about its

updated state. Components Workerd2, Workerd3 and Generatord are connected to the schedulers similarly

(for the sake of simpler presentation they are not shown).

Remark 8.10. We do not present the model of the third level, i.e., the conflict resolution protocol layer. The

main reason is that we deal only with the executions of the interactions and the busy actions of components.

Resolving the (possible) existing conflicts i) takes place before these executions which is considered as the

internal process of the schedulers and ii) does not influence the satisfaction of the property.
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9
Monitoring Multi-Threaded BIP Models

Chapter abstract

In this chapter, we apply our monitoring approach on multi-threaded BIP models. We define explicitly

how the proposed instrumentation can be adapted to a BIP composite component with concurrent behav-

ior. We present the actual algorithms used in the instrumented system to reconstruct global states. We

introduce RVMT-BIP, a prototype tool implementing the monitoring approach.

In this chapter, we consider a multi-threaded BIP model M⊥ = Γ(B1, . . . , B|B|) of behavior (Q⊥,Γ,→),

one can obtain the corresponding sequential BIP model Ms = Int(B1, . . . , B|B|) of behavior (Q, Int ,→s)

(see Section 4.3, p. 41). In the sequel, we consider a multi-threaded BIP model M⊥ and its corresponding

sequential model version Ms. Intuitively, from any trace of M⊥, we want to reconstruct on-the-fly the

corresponding trace in Ms and evaluate a property which is defined over global states of Ms.

9.1 Model Transformation to Construct the Witness Trace

We propose a model transformation of a composite component M⊥ = Γ(B1, . . . , B|B|) such that it can

produce the witness trace on-the-fly. The transformed system can be plugged to a runtime monitor as de-

scribed in [39]. Our model transformation consists of three steps: 1) instrumentation of atomic components

(Section 9.1.1, p. 106), 2) adding of a new component, that is the reconstructor of global trace (RGT), which

implements Definition 7.6, p. 65 (Section 9.1.2, p. 107), and 3) modification of interactions in Γ such that

(i) component RGT can interact with the other components in the system and (ii) new interactions con-

nect RGT to a runtime monitor (Section 9.1.3, p. 111). Moreover, we prove the correctness of the model

105
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Figure 9.1: Model transformation

transformation (Section 9.1.4, p. 113).

9.1.1 Instrumentation of Atomic Components

Given an atomic component as per Definition 8.2 (p. 98), we instrument this atomic component such that it

is able to transfer its state through port β. The state of an instrumented component is delivered each time

the component moves out from a busy location. In the following instrumentation, the state of a component

is represented by the values of variables and the current location.

Definition 9.1 (Instrumenting an atomic component). Given an atomic component in partial-state semantics

B = (P ∪ {β}, L ∪ L⊥, T,X) with initial location l0 ∈ L, we define a new component Br = (P r, L ∪
L⊥, T r, Xr) where:

– Xr = X ∪ {loc}, loc is initialized to l0;

– P r = P ∪ {βr}, with βr = β[Xr];

– T r = {(l, p, gτ , [ ], l⊥τ ), (l⊥τ , β, true, fτ ; [loc := l′], l′) | {(l, p, gτ , [ ], l⊥τ ), (l⊥τ , β, true, fτ , l
′)} ⊆

T}.

In Xr, loc is a variable containing the current location. Xr is exported through port β. An assignment

is added to the computation step of each transition to record the location.

Example 9.2 (Instrumenting an atomic component). Figure 9.2 (p. 107) shows the instrumented version of

atomic components in system Task (depicted in Figure 8.1, p. 100).

– Figure 9.2a depicts component task generator, where

Generator r.P r = {deliver [∅],newtask [∅], β[{loc}]},
Generator r.T r = {(hold , deliver , true, [ ],⊥), (⊥, β, true, [loc := delivered ], delivered),

(delivered ,newtask , true, [ ],⊥), (⊥, β, true, [loc := hold ], hold)},
Generator r.Xr = {loc}.
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Figure 9.2: Instrumented atomic components of system Task

– Figure 9.2b depicts a worker component, where

Worker r.P r = {exec[∅],finish[∅], reset [∅], β[{x, loc}]},
Worker r.T r = {(free, exec, true, [ ],⊥), (⊥, β, true, [x := x+ 1; loc := done], done),

(done,finish, (x 6 10), [ ],⊥), (⊥, β, true, loc := free], free),

(done, reset , (x > 10), [ ],⊥), (⊥, β, true, [x := 0; loc := free], free)},
Worker r.Xr = {x, loc}.

9.1.2 Creating a New Atomic Component to Reconstruct Global States

Let us consider a composite component M⊥ = Γ(B1, . . . , B|B|) with partial-state semantics, such that:

– init = (q0
1, . . . , q

0
|B|) is the initial state,

– Int is the set of interactions in the corresponding composite component with global-state semantics

such that Int = Γ \ {{βi}}|B|i=1, and

– the corresponding instrumented atomic components Br
1, . . . , B

r
|B| have been obtained through Defi-

nition 9.1 (p. 106) such that Br
i is the instrumented version of Bi.

We define a new atomic component, called RGT, which is in charge of accumulating the global states of

the system M⊥. Component RGT is an operational implementation, as a component of function RGT

(Definition 7.6, p. 65). At runtime, we represent a global state as a tuple consisting of the valuation of

variables and the location for each atomic component. After a new interaction gets fired, component RGT

builds a new tuple using the current states of components. Component RGT builds a sequence with the

generated tuples. The stored tuples are updated each time the state of a component is updated. Following

Definition 9.1 (p. 106), atomic components transfer their states through port β each time they move from

a busy location to a ready location. RGT reconstructs global states from these received partial states and
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delivers them through the dedicated ports.

Definition 9.3 (RGT atom). Component RGT is defined as (P , L, T , X) where:

– X =
⋃
i∈[1 ..|B|]{Br

i .X
r}⋃i∈[1 ..|B|]{Br

i .X
r
c }∪{gsa | a ∈ Int}∪{(z1, . . . , z|B|)}∪{V, v,m}, where

Br
i .X

r
c is a set containing a copy of the variables in Br

i .X
r.

– P =
⋃
i∈[1 ..|B|]{βi[Br

i .X
r]} ∪ {pa[∅] | a ∈ Int} ∪ {p′a[

⋃
i∈[1 ..|B|]{Br

i .Xc}] | a ∈ Int}.

– L = {l} is a set with one control location.

– T = Tnew ∪ Tupd ∪ Tout is the set of transitions, where:

– Tnew = {(l, pa,
∧
a∈Int(¬gsa), new(a), l) | a ∈ Int},

– Tupd = {(l, βi,
∧
a∈Int(¬gsa), upd(i), l) | i ∈ [1 . .|B|]},

– Tout = {(l, p′a, gsa, get, l) | a ∈ Int}.

X is a set of variables that contains the following variables:

– the variables in Br
i .X

r for each instrumented atomic component Br
i ;

– a Boolean variable gsa that holds true whenever a global state corresponding to interaction a is

reconstructed;

– a tuple (z1, . . . , z|B|) of Boolean variables initialized to false;

– an (|B|+1)-tuple v = (v1, . . . , v|B|, v|B|+1).

For each i ∈ [1 . .|B|], zi is true when component i is in a busy location and false otherwise. For

i ∈ [1 . .|B|], vi is a state of Br
i and v|B|+1 ∈ Int . V is a sequence of (|B|+1)-tuples initialized to

(q0
1, . . . , q

0
|B|,−). m is an integer variable initialized to 1.

P is a set of ports.

– For each atomic component Br
i for i ∈ [1 . .|B|], RGT has a corresponding port βi. States of compo-

nents are exported to RGT through this port.

– For each interaction a ∈ Int , RGT has two corresponding ports pa and p′a. Port pa is added to

interaction a (later in Definition 9.5, p. 111) in order to notify RGT when a new interaction is fired. A

reconstructed global state which is related to the execution of interaction a, is exported to a runtime

monitor through port p′a.

RGT has three types of transitions:
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– The transitions labeled by port pa, for a ∈ Int , are in Tnew. When no reconstructed global state can

be delivered (that is, the Boolean variables in {gsa | a ∈ Int} are false), the transitions occur when

the corresponding interaction a is fired.

– The transitions labeled by port βi, for i ∈ [1 . .|B|], are in Tupd. When no reconstructed global

state can be delivered, to obtain the state of component Bi, these transitions occur at the same time

transition β occurs in component Bi.

– The transition labeled by port p′a for a ∈ Int are in Tget. If RGT has a reconstructed global state

corresponding to the global state of the system after executing interaction a ∈ Int , these transitions

deliver the reconstructed global state to a runtime monitor.

RGT uses three algorithms.

Algorithm new (see Algorithm 9.1) implements the case of function acc that corresponds to the occur-

rence of a new interaction a ∈ Int (Definition 7.6, p. 65). It takes a ∈ Int as input and then: 1) sets zi

to true if component i is involved in interaction a, for i ∈ [1 . .|B|]; 2) fills the elements of the (|B|+1)-

tuple v with the states of components after the execution of the new interaction a in such a way that the ith

element of v corresponds to the state of component Bi. Moreover, the state of busy components is null.

The (|B|+1)th element of v is dedicated to interaction a, as a record specifying that tuple v is related to the

execution of a; 3) appends v to V .

Algorithm 9.1 new(a)

1: for i = 1→ |B| do
2: if Bi.P ∩ a 6= ∅ then . Check if component Bi is involved in interaction a.
3: zi := true . In case component Bi is busy, zi is true.
4: vi := null . The ith element of tuple v is represented by vi.
5: else
6: vi := Br

i .X
r . vi receives the state of Br

i .
7: end if
8: end for
9: v|B|+1 := a . Last element of v receives interaction a.

10: V := V · v . v is added to V .

Algorithm upd (see Algorithm 9.2, p. 110) implements the case of function acc which corresponds to the

occurrence of transition β of atomic component Bi for i ∈ [1 . .|B|]. According to Definition 9.1 (p. 106),

the current state of the instrumented atomic component Br
i for i ∈ [1 . .|B|] is exported through port β of

Br
i . Algorithm upd takes the current state of Br

i and looks into each element of V and replaces null values

which correspond to Br
i with the current state of Br

i . Finally, algorithm upd invokes algorithm check to

check the elements of V . If any tuple of V , associated to a ∈ Int , becomes a global state and has no null
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element, then the corresponding Boolean variable gsa is set to true.

Algorithm 9.2 upd(i)

1: zi := false

2: for j = 1→ length(V ) do
3: if V (j)i == null then . The ith element of the jth tuple in V is represented by V (j)i.
4: V (j)i := Br

i .X
r . Update the null states.

5: end if
6: end for
7: check() . Check the elements of sequence V (cf. Algorithm. 9.3)

Algorithm 9.3 check()

1: for i = m→ length(V ) do . Check those tuples of V which have not been delivered to the monitor.
2: if ¬gs(V (i)|B|+1) then
3: btmp := true . Make a temporary boolean variable initialized to true.
4: for j = 1→ |B| do
5: btmp := btmp ∧ (V (i)j 6= null) . btmp remains true until a null is found in the ith tuple

of V .
6: end for
7: gs(V (i)|B|+1) := btmp . Update the value of Boolean gs associated to V (i)|B|+1.
8: end if
9: end for

Algorithm get (see Algorithm 9.4) is called whenever component RGT has a reconstructed global state

to deliver. Algorithm get takes the mth tuple in V and copies its values into {Br
i .X

r
c }|B|i=1 and then incre-

mentsm. Finally, algorithm get calls algorithm check in order to update the value of the Boolean variables

gsa for a ∈ Int , because there are possibly several reconstructed global states associated to an interaction

a ∈ Int . In this case, after delivering one of those reconstructed global states and resetting gsa to false,

one must again set variable gsa to true for the rest of the reconstructed global states associated to interac-

tion a. Note, to facilitate the presentation of proofs in Appendix A (p. 151), component RGT is defined in

Algorithm 9.4 get()

1: for i = 1→ |B| do
2: Br

i .X
r
c := V (m)i . Copy the mth tuple of V .

3: end for
4: gs(V (m)|B|+1) := false . Reset the corresponding gsa of the V (m).
5: m := m+ 1 . Increment m.
6: check() . Check the elements of sequence V (cf. Algorithm. 9.3)

such a way that it does not discard the reconstructed global states of the system after delivering them to the

monitor. In our actual implementation of RGT, these states are discarded because they are not useful after
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l
pa, new(pa)

(
∧
a∈Int(¬gsa))

for a ∈ Int

p′a, get
(gsa == true)

for a ∈ Int

βi, upd(i) for i ∈ [1 . . 4]
(
∧
a∈Int(¬gsa))

p′nt p′ex12 p′r1 p′f1 p′r2 p′f2 p′r3 p′f3 p′ex23 p′ex13

pnt pex12 pr1 pf1 β1 pr2 pf2 β2 pr3 pf3 β3 pex23 pex13 β4

Int = {ex12 , ex13 , ex23 , r1 , r2 , r3 , f1 , f2 , f3 , nt}

Figure 9.3: Component RGT for system Task

being delivered to the monitor. At runtime, RGT .V contains the sequence of global states associated with

the witness trace (as stated later by Proposition 9.9, p. 115).

Example 9.4 (Component RGT). Figure 9.3 depicts the component RGT for system Task. For read-

ability, only one instance of each type of transitions is shown. The execution of a new interaction a ∈
{ex12 , ex13 , ex23 , r1 , r2 , r3 , f1 , f2 , f3 ,nt} in system Task is synchronized with the execution of transition

pa of the component RGT which applies the algorithm new. Each busy interaction in the system Task is

synchronized with the execution of transition βi (i ∈ [1 . . 4] are the indexes of the four components in sys-

tem Task) which applies the algorithm upd to update the reconstructed states so far and check whether or not

a new global state is reconstructed. Transition βi, i ∈ [1 . . 4], is guarded by
∧
a∈Int(¬gsa) which ensures

the delivery of the new reconstructed global state through the ports pa∈Int as soon as they are reconstructed.

At runtime, RGT produces the sequence of global states in the right-most column of Table 7.1 (p. 66).

9.1.3 Connections

After building component RGT (see Definition 9.3, p. 108), and instrumenting atomic components (see

Definition 9.1, p. 106), we modify all interactions and define new interactions to build a new transformed

composite component. To let RGT accumulate states of the system, first we transform all the existing

interactions by adding a new port to communicate with component RGT, then we create new interactions

that allow RGT to deliver the reconstructed global states of the system to a runtime monitor.

Given a composite component M⊥ = Γ(B1, . . . , B|B|) with corresponding component RGT and in-

strumented components Br = (P ∪ {βr}, L ∪ L⊥, T r, Xr) such that Br = Br
i ∈ {Br

1, . . . , B
r
|B|}, we

define a new composite component.
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′
ex12 p′r1 p′f1 p′r2 p′f2 p′r3 p′f3 p′ex23 p

′
ex13

Figure 9.4: Composite component of system Task obtained by applying the transformation in Definition 9.5

Definition 9.5 (Composite component transformation). For a BIP model M⊥ = Γ(B1, . . . , B|B|), we in-

troduce a corresponding transformed model Mr = Γr(Br
1, . . . , B

r
|B|, RGT ) such that Γr = arγ ∪ arβ ∪ am

where:

– arγ and arβ are the sets of transformed interactions such that:

∀a ∈ Γ . ar =


a ∪ {RGT.pa} if a ∈ Int

a ∪ {RGT.βi} otherwise (a ∈ {{βi}}i∈[1 ..|B|])

arγ = {ar | a ∈ Int}, arβ = {ar | a ∈ {{βi}}i∈[1 ..|B|]}

– am is a set of new interactions such that:

am = {a′ | a ∈ Int} where ∀a ∈ Int . a′ = {RGT.p′a} is a corresponding unary interaction.

For each interaction a ∈ Γ, we associate a transformed interaction ar which is the modified version

of interaction a such that a corresponding port of component RGT is added to a. Instrumenting inter-

action a ∈ Int does not modify sequence of assignment Fa, whereas instrumenting busy interactions

a ∈ {{βi}}|B|i=1 adds assignments to transfer attached variables of port βi to the component RGT. The

transformed interactions belong to two subsets, arγ and arβ . The set am is the set of all unary interactions a′

associated to each existing interaction a ∈ Int in the system.

The set of the states of transformed composite component Br is Qr = Br
1.Q× . . .×Br

|B|.Q×RGT.Q.

Example 9.6 (Transformed composite component). Figure 9.4 shows the transformed composite component

of system Task. The goal of building a′ for each interaction a is to enable RGT to connect to a runtime
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Figure 9.5: Abstract view of runtime monitoring of sequential vs. multi-threaded BIP models

monitor. Upon the reconstruction of a global state corresponding to interaction a ∈ Int , the corresponding

interaction a′ delivers the reconstructed global state to a runtime monitor.

Example 9.7 (Monitoring system Task). Figure 9.6 (p. 114) depicts the transformed system Task with a

monitor for the homogeneous distribution of the tasks among the workers, where e1, e2, and e3 are events

related to the pairwise comparison of the number of executed tasks by Workers. For i ∈ [1 . . 3], event

ei evaluates to true whenever |x(i mod 3)+1 − xi| is lower than 3 (for this example). Component Monitor

evaluates (e1 ∧ e2 ∧ e3) upon the reception of a new global state from RGT and emits the associated verdict

till reaching bad state ⊥. The global trace (free, free, free, hold) · ex 12 ·(done, done, free, delivered) · nt
(see Table 7.1, p. 66) is sent by component RGT to the monitor which in turn produces the sequence of

verdicts >c · >c (where >c is verdict “currently good", see [9, 35]).

9.1.4 Correctness of the Transformations

Combined together, the transformations preserve the semantics of the initial model as stated in the rest of

this section.

Intuitively, the component RGT defined in Definition 9.3 (p. 108) implements function RGT defined in

Definition 7.6 (p. 65). Reconstructed global states can be transferred through the ports p′a with a ∈ Int . If

interaction a happens before interaction b, then in component RGT, port p′a which contains the reconstructed

global state after executing awill be enabled before port p′b. In other words, the total order between executed

interactions is preserved.

In the transformed composite component Γr(Br
1, . . . , B

r
|B|, RGT ), the notion of equivalence is used to

relate the tuples constructed by component RGT to the states of the initial system in partial-state semantics.

Below, we define the notion of equivalence between an (|B|+1)-tuple v = (v1, . . . , v|B|, v|B|+1) and a state

of the system q = (q1, . . . , q|B|) such that, for i ∈ [1 . .|B|], vi is a state of Br
i and v|B|+1 ∈ Int .

Definition 9.8 (Equivalence of an (|B|+1)-tuple and a state). A (|B|+1)-tuple v = (v1, . . . , v|B|, v|B|+1)
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Figure 9.6: Monitored version of system Task

is equivalent to a state q = (q1, . . . , q|B|) if:

∀i ∈ [1 . .|B|] . vi =

 qi if qi ∈ Qi,
null otherwise.

When an (|B|+1)-tuple v is equivalent to a state q, we denote it by v ∼= q.

A tuple (v1, . . . , v|B|, v|B|+1) and a state (q1, . . . , q|B|) are equivalent if vi = qi for each position i

where the state qi of component Br
i is also a state of the initial model, and vi = null otherwise. The notion

of equivalence is extended to traces and sequences of (|B|+1)-tuples. A trace t = q′0.a1.q
′
1 . . . ak.q

′
k and a

sequence of (|B|+1)-tuples V = v(0) · v(1) . . . v(k) are equivalent, denoted t ∼= V , if q′j is equivalent to
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v(j) for all j ∈ [0 . . k] and v(j)|B|+1 = aj for all j ∈ [1 . . k].

Proposition 9.9 (Correctness of component RGT). ∀t ∈ Tr(M⊥) .RGT .V ∼= acc(event(t)).

Proposition 9.9 states that, for any trace t, at any time, variable RGT .V encodes the witness trace

acc(event(t)) of the current trace: RGT .V is a sequence of tuples where each tuple consists of the state

and the interaction that led to this state, in the same order as they appear on the witness trace.

Proof. The proof is done by induction on the length of t ∈ Tr(M⊥), i.e., the trace of the system in partial-

state semantics. The proof is given in Appendix A.1.5 (p. 157).

For each trace resulting from an execution with partial-state semantics, component RGT produces a

trace of global states which is the witness of this trace in the initial model.

Definition 9.10 (State stability). State (l, v) ∈ RGT.Q is said to be stable when ∀x ∈ {RGT .gsa | a ∈
Int} . v(x) = false.

A state q in the the semantics of atomic component RGT is said to be stable when all Boolean variables

in set {RGT .gsa | a ∈ Int} evaluate to false with the valuation of variables in state q. In other words, the

current state of component RGT is stable when it has no reconstructed global states to deliver. We say that

the composite component Br is stable when the state of its associated component RGT is stable.

Example 9.11 (Stable state). We illustrate Definition 9.10 based on the execution trace in Table 7.1 (p. 66).

By the evolution of system Task from step 4 to step 5, component RGT reconstructs the global state asso-

ciated to the execution of ex 12 and respectively sets boolean variable gsex12
to true. Once gsex12

becomes

true, we say that the state of the component RGT is not stable. In component RGT, the execution of

transition labeled by port p′ex12
delivers the reconstructed global state (i.e., (done, done, free, delivered)) to

the monitor and sets boolean variable gsex12
to false. Consequently, component RGT becomes stable. We

say that component RGT is not stable whenever there exists at least one reconstructed global state which

has not been delivered to the monitor. Whenever component RGT is not stable, we say that the system is

not stable as well.

The following lemma states a property of the algorithms in Section 9.1.2 (p. 107) ensuring that whenever

component RGT has reconstructed some global states, it transmits them to the monitor before the system

can execute any new partial state can be created.

Lemma 9.12. In any state of the transformed system, if there is a non-empty set GS ⊆ {RGT .gsa | a ∈
Int} in which all variables are true, the variables in {RGT .gsa | a ∈ Int} \ GS cannot be set to true

until all variables in GS are reset to false first.
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The following lemma states that any state of the composite componentBr can be stabilized by executing

interactions in am.

Lemma 9.13. We shall prove that for any state q ∈ Qr, there exists a state q′ ∈ Qr reached after interactions

in am (i.e., q
(am)∗−−−→ q′), such that q′ is a stable state (i.e., stable(q′)).

We define a notion of equivalence between states of the transformed model and states of the initial

system.

Definition 9.14 (Equivalent states). Let qr = (qr1, · · · , qr|B|, qr|B|+1) ∈ Qr be a state in the transformed

model where qr|B|+1 is the state of component RGT, function equ : Qr −→ Q⊥ is defined as follows:

equ(qr) = q, where q = (q1, · · · , q|B|), (∀i ∈ [1 . .|B|] . qri = qi) ∧ stable(qr|B|+1).

A state in the initial model is said to be equivalent to a state in the transformed model if the state of each

component in the initial model is equal to the state of the corresponding component in transformed model

and the state of component RGT is stable.

The following lemma is a direct consequence of Definition 9.14. The lemma states that, if an interaction

is enabled in the transformed model, then the corresponding interaction is enabled in the initial model when

the states of two models are equivalent.

Lemma 9.15. For any two equivalent states q ∈ Q⊥ and qr ∈ Qr (i.e., equ(qr) = q), if interaction a ∈ Γ

is enabled in state q, then ar ∈ Γr is enabled at state qr.

Based on the above lemmas, we can now state the correctness of our transformations.

Theorem 9.16 (Transformation Correctness ). Γ(B1, . . . , B|B|) ∼ Γr(Br
1, . . . , B

r
|B|, RGT ).

Theorem 9.16 states that the initial model and the transformed model are observationally equivalent.

Proof. The proof relies on exhibiting a bi-simulation relation between the set of states of transformed model

Mr = Γr(Br
1, . . . , B

r
|B|, RGT ), that isQr, and the set of states of M⊥ = Γ(B1, . . . , B|B|), that isQ⊥. The

proof is given in Appendix A.1.7 (p. 160).

Combined together, Theorem 9.16 and Lemma 9.15 imply that, for each state in the initial system, there

exists an equivalent state in the transformed system in which all enabled interactions in the initial system

are also enabled in the transformed system. Hence, we can conclude that the transformed system is as

concurrent as the initial system.

Consequently, we can substantiate our claims stated in the introduction about the transformations: in-

strumenting atomic components and adding component RGT (i) preserves the semantics and concurrency

of the initial model, and (ii) verdicts are sound and complete.
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Figure 9.7: Overview of RVMT-BIP work-flow

Remark 9.17 (Alternative RGT atoms). In the definition of atom RGT (Definition 9.3, p. 108), one can

observe that whenever component RGT has reconstructed global states to deliver, the system cannot proceed

and must wait until all the reconstructed global states are sent (because of the guards of transitions Tupd and

Tnew). This gives precedence to monitoring rather than to the evolution of the system.

Three alternative definitions of RGT can be considered by changing the guards of the transitions in Tnew

and Tupd. For both transitions, by suppressing the guards, one gives less precedence to the transmission of

reconstructed global states. By suppressing the guards in transitions in Tnew, we let the system starting a new

interaction while there may be still some reconstructed global states for RGT to deliver. By suppressing

the guards in transitions in Tupd, we let the system execute β-transitions while there may be still some

reconstructed global states for RGT to deliver.

Suppressing these guards favors the performance of the system but may delay the transmission of global

states to the monitor and thus it may also delay the emission of verdicts. There is thus a tradeoff between

the performance of the system and the emission of verdicts.

9.2 Implementation of Witness Trace Construction

We implemented our monitoring approach in a tool called RVMT-BIP. RVMT-BIP is a prototype tool im-

plementing the algorithms presented in Section 9.1 (p. 105).

Architecture of RVMT-BIP. RVMT-BIP (Runtime Verification of Multi-Threaded BIP) is a Java im-

plementation of ca. 2,200 LOC. RVMT-BIP is integrated in the BIP tool suite [6]. The BIP (Behavior,

Interaction, Priority) framework is a powerful and expressive framework for the formal construction of het-
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erogeneous systems. RVMT-BIP takes as input a BIP CBS and a monitor description for a property, and

outputs a new BIP system whose behavior is monitored against the property while running concurrently.

RVMT-BIP uses the following modules:

– Module Atomic Transformation takes as input the initial BIP system and a monitor description. From

the input abstract monitor description, it extracts the list of components, and the set of their states and

variables that influence the truth-value of the property and are used by the monitor. Then, this module

instruments the atomic components in the extracted list so as to observe their states and the values of

the variables. Finally, the transformed components and the original version of the components that do

not influence the property are returned as output.

– Module Building RGT takes as input the initial BIP system and a monitor description and produces

component RGT (Reconstructor of Global Trace) which reconstructs and accumulates global states

at runtime to produce “on-the-fly" the global trace.

– Module Building Monitor takes as input the initial BIP system and a monitor description and then

outputs the atomic component implementing the monitor (following [39]). Component Monitor

receives and consumes the reconstructed global trace generated by component RGT at runtime and

emits verdicts.

– Module Connections constructs the new composite and monitored component. The module takes as

input the output of the Atomic Transformation, Building RGT and Building Monitor modules and

then outputs a new composite component with new connections. The new connections are purposed to

synchronize instrumented components and component RGT in order to transfer updated states of the

components to RGT. Instrumented components interact with RGT independently and concurrently.
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Monitoring Distributed BIP Models

Chapter abstract

In this chapter, we apply the instrumentation method presented in Chapter 6 (p. 49) on a distributed

BIP model. The instrumented model generates events at runtime which are used for computation lattice

construction. The application of our monitoring approach, presented in Section 7.2 (p. 69), is introduced

as a tool RVDIST, which receives events and evaluates the behavior of a distributed system on-the-fly in

the observer level.

10.1 Model Transformation of Distributed BIP Models

We apply the instrumentation presented in Chapter 6 (p. 49) on a distributed BIP model defined in Sec-

tion 8.2 (p. 101). The vector clock exchange between a shared component and the associated schedulers

can be applied on the existing communication channels of a distributed BIP model. Indeed, we merge the

controllers (defined in Section 6.1, p. 50) with the distributed components and the required data variables

are attached to their existing ports.

Definition 10.1 (Transformation of a scheduler of a distributed BIP model). For a scheduler S = (P,L, T,X)

as per Definition 8.8 (p. 102), we define an instrumented scheduler Sr = (P r, Lr, T r, Xr) such that:

– Xr = X ∪{vc}∪{bi | i ∈ [1 . . |B|]∧Bi ∈ Bs} where vc is a |S|-tuples and bi is a Boolean variable,

– P r = P ∪ {pea | a ∈ Int ∧managed(a) = S} ∪ {peβi | i ∈ scope(S)}.

– For each set of transitions {(l, pia, g, f, l′) | Bi ∈ involved(a) ∧ Bi ∈ Bs} ∈ T associated to

119
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the notification of shared components involved in interaction a, we include a corresponding set

{(l, pia, g, f ; [bi := true], l′) | Bi ∈ involved(a) ∧ Bi ∈ Bs} ∈ T r such that port pia carries the

value of variable vc.

– For each set of transitions {(l, pia, g, f, l′) | Bi ∈ involved(a)} ∈ T associated to the notification

of the components involved in interaction a, we include a new transition (l′′, pea, true, [vc[j] :=

vc[j] + 1], l′′′) ∈ T d to send the action event to the observer, where j ∈ [1 . .|S|] is the index of

scheduler S.

– For each transition (l, βi, g, f, l
′) ∈ T associated to the reception of the update state of shared com-

ponent Bi, we include a transition (l, βi, g, f ; [vc = max(vc, vc′)], l′) ∈ T r such that port βi carries

vector clock vc′ stored in the shared component.

– For each transition (l, βi, g, f, l
′) ∈ T , associated to the reception of the update state of shared com-

ponent Bi, we include new transition (l′′, peβi , (g ∧ bi), f ; [bi := false], l′′′) ∈ T r to send the update

event to the observer,

– For each interaction (l, βi, g, f, l
′) ∈ T , associated to the reception of the update state of non-shared

componentBi, we include new transition(l′′, peβi , g, f, l
′′′) ∈ T r send the update event to the observer.

We define transformation of distributed shared atomic component.

Definition 10.2 (Transformation of distributed shared atomic component). For a distributed shared atomic

component Bd = (P d, Ld, T d, Xd) as per Definition 8.7 (p. 101), we define an instrumented component

Bdr = (P d
r
, Ld, T d

r
, Xdr) such that Xdr = Xd ∪ {vc} where vc is a |S|-tuples. The set of the ports

P d
r

= P d with the difference that ports in P dr carry the value of variable vc. The set of transitions T dr is

defined as follows:

– For each transition (l, p, g, f, l′) ∈ T d associated to a notification from a scheduler Sj to execute an

action (i.e., p ∈ P ) we include transition (l, p, g, f ; [vc = max(vc, vc′)], l′) ∈ T dr where vc′ is the

value of the vector clock of scheduler Sj carried with port p and sent to the shared component.

– For each transition (l, βj , g, f, l′) ∈ T d associated to notifying scheduler Sj about the updated state

of the shared component, we include transition (l, βj , g, f, l′) ∈ T dr where port βj carries the value

of vc and sends it to scheduler Sj .

We define a new atomic component in charge of accumulating the events sent from schedulers.

Definition 10.3 (Observer). Component observer is defined as a tuple O = (P,L, T,X)

– P = {pa | a ∈ Int} ∪ {βji | i ∈ [1 . .|B|] ∧ j ∈ [1 . .|S|] ∧Bi ∈ scope(Sj)} is the set of ports,



10.1. MODEL TRANSFORMATION OF DISTRIBUTED BIP MODELS 121
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f1
[vc], b1 = true p1

r1
[vc], b1 = true β1[vc ′], vc = max(vc, vc ′)

Worker d
r

1

exec[vc ′], vc = max(vc, vc ′) β1[vc] finish[vc ′], vc = max(vc, vc ′) reset [vc ′], vc = max(vc, vc ′) β2[vc]

Observer

peex12
[e], vc[1] + + β1[e], b1 = false pef1[e], vc[2] + + per1[e], vc[2] + + β1[e], b1 = false
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Figure 10.1: Model transformation of Example 8.9 (p. 102)

– L = {l} is the set consists of one location,

– X is the set of variables.

– T = {(l, p, true,MAKE, l) | p ∈ P} is the set of transitions.

Ports are dedicated to events. The observer receives action events associated to the execution of interaction

a ∈ Int through port pa so that the corresponding vector clock is carried with the port. The observer

receives update events associated to the β actions of the components. Port βji receives an update state of

component Bi which is sent by scheduler Sj to the observer. the reception of each event triggers a transition

which calls Algorithm MAKE (see Algorithm 7.1, p. 75) augmented with formula progression defined in

Definition 7.41 (p. 86).

Example 10.4 (Transformation of distributed BIP model). Figure 10.1 depicts the transformed version of

distributed BIP model depicted in Figure 8.9 (p. 102). In this example we only show the communications

among the transformed shared component Workerd
r
1, schedulers and observer. In component Workerd

r
1,

ports carry the value of vector clock, either to receive from a scheduler (i.e., vc′) or to send the local vector

clock (i.e., vc). For the sake of simpler presentation, the new assignments of the transitions labeled by

the ports are shown next to the ports name. Generating the associated events is done using the existing

send/receive channels and the extra messages are due to sending the generated events to the observer.
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Figure 10.2: Overview of RVDIST work-flow

10.2 Implementation of Computation Lattice Construction

We present an implementation of our monitoring approach in a tool called RVDIST. RVDIST is a prototype

tool implementing the algorithms presented in Section 7.2 (p. 69).

RVDIST Work-Flow. RVDIST is a prototype tool implementing algorithm MAKE enhanced with formula

progression technique presented in Section 7.2.5 (p. 85), written in the C++ programming language. It

consists of roughly 900 lines of code. RVDIST takes as input a configuration file describing the architecture

of the distributed system (i.e., number of schedulers, number of components, initial state, LTL formula to be

monitored, mapping of atomic propositions to components) and a list of events. Whenever an event is given

to RVDIST, it invokes the monitoring algorithm MAKE (Algorithm 7.1, p. 75) to construct the computation

lattice and simultaneously carries out the monitoring by formula progression over the constructed lattice.

RVDIST outputs the evaluation of the constructed lattice by reporting the number of observed events, the

number of existing nodes of the constructed lattice, the number of nodes which have been removed from

the lattice due to optimizing the size of the lattice, the vector clock of the frontier node, the number of paths

from the initial node to the frontier node which have been monitored (the set of all compatible global-traces),

the set of formulas associated to the frontier node. Figure 10.2 depicts the work-flow of RVDIST.

RVDIST works with a sequence of events, and events can be produced from any distributed system with

the semantics that can be modeled with LTSs. Therefore, RVDIST can be easily adapted to runtime monitor

many distributed systems, either component-based or monolithic. One need to instrument the system to

generate the decent events format.
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Evaluation

Chapter abstract

In this chapter, we present the results of a set of experiments to evaluate our monitoring algorithms

presented in Chapter 7 (p. 61). We present the systems and properties used in our case studies. We

make experiments on four multi-threaded systems with RVMT-BIP and on two distributed systems with

RVDIST, where each system is monitored against dedicated properties. We present the experimental

results and discuss about the obtained results in terms of the performance of the monitoring techniques.

11.1 Evaluation of Monitoring Multi-threaded CBS

11.1.1 Case Studies

We present some case studies on executable BIP systems conducted with RVMT-BIP.

Process Completion of System Demosaicing

Demosaicing is an algorithm for digital image processing used to reconstruct a full color image from the

incomplete color samples output from an image sensor. Figure 11.1 (p. 124) shows a simplified version

of the the processing network of Demosaicing. Demosaicing contains a Splitter and a Joiner process, a

pre-demosaicing (Demopre) and a post-demosaicing (Demopost) process and three internal demosaicing

Demo processes that run in parallel. The real model contains ca. 1,000 lines of code, consists of 26

atomic components interacting through 35 interactions. We consider two specifications related to process

completion:

123
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Splitter Demopre Demo2

Demo1

Demo3

Demopost Joiner

Figure 11.1: Processing network of system Demosaicing

ϕ1: It is necessary that all the internal demosaicing units finish their process before the post-demosaicing

unit starts processing. The post-demosaicing unit receives the output results of internal demosaic-

ing units through port getimg . We add variable port to record the last executed port. Each demo-

saicing unit has a boolean variable done which is set to true whenever the demosaicing process

completes. This requirement is formalized as property ϕ1 defined by the automaton depicted in Fig-

ure 11.2a (p. 125) where the events are e1 : Demopost .port == getimg and e2 : (Demo1 .done ∧
Demo2 .done∧Demo3 .done). From the initial state s1, the automaton moves to state s2 when all the

internal demosaicing units finish their process. Receiving the processed images by post-demosaicing

causes a move from state s2 to s1.

ϕ2: Moreover, internal demosaicing units (Demo1 , Demo2 , Demo3 ) should not start the demosaicing

process until the pre-demosaicing unit finishes its process. The pre-demosaicing unit sends its out-

put to the internal demosaicing units through port transmit and each internal demosaicing unit starts

the demosaicing process by executing a transition labeled by port start . This requirement is for-

malized as property ϕ2 which is defined by the automaton depicted in Figure 11.2b (p. 125) where

e1 : Demopre.port == transmit , e2 : Demo1 .port == start , e3 : Demo2 .port == start and

e4 : Demo3 .port == start . From the initial state s1, whenever the pre-demosaicing unit transmits

its processed output to the internal demosaicing units, the automaton moves to state s2. Internal demo-

saicing units can start in different order. Moreover, all demosaicing units must eventually start their

internal process and the automaton reaches state s12. From state s12, the automaton moves back to

state s2 whenever the pre-demosaicing unit sends the next processed data to the internal demosaicing

units.

Data-freshness of System Reader-WriterV1

System Reader-WriterV1 (ca. 130 LOC) consists of a set of independent composite components. Each

composite component consists of four components: a Reader , a Writer , a Clock , and a Poster (in total,

12 components and 9 interactions). Reader and Writer communicate with each other through Poster . The
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Figure 11.2: Automata of properties of demosaicing

data generated by Writer is written in a Poster that can be accessed by Reader . The Reader-Writer model

is presented in Figure 11.3 (p. 126). We consider a specification related to data freshness:

ϕ3: It is necessary that the data is up-to-date: component Reader must read recent data produced by

component Writer . If t1 and t2 are the moments of reading and writing actions respectively, then

the difference between t2 and t1 must be less than a specific duration δ, i.e., (t2 − t1) ≤ δ. In the

model, the time counter is implemented by a component Clock , and the tick transition occurs every

second. This requirement is formalized as property ϕ3 which is defined by the automaton depicted

in Figure 11.4a (p. 127), where δ = 2, e1 : Writer .port == write , e2 : Clock .port == tick and

e3 : Reader .port == read . Whenever Writer writes into Poster , the automaton moves from the

initial state s1 to s2. When Reader reads Poster , the automaton moves from s2 to s1. Reader is

allowed to read Poster after one tick transition. In this case, the automaton moves from s2 to s3 after

the tick , and then moves from s3 to s1 after reading Poster . ϕ3 also allows to read Poster after two

tick transitions. In this case, the automaton moves from s2 to s4 after the first tick , then moves from

s4 to s3 on the second tick , and finally moves from s3 to s1 after reading Poster .

Execution Order of System Reader-WriterV2

System Reader-WriterV2 (ca. 150 LOC) is a more complex version of Reader-WriterV1 and involves

several writers. This system has six components: Reader , Writer1 , Writer2 , Writer3 , Clock and Poster .

The Writers are synchronized. Reader and Writers communicate with each other through Poster . The data

generated by each writer is written to Poster and can then be accessed by Reader . Having several writers,

a more complex specification on the execution order can be defined. We consider a specification related to

the execution order:
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Figure 11.3: Model of system Reader-Writer

ϕ4: The writers should periodically write data to a poster in a specific order. The specification concerns 3

writers: Writer1 , Writer2 and Writer3 . During each period, the writing order must be as follows:

Writer1 writes to the poster first, then Writer2 can write only when Writer1 has finished writing to

the poster, Writer3 can write only when Writer2 finishes writing to the poster, and the same goes on

for the next periods. To do so, each writer is assigned a unique id that is passed to the poster when

it starts using the poster. This id is then used to determine the last writer that used the poster. For

example, when Writer2 wants to access the poster, it has to check whether the id stored in the poster

corresponds to Writer1 or not.

This requirement is formalized as property ϕ4 which is defined by the automaton depicted in Fig-

ure 11.4b (p. 127) where:

– e1 : (Writer1 .port == write ∧ Poster .port == write ∧ Clock .port == getTime),

– e2 : (Writer2 .port == write ∧ Poster .port == write ∧ Clock .port == getTime),

– e3 : (Writer3 .port == write ∧ Poster .port == write ∧ Clock .port == getTime).

When Writer1 writes to the poster, the automaton moves from initial state s1 to state s2. From state

s2, the automaton moves to state s3 when Writer2 writes to the poster. From state s3, the automaton

moves to the initial state s1 when Writer3 writes to the poster. This writing order must always be

followed.

Distribution of Tasks in System Task

We consider our running example system Task and a specification of the homogeneous distribution of the

tasks among the workers:
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s1start e1 ∧ e2 ∧ e3

Figure 11.5: Automaton of the property of system Task

ϕ5: The satisfaction of this specification depends on the execution time of each worker. Different tasks

may have different execution times for different workers. Obviously, the faster a worker completes

each task, the higher is the number of its accomplished tasks. After executing a task, the value of

the variable x of a worker is increased by one. Moreover, the absolute difference between the values

of variable x of any two workers must always be less than a specific integer value (which is 3 for

this case study). This requirement is formalized as property ϕ5 which is defined by the automaton

depicted in Figure 11.5 where e1 : |worker1 .x − worker2 .x |< 3 , e2 : |worker2 .x −worker3 .x |< 3

and e3 : |worker1 .x −worker3 .x |< 3 . The property holds as long as e1, e2 and e3 hold.

11.1.2 Evaluation Principles

For each system and all its properties, we synthesized a BIP monitor following [38, 39] and combined

it with the CBS output from RVMT-BIP. We obtain a new CBS with corresponding RGT and monitor

components. We run each system by using various numbers of threads and observe the execution time.

Executing these systems with a multi-threaded controller results in a faster run because the systems benefit

from the parallel threads. Additional steps are introduced in the concurrent transitions of the system. Note,

these are asynchronous with the existing interactions and can be executed in parallel. These systems can

also execute with a single-threaded controller which forces them to run sequentially. Varying the number of

threads allows us to assess the performance of the (monitored) system under different degrees of parallelism.

In particular, we expected the induced overhead to be insensitive to the degree of parallelism. For instance,

an undesirable behavior would have been to observe a performance degradation (and an overhead increase)

which would mean either that the monitor sequentializes the execution or that the monitoring infrastructure
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Table 11.1: Results of monitoring Demosaicing, Reader-WriterV1, Reader-WriterV2, and Task with RVMT-
BIP

system
# executed

interactions

execution time and overhead according to the number of threads
# events

# extra executed

interactions1 2 3 4 5 6 7 8 9 10

Demosaicing (26,35) 1,300 18.98 10.24 7.75 6.85 6.58 6.09 6.33 6.45 6.29 6.27 n/a n/a

Demosaicing (27,69)

ϕ1 (11)
3,051

19.02 11.53 8.17 7.43 6.68 6.50 6.27 6.05 6.03 6.18
1,300 1,751

0.1% 12.6% 5.4% 8.5% 4.3% 6.6% < 0.1% < 0.1% < 0.1% < 0.1%

Demosaicing (27,46)

ϕ2 (4)
1,850

18.68 11.05 7.65 7.80 6.77 6.38 6.22 6.45 6.17 6.35
400 550

< 0.1% 7.9% < 0.1% 13.8% 2.8% 4.8% < 0.1% < 0.1% < 0.1% < 0.1%

Reader-WriterV1 (12,9) 120,000 61.48 29.67 20.03 20.00 20.05 20.21 20.60 21.54 21.92 22.13 n/a n/a

ReaderWriterV1 (13,12)

ϕ3 (3)
200,000

62.53 38.29 21.96 22.28 22.62 22.71 22.88 23.48 24.15 24.47
40,000 80,000

1.6% 27.7% 9.6% 11.4% 12.8% 12.4% 11.0% 9.0% 10.1% 10.5%

Reader-WriterV2 (6,7) 20,000 32.06 21.45 12.04 11.37 11.33 11.37 11.44 11.49 11.53 11.58 n/a n/a

ReaderWriterV2 (7,12)

ϕ4 (5)
85,000

33.92 22.72 13.90 13.77 14.09 14.36 14.83 15.18 15.41 15.57
20,000 65,000

5.8% 5.9% 15.4% 21.1% 24.3% 26.2% 29.6% 32.1% 33.5% 34.4%

Task (4,10) 399,999 117.28 70.18 60.91 60.06 58.98 60.01 60.93 61.77 63.13 65.45 n/a n/a

Task (5,16)

ϕ5 (3)
600,197

123.98 71.73 62.28 63.26 62.79 62.78 63.35 64.57 65.61 66.27
100,198 200,198

5.7% 2.2% 2.2% 5.3% 6.4% 4.4% 3.9% 4.5% 3.9% 1.2%

is not suitable for multi-threaded systems. We also extensively tested the functional correctness of RVMT-

BIP, that is whether the verdicts of the monitors are sound and complete.

11.1.3 Results and Conclusions

Performance evaluation. Table 11.1 and Table 11.2 (p. 129) report the timings obtained when check-

ing the following specifications: complete process property on Demosaicing, data freshness and execution

ordering property on Reader-Writer systems, and task distribution property on Task, with RVMT-BIP and

RV-BIP respectively. Each measurement is an average value obtained over 100 executions of these systems.

In these tables, the columns have the following meanings:

– Column system indicates the systems. System in italic format represents the monitored version of the

initial system. Moreover, (x, y) in front of the system name means that x (resp. y) is the number

of components (resp. interactions) of the system. The monitored property is written below each

monitored system name with a value (z) which indicates that z components have variables influencing

the truth-value of the property (and were thus instrumented by RVMT-BIP or RV-BIP).

– Column # executed interactions indicates the number of interactions executed by the engine which

also represents the number of functional steps of the system.
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Table 11.2: Results of monitoring Demosaicing, Reader-WriterV1, Reader-WriterV2, and Task with RV-BIP

system
# executed

interactions

execution time and overhead w.r.t. different number of threads
# events

# extra executed

interactions1 2 3 4 5 6 7 8 9 10

Demosaicing (26,35) 1,300 18.98 10.24 7.75 6.85 6.58 6.09 6.33 6.45 6.29 6.27 n/a n/a

Demosaicing (27,37)

ϕ1 (11)
2,450

19.66 27.34 32.28 32.61 33.03 32.23 31.17 31.24 31.22 31.81
1,300 1,300

3.5% 167% 316% 376% 402% 429% 392% 384% 369% 407%

Demosaicing (27,37)

ϕ2 (11)
1,700

19.50 14.79 13.87 13.11 13.13 12.75 11.18 11.34 11.19 11.16
400 400

2.7% 44.4% 78.8% 91.4% 99.7% 109% 76.5% 75.7% 78.0% 78.0%

Reader-WriterV1 (12,9) 120,000 61.48 29.67 20.03 20.00 20.05 20.21 20.60 21.54 21.92 22.13 n/a n/a

Reader-WriterV1 (13,11)

ϕ3 (3)
1600,000

61.97 37.77 21.94 22.13 22.62 23.14 25.09 26.21 26.73 27.18
40,000 40,000

0.8% 26.0% 9.5% 10.6% 12.8% 14.5% 21.8% 21.7% 21.9% 22.7%

Reader-WriterV2 (6,7) 20,000 32.06 21.45 12.04 11.37 11.33 11.37 11.44 11.49 11.53 11.58 n/a n/a

Reader-WriterV2 (7,9)

ϕ4 (5)
40,000

33.11 23.80 13.31 13.32 13.37 13.82 14.28 14.35 14.79 14.96
20,000 20,000

3.2% 10.9% 10.5% 17.1% 18.0% 21.5% 24.8% 24.8% 28.2% 29.2%

Task (4,10) 399,999 117.28 70.18 60.91 60.06 58.98 60.01 60.93 61.77 63.13 65.45 n/a n/a

Task (5,12)

ϕ5 (3)
500,197

121.61 70.12 72.25 75.11 75.66 80.54 81.62 84.58 89.65 90.21
100,198 100,198

3.6% < 0.1% 18.6% 25.0% 28.2% 34.0% 33.9% 36.9% 42.01% 37.8%

– Columns execution time and overhead according to the number of threads report (i) the execution

time of the systems when varying the number of threads and (ii) the overhead induced by monitoring

(for monitored systems).

– Column events indicates the number of reconstructed global states (events sent to the associated mon-

itor).

– Column extra executed interactions reports the number of additional interactions (i.e., execution of

interactions which are added into the initial system for monitoring purposes).

As shown in Table 11.1 (p. 128), using more threads reduces significantly the execution time in both the

initial and transformed systems. Comparing the overheads according to the number of threads shows that

the proposed monitoring technique (i) does not restrict the performance of parallel execution and (ii) scales

up well with the number of threads.

Performance comparison of RV-BIP and RVMT-BIP. To illustrate the advantages of monitoring multi-

threaded systems with RVMT-BIP, we compared the performance of RVMT-BIP and RV-BIP ([39]); see

Table 11.1 (p. 128) and Table 11.2 for the results. Monitoring with RV-BIP amounts to use a standard

runtime verification technique, i.e., not tailored to multi-threaded systems. At runtime, the RV-BIP monitor

consumes the global trace (i.e., sequence of global states) of the system (where global snapshots are obtained
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by synchronization among the components) and yields verdicts regarding property satisfaction. It has been

shown in [39] that RV-BIP efficiently handles CBSs with sequential executions.

In the following, we highlight some of the main observations and draw conclusions:

1. Fixing a system and a property, the number of events received by the monitors of RV-BIP and RVMT-

BIP are similar, because both techniques produce monitored systems that are observationally equiva-

lent to the initial ones [39, 72]. Moreover, increasing the number of threads does not change the global

behavior of the system, therefore the number of events is not affected by the number of threads.

2. Fixing a system and a property, the number of extra interactions imposed by RVMT-BIP is greater than

the one imposed by RV-BIP. In the monitored system obtained with RVMT-BIP, after the execution

of an interaction, the components that are involved in the interaction and influencing the truth-value

of the property independently send their updated state to component RGT (whenever their internal

computation is finished). In the monitored system obtained with RV-BIP, after the execution of an

interaction influencing the truth value of the property, all the updated states will be sent at once

(synchronously) to the component monitor. Hence, the evaluation of an event in RV-BIP is done

in one step and the number of extra interactions imposed by RV-BIP is the same as the number of

monitored events (see Table 11.2, p. 129).

3. In spite of the higher number of extra interactions imposed by RVMT-BIP, during a multi-threaded

execution, the fewer synchronous interactions of monitored components imposed by RV-BIP induces

a significant overhead. This phenomenon is especially visible for the two most concurrent systems:

Demosaicing and Task.

4. On the independence of components: Consider systems Demosaicing and Task, which consist of in-

dependent components with low-level synchronization and high degree of parallelism, and for which

the monitored property requires the states of these independent components. On the one hand, at run-

time, RV-BIP imposes synchronization among the components whose execution influences the truth

value of the property and the component monitor. It results in a loss of the performance when execut-

ing with multiple threads. On the other hand, RVMT-BIP collects updated states of the components

independently right after their state update. Consequently, with RVMT-BIP, the system performance

in the multi-threaded setting is preserved (systems Demosaicing and Task) as a negligible overhead

is observed. This is a usual and complex problem which depends on many factors such as platform,

model, external codes, compiler, etc. This renders the computation of the number of threads leading

to peak performance complex.
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5. Synchronization of independent components: In RV-BIP, the thread synchronizations and the syn-

chronization of components with the monitor induce a huge overhead especially when concurrent

component are concerned with the desired property (system Demosaicing and property ϕ1).

6. Synchronized components: We observe that, for system ReaderWriterV2, the overhead obtained with

RVMT-BIP monitor is slightly higher than the one obtained with RV-BIP monitors. Indeed, system

ReaderWriterV2 consists of 3 writers synchronized by a clock component. Moreover, property ϕ4 is

defined over the states of all the writers. As a matter of fact, if one of the writers needs to communicate

with component RGT, then all the other writers need to wait until the communication ends. That is,

when the concurrency of the monitored system is limited by internal synchronizations, the global-state

reconstruction performed by RVMT-BIP is less effective than the technique used by RV-BIP from a

performance point of view.

7. Synchronized components in independent composite components: If the initial system (i) consists of

independent composite components working concurrently, (ii) the components in each composite are

highly synchronized (low degree of parallelism in each composition) and (iii) the desired property is

defined over the states of the components of a specific composite component, then RVMT-BIP per-

forms similarly to RV-BIP. Indeed, in the monitored system, the independent entities (i.e., composite

component) are able to run as concurrently as in the initial system and the overhead is caused by the

synchronized components. However, by increasing the number of threads, RVMT-BIP monitors offer

better performance (system Reader-WriterV1).

11.2 Evaluation of Monitoring Distributed CBS

We present the evaluation of our monitoring approach on two case studies carried out with RVDIST.

11.2.1 Case Studies

We present a realistic example of a robot navigation and a model of two phase commit protocol (TPC). The

two case studies are executable BIP systems.

Robotic Application

We consider a navigating robot system consisting of a set of modules ROBLOCO, ROBLASER, ROBMAP

and ROBMOTION. ROBLOCO is in charge of the robot low-level controller to track the speed and the

position of the robot using three main units controller, signal and manager. The motor controller receives
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data from the motor signal. In parallel, the manager, which is associated to the odo task activities to

measure the distance traveled by the robot, reads the signals from the encoders on the wheels and produces

a current position. ROBLASER is in charge of the laser to produce the free space in the laser’s range

tagged with the position where the scan has been made. ROBMAP aggregates the successive scanned

data. ROBMOTION has one task plan which, given a goal position, computes the appropriate speed to

reach it using the current position, and avoiding obstacles. We deal with the most complex module, i.e.,

ROBLOCO, involving three schedulers in charge of the execution of the dedicated actions. ROBLOCO

(ca. 1200 LOC) has 34 components (with a total number of 265 ports and 193 control locations) and 117

multi-party interactions synchronizing the actions of components. Three schedulers are in charge of the

execution of the dedicated actions.

To prevent deadlocks in the system, it is required that whenever the controller is free, at some point in

future, the signal must start sending data to the controller before the manager starts managing a new odo

task. The deadlock freedom requirement can be defined as LTL formula ϕ1.

ϕ1: G
Ä
ControlFree =⇒ (X¬ManagerStartodo USignalStart)

ä
.

Two Phase Commit (TPC)

We consider the distributed transaction commit [52] problem where a set of nodes called resource managers

{rm1 , . . . , rmn} have to reach agreement on whether to commit or abort a distributed transaction. Resource

managers are able to locally commit or abort a transaction based on a local decision. In a fault-free system,

it is required the global system to commit as a whole if each resource manager has locally committed, and

to abort as a whole if any of the resource managers has locally aborted. In case of global abort, locally-

committed resource managers may perform roll-back steps to undo the effect of the last transaction [89].

Two phase commit protocol is a solution proposed by [51] to solve the transaction commit problem. It

uses a transaction manager that coordinates between resource managers to ensure they all reach one global

decision regarding a particular transaction. The global decision is made by the transaction manager based on

the feedback from resource managers after making their local decision (LocalCommit/LocalAbort).

The protocol, running on a transaction, uses a client, a transaction manager and a non-empty set of

resource managers which are the active participants of the transaction. The protocol starts when client sends

remote procedure to all the participating resource managers. Then each participating resource manager rmi

makes its local decision based on its local criteria and reports its local decision to transaction manager.

LocalCommiti is true if resource manager rmi can locally-commit the transaction, and LocalAborti

is true if resource manager rmi cannot locally-commit the transaction. Each participant resource managers
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Table 11.3: Results of monitoring ROBLOCO and TPC with RVDIST

System property |ϕ| # observed events
# lattice size

frontier node VC
optimized not-optimized

ROBLOCO ϕ1 3 3463 17 10602 (730,352,485)

TPC
ϕ2 10

4709 11 2731 (402,402,402,601)
ϕ3 26

stays in wait location until it hears back from transaction manager whether to perform a global commit or

abort for the current transaction. After all local decisions have been made and reported to the transaction

manager, the latter makes a global decision (GlobalCommit/GlobalAbort) that all the system will

agree upon. When GlobalCommit is true, the system will globally-commit as a whole, and it will abort as

a whole when GlobalAbort is true. We consider two specifications related to TPC protocol correctness:

ϕ2: G
Ä∧n

i=1(LocalAborti =⇒ X(¬LocalAborti ∧ ¬LocalCommiti) UGlobalAbort)
ä
,

ϕ3: G
Ä∧n

i=1 LocalCommiti =⇒ X
Ä∧n

i=1(¬LocalAborti ∧ ¬LocalCommiti)
ä

UGlobalCommit
ä
.

Property ϕ2 states that, sending locally abort in any resource managers for a current transaction implies the

global abort (GlobalAbort) on that transaction before the resource manager locally aborts or commits

the next transaction, that is, none of the resource managers commit. Property ϕ3 states that, if all the

resource managers send locally commit for a current transaction, then all the resource managers commit the

transaction (GlobalCommit) before the resource managers locally aborts or commits the next transaction.

For each system we applied the model transformation defined in Section 6.1 and run them in a dis-

tributed setting. Each instrumented system produces a sequence of event which is generated and sent from

the controllers of its schedulers. The events are sent to the RVDIST where the associated configuration

file is already given. Upon the reception of each event, RVDIST applies the online monitoring algorithm

introduced in Section 7.2.5 and outputs the result consists of the information stored in the constructed com-

putation lattice and evaluation of the desired LTL property so far.

11.2.2 Results and Conclusions

Although we can not compare the performance of RVDIST with RVMT-BIP or RV-BIP in terms of exe-

cution time, we comment about the results obtained by monitoring the two case studies.

Table 11.3 and Figure 11.6 (p. 135) present the results checking specifications deadlock freedom on

ROBLOCO and protocol correctness on TPC. The columns of the table have the following meanings:
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– Column |ϕ| shows the size of the monitored LTL formula. Note, the size of formulas are measured in

terms of the operators entailment inside it, e.g., G(a ∧ b) ∨ Xc is of size 2.

– Column observed event indicates the number of action/update events sent by the controllers of the

schedulers.

– Column lattice size reports the size of constructed lattice using optimization algorithm is used vs. the

size of constructed lattice when non-optimized algorithm is used.

– Column frontier node VC indicated the vector clock associated to the frontier node of the constructed

lattice.

Figures 11.6a, 11.6b (p. 135) show how the size of constructed lattice varies in two systems as they evolve.

Having shared components in system is not the only reason to have a small lattice size, what is more im-

portant is how often the shared components are used as a part of executed interactions. The more execution

with shared components results the more dependencies in the generated events and thus the smaller lattice

size.

In system ROBLOCO, after receiving 3463 events, the size of the obtained computation lattice is 17,

whereas the size of non-optimized lattice is 10602 which is quite large in terms of storage space and it-

eration process. It shows how efficient our optimization algorithm minimize and optimize the monitoring

process. Figure 11.6a (p. 135) shows how the size of constructed lattice varies over time with the evolution

of ROBLOCO system. Although what we need in the constructed computation lattice as the verdicts of

the monitor output is only stored in the frontier node, but the rest of the nodes are necessary to be kept at

runtime in order to extend the lattice in case of reception of new events.

In system TPC we also obtained a very small size of the lattice after the reception of 4709 events. As it

is shown in Table 11.3 (p. 133) the size and complexity of the LTL property does not change the structure

of the constructed lattice, it only effects on the progression process. The frontier-node vector clock shows

how many interactions have been executed by each scheduler at the end of the system run.

Our monitoring algorithm implemented in RVDIST provide a lightweight tool to runtime monitor the

behavior of a distributed CBS. RVDIST keeps the size of the lattice small even for a long run. The model

instrumentation defined in Chapter 6 (p. 49) can be adapted on distributed BIP models, so that the commu-

nication between the controllers are done through the existing send/receive message channels. The extra

messages are induced by to the communication between the controllers of schedulers and the observer. For

each event the observer receives a message corresponding to the event.
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Figure 11.6: Optimization algorithm effect on the size of the constructed lattice

Discussion: Shared Component vs. Lattice Size In the following we investigate how the number of

shared components affects the size of the computation lattice over a very simple example of a distributed

CBS with multiparty interactions.

Example 11.1 (Shared component, lattice size). Let us consider a component-based system with four in-

dependent components Comp1, . . . ,Comp4. Each component has two actions Action1,Action2 which are

designed to only be executed with the following order: Action1.Action2.Action1 and then the component

terminates. We distribute the execution of actions using four schedulers Sched1, . . . , Sched4. For the sake

of simplicity, we consider each action of the components as a singleton interaction of the system such that

Act = {Compi.Action1,Compi.Action2 | i ∈ [1 . . 4]}. Each scheduler manages a subset of Act . We define
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Figure 11.7: Lattice construction vs. number of shared components

various partitioning of the interactions to obtain the following settings:

1. Each scheduler manages the actions of only one component, such that the set of actions Compi.Action1

and Compi.Action2 are managed by Scheduler Schedi, for i ∈ [1 . . 4]. In this setting, no component

is in the scope of more that one scheduler.

2. We consider setting 1 with the only difference that action Comp1.Action2 is managed by scheduler

Sched2. In this setting, Comp1 is a shared component.

3. We consider setting 2 with the only difference that action Comp2.Action2 is managed by scheduler

Sched3. In this setting, Comp1 and Comp2 are shared components.

4. We consider setting 3 with the only difference that action Comp3.Action2 is managed by scheduler

Sched4. In this setting, Comp1, Comp2 and Comp3 are shared components.

5. We consider setting 4 with the only difference that action Comp4.Action2 is managed by scheduler

Sched1. In this setting, all the components are shared components.

We design the components to be involved only in three interactions. Therefore, the execution of such a

system in any aforementioned setting generates the same amount of action/update events, that is 12 action

events, 12 update events (24 events in total), no matter which scheduler manages which interaction. The

only difference of the events obtained in those different settings is the vector clock of the action events (their

logical dependencies) and the sender of action/update events. Table 11.4 and Figure 11.7 (p. 136) represent

the results with respect to the above-mentioned settings. Columns in Table 11.4 have the following meaning:
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Table 11.4: Results of lattice construction w.r.t different settings of Example 11.1 (p. 135)

# shared

component

# lattice

nodes

# removed

nodes
# paths

0 175 81 10,681,263

1 88 72 1,616,719

2 56 60 572,847

3 34 52 316,035

4 18 47 251.177

– Column shared component indicates the number of shared components in each setting.

– Column lattice nodes shows the number of the nodes of the constructed lattice in each setting.

– Column removed nodes indicates the number of removed nodes in the lattice using the optimization

algorithm.

– Column path indicates the number of paths of the constructed computation lattice.

Considering the first setting (no shared component), the execution of the system generates a set of concurrent

(independent) action events, in the sense that any two action events from two different schedulers are not

causally related. Therefore, RVDIST constructs a complete (maximal) computation lattice in order to cover

all the compatible global traces. The size of the constructed computation lattice as well as the number of

paths of the lattice decreases when considering more shared components (see Figure 11.7, p. 136).
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12
Related Work

Chapter abstract

In this chapter, we compare our monitoring approach with related work in runtime verification of multi-

threaded and distributed systems.

12.1 Runtime Verification of Multi-Threaded Systems

Several approaches are related to the runtime verification of multi-threaded CBS, as they either target CBSs

or address the problem of concurrently runtime verifying systems.

Runtime Verification of Single-threaded CBSs Dormoy et al. proposed an approach to runtime check

the correct reconfiguration of components at runtime [27]. They propose to check configurations over a

variant of RV-LTL where the usual notion of state is replaced by the notion of component configuration.

RV-LTL is a 4-valued variant of LTL dedicated to runtime verification introduced in [9] and used in [34].

Our approach offers several advantages compared to the approach in [27]. First, our approach is not bound

to temporal logic since it only requires a monitor written as a finite-state machine. This state-machine can

be then generated by several already existing tools (e.g., Java-MOP) since it uses a generic format to express

monitors. Thus, existing monitor synthesis algorithms from various specification formalisms can be re-

used, up to a syntactic adaptation layer. Second, the instrumentation of the initial system and the addition

of the monitor is formally defined, contrarily to [27] where the process is only overviewed. Moreover, our

proposed approach for monitoring multi-threaded CBSs leverages the formal semantics of BIP allowing us

141
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to provide a formal proof of the correctness of the approach. All these features confers to our approach a

higher-level of confidence.

In [38, 39], the authors proposed a first approach for the runtime verification of CBSs. The approach

in [38, 39] takes a CBS and a regular property as input and generates a monitor implemented as a component.

Then, the monitor component is integrated within an existing CBS. At runtime, the monitor consumes the

global trace (i.e., sequence of global states) of the system and yields verdicts regarding property satisfaction.

The technique in [38, 39] only efficiently handles CBSs with sequential executions: if applied to a multi-

threaded CBS, the monitor would sequentialize completely the execution. Hence, the approach proposed in

this thesis can be used in conjunction with the approach in [38, 39] when dealing with multi-threaded CBSs:

(only) the monitor-synthesis algorithm in [38, 39] can be used to obtained a monitor that can be plugged to

the RGT component (defined in this thesis) reconstructing the global states of the system.

Synthesizing Correct Concurrent Runtime Monitors In [44], the authors investigate the synthesis of

correct monitors in a concurrent setting, whereby (i) the system being verified executes concurrently with the

synthesized monitor (ii) the system and the monitor themselves consist of concurrent sub-components. Au-

thors have constructed a formally-specified tool that automatically synthesizes monitors from sHML (adap-

tation of SafeHML (SHML) a sub-logic of the Hennessy-Milner Logic) formulas so as to asynchronously

detect property violation by Erlang programs at runtime. SHML syntactically limits specifications to safety

properties which can be monitored at runtime. Our approach is not bounded to any particular logic. More-

over, properties in our approach are not restricted to safety properties but supports co-safety properties,

and properties that are neither safety nor co-safety properties. Moreover, the monitored properties can ex-

press the desired behavior not only on the internal states of components but also on the states of external

interactions.

Decentralized Runtime Verification The approaches in [11, 32, 7] decentralize monitors for linear-time

specifications on a system made of synchronous black-box components. Moreover, monitors only observe

the outside visible behavior of components to evaluate the formulas at hand. The decentralized monitor

evaluates the global trace by considering the locally-observed traces obtained by local monitors. To locally

detect global violations and satisfactions, local monitors need to communicate, because their traces are only

partial with respect to the global behavior of the system. Given an LTL property ϕ, the objective is to create

sound formula derived from ϕ that can be monitored on each local trace, while minimizing inter-component

communication. However, they assume that the projection of the global trace upon each component is

well-defined and known in advance. Moreover, all monitors consume events from the trace synchronously.
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Inspired by the decentralized monitoring approach to LTL properties in [11], Kouchnarenko and We-

ber [59] defines a progressive FTPL semantics allowing a decentralized evaluation of FTPL formula over

component-based systems. Complementarily, Kouchnarenko and Weber [58] propose the use of temporal

logics to integrate temporal requirements to adaptation policies in the context of Fractal components [19].

The policies are used for specifying reflection or enforcement mechanisms, which refers respectively to

corrective reconfiguration triggered by unwanted behaviors, and avoidance of reconfiguration leading to un-

wanted states. However, the approaches in [58, 59] fundamentally differs from ours because (i) they target

architectural invariants and (ii) our approach is specific to CBSs that can be executed in a multi-threaded

fashion. The components in [58, 59] are seen as black boxes and the interaction model considers only uni-

directional connections. On the contrary, our approach leverages the internal behavior of components and

their interactions for the instrumentation and global-state reconstruction.

Monitoring Safety Properties in Concurrent Systems The approach in [84] addresses the monitoring

of asynchronous multi-threaded systems against temporal logic formulas expressed in MTTL. MTTL aug-

ments LTL with modalities related to the distributed/multi-threaded nature of the system. The monitoring

procedure in [84] takes as input a safety formula and a partially-ordered execution of a parallel asynchronous

system, and then predicts a potential property violation on one of the causally-consistent interleavings of the

observed execution. Our approach mainly differs from [84] in that we target CBSs. Moreover, we assume

a central scheduler and we only need to monitor the unique causally-consistent global trace with the ob-

served partial trace. Also, we do not place any expressiveness restriction on the formalism used to express

properties.

Parallel Runtime Verification of Sequential Programs Berkovich et al. [13, 14] introduce parallel al-

gorithms to speed up the runtime verification of sequential programs against complex LTL formulas using a

graphics processing unit (GPU). Berkovich et al. consider two levels of parallelism: the monitor (i) works

along with the program in parallel, and (ii) evaluates a set of properties in a parallel fashion. Monitoring

threads are added to the program and directly execute on the GPU. The approach in [13, 14] is not tailored

to CBSs and is a complementary technique that adds significant computing power to the system to handle

the monitoring overhead. Note that, as shown by our experiments, our approach preserves the performance

of the monitored system. Finally, our approach is not bound to any particular logic, and allows for Turing-

complete monitors.
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12.2 Runtime Verification of Distributed Systems

In Chapter 2, p. 13 we present work on monitoring distributed systems. In this section we compare our

approach with these once.

Decentralized LTL Monitoring A close work to the approach presented in this thesis has been exposed

in [11]. The authors presented an algorithm for decentralized monitoring LTL formulas for synchronous

distributed systems. Compared to our setting, we target asynchronous distributed component systems.

Moreover, we target partial-state semantics CBSs, where the global states of the systems is not available

at runtime. Hence, instead of having a global trace at runtime, we are dealing with a set of possible partial

traces which possibly could happen during the run of the system.

Model-based runtime analysis of distributed reactive systems. In [8], the authors presented a frame-

work for detecting and analyzing synchronous distributed systems faults in a centralized manner using local

LTL properties that require only the local traces. Compared to our approach, we considered the assump-

tion that the global properties can not be projected and checked on individual components or individual

schedulers. Therefore, local traces can not be directly used for verifying the properties.

Reachability analysis on distributed executions. In [26], the authors presented an algorithm for trace

checking of distributed programs by building the lattice of all reachable global states of the distributed sys-

tem, based on the on-the-fly observation of the partial order of message causality. No monitor has been

proposed in their work for the purpose of verification whereas in our algorithm we synthesize a runtime

monitor which evaluates on-the-fly the behavior of the system based on the reconstructed computation lat-

tice. Moreover, in our distributed setting, schedulers do not communicate directly by sending-receiving

messages, and we deal with partial traces.

Efficient decentralized monitoring of safety in distributed systems. In [83], the authors designed a

method for monitoring safety properties in distributed systems relying on the existing communication among

processes. The main noteworthy difference between their work and our work is that our monitoring algo-

rithm is sound, in the sense that we evaluate the behavior of the distributed system based on all of the

possible partial traces of the distributed system. In our work, each evaluated trace could have happened as

the actual trace of the system, and could have generated the same events.
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Efficient online monitoring of LTL properties for asynchronous distributed systems. In [64], the

authors define an online monitoring to verify any LTL property on a finite sequence of a distributed system.

Our approach mainly differs in that we target distributed CBSs where the traces are defined over the set of

the partial states of the system. Nevertheless, their technique in filtering out the irrelevant event (those that

do not take part in a monitor move) could be used in our work to decrease the size of the constructed lattice.

Detecting temporal logic predicates on the happened-before model. Authors in [82] used CTL for

specifying properties of distributed computation and interpret them on a finite lattice of global states and

check that a predicate is satisfied for an observed single execution trace of the program. We deal with a set

of events at runtime generated by the schedulers which results in a infinite computation lattice. Although

the computation lattice in our method is made of the observed partial states, we could check the satisfaction

of temporal predicates defined over the global states of the system, which mean that we could monitor the

system even if the global state of the is not defined.
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Conclusions

Chapter abstract

In this chapter, we draw the conclusions of our monitoring approaches for multi-threaded and distributed

CBSs. We outline avenues for future work, such as decentralization of the proposed monitor for dis-

tributed CBSs, using static analysis to optimized the instrumentation and monitoring process, going

beyond monitoring by runtime enforcement, and finally extending our on real-time CBSs.

13.1 Summary

In this thesis, we tackled the problem of runtime verification of concurrent CBSs in two different settings:

for muli-threaded and distributed CBSs. The goal is to verify the satisfaction or violation of properties

referring to the global states of the system on-the-fly. To this end, we introduced an abstract semantic model

of CBSs consisting of a set of components, each of which is endowed with a set of actions, and a set of

schedulers. Each scheduler is in charge of executing the dedicated subset of multi-party interactions (joint

actions). The execution of each interaction triggers the set of actions of corresponding components involved

in the interaction. In the concurrent setting, schedulers execute interactions by knowing the partial states of

the system. Therefore, the observable trace of the system is a sequence of partial states which is not suitable

for verifying global-state properties. Moreover, in the distributed setting the total order of the executions of

the interactions is not observable.

Our technique consists of two steps, (i) model instrumentation of the CBSs to extract the events of the

system, and (ii) synthesizes a centralized monitor which collects the events, reconstructs the corresponding
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global trace(s), and verifies the desired properties on-the-fly.

Monitoring Multi-Threaded CBSs. In the multi-threaded setting, where one scheduler manages the ex-

ecution of the interactions, the instrumented system outputs a sequence of totally-ordered events. These

events encode the partial trace of the system. We proved that for each partial trace of a multi-threaded CBS

there exists a unique corresponding global trace, that is the witness trace. The witness trace consists of

a sequence of global states that could be observed as if the system was executed in the sequential setting

(single-threaded). In this setting, our approach (i) integrates a global trace reconstructor, i.e., a component

that receives the events and produces the witness trace at runtime, and (ii) verifies on-the-fly any linear-

time property referring to the global state of the system while preserving the performance and benefits from

concurrency.

We implemented our approach in a prototype tool RVMT-BIP. We evaluated the performance and func-

tional correctness of RVMT-BIP against four case studies. The experimental results show the effectiveness

of our approach and that monitoring with RVMT-BIP induces a cheap overhead at runtime.

Monitoring Distributed CBSs. In the distributed setting, where several schedulers manage the execution

of the interactions, the instrumented system outputs a sequence of partially-ordered events. Since the total

ordering of the events is not observable, we deal with a set of compatible partial traces of the system. We

showed that each compatible partial trace could have occurred as the actual run of the system. Moreover,

for each compatible partial trace, there exists a corresponding-compatible global trace (inspiring from the

witness trace of a multi-threaded CBS). The set of compatible global traces is represented in the form of a

lattice. In this setting, our proposed approach (i) integrates a centralized observer which collects the local

events of all schedulers (ii) constructs the computation lattice, and (iii) verifies on-the-fly any LTL property

over the constructed lattice. We introduced a novel online LTL monitoring technique on the computation

lattice, so that each nodes carries a set of formulas evaluating the set of paths start from the initial node and

end up with the node. The set of formulas attached to the frontier node of the constructed lattice represents

the evaluation of all the compatible global traces with respect to the given LTL formula.

We implemented our monitoring approach in a prototype tool called RVDIST. RVDIST executes in

parallel with the distributed system and takes as input the events generated from each scheduler and outputs

the evaluated computation lattice. The experimental results show that, thanks to the optimization applied

in the online monitoring algorithm, the size of the constructed computation lattice is insensitive to the the

number of received events, and the lattice size is kept reasonable.
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13.2 Future Work

Many opportunities for extending the scope of this thesis remains to be explored. This section presents some

of these research perspectives.

Decentralized monitoring. A first direction for monitoring distributed CBSs is to decentralizing the run-

time monitor, such that the satisfaction or violation of specifications can be detected by local monitors alone.

For distributed CBSs with large number of schedulers, a centralized algorithm requires a single process to

perform high number of computations, and to store very large data. By distributing the monitors we indeed

decrease the load of monitoring process on a single process. Indeed, the centralized monitoring execu-

tion steps must be decomposed into multiple steps, so that these steps are executed by each local monitor

independently.

Static analysis. Another direction is to use static analysis to detect a set of global states that can never

occur at runtime, so that some nodes of the lattice can be ignored and the paths consisting of these nodes

are never explored. Moreover, using static analysis leads to design an adaptive model instrumentation, in

the sense that the runtime monitor only receives events that potentially affect the truth value of the property.

Thus, the computation lattice size and monitoring load is decreased.

Runtime enforcement. Runtime verification might provide a sufficient assurance to check whether or

not the desired property is satisfied. However, for some classes of systems e.g., safety-critical systems, a

misbehavior might be not acceptable. To prevent this, a possible solution is to enforce the desired property so

that the monitor does not only observe the current program execution, but it also controls it in order to ensure

that the expected property is fulfilled. Runtime enforcement was initiated by the work of Schneider [79]

on security automata. Runtime enforcement consists in using a monitor to watch the current execution

sequence and after it whenever it deviates from the property by for instance halting the system. This line of

work has been also studied for program monitoring in [62, 33, 63, 41, 74, 40] and for monitoring sequential

component-based systems in [37].

Timed model. Another possible direction is to extend the proposed framework to runtime verify and

enforce timed specifications on timed components. Recently, the real-time multi-threaded and distributed

CBSs [93, 92] have been proposed, where each interaction has a timing constraint. In this setting, schedulers

take into account the timing constraints before execute any interactions, e.g., before triggering an interaction,
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the scheduler has to ensure that no interaction with an earlier deadline is enabled. In [25], the authors

presented a technique for augmenting vector clocks with real time to enable better ordering of events.
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A.1 Proofs Related to the Approach for Monitoring Multi-Threaded CBS

Before tackling the proof of correctness of our approach, we provide an intuitive description of the proof

content. The correctness of our approach relies on three results.

The first result concerns the witness trace. Given a multi-threaded CBS M⊥ with partial-state semantics

as per Definition 4.2 (p. 40) and the global-state semantics version Ms as per Definition 4.3 (p. 41) such

that M⊥ can execute concurrently and which is bi-similar to Ms. Any trace of an execution of M⊥ can

be related to the trace of a unique execution of Ms, i.e., its witness. Property 7.4 (p. 64) states that any

witness trace corresponds to the execution in global-state semantics that has the same sequence of interaction

executions, i.e., that the witness relation captures the abovementioned relation between a system in global-

state semantics and the corresponding system in partial-state semantics. Property 7.5 (p. 64) states that from

any execution in partial-state semantics, the witness exists and is unique.

The second result states that function RGT builds the witness trace from a trace in partial-state semantics

in an online fashion. Theorem 7.14 (p. 68) states the correctness of this function.

The third result states that the transformed components, the synthesized components, and their con-

nection are correct. That is, the obtained system (i) computes the witness and implements function RGT

(Proposition 9.9, p. 115), and (ii) is bisimilar to the initial system (Theorem 9.16, p. 116).

Proof outline. The following proofs are organized as follows. The proof of Property 7.4 (p. 64) is in

Appendix A.1.1 (p. 152). The proof of Property 7.5 (p. 64) is in Appendix A.1.2 (p. 152). Some intermediate
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lemmas with their proofs are introduced in Appendix A.1.3 (p. 153) in order to prove Theorem 7.14 (p. 68)

in Appendix A.1.4 (p. 156). The proofs of Propositions 7.10 (p. 67) and 9.9 (p. 115) are respectively given in

Appendices A.1.4 (p. 156) and A.1.5 (p. 157). Some intermediate definitions and lemmas with their proofs

are given in Appendix A.1.6 (p. 158) in order to prove Theorem 9.16 (p. 116) in Appendix A.1.7 (p. 160).

A.1.1 Proof of Property 7.4 (p. 64)

We shall prove that:

∀(t1, t2) ∈W . interactions(t1) = interactions(t2),

where W is the witness relation defined in Definition 7.1 (p. 63) (using a bi-simulation relation R), and

interactions(t) is the sequence of interactions of trace t.

Proof. The proof is done by structural induction on W.

– Base case. By definition of W , (init , init) ∈W and interactions(init) = ε.

– Induction case. Let us consider (t1, t2) ∈ W and suppose that interactions(t1) = interactions(t2).

According to the definition of W , there are two rules for constructing a new element in W .

– Consider (t1 ·a·q1, t2 ·a·q2) ∈W such that a ∈ Int and (q1, q2) ∈ R. We have interactions(t1 ·
a · q1) = interactions(t1) · a and interactions(t2 · a · q2) = interactions(t2) · a, and thus the

expected result using the induction hypothesis.

– Consider (t1, t2 · β · q2) ∈W such that (last(t1), q2) ∈ R. We have interactions(t2 · β · q2) =

interactions(t2) and thus the expected result using the induction hypothesis.

A.1.2 Proof of Property 7.5 (p. 64)

We shall prove that:

∀t2 ∈ Tr(M⊥),∃! t1 ∈ Tr(Ms) .(t1, t2) ∈W,

where Ms is a component-based system (with set of traces Tr(Ms)) and M⊥ is the corresponding component-

based system with partial-state semantics (with set of traces Tr(M⊥)).

Proof. First, let us note that from the weak bi-simulation of a global-state semantics model with its corre-

sponding partial-state semantics model [6], we can conclude that, for any trace in the partial-state semantics
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model, there exists a corresponding trace in the global-state semantics model. We prove that the witness

trace is unique by contradiction.

Let us assume that for a trace in partial-state semantics t2 ∈ Tr(M⊥), there exist two witness traces

t′1, t1 ∈ Tr(Ms) s.t. (t1, t2), (t′1, t2) ∈ W and t1 6= t′1. From Property 7.4 (p. 64), interactions(t1) =

interactions(t2) and interactions(t′1) = interactions(t2), therefore interactions(t1) = interactions(t′1).

Moreover, t1 and t′1 have the same initial state because of the definition of W and (t1, t2), (t′1, t2) ∈ W .

From the semantics of composite components, a sequence of interactions is associated to a unique trace

(from a unique initial state). This is thus a contradiction.

A.1.3 Intermediate Lemmas

We prove the intermediate lemmas that are needed to prove Theorem 7.14 (p. 68).

Proof of Lemma 7.8 (p. 66). We shall prove ∀(t1, t2) ∈ W .|acc(event(t2))|= |t1|= 2 × s + 1, where

s = |interactions(t1)|, where acc is the accumulator used in the definition of function RGT (Definition 7.6,

p. 65), and function interactions (defined in Section 4.3, p. 41) returns the sequence of interactions in a trace

(removing β).

Proof. The proof is done by structural induction on W .

– Base case. By definition of W , (init , init) ∈W and we have acc(event(init)) = init , |init |= 1 and

|interactions(init)|= |ε|= 0.

– Induction case. Let us consider (t1, t2) ∈ W such that interactions(t2) = s and suppose that

Lemma 7.8 (p. 66) holds for (t1, t2). According to the definition of W , there are two rules for con-

structing a new element in W .

– Consider (t1 · a · q1, t2 · a · q2) ∈ W such that a ∈ Int and (q1, q2) ∈ R. According to

Definition 7.6 (p. 65), acc(event(t2 · a · q2)) = acc(event(t2)) · a · q2. Using the induction

hypothesis, |acc(event(t2))|= |t1|. Hence |acc(event(t2 · a · q2))|= |acc(event(t2)|+2 =

|t1|+2 = |t1 · a · q1|.
– Consider (t1, t2 · β · q2) ∈ W such that (last(t1), q2) ∈ R. According to Definition 7.6 (p. 65)

and using the definition of operator map, we have |acc(event(t2 · β · q2))|= |map [x 7→
upd(q, x)] (acc(event(t2)))|= |acc(event(t2))|, and thus we obtain the expected result using

the induction hypothesis.
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Proof of Lemma 7.9 (p. 67). We shall prove that: ∀t ∈ Tr(M⊥), ∃k ∈ [1 . . s] . qk ∈ Q =⇒ ∀z ∈
[1 . . k] . qz ∈ Q , qz−1

az−→ qz where (q0 · a1 · q1 · · · as · qs) = acc(event(t)).

Proof. According to Lemma 7.8 (p. 66) and the definition of function acc (see Definition 7.6, p. 65), a state

is generated and added to sequence acc(event(t)) just after the execution of an interaction a ∈ Int . This

state is obtained from the last state in acc(event(t)), say q, such that the new state has state information

about less components than q because the states of all components involved in a are undetermined and the

states of all other components are identical. Since after any busy transition, function upd (see Definition 7.6,

p. 65) updates all the generated partial states that do not have the state information regarding the components

that performed a busy transition, the completion of each partial state guarantees the completion of previously

generated states. Therefore, if there exists a global state (possibly completed through function upd) in trace

acc(event(t)), then all the previously generated states are global states.

Moreover, the sequence of reconstructed global states follow the global-state semantics. This results

stems from two facts. First, according to the definition of function upd, whenever function upd completes

a partial state in the trace by adding the state of a component for which the last state in the trace is un-

determined, it uses the next state reached by this component according to partial-state semantics. Second,

according to Definition 8.2 (p. 98), an intermediate busy state, say ⊥, is added between the starting state

q and arriving state q′ of any transition (q, p, q′). Moreover, the transitions (q, p,⊥) and (⊥, β, q′) in the

partial-state semantics replace the previous transition (q, p, q′) in the global-state semantics. Hence, when-

ever a component in partial-state semantics is in a busy state ⊥, the next state that it reaches is necessarily

the same state as the one it would have reached in the global-state semantics.

Proof of Proposition 7.10 (p. 67). We shall prove that ∀t ∈ Tr(M⊥) .

|discriminant(acc(event(t)))|≤ |acc(event(t)))|

∧discriminant(acc(event(t)))) = q0 · a1 · q1 · · · ad · qd =⇒ ∀i ∈ [1 . . d] . qi−1
ai−→ qi,

where acc is the accumulator function and discriminant is the discriminant function used in the definition

of function RGT (Definition 7.6, p. 65) such that RGT(t) = discriminant(acc(event(t)))).

Proof. The proof directly follows from the definitions of functions acc and discriminant, and Lemma 7.9.

Let us consider t ∈ Tr(M⊥).

Regarding the first conjunct, according to the definition of function discriminant (Definition 7.6, p. 65),

discriminant(acc(event(t)))) is the longest prefix of acc(event(t))) such that the last state of function
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discriminant(acc(event(t)))) is a global state. Thus, the length of discriminant(acc(event(t)))) is always

lesser than or equal to the length of sequence acc(event(t))).

Regarding the second conjunct, all the states of discriminant(acc(event(t)))) are global ready-states

and follow the global-state semantics (according to Lemma 7.9, p. 67). Moreover, one can note that function

discriminant removes the longest suffix made of partial states output by function acc and function acc only

updates partial states.

Proof of Lemma 7.12 (p. 67). We shall prove that: ∀t ∈ Tr(M⊥) . last(acc(event(t)))) = last(t).

Proof. The proof is done by induction on the length of the trace in partial-state semantics, i.e., t ∈ Tr(M⊥).

– Base case: The property holds for the initial state. Indeed, in this case t = init and according to the

definition of function acc (see Definition 7.6, p. 65) last(acc(event(init))) = init .

– Induction case: Let us assume that t = q0 · a1 · q1 · · · am · qm is a trace in partial-state semantics and

acc(event(t)) = q′0 · a′1 · q′1 · · · a′s · q′s such that qm = q′s. We have two cases according to whether the

next move of the partial-state semantics model is an interaction or a busy transition:

– If am+1 ∈ Int , then according to the definition of the function acc, we have: last(acc(event(t ·
am+1 · qm+1))) = qm+1.

– If am+1 ∈ {βi}|B|i=1, then according to the definition of function acc, we have: last(acc(t ·
am+1 · qm+1)) = upd(qm+1[i], q′s). From the induction hypothesis: upd(qm+1[i], q′s) =

upd(qm+1[i], qm) and from the fact that the only difference between state qm and state qm+1

is that in state qm the state of the component that executed am+1 (i.e., Bi) is a busy state, while

in state qm+1 it is not a busy state. From the definition of function upd (Definition 7.6, p. 65),

we can conclude that upd(qm+1[i], qm) = qm+1.

In both cases, last(acc(event(t))) = last(t).

Proof of Lemma 7.13 (p. 67). We shall prove that for all trace in partial state semantics t ∈ Tr(M⊥) the

following holds interactions(acc(event(t))) = interactions(t).

Proof. By an easy induction on the length of t and case analysis on the definition of function acc (Defini-

tion 7.6, p. 65).
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A.1.4 Proof of Theorem 7.14 (p. 68)

We shall prove that, for a given BIP model M⊥ = Γ(B1, . . . , B|B|) with behavior (Q⊥,Γ,→) as per

Definition 8.4 (p. 99) with the set of traces Tr(M⊥) and its corresponding sequential model with global-

state semantics Ms with behavior (Q, Int ,→s) and the set of traces Tr(Ms), the following holds:

∀t ∈ Tr(M⊥) .

last(t) ∈ Q =⇒ RGT(t) = W (t)

∧ last(t) /∈ Q =⇒ RGT(t) = W (t′) · a,with

t′ = min�{tp ∈ Tr(M⊥) | ∃a ∈ Int ,∃t′′ ∈ Tr(M⊥) . t = tp · a · t′′

∧∃i ∈ [1 . .|B|] .(Bi.P ∩ a 6= ∅) ∧ (∀j ∈ [1 . . length(t′′)] . βi 6= t′′(j))}

where function RGT is defined in Definition 7.6 (p. 65) and W is the witness relation defined in Defini-

tion 7.1 (p. 63).

Proof. For any trace in partial-state semantics t, we consider two cases depending on whether the last

element of t belongs to Q of not:

– If last(t) ∈ Q, according to Lemma 7.12 (p. 67), we have last(acc(event(t))) ∈ Q and therefore

RGT(t) = discriminant(acc(event(t))) = acc(event(t)). Let us assume that acc(event(t)) =

q0 · a1 · q1 · · · as · qs, with q0 = init . According to Lemma 7.9 (p. 67) we have ∀k ∈ [1 . . s] . qk−1
ak→s

qk =⇒ acc(event(t)) ∈ Tr(Ms). Moreover, interactions(acc(event(t))) = interactions(t) (ac-

cording to Lemma 7.13, p. 67). Furthermore, according to definition of the witness relation (Defini-

tion 7.1, p. 63), from the unique initial state, since acc(event(t)) and t have the same sequence of

interactions, (acc(event(t)), t) ∈W . Therefore, acc(event(t)) = RGT(t) = W (t).

– If last(t) /∈ Q, we treat this case by induction on the length of t. Let us assume that the proposition

holds for some t ∈ Tr(M⊥) (induction hypothesis). Let us consider t = t′ · a′1 · q′1 · a′2 · q′2 · · · a′k · q′k,

with k > 0. Let us assume that the splitting of t is t′ · a′1 · t′′, where t′ is the minimal sequence such

that there exists at least one component that is involved in interaction a′1 ∈ Int and that is still busy.

(We note that in this case t′ do exist because last(t) /∈ Q implies that the system has made at least

one move.) Let i be the identifier of this component and a′1 be sth interaction in trace t such that

a′1 = interactions(t)(s). Let us consider t ·a′k+1 ·q′k+1, the trace extending t by one interaction a′k+1.

We distinguish again two subcases depending on whether a′k+1 ∈ Int or not.

– Case a′k+1 ∈ Int . We have last(t) /∈ Q and then last(t · a′k+1 · q′k+1) /∈ Q (because a′k+1 ∈ Int ,
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i.e., the system performs an interaction, and the state following an interaction is necessarily a

partial state). Moreover, RGT(t) = RGT(t · a′k+1 · q′k+1), i.e., the reconstructed global state

does not change. Hence, the components which are busy after a′1 are still busy. Consequently,

the splitting of t and t·a′k+1 ·q′k+1 are the same. Following the induction hypothesis, t·a′k+1 ·q′k+1

has the expected property.

– Case a′k+1 = βj , for some j ∈ [1 . .|B|]. We distinguish again two subcases.

∗ If i = j, that is the busy interaction βj concerns the component(s) for which information

was missing in t′′ (component i). If component i is the only component involved in interac-

tion a′1 for which information is missing in q′1 · · · q′k, the reconstruction of the global state

corresponding to the execution of a′1 can be done just after receiving the state information

of component i. After receiving q′k+1, which contains the state information of component i,

the partial states of acc(t) are updated with function upd. That is, RGT(t · a′k+1 · q′k+1) =

RGT(t) ·q′′0 ·a′′1 ·q′′1 · · · q′′m−1 ·a′′m, wherem > 0, q′′0 is the reconstructed global state associ-

ated with interaction a′1, and a′′m = interactions(t)(s+m) is the first interaction executed

after t for which there exists at least one involved component which is still busy. Indeed,

some interactions after a′1 in trace t (i.e., a′′p = interactions(t)(s + p) for m > p > 0)

may exist and be such that component i is the only component involved in them for which

information is missing to reconstruct the associated global states. In this case, updating the

partial states of acc(t) with the state information of component i yields several global states

i.e., q′′1 · · · q′′m−1. Then, the splitting of t changes as follows: t = t′′ · a′′m · · · a′k+1 · q′k+1,

where t′′ = t′ ·a′1 ·q′1 ·a′2 ·q′2 · · · q′t and q′t is the system state before interaction a′′m. Therefore,

RGT(t · a′k+1 · q′k+1) = W (t′′) · a′′m and the property holds again.

∗ If i 6= j, we have RGT(t) = RGT(t·a′k+1 ·q′k+1). Hence, the splitting of t and t·a′k+1 ·q′k+1

are the same. Following the induction hypothesis, t · a′k+1 · q′k+1 has the expected property.

A.1.5 Proof of Proposition 9.9 (p. 115)

We shall prove that, for a given BIP model M⊥ = Γ(B1, . . . , B|B|) and the transformed composite compo-

nent Mr = Γr(Br
1, . . . , B

r
|B|) obtained as per Definition 9.5 (p. 111), we shall prove that for any execution

of the system with partial-state semantics with trace t ∈ Tr(M⊥), component RGT (Definition 9.3, p. 108)

implements function RGT (Definition 7.6, p. 65), that is ∀t ∈ Tr(M⊥) .RGT .V ∼= acc(event(t)).
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Proof. The proof is done by induction on the length of t ∈ Tr(M⊥), i.e., the trace of the system in partial-

state semantics.

– Base case. By definition of function RGT, at the initial state acc(event(init)) = init . By definition

of component RGT, V is initialized as a tuple representing the initial state of the system. Therefore,

RGT .V ∼= acc(event(init)).

– Induction case. Let us suppose that the proposition holds for a trace t ∈ Tr(M⊥), that is RGT .V ∼=
acc(event(t)). According to the definition of function RGT (see Definition 9.3, p. 108), we have

RGT(t) = discriminant(acc(event(t))). Consequently, there exists t′ ∈ Tr(M⊥) of the form

t′ = q′0 · a′1 · q′1 · · · q′k, with k > 0, such that acc(event(t)) = RGT(t) · t′. We distinguish two cases

depending on the action of the system executed after t:

– The first case occurs when the action is the execution of an interaction a′k+1, followed by a

partial state q′k+1. On the one hand, we have acc(event(t ·a′k+1 ·q′k+1)) = acc(event(t)) ·a′k+1 ·
q′k+1. On the other hand, in component RGT, according to Algorithm 9.1 (p. 109) (line 6), the

corresponding transition τ ∈ Tnew extends the sequence of tuples V by a new (|B|+1)-tuple

v which consists of the current partial state of the system such that V = V · v and v ∼= q′k+1.

Therefore, we have RGT .V ∼= acc(event(t)) as expected.

– The second case occurs when the next action is the execution of a busy transition. On the one

hand, function RGT updates all the partial states q′0, . . . , q
′
k. On the other hand, according to

Algorithm 9.2 (p. 110) (lines 2-6), in component RGT, the corresponding transition τ ∈ Tupd

updates the sequence of tuples V such that RGT .V ∼= acc(event(t)) hold.

Moreover, function RGT and component RGT similarly create new global states from the par-

tial states whenever new global states are computed. On the one hand, after any update of partial

states, through function discriminant, function RGT outputs the longest prefix of the generated

trace which corresponds to the witness trace. On the other hand, after any update of the sequence

of tuples V , component RGT checks for the existence of fully completed tuples in V to deliver

them to through the dedicated ports to the runtime monitor.

A.1.6 Proofs of Intermediate Lemmas

In the following proofs, we will consider several mathematical objects in order to prove the correctness of

our framework:
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– a composition with partial-state semantics M⊥ = Γ(B1, . . . , B|B|) of behavior (Q⊥,Γ,→);

– the transformed composite component Mr = Γr(Br
1, . . . , B

r
|B|, RGT ) of behavior (Qr,Γr,→r).

Mr is obtained from M⊥ by following the transformations described in Definition 9.5 (p. 111).

Proof of Lemma 9.12 (p. 115). We shall prove that in any state of the transformed system, if there is a

non-empty set GS ⊆ {RGT .gsa | a ∈ Int} in which all variables are true, the variables in {RGT .gsa |
a ∈ Int} \GS cannot be set to true until all variables in GS are reset to false first.

Proof. According to the definition of component RGT (Definition 9.3, p. 108), on the one hand only the

transitions in set Tupd are able to set the value of the variables in {RGT .gsa | a ∈ Int} to true; on the

other hand the transitions in set Tupd are guarded by
∧
a∈Int(¬gsa) which means that all of the Boolean

variables in {RGT .gsa | a ∈ Int} must be false for one of these transitions to execute. Therefore, in any

state q ∈ Qr such that such a set GS exists, the transitions in Tupd are not possible. Moreover, the only

possible transitions in state q are the transitions in set Tout which effect is to reset the value of the variables

in {RGT .gsa | a ∈ Int} to false using algorithm get.

Proof of Lemma 9.13 (p. 116). We shall prove that for any state q ∈ Qr, there exists a state q′ ∈ Qr

reached after interactions in am (i.e., q
(am)∗−−−→r q

′), such that q′ is a stable state (i.e., stable(q′)).

Proof. Let us consider a non-stable state q ∈ RGT .Q. The interactions in am involve to execute ports

in {p′a | a ∈ Int} and transitions in Tout. Since q is a non-stable state, at least one of the variables in

{RGT .gsa | a ∈ Int} evaluates to true in q (see Definition 9.10, p. 115). Such transitions entail to

execute algorithm get (Algorithm 9.4, p. 110) which resets the Boolean variable to false by delivering the

associated reconstructed global state(s) to the monitor. After executing algorithm get, if there exists another

Boolean variable in {RGT .gsa | a ∈ Int} that evaluates to true, according to Lemma 9.12, component

RGT returns to a situation where only again algorithm get can execute (through the interactions in set

am). The above process executes until the system eventually reaches a state q′ where no interaction in am

is enabled. Therefore, in q′ all Boolean variables in {RGT .gsa | a ∈ Int} evaluate to false, because

interactions in am are unary interactions, each involving port RGT .p′a (Definition 9.5, p. 111) guarded by∧
a∈Int(¬gsa) (Definition 9.3, p. 108). According to Definition 9.10, a state is stable when all Boolean

variables in {RGT .gsa | a ∈ Int} evaluate to false. Thus, q′ is stable.

Proof of Lemma 9.15 (p. 116). Let us consider two states: q of the initial model and qr its corresponding

state in the transformed model such that equ(qr) = q. There exists an enabled interaction in the initial model
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(a ∈ Γ) in state q ∈ Q⊥, if and only if the corresponding interaction in the transformed model (ar ∈ Γr) is

enabled at state qr.

Proof. According to the definitions of interaction transformation and atom RGT (Definition 9.3, p. 108),

ports RGT .pa, for a ∈ Int , are always enabled. Since for a given interaction a, ar and a differ only by port

RGT .pa, we can conclude that ar ∈ arγ is enabled if and only if a ∈ Γ is enabled.

A.1.7 Proof of Theorem 9.16 (p. 116)

Before tackling the proof of the theorem, we convey a remark preparing the definition of the weak bi-

simulation relation defined in the proof.

Following Definition 9.5 (p. 111), the set of interactions Γr of the instrumented system is partitioned as

Γr = arγ ∪ arβ ∪ am, where arγ is the set of interactions of the initial system augmented by RGT port, arβ is a

set containing the busy interactions of the initial system (one for each component) augmented by RGT port,

and am is a new set of interactions used for monitoring purposes. First, we note that the set of interactions

in the instrumented system arγ and arβ are isomorphic to the sets of interactions Int and {{βi}}|B|i=1 of the

initial system because they contain only an additional port to notify component RGT. We can thus identify

these sets of interactions. Moreover, as usual in monitoring, the actions used for monitoring purposes (i.e.,

interactions in am) are considered to be unobservable. These interactions do not influence the state of the

system and execute independently of the interactions in arγ ∪ arβ; these are interactions occurring between

RGT and the monitor which are components introduced in the instrumentation. See also [39], for more

arguments along these lines related to the instrumentation of single-threaded CBSs.

Proof. We exhibit a relation R ⊆ Q⊥ × Qr between the set of states of the initial model with partial-state

semantics and the set of states of the transformed model. We define the relation such that R = {(q, qr) |
∃zr ∈ Qr . qr

(am)∗−−−→r zr ∧ equ(zr) = q}, and we shall prove that relation R satisfies the following

properties to establish that R is a weak bi-simulation:

(i)
(
(q, qr) ∈ R ∧ ∃zr ∈ Qr . qr am−−→r z

r
)

=⇒ (q, zr) ∈ R;

(ii)
Ç

(q, qr) ∈ R ∧ ∃zr ∈ Qr . qr
arγ+arβ−−−−→r z

r

å
=⇒ ∃z ∈ Q⊥ .

Ä
q

a−→ z ∧ (z, zr) ∈ R
ä
;

(iii)
(
(q, qr) ∈ R ∧ q Γ−→ z

)
=⇒ ∃zr ∈ Qr .

Å
qr

(am)∗.ar−−−−−→r z
r ∧ (z, zr) ∈ R

ã
.

Let us consider q = (q1, · · · , q|B|) and qr = (qr1, · · · , qr|B|, qr|B|+1) such that (q, qr) ∈ R.

Proof of (i):

Since (q, qr) ∈ R, there exists a stable state qr ′ ∈ Qr which is reached after unobservable interactions in am.
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After the execution of some unary interaction α ∈ am, the corresponding Boolean variable RGT .gsα is set

to false (Algorithm 9.4, p. 110). Let us consider that the next state after the execution of some interaction

α ∈ am is zr = (zr1, · · · , zr|B|, zr|B|+1). If zr|B|+1 is a stable state then equ(zr) = q thus (q, zr) ∈ R, and if

zr|B|+1 is not a stable state according to Lemma 9.13 (p. 116), after interaction α ∈ am, the state of RGT

(that is zr|B|+1) will be stable, therefore we conclude that (q, zr) ∈ R.

Proof of (ii):

Let us consider zr = (zr1, · · · , zr|B|, zr|B|+1) and z = (z1, · · · , z|B|). When some ar ∈ (arγ ∪ arβ) is enabled,

from the definition of the semantics of transformed composite component and Lemma 9.15 (p. 116), we

can deduce that the corresponding interaction a ∈ Γ is enabled (recall, that for each interaction a ∈ Γ in

the initial model with partial-state semantics there exists a corresponding interaction ar in the transformed

model, as per Definition 9.5, p. 111). Executing the corresponding interactions a and ar changes the local

states qri and qi, for i ∈ [1 . .|B|], to zri and zi for i ∈ [1 . .|B|] respectively, in such a way that zri = zi,

for i ∈ [1 . .|B|], because the transformations do not modify the transitions of the components of the initial

model. After ar, we have two cases depending on whether zr|B|+1 is stable or not.

– If zr|B|+1 is stable, from the definition of relation R, we have (z, zr) ∈ R.

– If zr|B|+1 is not stable, then according to Lemma 9.13 (p. 116), zr|B|+1 will be stable after some

interactions α ∈ am (that is zr|B|+1
α∗−→ stable(zr|B|+1)). Therefore, (z, zr) ∈ R.

Proof of (iii):

Let us consider zr = (zr1, . . . , z
r
|B|, z

r
|B|+1). When a ∈ Γ is enabled in the initial model, we can consider

two cases depending on whether the corresponding interaction ar in the transformed model is enabled or

not.

– If ar is enabled, we have two cases for the next state of component RGT:

– if ar ∈ arγ , according to the definition of atom RGT, zr|B|+1 is stable and (z, zr) ∈ R.

– if ar ∈ arβ , we have two cases:

∗ If RGT has some global states to deliver (that is zr|B|+1 is not stable), then, according to

Lemma 9.13 (p. 116), RGT will be stable after some interactions in am. Hence, (z, zr) ∈
R.

∗ If RGT has no global state, then atom RGT is stable and (z, zr) ∈ R.

– If ar is not enabled, according to the definition of atom RGT, we can conclude that RGT has some

global states to deliver, thus qr is not stable. According to Lemma 9.13 (p. 116), a not stable system
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becomes stable after executing some interactions in am. Therefore, according to Lemma 9.15 (p. 116),

ar is necessarily enabled when the system is stable. Consequently, the same reasoning followed for

the previous case can be conducted in which ar is initially enabled. Henceforth, (z, zr) ∈ R.

A.2 Proofs Related to the Approach for Monitoring distributed CBS

In the following, we consider a distributed system M consisting a set of schedulers and components¶
S1, . . . , S|S|, B1, . . . , B|B|

©
with the global behavior (Q,GAct ,→) as per Definition 4.8 (p. 37) and

the transformed version of M due to monitoring purposes (see Section 6, p. 49), that is Mc consisting

instrumented schedulers and shared components
¶
S1 ⊗ Cs1, . . . , S|S| ⊗ Cs|S|, B′1, . . . , B′|B|

©
with behavior

(Qc,GActc,→c) as per Definition 6.13 (p. 59) where Csj for j ∈ [1 . . |S|] is the controller of scheduler Sj

as per Definition 6.1 (p. 51) such that ∀i ∈ [1 . . |B|] . B′i = Bi⊗Cbi such that Cbi is the controller of the share

component Bi if Bi ∈ Bs as per Definition 6.4 (p. 54) and B′i = Bi otherwise.

We consider the global state of system M as q = (qs1 , . . . , qs|S| , qb1 , . . . , qb|B|) ∈ Q, where qsj is the

state of scheduler Sj for j ∈ [1 . .|S|], and qbi is the state of component Bi for i ∈ [1 . .|B|]. Moreover,

the global state of system Mc is q′ = (q′s1 , qsc1 , . . . , q
′
s|S|
, qsc|S| , q

′
b1
, qbc1 , . . . , q

′
b|B|

, qbc|B|) ∈ Qc, where qscj
is the state of the controller of scheduler Sj for j ∈ [1 . .|S|], qbci is the state of the controller of shared

component Bi for i ∈ [1 . .|B|] if Bi ∈ Bs and empty otherwise. The first result concerns the correctness of

the transformed model Mc through the instrumentation defined in Section 6.1 (p. 50).

The instrumented model Mc generates events and sends them the observer in order to reconstruct the set

of compatible global traces, that is, the computation lattice L. The second results concerns the correctness

(soundness and completeness) of computation lattice construction presented in Section 7.2 (p. 69) with

respect to the obtained events from the instrumented model.

The third result states the correctness (soundness and completeness) of the monitoring algorithm ap-

plied on the constructed lattice presented in Section 7.2.5 (p. 85), that is, our algorithm verifies the set of

compatible global traces of the system.

Proof outline. The following proofs are organized as follows. Some intermediate definitions and lem-

mas are introduced in Appendix A.2.1 (p. 163) in order to prove Proposition Proposition 6.14 (p. 59) in

Appendix A.2.2 (p. 163). The proof of Property 7.18 (p. 71) is in Appendix A.2.3 (p. 164). The proof

of Property 7.21 (p. 72) is in Appendix A.2.4 (p. 164). The proof of Proposition 7.30 (p. 81) is in Ap-

pendix A.2.5 (p. 164). The proof of Proposition 7.38 (p. 84) is in Appendix A.2.6 (p. 165). The proof
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of Proposition 7.39 (p. 84) is in Appendix A.2.7 (p. 167). The proof of Proposition 7.46 (p. 91) is in Ap-

pendix A.2.8 (p. 168). The proof of Theorem 7.47 (p. 92) is in Appendix A.2.9 (p. 169). The proof of

Theorem 7.48 (p. 92) is in Appendix A.2.10 (p. 170).

A.2.1 Intermediate Definition and Lemma

We give some intermediate definition and lemma that are needed to prove Proposition 6.14 (p. 59) to prove

the bi-simulation of M and Mc. First we define a relation between the states of two systems.

Definition A.1. Relation equ ⊆ Q×Qc is the smallest set that satisfies the following rule.

(q, q′) ∈ equ =⇒ qsj = q′sj ∧ qbi = q′bi , ∀j ∈ [1 . .|S|],∀i ∈ [1 . .|B|]

Two states q ∈ Q and q′ ∈ Qc are in relation equ where the states of scheduler Sj for j ∈ [1 . .|S|] and

the state of component Bi for i ∈ [1 . .|B|] in global state q are the same as they are in global state q′.

The following lemma is a direct consequence of Definition A.1.

Lemma A.2. A global action α ∈ GAct is enabled in the initial system at global state q, and in the

transformed system at global state q′ if (q, q′) ∈ equ.

Since controllers do not induce any restriction in the system in the sense that they do not hold the

execution of the system, any enabled action in the initial system at state q is also enabled in the augmented

system at state q′ if (q, q′) ∈ equ.

A.2.2 Proof of Proposition 6.14 (p. 59)

We shall prove the existence of a bi-simulation between initial and transformed model, that is relation

R = {(q, q′) ∈ Q×Qc | (q, q′) ∈ equ} satisfies the following property:Ä
(q, q′) ∈ R ∧ ∃α ∈ GAct , ∃z ∈ Q . q α−→ z

ä
=⇒ ∃α ∈ GActc,∃z′ ∈ Qc .

Ä
q′

α−→c z
′ ∧ (z, z′) ∈ R

ä
Proof. After executing global action α, states of the schedulers managed the interactions of the global

action and components involved in the interactions are changed following the semantic rules defined in

Definition 4.8 (p. 37). Moreover, because of the equality of q and q′, global action α is enabled at state q′

in the transformed system. Execution of global action α in the transformed system following the semantic

rules defined in Definition 6.2 (p. 53) results the new states of the schedulers managed the action α which

are the same as the states of the schedulers in the initial model after the execution of global action α.
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If any shared component is involved in global action α, according to the semantic rules defined in

Definition 6.5 (p. 55), state of the shared component in the transformed system after the execution of global

action α is the same as it is in the initial model after the execution of α.

Therefore, we can conclude that (z, z′) ∈ R.

A.2.3 Proof of Property 7.18 (p. 71)

We shall prove that a computation lattice can be extended by an action event e ∈ Ea from just one node.

Proof. The proof is done by contradiction. Let us assume that there exists two nodes η, η′ ∈ L.nodes in

such that extend(η, e) and extend(η′, e) both are defined. According to Definition 7.20 (p. 72), the vector

clocks of the nodes η and η′ are in relation JL, that is (η.clock , η′.clock) ∈ JL. Moreover, its concluded

that nodes η and η′ are associated to two concurrent action events. Based on the definition 7.22 (p. 72), joint

node of η and η′ has the same vector clock as e.clock , which means that we received an action event whose

vector clock is already dedicated to another node in the lattice. Reception of an action event with a vector

clock similar to the vector clock of the joint node of η and η′ defeats the concurrency between η and η′ and

contradict the assumption. Therefore there exist at most one node in the lattice for with function extend is

defined.

A.2.4 Proof of Property 7.21 (p. 72)

We shall prove that the meet of two nodes η, η′ ∈ L.nodes in relation JL exists in L.nodes .

Proof. According to Definition 7.17 (p. 71), for a node η in the lattice where η.clock = (c1, . . . , c|S|) we

have ∃η′ ∈ L.nodes . η′.clock = (c′1, . . . , c
′
|S|) such that ∃! j ∈ [1 . .|S|] . c′j = cj − 1. Node η′ is the

node that lattice L has been extended from, to make node η. If two nodes of the lattice satisfy relation JL,

According to Definition 7.20 (p. 72), they have extended the lattice from a unique node which exists in the

lattice according to the above argument.

A.2.5 Proof of Proposition 7.30 (p. 81)

We shall prove that reception of certain events results computing a unique lattice and unique queue of stored

events.

ζ, ζ ′ ∈ E∗ .
Ä
∀Sj ∈ S . ζ ↓Sj= ζ ′ ↓Sj

ä
=⇒ MAKE(ζ) = MAKE(ζ ′)

Proof. The proof is done by induction over the length of the sequence of received events.

– Base case. for the sequences of events with the length of one the proposition holds.
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– Let us suppose that the proposition holds for two sequences of events ζ and ζ ′ such that MAKE(ζ) =

MAKE(ζ ′). By Extending ζ and ζ ′ via two events e and e′ in different order such that ζ · e1 · e2 and

ζ ′ · e2 · e1 are the new sequences, we have following possible cases:

– If either e1, e2 ∈ Ea such that e1 6� e2 ∨ e2 6� e1 or e1, e2 ∈ Eβ , these events are said to be

independent events in the sense that using one of them in order to extend/update the lattice or

storing it in the queue does not depend to the reception of the other event.

– If e1, e2 ∈ Ea and there exist happened-before relation between them such that for instance

e1� e2, and e2 is received before e1. After the reception of event e2, one can’t find node η

in the lattice in which extend(η, e2) is defined, thus event e2 is added to the queue. After the

reception of event e1 and extending the lattice with the associated node, the algorithm recalls

event e2 in the queue, as if event e1 has been received earlier than e2. In other words, the

algorithm reorders the received events by using the queue κ.

– If e1 ∈ Ea, e2 ∈ Eβ , where e2 is an update event contains the state of component Bi for

i ∈ [1 . .|B|]. Updating the lattice with event e2 or storing event e2 in the queue depends on

the other events in the queue such that if there exists an action event associated to execution of

an action concerning the component Bi, then e2 must be stored in the queue. However, based

on our assumption, it never be the case that from a specific scheduler, the observer receives

an update event associated to component component Bi earlier than receiving the action event

associated to the execution of an action concerning component Bi. Therefore, updating the

lattice with event e2 or storing event e2 in the queue does not depend on event e1 which is going

to be received later.

Moreover, extending the lattice with the action event e2 or storing the action event e2 in the

queue does not depend on any update event.

A.2.6 Proof of Proposition 7.38 (p. 84)

We shall prove that for any possible set of events ζ of a given global trace t, the projection of the paths

in the constructed lattice on scheduler Sj with j ∈ [1 . .|S|] results the refined local trace of the scheduler.

∀ζ ∈ Θ(t),∀π ∈ Π( MAKE (ζ) .lattice), ∀j ∈ [1 . .|S|] . π ↓Sj= Rβ(sj(t)).

Proof. The proof is done by induction over the length of the global trace t.

– Base case. The proposition holds initially where t = init .
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– Let us suppose that the proposition holds for a global trace t.

We have two cases for the next action of the system, which leads to the extension of the global trace:

– Any extension of the global trace by execution of an action a ∈ Int (i.e., t · a · q) generates the

associated action event e = (a, vc), and if there exist a node in the lattice η ∈ lattice such that

extend(η, e) is defined, then event e extends the lattice from η toward the direction of the scheduler

manages interaction a. We consider two cases whether or not the lattice is extended from the frontier

node:

– if η is the frontier node (i.e., η = ηf )

Π( MAKE (ζ.e) .lattice) = {π · a · η′ | π ∈ Π( MAKE (ζ) .lattice ∧ η′ = extend(η, e))}. We

have two cases ∀j ∈ [1 . .|S|]:

∗ if Sj 6= managed(a) we have sj(t · a · q) = sj(t), and Π( MAKE (ζ.e) .lattice) ↓Sj=
Π( MAKE (ζ) .lattice) ↓Sj ,
∗ if Sj = managed(a) we have sj(t · a · q) = sj(t) · a · q, and Π( MAKE (ζ.e) .lattice) ↓Sj=

Π( MAKE (ζ) .lattice) ↓Sj ·a · (η′.state) where η′ is the new node.

– if η is not the frontier node

{π(0 . . . k) · a · η′ | π ∈ Π( MAKE (ζ) .lattice) ∧ k ∈ [0 . . length(π)] ∧ π(k) = η ∧ η′ =

extend(η, e))}. A set of new paths starting from the initial node and ending with node η′ is

added to the set of paths.

First, Algorithm MAKE extends the lattice by generating node η′ = extend(η, e).

Since η is not the frontier node, there exists node η′′ ∈ L.nodes such that (η′.clock , η′′.clock) ∈
JL, meaning that execution of interaction a is concurrent with the execution associated to node

η′′. Extending the lattice with the possible joints leads to an extended lattice up to a new frontier

ηfnew = extend(ηf , (a,max(vc, ηf .clock))), where ηfnew .state = q.

For each path π in the initial lattice where π = π1 · a′ · π2 such that a′ is concurrent to action

a, and the vector clock of the first node of π2 is in relation JL with the vector clock of node η′,

we have a set of new paths π′ = {(π1 · a · q1 · a′ · π′2), (π1 · a′ · q2 · a · π′2), (π1 · (a ∪ a′) · π′2)}
where π′2 has the same sequence of actions with π2 with the difference that π′2 begins from the

joint of η′ and the first node of π2 and π′2 ends up with node ηfnew . Projection of each new path

on schedulers results the following ∀j ∈ [1 . .|S|]:

∗ if Sj 6= managed(a) then π′ ↓Sj= π ↓Sj
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∗ if Sj = managed(a) then π′ ↓Sj= π ↓Sj ·a · π′2 ↓Sj

– Any extension of the global trace by execution of a busy action (i.e., t ·βi ·q) generates an update event

e = (βi, qi). According to Algorithm MAKE, procedure UPDATEEVENT uses the state information

of event e and update the busy state of the nodes. Similarly, refine function updates the busy states

associated to the component Bi using upd function. Therefore, for each updated path of the lattice π

we have ∀j ∈ [1 . .|S|] . π ↓Sj= Rβ(sj(t · βi · q)).

In either case, the proposition holds.

A.2.7 Proof of Proposition 7.39 (p. 84)

We shall prove that for any possible set of events ζ of a given global trace t, there exists a unique path

in the constructed lattice associated to each compatible trace, such that ∀ζ ∈ Θ(t), ∀t′ ∈ P(t), ∃!π ∈
Π
Ä

MAKE (ζ) .lattice
ä
. π = Rβ(t′)

Proof. The proof is done by induction over the length of the global trace t.

– Base case. The proposition holds initially where t = init .

– Let us assume that the proposition holds for a global trace t.

– We have two cases for the next action of the system, which leads to the extension of the global trace:

– Any extension of the global trace by execution of a global action a ∈ 2Int (i.e., t · α · q) results

the new set of compatible traces P(t · α · q) in which for each trace t′ ∈ P(t) we have a set of

extended traces considering all the possible ordering among the actions in α that is P(t ·α ·q) =

{t′′ · t′′′ | t′′ ∈ P(t), t′′′ ∈ P(last(t′′) · α · q)}. According to Proposition 7.38, p. 84 execution

of an action causes the lattice extension considering all the possible orderings with the rest of the

execution of the system. Therefore for each trace t′ in set P(t ·α ·q) there exists a corresponding

path π in the lattice such that π = Rβ(t′).

– Any extension of the global trace by execution of a global action β ⊆ ⋃i∈[1 ..|B|] {βi} (i.e., t·β·q)

does not extend the lattice but the state of the nodes of the lattice. Moreover, according to Defi-

nition 7.24 (p. 73), updating the nodes of the path corresponding to a compatible trace t is done

in such a way that the refine function updates the partial states of t as per Definition 7.35 (p. 83).

Therefore, based on our assumption updated path π is still equal to the corresponding refined

compatible trace trace t′ after update by the internal action β.

For both cases, the proposition holds.



168 A. PROOFS

A.2.8 Proof of Proposition 7.46 (p. 91)

We shall prove that for a given an LTL formula ϕ and a global trace t, there exists a global trace t′ such that

PROG(ϕ, t′) = progression(ϕ,Rβ(t′)) with:

t′ =


t if last(t)[i] ∈ Qr

i for all i ∈ [1 . .|B|],

t · β · q otherwise.

Where β ⊆ ⋃i∈[1 ..|B|] {βi}, ∀i ∈ [1 . .|B|], q[i] ∈ Qr
i and progression is the standard progression function.

Proof. The proof is done by induction over the length of the global trace t.

– Base case. The proposition holds initially where PROG(ϕ, init) = progression(ϕ,Rβ(init)) =

progression(ϕ, init).

– Let us assume that the proposition holds for a global trace t.

– We shall prove that the proposition holds for any possible extension of t. We consider two cases based

on the last element of t:

– if last(t)[i] ∈ Qr
i for all i ∈ [1 . .|B|], the next action only could be in set α ⊆ 2Int because

all the components are ready and no β action is possible. Then, the new global trace is t · α · q
and q is a global state in which the state of components involved in α are busy state. According

to Definition 7.45 (p. 90), function PROG(ϕ, t · α · q) uses sub-function prog which postpones

the formula evaluation by using Xβ until the busy components execute their busy actions. As

soon as the busy components are done with their computations and the corresponding schedulers

generate the update events, function PROG evaluates all postponed propositions. Therefore,

there exists a stabilized global trace t′ = t · α · q · β · q′ with ready states for all components in

q′. Moreover, according to Definition 7.35 (p. 83), the refined trace of t′ consists of sequence

of global ready state so that the construction of ready states is postponed until the occurrence of

busy actions of busy components. Hence, PROG(ϕ, t · α · q · β · q′) = progression(ϕ,Rβ(t ·
α · q · β · q′)).

– if last(t)[i] 6∈ Qr
i for all i ∈ [1 . .|B|], we consider two cases based on the next action:

∗ If the next action is a busy action β ⊆ ⋃
i∈[1 ..|B|] {βi}, it follows our base assumption,

therefore the proposition holds.

∗ If the next action contains actions in set α ⊆ 2Int , the components involved in α are added

to the set of busy components and their states evaluations are postponed until their next
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ready state (following the first case argument).

In both cases, the proposition holds.

A.2.9 Proof of Theorem 7.47 (p. 92)

We shall prove that for a global trace t and LTL formula ϕ, each formula attached to the frontier node of

the reconstructed computation lattice L corresponds to the evaluation of a compatible trace, that is ∀ϕ′ ∈
ηf .Σ, ∃t′ ∈ P(t) .PROG(ϕ, t′) = ϕ′.

Proof. The proof is done by induction over the length of the global trace t.

– According to Definition 7.41 (p. 86), initially lattice has only one node initϕL = (init , (0, . . . , 0), {ϕ}).

P(t) = {init} and PROG(ϕ, init) = ϕ therefor the theorem holds for the initial state.

– We assume that for a global trace t progression of all the compatible traces of t exists in the set of

formula of the frontier node.

– any extension creates the corresponding nodes. if the extension take take place from the frontier node

ηf , then the set of formulas of the new frontier is Σ = {prog(LTL′, q) | LTL′ ∈ ηf .Σ}. and for all

compatible trace t′ ∈ P(t) the corresponding extended compatible trace is (t · a · q) ∈ P(t · a · q).

According to Definition 7.45 (p. 90), evaluation of each formula PROG(ϕ, t · a · q) = prog(ϕ, q) =

prog(prog(ϕ, ηf .state), q). Base on our assumption prog(ϕ, ηf .state) is the associated progressed

formula of the compatible trace t′ which exists in ηf .Σ.

– Extension of the lattice from a non-frontier node also leads to a new frontier node such that the number

of compatible traces are increased as well as the number of path of the lattice (see Proposition 7.39,

p. 84). For each newly generated path in the lattice there exists a corresponding compatible trace.

The set of formulas associated to the new frontier node ηf .Σ = {prog(LTL, ηf .state) | LTL ∈
η.Σ ∧ (η ηf ∨ ∃N ⊆ Lϕ.nodes . η = meet(N,L) ∧ ηf = joint(N,L))}. Each formula

associated to the new frontier is evaluation of one path of the lattice. Similarly, the progression of

global trace by function PROG is done using function prog, so that the evaluation of each compatible

global trace results a formula which exists in the set of formula of new frontier node associated to the

compatible global trace.

– Any extension of the global trace by busy actions β on one hand updates the formulas of lattice nodes

using function updϕ in order to ascertain the truth of falsity of associated Xβ modalities, and on
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the other hand function PROG updates the evaluation of the compatible traces, i.e., PROG(ϕ, t · β ·
q) = UPD (ϕ,Qr) where Qr is the set of update states after busy actions. According to Defini-

tion 7.45 (p. 90), function UPD uses function updϕ so the the progressed formula of each compatible

global trace is updated in the similar way as the formulas in the frontier node are updated.

A.2.10 Proof of Theorem 7.48 (p. 92)

We shall prove that the set of formula in the frontier node of the constructed lattice consists in the evaluation

of the compatible global traces of the system, that is ηf .Σ = {PROG(ϕ, t′) | t′ ∈ P(t)}.

Proof. The proof is straightforward since the lattice construction is complete (Proposition 7.39, p. 84), in

the sense that for each compatible global trace there exists a path in the constructed lattice and according to

Theorem 7.47 (p. 92) each formula in the frontier node corresponds to the evaluation of a compatible global

trace.
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Tool User-Guides

B.1 RVMT-BIP

RVMT-BIP is a tool integrated in the BIP tool suite for the runtime verification of multi-threaded BIP

models. In the following we present the practical details of RVMT-BIP. Note that, Linux, Java 1.6 and

C++11 are prerequisite for the installation of the tool.

How to install and run RVMT-BIP.

1. Download the RVMT-BIP tool-set1,

2. Extract the package,

The main directory contains:

– lib/ directory that contains libraries used by the tool,

– bin/ directory that contains the tool binaries,

– setup.sh script to set up the environment, and

– README file that describes the tool in detail.

– examples/ directory that contains some examples in separate folders, each folder contains:

– A BIP file,

– External C++ codes (if applicable),
1RVMT-BIP is available for download at [70].
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– source/ directory that contains the properties to check,

– Monitor.xml monitor given as input,

– Map_Event_Guard map each event in the monitor to a guard on the variable/states/ports

of atomic components,

– Guide list of variables and components to monitor (used in Map_Event_Guard),

3. To use the tool on command line, you have to source the setup.sh in order to add the binary files to

you path,

$ source setup.sh

4. Go to the RVMT main directory and make sure that bin/RVMT is executable (using chmod u+x

bin/RVMT), then choose a specific example directory in examples/ and run the RVMT-BIP tool to

build monitored version of your selected example model, using this command:

$ RVMT [name-of-input-package] [name-of-root-component] [path-to-output-file]

– RVMT takes an input BIP model, which is specified by package name and root-component

name. The package name is matched the file name that contains it (ie. package Sample is

stored in a file named Sample.bip) and root-component name is the declaration of compound

type.

– The output results, which are the monitored version of input BIP model along with two other files

(RGT.cpp and RGT.hpp) as further execution requirements, will be stored in the user-defined

path [path-to-output-file].

5. Code generation, compile and execute the monitored BIP file. Note that, for this step it is prerequisite

that the BIP engine is already installed on your machine.

– code generation:

I $ bipc.sh -I . -p [input-monitored-model] -d [name-of-root-component]

-gencpp-output-dir [path-to-output-file] -gencpp-follow-used-packages

-gencpp-ld-l pthread -gencpp-cc-I $PWD

I $ cmake ..

– compile and execute:

I $ make

I $ ./system -s -threads [threads-number]
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Example B.1. We provide the BIP model of system Task which is defined in Example 8.6 (p. 100) and

depicted in Figure 8.2 (p. 100) to illustrates the functionality of RVMT-BIP. Let us consider task.bip file

with root-component name top along with the associated files Monitor.xml, Map_Event_Guard and

Guide located in source folder. One can follow the steps bellow to monitor task.bip at runtime.

– The following commands should be executed on the folder where task.bip is located. For the sake

of simplicity the associated files of RVMT-BIP are already copied here.

– $ source setup.sh

– $ RVMT task top output

In the RVMT main directory, output directory consist of the monitored version of input.bip is

created.

– RVMT$ cd output

– RVMT/output$ mkdir out

– RVMT/output$ bipc.sh -I . -p task -d "top()" -gencpp-output-dir out

-gencpp-follow-used-packages -gencpp-ld-l pthread -gencpp-cc-I $PWD

– RVMT/output$ mkdir out/build

– RVMT/output$ cd out/build

– RVMT/output/out/build$ cmake ..

– RVMT/output/out/build$ make

– And finally, execute using 3 threads:

$ ./system -s --threads 3

BIP code of system Task task.bip

@ cpp(include="unistd.h")

package task

extern function printf(string, int)

extern function usleep(int)

port type Port()

connector type Sync3 (Port port1, Port port2, Port port3)

define port1 port2 port3
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end

connector type Unary (Port port1)

define port1

end

atom type worker()

data int x

export port Port exec()

export port Port finish()

place done, free

initial to free do {x = 0;}

on exec from free to done do {x = (x + 1);}

on finish from done to free

end

atomic type task()

export port Port deliver()

export port Port newtask()

place ready, delivered

initial to ready

on deliver from ready to delivered

on newtask from delivered to ready

end

compound type top()

component task generator()

component worker worker1()

component worker worker2()

component worker worker3()

connector Sync3 ex12 (worker1.exec, worker2.exec, generator.deliver)

connector Sync3 ex23 (worker2.exec, worker3.exec, generator.deliver)

connector Sync3 ex13 (worker1.exec, worker3.exec, generator.deliver)

connector Unary f1 (worker1.finish)

connector Unary f2 (worker2.finish)

connector Unary f3 (worker3.finish)
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connector Unary nt (generator.newtask)

end

end

monitor description Monitor.xml

< V e r i f i c a t i o n M o n i t o r kind="MEALY">

< S t a t e s >

< S t a t e i n i t i a l =" t r u e " id =" s1 ">

< T r a n s i t i o n output =" c u r r e n t l y _ g o o d " n e x t S t a t e =" s1 " event =" e v e n t 1 " / >

< T r a n s i t i o n output =" c u r r e n t l y _ b a d " n e x t S t a t e =" s2 " event =" e v e n t 2 " / >

< / S t a t e >

< S t a t e id =" s2 ">

< T r a n s i t i o n output =" c u r r e n t l y _ g o o d " n e x t S t a t e =" s1 " event =" e v e n t 1 " / >

< T r a n s i t i o n output =" c u r r e n t l y _ b a d " n e x t S t a t e =" s2 " event =" e v e n t 2 " / >

< / S t a t e >

< / S t a t e s >

<Alphabet>

< s t r i n g > e v e n t 1 < / s t r i n g >

< s t r i n g > e v e n t 2 < / s t r i n g >

< / Alphabet>

< / V e r i f i c a t i o n M o n i t o r >

Map_Event_Guard

event1 : !(((worker1_x-worker2_x>100)||(worker2_x-worker1_x>100))||

((worker1_x-worker3_x>100)||(worker3_x-worker1_x>100))||

((worker2_x-worker3_x>100)||(worker3_x-worker2_x>100)))

event2 : ((worker1_x-worker2_x>100)||(worker2_x-worker1_x>100))||

((worker1_x-worker3_x>100)||(worker3_x-worker1_x>100))||

((worker2_x-worker3_x>100)||(worker3_x-worker2_x>100))
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Guide

worker1 : x

worker2 : x

worker3 : x

B.2 RVDIST

RVDIST is a prototype tool for LTL runtime verification of distributed (component-based) systems, written

in the C++ programming language. RVDIST uses Spot [28] platform which is a C++11 library for LTL

manipulation. RVDIST takes as input a configuration file config.ini describing the architecture of

the distributed system (i.e., number of schedulers, number of components, initial state, LTL formula to be

monitored, mapping of atomic propositions to components) and a list of events events.data with the

following details.

Events and configuration format. Let us assume that we have m scheduler and n components.

– events.data consists of a list of events.

– Each event is placed in one line.

– Each event is either an action event or an update event.

– Action events format: 1,j,vc[1],...,vc[m],a[1],...,a[n]

∗ j is the index of scheduler Sj , with j ∈ [1 . .m], which has executed the corresponding

interaction and sent the action event,

∗ vc[1],...,vc[m] are associated to the vector clock of the executed interaction,

∗ a[i] for i ∈ [1 . . n] is 1 if component Bi is involved in the interaction, and 0 otherwise.

– Update events format: 2,j,i,q

∗ j is the index of scheduler Sj which generated and sent the update event,

∗ i is the index of the associated component Bi with the update event,

∗ q is the updates state which is a mapping of the component state to an integer.

– config.ini has the parameters of system.
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– schedulers: m,

– components: n,

– initial_component_[i] for i ∈ [1 . . n]: the initial state of component Bi,

– phi: LTL formula (desired property),

– component_[p]: the associated component of atomic proposition p,

– value_[p]: the truth value of atomic proposition p,

– states_component_[i] for i ∈ [1 . . n]: number of the states of component Bi,

– value_states_component_[i]_[k] for i ∈ [1 . . n] and : mapping of state k of compo-

nent Bi to a string,

Example B.2. To illustrate how RVDIST is applied on a real model, we use the robotic model presented in

Section 11.2.1 (p. 131), and show how the configuration file and the list of events are structured. Note that,

we used system ROBLOCO which is a large BIP model in terms of lines of code (ca. 1200 LOC). Thus the

actual code is not presented in this section.

Configuration

schedulers=3

components=3

initial_component_1=idle

initial_component_2=start

initial_component_3=idle

phi= G( p1 -> (X(!p3) U p2) )

component_p1=1

component_p2=2

component_p3=3

value_p1=free

value_p2=start

value_p3=startodo1

states_component_1=20

states_component_2=3

states_component_3=22

value_states_component_1_1=idle
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value_states_component_1_2=ready

value_states_component_1_3=managets

.

.

.

value_states_component_3_20=startmon2

value_states_component_3_21=endmon2

value_states_component_3_22=finish

At runtime, 3463 events are sent to the observer. Some of them are listed below.

List of events

1,1,1,0,0,0,1,1 action event by scheduler_1, vc=(1,0,0), including component_1

2,1,1,19 update event by scheduler_1, reporting the updated state of component_1 (19)

1,1,2,0,0,0,1,1

2,1,1,20

1,1,3,0,0,0,1,1

2,1,1,19

1,1,4,0,0,0,1,1

.

.

.

1,3,726,351,484,1,1,0

2,3,3,20

1,1,730,350,479,0,1,1

2,1,1,20

1,3,726,351,485,1,1,0

2,3,3,22

1,2,726,352,485,1,0,0 action event by scheduler_2, vc=(726,352,485), including

component_2 and component_3

2,2,2,2

Finally, we have the following results.
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Results

- Number of Observed Events : 3463

- Number of Lattice Nodes : 17

- Number of Removed Nodes : 10602

- Vector Clock of the Frontier Node : 730 352 485

- Number of Paths to the Frontier : 2.491E+544

- Formula Associated to the Frontier node:

# 1.36E+541: Phi

# 2.490E+544: !p3 & !xb2p3 & (X!p3 U p2) & G(p1 -> (X!p3 U p2))

The results show that among 2.491E+544 paths, 1.36E+541 of them are currently satisfy the property, and

2.490E+544 of them are kept on hold, for scheduler_3 to send the updated state of component_3, to

be evaluated. All the paths evaluations are stored in the frontier node with the vector clock of (730, 352, 485).

Any further execution of the system would extend the lattice from one of the 17 remained nodes. Note that,

in this example the number of the paths are approximate for the sake of simpler presentation. The tool

outputs are accurate.
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