
THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Mathématiques, sciences et technologies de l’information

Arrêté ministérial : 7 aout 2006

Présentée par

Mattis Paulin

Thèse dirigée par Cordelia Schmid
et codirigée par Zaid Harchaoui

préparée au sein
et de l’école doctorale MSTII : Mathématiques, Sciences et Technolo-
gies de l’Information, Informatique

De l’Apprentissage de représenta-
tions visuelles robustes aux invari-
ances pour la classification et la
recherche d’images
Of Learning Visual Representations Robust to
Invariances for Image Classification and Re-
trieval

Thèse soutenue publiquement le 6 février 2017,
devant le jury composé de :

Pr. Vincent Lepetit
Technische Univesität Graz, Austria, Président
Pr. Matthieu Cord
Université Pierre et Marie Curie, Paris, France, Rapporteur
Dr. Josef Sivic
Ecole Normale Supérieure, Paris, France, Rapporteur
Dr. Christian Wolf
Institut National des Sciences Appliquées, Lyon, France, Examinateur
Dr. Florent Perronnin
Xerox Resarch Center Europe, Montbonnot, France, Examinateur
Dr. Julien Mairal
Inria Grenoble, Montbonnot, France, Examinateur
Dr. Cordelia Schmid
Inria Grenoble, Montbonnot, France, Directeur de thèse
Dr. Zaid Harchaoui
University of Washington, Seattle, WA, USA, Co-Directeur de thèse

Abstract

This dissertation focuses on designing image recognition systems which are robust
to geometric variability. Image understanding is a difficult problem, as images
are two-dimensional projections of 3D objects, and representations that must fall
into the same category, for instance objects of the same class in classification can
display significant differences. Our goal is to make systems robust to the right
amount of deformations, this amount being automatically determined from data.
Our contributions are twofolds. We show how to use virtual examples to enforce
robustness in image classification systems and we propose a framework to learn
robust low-level descriptors for image retrieval.

We first focus on virtual examples, as transformation of real ones. One image
generates a set of descriptors –one for each transformation– and we show that data
augmentation, ie considering them all as iid samples, is the best performing method
to use them, provided a voting stage with the transformed descriptors is conducted
at test time. Because transformations have various levels of information, can be
redundant, and can even be harmful to performance, we propose a new algorithm
able to select a set of transformations, while maximizing classification accuracy. We
show that a small amount of transformations is enough to considerably improve
performance for this task. We also show how virtual examples can replace real
ones for a reduced annotation cost. We report good performance on standard
fine-grained classification datasets.

In a second part, we aim at improving the local region descriptors used in image
retrieval and in particular to propose an alternative to the popular SIFT descriptor.
We propose new convolutional descriptors, called patch-CKN, which are learned
without supervision. We introduce a linked patch- and image-retrieval dataset
based on structure from motion of web-crawled images, and design a method to
accurately test the performance of local descriptors at patch and image levels. Our
approach outperforms both SIFT and all tested approaches with convolutional
architectures on our patch and image benchmarks, as well as several styate-of-the-
art datasets.

ii

Résumé

Ce mémoire de thèse porte sur l’élaboration de systèmes de reconnaissance d’image
qui sont robustes à la variabilité géométrique. La compréhension d’une image est un
problème difficile, de par le fait qu’elles sont des projections en deux dimensions
d’objets 3D. Par ailleurs, des représentations qui doivent appartenir à la meme
catégorie, par exemple des objets de la meme classe en classification, peuvent
être visuellement très différentes. Notre but est de rendre ces systèmes robustes
à la juste quantité de déformations, celle-ci étant automatiquement déterminée à
partir des données. Nos deux contributions sont les suivantes. Nous montrons
tout d’abord comment utiliser des exemples virtuels pour rendre les systèmes de
classification d’images robustes et nous proposons ensuite une méthodologie pour
apprendre des descripteurs de bas niveau robustes, pour la recherche d’image.

Nous étudions tout d’abord les exemples virtuels, en tant que transformations
de vrais exemples. En représentant une image en tant que sac de descripteurs
transformés, nous montrons que l’augmentation de données, c’est-à-dire le fait
de les considérer comme de nouveaux exemples iid, est la meilleure manière de
les utiliser, pourvu qu’une étape de vote avec les descripteurs transformés soit
opérée lors du test. Du fait que les transformations apportent différents niveaux
d’information, peuvent etre redondants, voire nuire à la performance, nous pro-
posons un nouvel algorithme capable de sélectionner un petit nombre d’entre elles,
en maximisant la justesse de classification. Nous montrons par ailleurs comment
remplacer de vrais exemples par des virtuels, pour alléger les couts d’annotation.
Nous rapportons de bons résultats sur des bancs d’essai de classification.

Notre seconde contribution vise à améliorer les descripteurs de régions locales
utilisés en recherche d’image, et en particulier nous proposons une alternative
au populaire descripteur SIFT. Nous proposons un nouveau descripteur, appellé
patch-CKN, appris sans supervision. Nous introduisons un nouvel ensemble de
données liant les images et les imagettes, construit à partir de reconstruction
3D automatique d’images récupérées sur Internet. Nous définissons une méth-
ode pour tester précisément la performance des descripteurs locaux au niveau de
l’imagette et de l’image. Notre approche dépasse SIFT et les autres approches à
base d’architectures convolutionnelles sur notre banc d’essai, et d’autres courra-
ment utilisés dans la littérature.

iii

Contents

Contents iv

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Goals . 4
1.2 Context . 10
1.3 Contributions . 14

2 Selecting Virtual Examples for Image Classification 18
2.1 Introduction . 19
2.2 Related Work . 20
2.3 Virtual Examples: Generation and Selection 23
2.4 Experiments . 31

3 Patch Description with Convolutional Kernel Networks 44
3.1 Introduction . 45
3.2 Related Work . 46
3.3 Convolutional Descriptors . 49
3.4 Convolutional Kernel Descriptors 52
3.5 Image and Patch Retrieval Datasets 61
3.6 Experiments . 64

4 Conclusion 80
4.1 Summary of Contributions . 81
4.2 Future Directions . 82

A Publications 85

B Released Software 87

iv

CONTENTS v

B.1 JSGD . 87
B.2 ITP . 90
B.3 Patch-CKN . 91

Bibliography 92

List of Figures

1.1 The Allegory of the Cave, according to Cornelis van Haarlem, 1604 . . 3
1.2 Examples of semantic and geometric variability 5
1.3 Example of four different classes of matching objects in the Rome

dataset, introduced in this thesis [Paulin et al., 2016] 6
1.4 Examples and statistics of the state-of-the-art retrieval datasets 7
1.5 Images of two different classification tasks. 8
1.6 The process of collecting the PASCAL VOC and ImageNet datasets . . 10
1.7 Evolution of the best performing method on the ImageNet dataset. . . 13
1.8 Evolution of the best performing methods on the Holidays dataset . . . 14
1.9 Our approach to boost classification performances with virtual examples 15
1.10 Our approach for image retrieval with local convolutional descriptors . 16

2.1 Illustrations of image transformations, on simple icons and on an image
from the CUB dataset. 21

2.2 Four of the eight homographies we use. The four others we consider are
similar, but with a broader window. 24

2.3 Illustration of the different training and test strategies. 34
2.4 Evolution of the test accuracy with respect to the number of selected

transformations. 36
2.5 Accuracy on CUB after adding up to five transformations with ITP,

with random selection (5 trials averaged, error bars shown), or with
just flip in addition to the original images (T1). 37

2.6 Evolution of the test accuracy on CUB as a function of the number of
transformations selected by ITP, or its cheaper TR variant. 37

2.7 First five transformations, as selected by ITP. 38
2.8 Overlaying the different crops selected by ITP. 38
2.9 Test accuracy as a function of the number of SGD iterations on CUB

(left) with SIFT-Fisher. 39
2.10 Equivalence in terms of accuracy of images with virtual examples and

lone examples on CUB (30 images per class is the whole dataset) with
ITP. Left: SIFT-Fisher. Right: Color-Fisher. 40

vi

List of Figures vii

2.11 Evolution of the accuracy with an increased number of images per class
on the CUB dataset with transformations selected by ITP. Left: SIFT-
Fisher. Right: Color-Fisher. 40

2.12 Histogram of the average distance of a transformed example to its original 42
2.13 All transformations used in this article, applied to a CUB image. . . . 43

3.1 Typical organization of two successive layers of a CNN. 50
3.2 Construction of the sequence of feature maps 55
3.3 Vizualization of the possible CKN inputs 61
3.4 Examples of patches matched under our procedure. We observe signif-

icant changes in lighting, but smaller changes in rotation and skew. . . 64
3.5 Example of classes of the image retrieval dataset of Rome. Each class

consists of a particular location. Some bundle display significant view-
point changes (extreme left and right), while others have little variation
in appearance (middle). Best viewed in color. 64

3.6 Example of matching points in two different images. 65
3.7 All 512 kernels of the first layer of our CKN-raw architecture. 68
3.8 mAP results on the train set of RomePatches with CKN-grad, whose

hyper-parameters have been changed one by one around the optimal
point . 70

3.9 Influence of dimensionality reduction on patch retrieval performance . . 71
3.10 First convolutional filters of the PhilippNet learned with surrogate classes

(left), 10K Rome classes (middle) and 100K Rome classes. Best viewed
in color. 74

3.11 Impact of various transformations on CKN descriptors 75

List of Tables

2.1 Comparison between ITP and ITW for CNN descriptors. 34
2.2 Comparison of different training and test scenarios for T = 6, i.e. T −1

corresponds to the number of transformations used for training and test.
Score aggregation is performed by averaging. Transformations selected
with ITP. 35

2.3 Comparison of score aggregation schemes. 35
2.4 Comparison of different schemes for using virtual examples at training

time. All transformations were selected by ITP. 35
2.5 Number of training samples (in thousands) that the SGD has to process

to reach a given accuracy on the test set, for a varying number of
transformations T for Fisher-Fusion features. The ’X’ sign means that
the target accuracy cannot be reached at all. 39

2.6 Performance of our method compared to the state of the art. Our
method holds state-of-the-art performance for off-the-shelf features. Ref-
erences: 1Jaderberg et al. [2015] 2Lin et al. [2015] 3Krause et al. [2015]. 41

3.1 For each layer we indicate the sub-patch size, the subsampling factor
and the number of filters. For the gradient network, the value 16 cor-
responds to the number of orientations. 69

3.2 Results of convolutional architectures for patch retrieval. 72
3.3 Evaluation of the deepcompare architectures on RomePatches in mAP

(%). Networks were trained on the three subsets of the Multi-view
Stereo Correspondence Dataset: Yosemity (Y), Notre-Dame (ND) and
Statue of Liberty (L). The network notations are as in the original
paper [Zagoruyko and Komodakis, 2015]. 72

3.4 Experiments on a set of pairs of the Liberty dataset. Measure is false
positive rate @95% recall, and therefore the lower the better. The third
layer of AlexNet is used, as it provides the best results. 73

viii

List of Tables ix

3.5 Impact of supervision on patch retrieval. PhilippNet is trained on sur-
rogate classes, while PhilippNet-Rome is trained on a larger set of
RomePatches-Train, containing either 10K or 100K classes. We see
that retraining improves performance provided enough data is given.
Supervised CNNs are still below the SIFT baseline, as well as the un-
supervised CKNs. 74

3.6 Image retrieval results. Results are in mAP except for UKB where
we measure the average number of true positives in the first 4 results.
CKN-mix is the result of the concatenation of the VLAD descriptors
for the three channels. 76

3.7 Influence of the pretraining dataset on image retrieval. With the same
architecture (AlexNet), training is conducted either on ILSVRC’12 data
or on the Landmarks dataset. Using semantic information related to
buildings and places yields improvements for Oxford, but not for Holidays. 77

3.8 Impact of dimensionality reduction by PCA+whitening on the best
channel for each dataset. PCA to 4096 dimensions. 77

3.9 Dense results on Holidays. Right hand side of the table are CKN de-
scriptors. “Same parameters” correspond to CKNs that have the same
parameters as Hessian-Affine ones, yet learned on densely extracted
patches. “Changed pooling” have pooling size increased by one at each
layer (CKN-raw is unchanged as it only has one layer, and already gives
good performances). 78

3.10 Dense keypoints on the Oxford dataset. “Crop” indicates the proto-
col where queries are cropped to a small bounding-box containing the
relevant object, while “no crop” takes the full image as a query. For
CKN, parameters have increased pooling sizes for dense keypoints, as
on Holidays. 78

3.11 Comparison with state-of-the-art image retrieval results for global de-
scriptors. 79

Chapter 1

Introduction

1.1 Goals . 4
1.2 Context . 10
1.3 Contributions . 14

Et j’ai vu quelquefois ce que l’homme a cru voir !
Arthur Robot

1

CHAPTER 1. INTRODUCTION 2

The ancient thinkers used to call μίμησις (mimesis) every form of expression
which had the goal to imitate reality, such as paintings and other artistic works.
Our modern images fall into that category. The difficult translation of the word –
between mimickery and representation– has started quarrels between philosophers,
that still perdure today. It revolves around the following questions: how can we
make sense of the real world from mere visualizations? Are representations a degra-
dation of reality, or do they offer acurate knowledge from which one can extract
insights of concepts? As it turns out, most computer vision tasks face a very simi-
lar problem. Images are two-dimensional projections of a three-dimensional world,
and several semantically similar concepts can have different expressions, such as
different models and colors for cars or species and genders for animals. Plato was
among the first to denounce the dangers of false representations, distinguishing the
μίμησις εἰκαστική (mimesis eikastike), true to its model, from the μίμησις φανταστική
(mimesis phantastike), which distorts reality. The task of understanding concepts
in images can also suffer from multiple hindering factors, such as mislabelings or
unplausible situations.

Do you not perceive how far images are from possessing the same qualities as
the originals which they imitate?

Plato, Cratylus 432d, Trans. H. N. Folwer.

In image understanding, very early works had the Platonician goal of defining
constraining models that would underlie representations, and forced these priors
onto observations. A notorious example is the constellation models of Fischler and
Elschlager [1973], which cast the human face into semi-rigid models with spring
constraints. Models from two different faces are then matched together to deter-
mine if the faces are from the same person.

More recently, image recognition systems have still not been exempt of design
choices that incorporate robustness to some specific variability. As an example,
using only grey-level images can be useful to recognize buildings, for which color
is usually non-discriminative. This strategy can however be harmful for animal
recognition, whose notable differentiating features can be solely based on color-
ful parts. Very similarily to the prisoners of Plato’s well known Allegory of the
Cave (Fig. 1.1), learning frameworks require the incorporation of some external
knowledge of the problem provided by the scientist (the philosopher who returns
to the cave after escaping) to correctly figure out visualizations (the shadows), in
the form of well-designed robustness in their architecture.

On the other hand, Plato’s most famous disciple and part-time contradictor
Aristotle was not so vindicative as to the deceptive nature of representations. He
postulates that many relevant characteristics can be learned from observation, and

CHAPTER 1. INTRODUCTION 3

Figure 1.1: The Allegory of the Cave, according to Cornelis van Haarlem, 1604,
Albertina, Vienna. Learning systems must figure out concepts from projections.

indeed his whole approach to science is more about observing Nature, rather than
shaping it.

The reason why we enjoy seeing likenesses [images] is that, as we look, we learn
and infer what each is, for instance, “that is so and so.”

Aristotle, Poetics, 1448b, Trans. W. H. Fyfe.

Similarily, modern computer vision has looked into reducing the level of rigidity
in the models, having architectures with millions of learnable parameters that are
directly determined from data. Collecting this data is however not always an
easy task. It requires human labor which is usually long and expensive, and raw
images which are not always available, as for instance for rare species of animals,
or copyrighted material. For some tasks such as image retrieval (see section 1.2 for
details), where the goal is to learn to match similar objects, it is desirable to have
no a priori knowledge of the various instances to retrieve. This way, for instance,
a building that would be constructed after the release of the program could still
be properly handled.

When data is scarce, one must rely on general knowledge of the task and en-
force robustness to appropriate variability, in order to ensure decent recognition
performance. While many works optimize the robustness of their models by hand,
the purpose of this thesis is to show that it can also be inferred from data.

CHAPTER 1. INTRODUCTION 4

1.1 Goals
The goals of this thesis are twofolds. First, we design systems that are robust to
some geometric transformations on the input image (e.g., crops and rotations). We
propose a framework to automatically determine to which transformations and by
what amount the system must be robust to maximize performance. Our second
goal is to reduce one of the perduring human cost in computer vision: annotation.
Indeed, using carfully designed learning methods that make use of unsupervised
or weakly-supervised data is able to significantly reduce the number of required
labeled examples.

1.1.1 Identifying and Enforcing Robustness

We define the robustness of a system as its capacity to predict a similar output
under small variation of input. Typical image recognition systems need to encom-
pass two forms of robustness: to geometric and to semantic variability. The first
one models all expected changes in the mode of capture of the 3D scene or object.
Indeed, different images of the same entity are subject to differ from viewpoint,
camera model, illumination conditions, occlusions, and background changes. The
second source of variability is defined by the size of the class of entities that are al-
lowed to correctly match. For instance, for a coarse classification task where “bird”
defines one class, the system must learn to match together all bird species. Even
for very narrow subclasses such as “lion”, sexual dimorphism can cause significant
visual changes in appearance for instances of the same class. See Figure 1.2 for
examples of expected variability in images.

A learning system that has enough capacity (usually measured in terms of VC
dimension [Vapnik, 1998]: the largest number of points a classifier can arbitrar-
ily separate) and provided with unlimited independent and identically distributed
data can learn to be discriminative even in presence of these variabilities. Yet,
annotated images are costly and systems are limited in the number of images they
can reasonably handle. To reduce the number of labeled images, one can look into
directly enforcing specific robustness into vision systems. Semantic variability is
usually dependent of the class and cannot in general be learned without examples.
A notable exception is the field of attributes (e.g., Lampert et al. [2009]), which
looks into finding shared semantic characteristics between different class instances,
and can be used for zero-shot learning [Lampert et al., 2013, Akata et al., 2015],
which is the task of classifying images without having a single example available.
This is, however, not the focus of our work and we choose to instead look into
geometric variability, which does not depend of the class as it is only linked to
acquisition parameters. It is possible to design architectures that are robust to
certain geometric transformations. The simplest example is to preprocess images

CHAPTER 1. INTRODUCTION 5

Category Species Gender Instance

Viewpoint Illumination Occlusion Camera

Figure 1.2: Semantic variability (top). A same class can contain several sub-
categories (e.g., “animals” on the left), species (e.g., “spiders” middle-left), genders
(“lions” middle-right) or even different expressions of the exact same model (“Peu-
geot 306” on the right). Geometric variability (bottom): even the same objects can
significantly vary in appearance due to acquisition parameters. From left to right:
viewpoint variation, lighting changes, occlusions, and camera model. Images from
the ImageNet dataset.

into grayscale ones to make them invariant to hue and saturation changes. Man-
ually enforcing the necessary level of robustness is not practical, and this thesis
looks into methods to directly learn the levels of geometric robustness that are
required by the task. We study two such tasks, image retrieval and classification,
which we briefly introduce in the following.

1.1.2 Robustness in the Context of Image Retrieval

The first task on which we focus is called instance-level retrieval. It consists in
finding in a large dataset instances of an object that is known from a reference im-
age called query. One usage scenario could be a photo-tourist who forgot the name

CHAPTER 1. INTRODUCTION 6

Figure 1.3: Example of four different classes of matching objects in the Rome
dataset, introduced in this thesis [Paulin et al., 2016]

of a building he captured and wanted to know its name in webpages containing
the same instance, or who needed more images of the same element to enrich his
collection. Only images of the exact same object are suposed to match; buildings
of a similar architectural design, for instance, do not fall into that category. This
differs from work on semantic retrieval or context retrieval, where semantic groups
such as “birds” can match, and which have been studied for instance by Chatfield
and Zisserman [2012]. In contrast to classification, no knowledge of the classes or
in this case objects is required beforehand. This allows for instance the system to
be able to find instances of objects that were created after the retrieval program
was deployed. Since classes consist of the same objects, the only variability to
which the system must be robust is of the geometric kind. Two sorts of retrieval
datasets currently exist. Ones for which aquisition of different images are sequen-
tial and with similar settings. This is the case for instance for the popular Holidays
dataset [Jégou et al., 2008] and University of Kentucky Benchmark (UKB, Nister
and Stewenius [2006]). These datasets usually display significant viewpoint vari-
ability. The other category of datasets consists of images crawled from popular
image hosting websites, such as Flickr1. Popular examples include Oxford and
Paris [Philbin et al., 2007], and are usually more difficult as variability to camera
model and illumination due to time of day is added to the viewpoint changes. See
Figure 1.4. Our work (see Chapter 3) introduces a new dataset of the latter cate-
gory, with images from the city of Rome. See Figure 1.3 for examples of matching
images in this dataset, illustrating the large visual variation between images of the
same object in instance-level retrieval.

A retrieval system is evaluated on three different criteria: accuracy (usually
measured in terms of mean average precision: mAP), speed, and memory footprint.
There is no unbiased global measure that takes into account these three points.

1www.flickr.com

www.flickr.com

CHAPTER 1. INTRODUCTION 7

Dataset Images Avg ratio Query Target
Query:Target Examples Examples

Holidays 1491 1:3

UKB 10200 1:1

Oxford 5063 1:10

Paris 6392 1:10

Figure 1.4: Examples and statistics of the state-of-the-art retrieval datasets:
Holidays [Jégou et al., 2008], UKB [Nister and Stewenius, 2006], Oxford [Philbin
et al., 2007] and Paris [Philbin et al., 2008].

CHAPTER 1. INTRODUCTION 8

The usage is therefore to fix speed and memory footprint and compare accuracy
only for methods that are similar in terms of those. Thus, methods that work by
local descriptor search are not directly compared to methods that rely on global
descriptors (see Section 1.2 for more details). Our work on image retrieval only
uses the latter: global image descriptors. The goal is to find a robust image
representation which allows for two images of the same instance to be close in their
induced space. Then, simple nearest neighbor search on the query should return
its target.

1.1.3 Robustness in the Context of Image Classification

The second task on which we focus is classification. The goal is to learn to discrim-
inate images into classes, which are known from examples in a training dataset.

In a first stage called training, the algorithm or classifier is given a set of
examples with their class labels. During a second testing stage, it must attribute to
a set of unknown examples their expected labels. Examples of two popular datasets:
Caltech University Birds [Wah et al., 2011] and ImageNet [Deng et al., 2009] are
illustrated in Figure 1.5. They illustrate the two popular subtasks of classification.
The first is fine-grained classification, which aims at separating truly close concepts
such as bird species or car models. The second is large-scale classification, where
the sheer number of different classes and examples is in itself a challenge.

Figure 1.5: Images of two different classification tasks. Left: Birds species cate-
gorization. Right: Broad large-scale classification.

Apart from datasets which only have synthetic examples that can be generated
at very low cost (see e.g. Dosovitskiy et al. [2014]), training sets are finite. This is
a problem as optimizing a classifier with large enough capacity leads to the over-
fitting phenomenon where the system learns examples by heart (large accuracy on
the train set), and is unable to give new images a relevant label (low accuracy

CHAPTER 1. INTRODUCTION 9

on the test set). There are two main possibilities to solve this problem: using
more examples or adding regularization, as a constraint on w that forces a lower
accuracy on the train set. The former is non-trivial in the case of real data, and
the latter is often of less quality, because it has no tangible link to the problem
(for instance L2 regularization). One intermediate approach, is to create synthetic
new examples using known real ones [Sietsma and Dow, 1991a]. These virtual ex-
amples, often generated as perturbations (crops, flips, blur, rotations, etc.) of real
ones, are used in classification to complement the training set and enforce specific
robustness to some transformations. Data augmentation implicates higher training
costs, and one of the goals of this thesis is to show how fine-grained classification
can use techniques from large-scale methods (such as stochastic gradient descent
[Bottou and Bousquet, 2007]) to scale to large numbers of examples and improve
performance. Another way to reduce training costs, both in time and memory, is
to minimize the number of selected virtual examples, to maximize efficiency. These
techniques are further discussed in Chapter 2.

1.1.4 Towards Reducing Annotation Costs

An important goal of computer vision is to develop fast and light methods that
are able to scale to large datasets without requiring great amounts of computing
power or storage. Implementing algorithms on GPU (e.g. SIFT [Wu, 2007]),
and Product Quantization [Jégou et al., 2011] are related examples for speed and
memory optimization respectively.

But looking at computer vision as a whole, one important cost that must not be
overlooked is the cost of human annotation. This directly impacts the performance
of the whole process and is not on the same level as other performance issues. In
many tasks, a preliminary phase of costly manual labor prior to learning is required,
in order to generate training and testing data for computer vision algorithms. To
do so, scientists often resort to crowdsourcing through websites such as Amazon
Mechanical Turk, or undergraduate students. Figure 1.6 shows how two of the
most popular benchmarks for image classification were gathered, and illustrate the
high cost in resources (both monetary and human) they required. The advent
of large-scale learning especially with deep architectures has recently dramatically
increased the need for manually annotated examples.

This is indeed unsatisfactory due to the variability of results, the required offline
time, and the monetary cost. For the worker, this is also excruciatingly boring.
One goal of this thesis is to show that we can reduce the amount of required labor
through careful design.

CHAPTER 1. INTRODUCTION 10

700 person hours
20 classes

11K images

21K classes
14M images

2-5 person per image
2 images per sec
$0,02 per image

Figure 1.6: The process of collecting the PASCAL VOC and ImageNet datasets.
While the early PASCAL VOC Challenge relied on computer scientists to annotate
data, the need for large scale benchmarks such as ImageNet with thousands of
classes and millions of examples required crowdsourcing.

The implements of labour, in the form of machinery, necessitate the substitution
of natural forces for human force, and the conscious application of science, instead
of rule of thumb.

K. Marx, Das Kapital. Trans. Samuel Moore and Edward Aveling.

We achieve this by using virtual examples (see Chapter 2) or unsupervised
learning–a method which requires no groundtruth (see Chapter 3).

1.2 Context
To motivate the goals of this thesis, we give a brief overview of the evolution
of robustness in image classification and retrieval. One of the main difficulty of
computer vision is expressed in the Burns theorem [Burns et al., 1993]: “there
is no feature of n projected points for any n that is both a general-case view
invariant and nontrivial”. It is therefore impossible to find truly invariant image
representations, and this does not even concern the image classification problem

CHAPTER 1. INTRODUCTION 11

and semantic variability. 3D-view invariants do not exist, but it is possible to
design quasi-invariants that are robust to small changes in viewpoint.

For instance Binford and Levitt [1993] show that homography invariants at
image level are quasi-invariants for perspective transformations. Most typical re-
trieval problems, however, cannot only be solved by quasi-invariants to viewpoint
changes, and robustness to many other factors such as illumination or occlusions
must be enforced. In the following section, we give an overview of methods that
explored which other invariances could be attained, especially at patch level. We
then describe how methods evolved to robust descriptors and methods, and fin-
ish by the most recent development in computer vision which are modern neural
networks, and the level of robustness they brought.

1.2.1 Strong Invariances

The early days of image recognition were marked by the desire to find represen-
tations that were invariant to some transformations. Due to acquisition methods,
as well as the wish to be invariant to hue and saturation, images were almost ex-
clusively pre-processed into grey-level versions. A large field of study was devoted
to find reproducible locations in images, called interest points. These points are
distinctive enough so that all projections of a 3D location whose projection in one
view is an interest point, are also interest points. This was achieved with several
key processes. Such an interest point can only lie on a textured surface, so as not
to be mistaken with its close neighbors. Two specific characteristics for attain-
ing translation invariance can be exploited in images: corners, as intersection of
edges with a significant angle, and blobs, as small and bounded uniform regions.
Examples of the former include the Harris [Harris and Stephens, 1988] and Hes-
sian [Lindeberg, 1998] detectors. The latter is typically used with a Difference- or
Laplacian-of-Gaussian [Lowe, 1999] detectors or Maximally Stable Extremal Re-
gions [Kadir et al., 2004]. To make region extraction invariant to zooms, algorithms
use a scale selection method such as the one of Lindeberg [1998]. Last, robustness
to local perspective changes can be obtained by the affine normalization approach
of Mikolajczyk and Schmid [2002].

Once these points are computed, small regions (between 10 and 100 pixels
square areas called patches) are extracted around them. The goal is to design in-
variant local descriptors, defined as mappings between these regions and a certain
Euclidean space, with the property of being identical under some transformations.
Usually relying on image gradients, which are naturally invariant to uniform il-
lumination changes, and higher order moments, these local features are used to
match the aforementioned interest points detected in different views. Typical in-
variant representations include the differential invariants of Florack et al. [1992]

CHAPTER 1. INTRODUCTION 12

and their extension, the steerable filters of Freeman and Adelson [1991]. Both
representations are rotation-invariant.

The design and proofs of these invariants relies on theoretical results related to
Lie groups, but their hypotheses are not always respected on real data, a fact that
is partly due to pixelization.

1.2.2 Pooled Invariances

One of the major breakthroughs in image description was the invention of Lowe
[2004] with the Scale-Invariant Feature Transform (SIFT). It started a whole new
field of research with the introduction of pooled invariants. On top of invariant
features such as gradient orientations, a pooling step –spatially aggregating features
into one that represents an area, taking e.g. their sum or their max– has the effect
of no longer having invariant features, but rather robust ones that keep closeness
to their origin under small transformations.

Many descriptors that work in a similar fashion to SIFT were crafted, e.g.,
GLOH [Mikolajczyk and Schmid, 2005], SURF [Bay et al., 2006], or Daisy [Tola
et al., 2010]. At the same time, realistic benchmarks to test performance of all local
descriptors were designed such as the one of Mikolajczyk and Schmid [2005]. Its
notable conclusion is the outstanding experimental performance of SIFT compared
to the previously described invariant descriptors.

The success of these pooled descriptors in pairwaise point matching leads to
works exploring efficient ways to design similarity measures between images. Build-
ing on sets of local descriptors such as SIFTs, typical global representations aggre-
gate or pool them using Bag-of-Words [Sivic and Zisserman, 2003], VLAD [Jégou
et al., 2010] or Fisher Vectors [Sánchez et al., 2013]. They were used for both
retrieval [Jégou et al., 2012] and classification [Perronnin and Dance, 2007] tasks.

1.2.3 CNNs: Learning Robustness at Different Scales

The recent evolution of computer vision can be read in the results to the ImageNet
Large Scale Visual Recognition Challenge, plotted in Figure 1.7. The year 2012
is marked by a large increase in performance, operated by a paradigm shift in
methodology. While previous approaches were based, as described in the previous
paragraphs, on local descriptor aggregation, the best performing ones, called deep
learning, used Convolutional Neural Networks (CNN) to perform classification, a
pionneering work in this field being the one of Krizhevsky et al. [2012].

The changes with respect to the previous approach were numerous. First, the
architecture in itself, consisting of stacked layers of convolutions interleaved with
pooling, although reminiscent of previous models, was radically different. Fully-
connected classifiers were also shown to perform better than linear ones, even for

CHAPTER 1. INTRODUCTION 13

Fisher Vectors [Perronnin and Larlus, 2015]. Note that both these claims were
invalidated by the success of Residual Nets [He et al., 2015] which used neither
pooling layers, nor fully-connected classifiers. Other major changes to typical neu-
ral networks architectures included rectified linear units, dropout [Hinton et al.,
2012], and data augmentation.

Figure 1.7: Evolution of the best performing method on the ImageNet dataset.

Although not fondamentally new and relying on methods that were developped
several decades before [LeCun et al., 1998], it was the first time they were applied
to realistic image recognition problems.

The success of deep learning in image classification was however not directly
transfered to the task of image retrieval, a fact that can be explained by two
factors. First, global image representations give suboptimal (albeit faster) results
compared to approaches that utilize local descriptor indexing. Second, the absence
of training data forces the use of transfer techniques and do not give state-of-the-
art results. Two notable exceptions is the work of Gong et al. [2014] which holds
the state of the art for global descriptors for 2014 by pooling CNN-encoded local
image regions, with a mAP of 80.2%, and the work of Perronnin and Larlus [2015]
with 84.7%, which solely takes from deep learning the multi-layer fully-connected
classifier. The evolution of the best performing methods on the Holidays dataset
is given in Figure 1.8.

CHAPTER 1. INTRODUCTION 14

2008 2009 2010 2011 2012 2013 2014 2015
Year

70

75

80

85

90

m
A

P
(%

)

Query expansion

Geometric verification

Learned on dataset

Local descriptors

Global descriptors

Figure 1.8: Evolution of the best performing methods on the Holidays dataset.
Regular methods are marked with circles. Small markers are methods that rely on
sets of local descriptors (more costly), where large markers are for global descrip-
tors. Stars represent methods that assume the database may have several target
instances and use query expansion to utilize them. Red markers use geometric
verification posterior to retrieval. Green markers allow methods to perform unsu-
pervised learning on the dataset itself, effectively preventing them to generalize to
brand new objects.

In this work, we focus on the first and last novelties of the CNN: the particular
convolutional architecture in Chapter 3 and data augmentation in Chapter 2. We
believe that breaking down the individual components can help better understand
the success of the method. We now give a brief overview of these two techniques
and our contributions for them.

1.3 Contributions
This thesis addresses the problem of robustness in image classification and retrieval
systems. Here, we briefly describe the two main contributions that will be detailed
in Chapter 2 and Chapter 3.

CHAPTER 1. INTRODUCTION 15

1.3.1 First Contribution: Selecting Virtual Examples

When training data is scarse, a popular technique is to generate small perturbations
in the forms of plausible deformations (crops, flips, rotations, etc) and use them to
teach robustness to the learning system. This process is called data augmentation,
and the new data “virtual examples”. We focus Chapter 2 on the study and optimal
selection of transformations that lead to virtual examples that are beneficial to
classification. This work was published in CVPR 2014. Our contributions are
threefold:

• We show how to select a small set of transformations to create virtual ex-
amples while maximizing performance. Selecting a small number of virtual
examples also allows to reduce memory footprint and training time. An
overview of our method is given in Figure 1.9. Our algorithm, called Image
Transformation Pursuit returns a quasi-optimal set of candidate transforma-
tions, while staying tractable. This effectively allows us to design a system
that is robust to geometric transformations, which are automatically deter-
mined from data and require no manual selection.

Classifier

Image transformations Evaluation and selection
of transformations

Figure 1.9: Our approach to boost classification performances with virtual exam-
ples. Each image is transformed through several geometric transformations. Some
specific transformations are selected to maximize performance. In a last stage, the
classifier is trained with all selected transformations.

CHAPTER 1. INTRODUCTION 16

• We show that jittering examples with transformations improves performance
by a fair margin provided it is used both at train and test time. While mostly
used at train time, Krizhevsky et al. [2012] were the first to also use it at test
time, but did not give details on its contribution.

• We report state-of-the-art performance on several widely used fine-grained
categorization datasets such as Caltech University Birds, Aircrafts and Cars.
At the time of publication, our method also achieved state of the art with
Fisher Vectors on ImageNet.

1.3.2 Second Contribution: Convolutional Architectures
for Patch Description

Keypoint detection Patch description Aggregation
Hessian-affine Deep Network VLAD

Figure 1.10: Our approach for image retrieval with local convolutional descriptors.
In a typical pipeline with keypoint detection, region description, and aggregation,
we propose to replace the commonly used SIFT descriptor with deep architectures
for patch description.

We use the following three steps for our image retrieval porocedure: interest
point detection, local region description and aggregation. While the second step
is usually achieved with handcrafted descriptors such as SIFT, we propose in this
work to replace them with a descriptor build with the CNN framework [Mairal
et al., 2014b]. Figure 1.10 gives an overview of our approach. Our contributions
are the following:

• We propose a new patch descriptor based on the Convolutional Kernel Net-
works of Mairal et al. [2014b]. These descriptors do not require manually
labeled data, as their parameters are entirely determined through unsuper-
vised learning. Their level of robustness is directly determined from the patch
matching dataset.

CHAPTER 1. INTRODUCTION 17

• To do so, we introduce a new patch/image dataset, named RomePatches,
on which we are able to link performances for both tasks. This dataset is
automatically generated using 3D reconstruction, effectively introducing a
general methodology for benchmarking patch description in the context of
image retrieval.

• Most works that focus on learning patch descriptors only perform evaluation
on patch retrieval tasks. We show that better performance in patch matching
leads to better performance in image retrieval as well.

• At the time of publication, our descriptors outperformed the state of the art
on our dataset, as well as on standard patch retrieval and image retrieval
benchmarks. We especially show that they outperform SIFT, transferred off-
the-shelf CNN features, as well as supervised CNNs. Compared to the latter,
they require an order of magnitude less training time, and no labelled data.

Chapter 2

Selecting Virtual Examples for
Image Classification

2.1 Introduction . 19
2.2 Related Work . 20
2.3 Virtual Examples: Generation and Selection 23
2.4 Experiments . 31

Socrates: Let us take any common instance; there are beds and tables in the world
–plenty of them, are there not?
Glaucon: Yes.
Socrates: But there are only two ideas or forms of them –one the idea of a bed, the
other of a table.

Plato, The Republic, book X. Trans. B. Jowett.

18

CHAPTER 2. VIRTUAL EXAMPLES 19

2.1 Introduction
The focus of this chapter is image classification. This is a very challenging problem
because objects of the same class may exhibit large variations in appearance. Such
intra-class variations fall into two categories. The intrinsic variability corresponds
to the fact that two instances of the same object class can be visually different,
even when viewed under similar conditions (e.g. , different zebras have different
patterns). The extrinsic variability refers to those differences in appearance that
are not specific to the object class (e.g. , different viewpoints, lighting conditions,
image compression).

In what follows, we use the term “invariant” in a loose manner, implying that
a learning system is invariant if, for a given object, the predicted label remains
unchanged for all possible variations of images of the class. Following the taxon-
omy of Bishop [1995b], there are three approaches to building invariant learning
systems from finite training sets: (i) generating virtual training examples by ap-
plying transformations to the original samples to account for the variations that
are expected at test time [LeCun et al., 1998, DeCoste and Burl, 2000, Decoste
and Schölkopf, 2002, Simard et al., 2003, Krizhevsky et al., 2012]; (ii) designing
a feature representation which is inherently invariant to the variations to be ex-
pected [Tuytelaars and Mikolajczyk, 2007]; (iii) embedding the invariance in the
structure of the learning system, a popular example being convolutional nets [Ben-
gio, 2009, Sohn and Lee, 2012]. Examples of (ii) include invariant kernels for
support vector machines [Schölkopf and Smola, 2002] which are limited to invari-
ance to transformations satisfying a particular Lie group structure. On the other
hand, examples of (iii) usually correspond to learning architectures intended to
mimic biological visual systems [Bengio, 2009] that exhibit attractive invariance
properties; it remains unclear however how to reverse-engineer such architectures
to build-in relevant invariances for a particular task.

We propose here to explore virtual example generation (option (i)), by explicitly
generating virtual examples at training and at test time. While it might be difficult
to generate virtual samples that reflect intrinsic class variations (except for specific
object classes such as pedestrians [Marín et al., 2010, Pishchulin et al., 2011]), it is
possible to generate virtual samples that simulate extrinsic variations by applying
simple geometric and colorimetric transformations. In this work, we focus on
such transformations, as they have been shown to increase classification accuracy,
especially on simple tasks such as digit recognition [LeCun et al., 1998, DeCoste and
Burl, 2000, Decoste and Schölkopf, 2002, Yaeger et al., 1996], and, more recently,
on ImageNet [Krizhevsky et al., 2012].

We believe that the selection and weighting of an optimal set of transformations
is essential for the success of the approach. Indeed, transformations that are too
conservative (e.g. , removing the first column of pixels) have little if any impact,

CHAPTER 2. VIRTUAL EXAMPLES 20

whereas they come with significant computational overhead both at training and
testing time. On the other hand, transformations that are too extreme (e.g. for
digits, a strong rotation hat would transform a 6 into a 9) will lead to unlikely
images and may decrease classification accuracy. We are not aware of any principled
and automatic approach to weighting a set of transformations that lead to higher
accuracy, except manually by trial and error. This might be acceptable when the
number of possible transformations is limited, for instance when dealing with small
(e.g. 256 pixels) black-and-white images of digits. However, such a manual selection
process is not applicable when there is a large number of possible transformations,
which is a must when dealing with realistic datasets.

In our proposal, each image can be represented by a set of descriptors, each
corresponding to the features extracted for the transformed version of the image.
We are faced with a classical computer vision problem: how to aggregate a bag
of descriptors into a single image-level representation. We propose a principled
approach for utilizing transformations, termed Image Transformation Weighting
(ITW). This approach computes an optimal set of weights for each transforma-
tion by modelling them as latent variables. When the dataset size or the feature
dimension are too high for such an approach, we further constrain this model to
select weights in {0, 1}, and derive an approximation called Image Transformation
Pursuit (ITP). ITP computes a set of optimal transformations from a large “dic-
tionary” of transformations (see Fig. 2.1), by iteratively and greedily selecting one
transformation at a time. ITP is reminiscent of pursuit algorithms such as match-
ing pursuit or basis pursuit [Mallat, 2008], which compute a signal approximation
from a dictionary by iteratively selecting one atomic element at a time from the
dictionary. We show that ITP gives similar results to ITW, at a fraction of the
cost.

We report results for ITP on three public benchmarks for fine-grained classifica-
tion: the CUB dataset of Birds [Wah et al., 2011] as well as on the Aircrafts dataset
and the Cars dataset that were both featured in the FGComp’13 challenge1. On
all datasets we report significant improvements for Fisher as well as deep convnet
features. Our method holds state-of-the-art for non-finetuned bilinear features.
One important conclusion of our work is that it is crucial to apply transformations
both at training and test time for best performance.

2.2 Related Work
Augmentation of the training set by adding virtual examples has received consid-
erable interest. In the context of image classification, data augmentation is an
attractive empirical approach to learn invariances. There are two main strategies:

1https://sites.google.com/site/fgcomp2013/

https://sites.google.com/site/fgcomp2013/

CHAPTER 2. VIRTUAL EXAMPLES 21

Rotation Crop Flip

Scale Tone change JPEG

Figure 2.1: Illustrations of image transformations, on simple icons and on an image
from the CUB dataset.

i) generating virtual examples by transforming the visual descriptor; ii) generat-
ing virtual examples by transforming the original image, prior to visual descriptor
extraction. We also review previous works that enforce geometric priors in classi-
fication, without resorting to data augmentation.

2.2.1 Corrupting features with noise

The first approach consists in adding noise to descriptors according to particular
probability distributions. Originally introduced by Sietsma and Dow [1991b], this
approach can be shown to be equivalent, up to first-order, to adding a particular
regularization term to the empirical risk objective. For instance, adding Gaussian
noise with mean 0 and variance σ2 to least-square regression is equivalent to ridge
regression with penalty term σ2. Bishop [1995a] shows that noise injection with a
least-squares penalty is first-order equivalent to adding a Tikhonov regularizer to
the objective. An [1996] suggest that noise injection can induce smoothness of the
prediction function with respect to the input data. More recently, marginalized
auto-encoders [Chen et al., 2012] rely on a similar idea. Maaten et al. [2013] give
an analytical expression of the noise injection effect for several noise probability
distributions as well as several losses, in particular the one corresponding to drop-
out noise [Hinton et al., 2012, Krizhevsky et al., 2012, Baldi and Sadowski, 2013,
Wan et al., 2013].

CHAPTER 2. VIRTUAL EXAMPLES 22

2.2.2 Transforming images prior to description

The analytic noise injection strategy requires little to no a-priori knowledge on the
nature of the examples, and is therefore easy to implement. Yet, it can be difficult
to interpret from a computer vision point of view, as there is no unique mapping
from the descriptor space to the image space (such a mapping might not even
exist!) and the image corresponding to the corrupted descriptor is thus usually un-
tractable. Therefore the choice of the noise probability distribution can be unclear.
The second strategy works directly at the image level, using geometric transfor-
mations to generate perturbations of an image. For instance, LeCun et al. [1998],
Decoste and Schölkopf [2002], Niyogi et al. [1998], Krizhevsky et al. [2012] generate
virtual images from the original ones using plausible transformations such as crop
and flip. How to use these virtual images to help classification remains an open
problem. While we focus our work on three simple strategies: data augmentation,
feature concatenation and match-kernel, many other techniques exist. For instance,
Abu-Mostafa [1995] proposes to add to the classifier a penalty that enforces simi-
lar decisions for images and their transformations, an idea which is similar to the
transductive inference of Vapnik [1998] or the auto-encoder of Vincent et al. [2008].
In a similar fashion, these invariances can be learned during training, using tangent
propagation [Bishop, 1995b], or embedded into kernels through jittering [DeCoste
and Burl, 2000]. Standard approaches for equipping learning architectures with
invariance is tangent distance and its cousins [Simard et al., 1992, Keysers et al.,
2007, DeCoste and Burl, 2000, Huang et al., 2012], which correspond to a manifold
assumption on the input data.

In contrast to the virtual examples strategy, this strategy is more intuitive and
easier to interpret, as one works directly with realistic transformations. Yet, gen-
erating virtual images and extracting their features is significantly more expensive
than adding noise directly on the features. An exception is the digit recognition
task, where computing elastic deformation fields can be performed in an elegant
and computationally efficient manner [Loosli et al., 2007]. Our approach applies
the virtual images strategy by greedily selecting a limited number of transforma-
tions from a large dictionary, hence boosting performance without compromising
scalability. Furthermore, it requires potentially no prior knowledge, as it can work
with very large sets of transformations.

Finally, it is worth mentioning that most previous works perform only trans-
formations on the training set [LeCun et al., 1998, Decoste and Schölkopf, 2002,
Krizhevsky et al., 2012]. A few approaches also considered transforming the test
images [DeCoste and Burl, 2000, Krizhevsky et al., 2012].

CHAPTER 2. VIRTUAL EXAMPLES 23

2.2.3 Geometric priors for classification

Generating transformations of images and using them as virtual examples can be
seen as a way to enforce robustness to these transformations. Several works have
also focused on enforcing geometric robustness, without using virtual examples.
Early work on visual features focused on explictly enforcing invariances to rotation,
translation, or other Lie-group transformations [Tuytelaars and Mikolajczyk, 2007,
Szeliski, 2010], later culminating with the SIFT patch descriptor [Lowe, 2004]. In-
variant features can also be emulated using invariant kernels [Schölkopf and Smola,
2002, Decoste and Schölkopf, 2002, DeCoste and Burl, 2000], but training and test-
ing with non-linear kernel SVMs is challenging on large-scale image datasets, except
for specific kernels that admit explicit embeddings. Kumar et al. [2010] assumes
that each image has a unique representation in the set of its transformed versions,
and model it as a latent variable. In this work however, all our transformations are
shared between images, to simplify selection as well as testing. In a similar fash-
ion, Jaderberg et al. [2015] introduce a Spatial Transformer layer in a CNN that
explicitly applies a transformation to a feature map. Its parameters are directly
learned on data. In contrast to SPNs, our approach can leverage a large class of
image transformations, potentially enforcing a larger class of invariances.

2.3 Virtual Examples: Generation and Selection
We start by describing the family of transformations we apply to train and test im-
ages (Section 2.3.1). We follow by introducing several schemes to make use of the
virtual examples (Section 2.3.2). We then explain the proposed Image Transfor-
mation Weighting (ITW) algorithm and its approximation: Image Transformation
Pursuit. Finally, we discuss the score aggregation stage when transformed images
are generated at test time (Section 2.3.3).

2.3.1 Image Transformations

We distinguish two types of transformations, geometric ones, that transform the
initial image prior to descriptor extraction, and analytic ones, that are applied as
noise on the features. We considered 7 families of geometric transformations (for
a total of 40 possible transformations).

Flip. This transformation horizontally mirrors an image. It encodes the natu-
ral symmetry of most scenes and objects (text is an exception). Many approaches
use flipping to increase their training set size without prior knowledge, see for in-
stance Krizhevsky et al. [2012], Gavves et al. [2013].

CHAPTER 2. VIRTUAL EXAMPLES 24

Figure 2.2: Four of the eight homographies we use. The four others we consider
are similar, but with a broader window.

Crop. We consider the restriction of an image to a specific sub-window. We use
10 different crops, defined relatively to the image size. Prior to training/testing,
we randomly draw 10 sub-windows (x0, y0, x1, y1) with (x0, y0) ∈ [0, 0.25]2 and
(x1, y1) ∈ [0.75, 1]2.

Homography. To model viewpoint changes, we consider homographic trans-
formations of the initial images. We restrict ourselves to horizontal and vertical
pannings, and select 8 homographies (see Fig. 2.2).

Scale. We scale down images using bilinear interpolation. We consider 5
downscaling factors, respectively

(√
1.5
)n

with n ∈ {1, . . . , 5}.
Colorimetry. We consider colorimetric transformations. In the same fashion

as Krizhevsky et al. [2012], we compute the covariance matrix of the RGB com-
ponents on the whole dataset. Denoting λ1, λ2, λ3 and p1, p2, p3 respectively its
eigen-values and -vectors, we add to each pixel p ∈ [0, 255]3 a quantity ε1λ1p1 +
ε2λ2p2 + ε3λ3p3. We generate three different random triplets (ε1, ε2, ε3) sampled
from a normal distribution N (0; 0.1).

JPEG Compression. Despite being designed to minimize the change ob-
servable by a human, strong JPEG compression can have a dramatic effect on
descriptors. To account for variations in image encoding, we consider three differ-
ent levels of JPEG compression: 30, 50 and 70.

Rotation. To be robust to camera orientation, we rotate images around their
centers. To avoid introducing blank corners or cropping the image, we adopt the
following method. Rotated images are incrementally pasted onto one another, by
steps of 1 degree. The resulting images therefore contain parts of the original image
in their corners. We consider 10 rotations of {−15,−12, . . . ,−3,+3, . . . ,+12,+15}
degrees.

CHAPTER 2. VIRTUAL EXAMPLES 25

2.3.2 Virtual Examples

In the following chapter we denote by (x, y) ∈ X × Y a pair of (image, label),
with Y = {1, . . . , K} and T = {T1, T2, . . . , TT} a set of T possible transformations.
For simplicity, we assume T1 to be the identity. For an image x, we denote φ(x)
its encoding in an arbitrary descriptor space (for instance Fisher Vectors or CNN
features) and therefore φ(Tp(x)) is the p-th virtual example of image x. Each image
is thus represented as a bag of descriptors of its transformations, and the goal of
this chapter is to explore the traditionnal problem of aggregating them to maximize
performance.

The traditional classification framework relies on the definition of a loss function
`(x, y, w) and a regularizer Ω(w), and aims to solve the following problem:

Minimize
w

Ex,y [`(x, y, w)] + Ω(w), (2.1)

where w represents the weights of the classifier.
The expectation is then approximated by an empirical risk on a training set Z

of n pairs (x, y):

Minimize
w

1

n

∑
(x,y)∈Z

`(x, y, w) + Ω(w). (2.2)

Typical choices of losses ` can be

• The hinge loss [Vapnik, 1998], leading to the one-versus-rest SVM formula-
tion:

`OVR(x, y, w) =
K∑
j=1

max{0, 1− yj w>j φ(x)},

with

yj =

{
1 if y = j
−1 if y 6= j.

(2.3)

• The multiclass hinge loss:

`MUL(x, y, w) = −w>y φ(x) + max
j
{w>j φ(x) + ∆(y, j)}.

with

∆(y, j) =

{
0 if y = j
1 if y 6= j

(2.4)

CHAPTER 2. VIRTUAL EXAMPLES 26

• The multinomial logistic loss:

`LOG(x, y, w) = −w>y φ(x) + log
K∑
j=1

exp(w>j φ(x)). (2.5)

We refer the reader to [Akata et al., 2013] for examples of other losses for image
classification, including ranking losses. For all previously described losses except
the OVR-SVM, we observe that the prediction function that maps an unknown
example x to its guessed class ŷ can be written as:

ŷ = arg min
y
`(x, y, w). (2.6)

Note that this assumption holds true for the OVR-SVM loss when at least one
classifier wj fires a non-negative prediction w>j φ(x). We restrict ourselves in the
rest of this chapter to losses that verify this property.

In the following, to ease notations, we discard the regularization term Ω. It is
straightforward to derive regularized versions of our equations.

To use virtual examples in this classification framework, we introduce weight-
ing variables {µ1, µ2, . . . , µp} in [0, 1] which represent the relative performance of
each transformation, and we denote by L(x, y, w, µ) an aggregated loss over all
transformed examples. We propose several such losses, detailed in the following
paragraphs.

2.3.2.1 Feature Concatenation

The first and simplest scheme consists in embedding the selected transformations
directly in feature space by concatenating the transformed descriptors. The result-
ing aggregated loss writes as:

L(x, y, w, µ) = ` ([µ1φ(T1(x)), · · · , µTφ(TT (x))], y, w) . (2.7)

Note that in this case, w is T times higher dimensional than the original prob-
lem, which can be prohibitive for large-scale problems.

2.3.2.2 I.i.d. Data Augmentation

The second scheme simply adds the generated examples to the training set as if
they were new iid samples drawn from the data distribution with the same label as
the original example. To incorporate the µ weightings, we assume they correspond
to importance sampling factors that only depend on the transformation (and not

CHAPTER 2. VIRTUAL EXAMPLES 27

the example). The aggregated loss writes as:

L(x, y, w, µ) =
T∑
p=1

µp`(φ(Tp(x)), y, w). (2.8)

When µp ∈ {0, 1}, this corresponds to adding or not the examples transformed
by Tp to the total training set.

2.3.2.3 Match Kernel

The last scheme embeds invariance directly into the kernel by considering an in-
stance as a bag of transformed examples, and comparing two examples as the
sum of pairwise products between all transformations. The scheme relies on the
following kernel:

k(x, x′) =
T∑
p=1

T∑
p′=1

µpµp′φ(Tp(x))>φ(Tp′(x′)). (2.9)

This corresponds to summing transformed examples in feature space. The
corresponding aggregated loss is:

L(x, y, w, µ) = `

(
T∑
p=1

µpφ(Tp(x)), y, w

)
. (2.10)

2.3.3 Score Aggregation

Each aggregation method detailed in section 2.3.2, comes with its preferred label
prediction:

ỹ = argmin
y
L(x, y, w, µ). (2.11)

With linear models as considered in this work, this corresponds to averaging
the individual transformation scores:

∑T
p=1w

>φ(Tp(x)) in the case of data aug-
mentation and match-kernel. For feature concatenation, this is only the standard
score on stacked vectors. However, other aggregations schemes are possible at test
time for virtual examples, and we investigate specifically three of them.

2.3.3.1 Averaging.

We use the scores of all virtual examples as independent measures and average
them to get a consensus similarly to Krizhevsky et al. [2012]. Denoting by s

(k)
t

the score given by the classifier for class k to the t-th transformation (t ≤ T), we

CHAPTER 2. VIRTUAL EXAMPLES 28

define: s(k)
avg :=

∑T
t=1 s

(k)
t . Note that in the case of logistic regression, we use the

scores prior to softmax, as the latter is treated separately.

2.3.3.2 Maximum.

We use the transformation that yields the best score: s(k)
max := maxt s

(k)
t . It returns

the prediction for which the classifier is the most confident.

2.3.3.3 Softmax Aggregation.

The previous maximum scheme can suffer from the presence of outliers, while
averaging takes into account transformations with low confidence. A soft-max
strategy s(k)

smax := log
∑T

t=1 exp s
(k)
t , provides an intermediate solution.

2.3.4 The Image Transformation Weighting algorithm

We now introduce our algorithm, called Image Transformation Weighting. Its goal
is to jointly determine µ and w for any loss that satisfies postulate (2.6). Note
that the unconstrained minimization over µ leads to trivial solutions where µ is
zero everywhere. We fix this problem by assuming µ lies in the simplex:

T∑
p=1

µp = 1. (2.12)

Yet, in the case of data augmentation, the optimal solution to direct opti-
mization leads to a solution where only the best performing transformation has
a non-zero µp weight. To solve these issues, we start by defining the aggregated
prediction fonction of an example x as:

P(x,w, µ) = arg min
y
L(x, y, w, µ). (2.13)

In a similar fashion to structured output learning theory [Nowozin et al., 2015],
we handle this problem by using a surrogate loss functional, and solving the fol-
lowing formulation:

Minimize
w,µ

∑
(x,y)∈Z

L(x, y, w, µ) + max
j
{−L(x, j, w, µ) + ∆(y, j)}

s.t.
T∑
p=1

µp = 1

with ∆(y, j) =

{
0 if y = j
1 if y 6= j.

(2.14)

CHAPTER 2. VIRTUAL EXAMPLES 29

As is common practice, we use alternating descent minimization [Bertsekas,
1999] on w and µ. When optimizing on µ, we use a conditional gradient descent
algorithm, with linesearch, described in Alg. 1. For w, we could directly optimize
the problem in (2.14), which would be equivalent to solving (2.4), but we chose
instead to directly minimize L(x, y, w, µ) over w, which is more natural.

Because problem (2.14) is non-convex, it cannot be solved exactly by alternating
descent, but instead will converge to a local minimum. Following common practice
when dealing with latent variables [Cinbis et al., 2014], we prevent harmful auto-
reinforcement by splitting 50%/50% our training data (Z = Z1 ∪ Z2) at each
alternating iteration, and optimizing w and µ on a different set. The resulting
algorithm is presented in Alg. 2.

Algorithm 1 Conditional Gradient Descent for ITW
Inputs: Dataset Z. Set T of transformations. Current estimate of w. Initial µ1.
P (µ) :=

∑
(x,y)∈Z L(x, y, w, µ) + maxj{−L(x, j, w, µ) + ∆(y, j)}.

For i = 1 to N do

• Compute s = arg min s>∇µP s.t.
∑T

p=1 sp = 1.
• Define γ = 2/(2 + k)
• While P (µi + γ(s− µi)) > P (µi) do γ ← γ/2 done
• Update µi+1 ← µi + γ(s− µi).

done
Output: µN

Algorithm 2 Image Transformation Weighting
Inputs: Dataset Z. Set T of transformations.
Initialize w1 to 0 and µ1 to (1, 0, 0, . . . , 0).
For i = 1 to N do

• Split Z 50/50 into (Z1,Z2).
• wi ← argmin

∑
(x,y)∈Z1

L(x, y, w, µi)
• Optimize µi with Alg. 1 over Z2.

Set µ = µN and w = argmin
∑

(x,y)∈Z L(x, y, w, µ)

Output: (w, µ)

2.3.5 Image Transformation Pursuit (ITP)

The ITW algorithm is appropriate for low-dimensional features but requires loading
in memory all transformed versions of all examples. It is therefore not scalable to

CHAPTER 2. VIRTUAL EXAMPLES 30

very large decriptors or datasets. We propose an alternative, which is called Image
Transformation Pursuit (ITP), able to only select transformations one at a time,
thus dramatically reducing the selection process. We now detail this algorithm.

Our proposed transformations selection algorithm is based on a greedy search
in T. We start from an initial set µ(0) of transformations, which can either be
empty, only contain the original images (µ(0)

k = 1 if k = 1 else 0), or contain some
transformations determined a priori to be beneficial. As before, to prevent auto-
reinforcement, the training dataset Z is split into a train Z1 and validation Z2

set. We then maintain a set of current transformations and monitor the gain on
the risk obtained by adding a new transformation p (setting µp = 1). The optimal
weight is thus:

wp = argmin
w

∑
x,y∈Z1

L(x, y, w, µ ∪ {p}) + Ω(w). (2.15)

The transformation p is scored using the loss on the validation set:∑
x,y∈Z2

L(x, y, wp, µ ∪ {p}). (2.16)

As an alternative, and because we no longer require a differentiable loss, we propose
to directly evaluate the classification accuracy:

Ap =
∑
x,y∈Z2

1

[
y = arg min

k
L(x, k, wp, µ ∪ {p})

]
. (2.17)

The algorithm stops when S transformations have been selected. We detail the
process in Algorithm 3.

2.3.5.1 Ranking Alternative.

We also propose a simple one-step alternative to ITP which we refer to as Transfor-
mation Ranking or TR. As is the case for ITP, we start with the original samples
and quantify the gain that we would get by adding the S possible transformations.
We rank the transformations based on this gain and select the top S transforma-
tions. Note that in this setting, the redundancy between the transformations is
not taken into account (only the gain with respect to the original images).

2.3.5.2 Implementation Details.

We consider linear SVM classifiers, which are trained with Stochastic Gradient
Descent (SGD) [Bottou, 2012, Akata et al., 2013]. At each outer iteration of ITP, we
estimate the additional gain offered by a specific transformation at a low cost using

CHAPTER 2. VIRTUAL EXAMPLES 31

Algorithm 3 Image Transformation Pursuit (ITP)
Inputs: Dataset Z. Set of T transformations. Number S of transformations to
select.
Initialize µ(0) = (1, 0, 0, . . . , 0).
For i = 1 to S do

• split Z into Z1 and Z2.
• For p = 1 to T do

– Set νk = 1/(i+ 1) if µ(i−1)
k 6= 0 or k = p else 0.

– Train:
wp ← argminw

∑
x,y∈Z1

L(x, y, wp, ν) + Ω(w).
– Validate:
Ap ←

∑
x,y∈Z2

1 [y = argmink L(x, k, wp, ν)]

• Keep best transformation: p∗ ← argmaxpAp.
Set µ(i)

k = 1/(i+ 1) if µ(i−1)
k 6= 0 or k = p∗ else 0.

Output: µ(S)

the following strategy. Indeed, at iteration k (i.e. k transformations are already
selected), a classifier wk is learned using SGD on half of the training set augmented
with these k transformations. For each (k+1)-th candidate transformation, SGD
is run using wk as a warm start and few epochs. We determine the initial learning
rate η0 following the heuristic given in Bottou [2012]. We also cross-validate the
regularization parameter λ using values around the best parameter selected at the
previous main iteration. In our experiments, however, this optimal value never
changed across the main iterations.

2.4 Experiments
We first describe the datasets and the experimental setup. We then study the
impact of different design choices for using transformed descriptors to improve
performance. We also quantitatively compare the ITW, ITP and TR algorithms
and several baselines. Finally, we compare our method against the state of the art
on fine-grained image classification datasets.

2.4.1 Datasets

We report results on three challenging fine-grained classification benchmarks which
aim to classify respectively birds species, aircrafts and car models. For all those

CHAPTER 2. VIRTUAL EXAMPLES 32

datasets, the evaluation metric is the top-1 classification accuracy.

2.4.1.1 CUB

The Caltech-UCSB-Birds-200-2011 dataset [Wah et al., 2011] is a fine-grained clas-
sification benchmark consisting of 200 bird species and approximately 12,000 im-
ages. We use the provided training/test split: there are approximately 30 images
per class at both training and test time.

2.4.1.2 Aircrafts

The Fine-Grained Visual Classification of Aircraft (FGVC-Aircraft) [Maji et al.,
2013] dataset consists of 10,000 images of 100 classes of flying vehicles. The dataset
is split uniformly in a train, validation and test set. Following common practice,
we use the two first splits for training and report results on the third split. This
dataset was part of the FGComp’13 challenge.

2.4.1.3 Cars

The third fine-grained classification dataset we use is the one of Krause et al. [2013],
whose goal is to differentiate between 196 car models observed in 16,185 images.
This dataset was also part of the FGComp’13 challenge. We use the provided
train/test split.

2.4.2 Image descriptors

To show that our method is able to improve on adifferent types of descriptors, we
investigate three of them.

2.4.2.1 Fisher Vectors

Fisher Vector feature representations [Sánchez et al., 2013] are attractive for fine-
grained classification [Gosselin et al., 2014]. Following common practice, we use a
combination of SIFT [Lowe, 2004] and color [Clinchant et al., 2007] local descrip-
tors, extracted on a dense grid at multiple scales. We append the patch location
(x, y) and scale σ to the 61-dim PCA-projected patch descriptors, thus resulting
in 64-dim descriptors, following Sánchez et al. [2012] Fisher vectors are separately
evaluated on both of these features, and we also investigate the result of late-fusion
(summing class scores after prediction) of the two resulting global descriptors. We
denote these approaches resp. as “SIFT-Fisher”, “Color-Fisher” and “Fisher-fusion”.
We use a Gaussian mixture model (GMM) with 256 Gaussians, resulting in 32K-
dim representations.

CHAPTER 2. VIRTUAL EXAMPLES 33

2.4.2.2 Convolutional Neural Networks

We investigate the benefits of our method with off-the-shelf CNN features. We use
the output of the penultimate layer (the one before the last fully-connected layer)
of the very deep network of Simonyan and Zisserman [2014], and the parameters
that are available online2. We use the 16-layer model “D” network as it was shown
to give similar performances to “E” while requiring slightly less memory. This is
also the protocol of Lin et al. [2015]. The final descriptors have a relatively low
dimension of 4096.

2.4.2.3 Bilinear CNN features

To get state-of-the-art results, we use the powerful bilinear features of Lin et al.
[2015], specifically the [D,D] setting, which has shown outstanding performances
on the three datasets on which we report results. These features are obtained as
sum-pooled outer-products of the last convolutional features of the previous “D”
network. As in Lin et al. [2015], we use power and L2 normalization. The resulting
features have the huge dimension of 512× 512 = 262K.

2.4.3 Training procedure

We use the J-SGD stochastic gradient descent package3. Following Akata et al.
[2013], we use One-Versus-Rest SVM as a classifier, for which three parameters have
to be tuned: the learning rate, the regularization parameter λ and the number of
epochs. In a first offline stage, we determine these parameters independently for
all datasets and features. Five-fold cross-validation is used for λ and the number
of epochs. The learning rate is automatically tuned using the trick of Bottou
[2012]. The same parameters are kept throughout the remaining experiments. In
particular, we verified that these parameters stay optimal when adding transformed
examples.

2.4.4 ITW

We start by reporting results with the full ITW algorithm, which allows to weight
all transformations in a holistic approach. Note that because it requires storing
all descriptors with all possible transformations, we restrict ourselves to the 4096
dimensional CNN features. The results are displayed in Table 2.1, and show that
ITW gives performance that is on par with ITP. Because of the simplicity of the
latter, we choose to use this approximation in the remainder of this chapter.

2http://www.robots.ox.ac.uk/~vgg/research/very_deep/
3lear.inrialpes.fr/src/jsgd

http://www.robots.ox.ac.uk/~vgg/research/very_deep/
lear.inrialpes.fr/src/jsgd

CHAPTER 2. VIRTUAL EXAMPLES 34

CUB Aircrafts Cars
∅ 61.3 40.9 36.7

ITP 69.7 51.7 53.5
ITW 69.5 53.7 56.3

Table 2.1: Comparison between ITP and ITW for CNN descriptors.

Train on T

Train on 1 Test on 1

Train on 1 Test on T

Test on 1Train on T

Test on T

Figure 2.3: Illustration of the different training and test strategies. Both train-
ing and test can be done either on the original single image or on the set of all
transformed images.

2.4.5 Impact of score aggregation

We evaluate different dataset augmentation strategies. We assume that, after
the selection pass, we have T − 1 transformations per image, in addition to the
original one, so that each image has T representatives. We investigate the following
scenarios (Fig 2.3).

• Train 1/ Test 1: training and test are done only on the original images
(baseline).
• Train T/ Test 1: training is performed using the original as well as the

transformed images, and test is done on original test images.
• Train 1/ Test T : test is done on the transformed images, and their scores are

averaged, while training is done on the original images.
• Train T/ Test T : training and test are done on the transformed images.

Table 2.2 shows that the “Train T/ Test T ” scheme outperforms by far the
other ones. This demonstrates the importance of applying transformations at both
training and test time. In what follows, we use this scheme for all experiments
unless stated otherwise.

CHAPTER 2. VIRTUAL EXAMPLES 35

#trans CUB Aircrafts Cars
#train #test SIFT color fusion CNN SIFT color fusion CNN SIFT color fusion CNN

1 1 15.4 22.3 27.3 61.3 60.6 39.1 62.5 40.9 52.2 31.8 60.9 36.7
1 T 15.4 22.3 25.4 61.3 60.6 39.1 57.4 40.9 59.9 31.8 56.2 38.3
T 1 20.7 27.6 32.8 63.3 65.7 41.9 62.5 41.6 62.4 37.6 61.4 39.6
T T 27.5 36.1 41.3 69.7 69.6 49.0 66.8 51.7 70.6 44.9 69.1 53.5

Table 2.2: Comparison of different training and test scenarios for T = 6, i.e. T − 1
corresponds to the number of transformations used for training and test. Score
aggregation is performed by averaging. Transformations selected with ITP.

Scheme CUB Aircrafts Cars
scheme SIFT color fusion CNN SIFT color fusion CNN SIFT color fusion CNN
avg 27.5 36.1 41.3 69.7 69.6 49.0 66.8 51.7 70.6 44.9 69.1 53.5
max 23.2 33.0 38.6 69.2 69.0 48.2 66.0 47.9 69.7 43.7 68.5 46.5

soft-max 27.5 36.1 41.3 69.8 69.5 49.2 66.6 51.7 70.8 45.0 69.2 53.5
Table 2.3: Comparison of score aggregation schemes.

Scheme CUB Aircrafts Cars
scheme SIFT color fusion CNN SIFT color fusion CNN SIFT color fusion CNN

Data Aug 27.5 36.1 41.3 69.7 69.6 49.0 66.8 51.7 70.6 44.9 69.1 53.5
MK. 18.4 27.7 32.8 67.0 66.5 43.8 66.6 48.5 66.3 40.7 69.3 47.1

Concat. 19.9 30.0 30.8 68.5 65.5 45.1 63.2 57.7 62.3 39.0 63.0 52.1
Table 2.4: Comparison of different schemes for using virtual examples at training
time. All transformations were selected by ITP.

2.4.5.1 Score aggregation scheme

We compare the different score aggregation schemes at test time (Section 2.3.3)
and provide results in Table 2.3. We observe that all schemes yield similar results,
with “max” slightly below. We therefore decide to use the simple average in the
rest of the experiments.

2.4.5.2 Usage of transformed examples

As detailed in Section 2.3.2, there are several possible ways to use virtual examples
during training time. Match-kernel (feature averaging), data augmentation and
feature concatenation. Table 2.4 clearly shows that of all schemes, data augmen-
tation performs better.

2.4.6 Transformation selection experiments

We now evaluate ITP, algorithm 3 of Section 2.3. At each iteration, the algorithm
evaluates the gain in accuracy obtained for each candidate transformation indepen-

CHAPTER 2. VIRTUAL EXAMPLES 36

0 1 2 3 4 5
10

20

30

40

50

60

70 CUB

0 1 2 3 4 5
35

40

45

50

55

60

65

70 Aircrafts

0 1 2 3 4 5
30

35

40

45

50

55

60

65

70

75 Cars

SIFT Color Fusion CNN

Figure 2.4: Evolution of the test accuracy with respect to the number of selected
transformations.

dently on a held-out validation set. We plot the evolution of the validation score
across iterations for the selected transformations, along with the accuracy com-
puted on the full test set, in Fig. 2.4. The validation accuracy, although computed
on a smaller set and without waiting for the SGD algorithm to fully converge, is
varying consistently with the full test accuracy in our experiments. This validates
empirically the core idea of our algorithm.

Next, we compare ITP to several other selection strategies. We first con-
sider the choice of just adding the ’flip’ transformation, a rather common prac-
tice [Krizhevsky et al., 2012, Gavves et al., 2013, Lin et al., 2015]. The second
choice to which we compare is a random selection of transformations. This is
to ensure that we do not get a similar increase in accuracy with any subset of
transformations. Finally, we compare with the TR variant of our algorithm, which
is a cheaper version of ITP. Results are presented in Fig. 2.5 and 2.6. As can
be observed, the selection obtained by ITP significantly outperforms the first two
baselines (flip and random). ITP itself performs at least on par with the TR vari-
ant, and sometimes significantly better. This is due to the fact that the selected
transformations are individually beneficial, but heavily redundant (different crops
for instance).

Fig. 2.7 (left) shows the first five transformations selected by ITP. We can
see that crops are the most frequently selected transformations. We stack in
Fig. 2.7 (right) the selected crops on the CUB dataset, thus leading to a saliency

CHAPTER 2. VIRTUAL EXAMPLES 37

0 1 2 3 4 5
Transformations

10

15

20

25

30

35

T
op

-1
A

cc
ur

ac
y

(%
)

T1+flip SIFT
random SIFT
ITP SIFT

T1+flip color
random color
ITP color

Figure 2.5: Accuracy on CUB after adding up to five transformations with ITP,
with random selection (5 trials averaged, error bars shown), or with just flip in
addition to the original images (T1).

0 1 2 3 4 5
Transformations

10

15

20

25

30

35

T
op

-1
A

cc
ur

ac
y

(%
)

TR SIFT
ITP SIFT

TR color
ITP color

0 1 2 3 4 5
Transformations

28

30

32

34

36

38

40

42

44

T
op

-5
A

cc
ur

ac
y

(%
)

TR SIFT
ITP SIFT

TR color
ITP color

Figure 2.6: Evolution of the test accuracy on CUB as a function of the number
of transformations selected by ITP, or its cheaper TR variant.

map. They clearly focus on the center of the image. One might argue from this
observation that, by applying crops at training and test time, we are just learning
a prior on the object location (ie a saliency map). To test this hypothesis, we
perform the following experiment: for each training and test image, we extract
local descriptors from all its transformed versions and aggregate them in a single
FV. The patches which are present in multiple croppings are, therefore, weighted

CHAPTER 2. VIRTUAL EXAMPLES 38

CUB Aircrafts Cars
SIFT Color CNN SIFT Color CNN SIFT Color CNN

1 crop5 crop1 crop1 flip color0 flip crop5 crop5 crop9
2 flip crop5 crop8 homo3 crop3 crop1 flip crop0 crop2
3 crop6 flip homo7 homo7 crop5 crop2 crop2 flip crop7
4 crop1 crop6 flip homo2 crop8 crop8 crop3 crop2 homo7
5 rot-9 crop2 crop5 crop3 color1 crop5 crop0 color2 crop5

Figure 2.7: First five transformations, as selected by ITP.

Figure 2.8: Overlaying the different crops selected by ITP.

more than patches which occur in few or no crops. This is equivalent to weighting
patches with the saliency map Sánchez et al. [2012]. Note that this approach is
different from the match-kernel approach “MK” previously described, because of
Fisher Vector normalizations. On CUB for Fisher-Fusion features, we get 35.9%
which is a significant improvement over the 27.3% baseline – see Table 2.2. Yet,
this is only half of the improvement that we get with ITP (41.3%). This result
confirms that our approach is not merely learning a prior on the object location,
but also invariances against extrinsic variability.

2.4.7 Total training time vs. target accuracy

We plot the test accuracy as a function of the number of iterations performed by
the SGD in Fig. 2.9 (one SGD iteration corresponds to processing a single training
image). Interestingly, we observe that the learning process is faster for higher
numbers of transformations T . To better exhibit this phenomenon, we show in
Table 2.5 the number of training samples that the SGD algorithm has to process

CHAPTER 2. VIRTUAL EXAMPLES 39

200 400 600
SGD Iterations (in thousands)

5

15

25

T
op

-1
A

cc
ur

ac
y

(%
)

T1
+T2 (crop5)
+T3 (flip)
+T4 (crop1)
+T5 (crop6)
+T6(crop0)

200 400 600 800
SGD Iterations (in thousands)

20

25

30

35

40

T
op

-5
A

cc
ur

ac
y

(%
)

T1
+T2 (flip)
+T3 (crop0)
+T4 (homo2)
+T5 (crop6)
+T6(crop1)

Figure 2.9: Test accuracy as a function of the number of SGD iterations on CUB
(left) with SIFT-Fisher.

CUB acc target
T 25% 30% 35% 40%
1 42 X X X
2 29 48 121 X
3 31 41 79 250
5 33 44 66 141

Table 2.5: Number of training samples (in thousands) that the SGD has to process
to reach a given accuracy on the test set, for a varying number of transformations
T for Fisher-Fusion features. The ’X’ sign means that the target accuracy cannot
be reached at all.

to reach a certain accuracy on the test set. It can be observed that it takes less time
to reach a certain accuracy when T is larger (i.e. in spite of a larger training set).
For instance, on CUB with Fisher-Fusion descriptors, reaching a 35% accuracy is
achieved for T = 5 transformations after examining about 2 times less training
samples than for T = 2. This result is consistent with the work of Shalev-Shwartz
and Srebro [2008].

CHAPTER 2. VIRTUAL EXAMPLES 40

2.4.8 Comparison between virtual and real examples

Because of costly manual labelling, it is far more interesting to use virtual examples
then real ones. Yet, because of their statistical dependency to their original image,
they bring less performance. In Fig. 2.10, we show how many true examples are
required with added transformations to obtain the same performance as without
transformations. For instance, with five added transformations (T = 6), one can
get a higher accuracy with 5 original examples and their transformations than with
20 lone labeled examples.

0 5 10 15 20 25 30
Number of images per class without trans.

0

5

10

15

20

25

30

N
um

b
er

of
im

g.
p

er
cl

as
s

w
it

h
tr

an
s.

with 0 trans.
with 1 trans.
with 2 trans.
with 3 trans.
with 4 trans.
with 5 trans.

0 5 10 15 20 25 30
Number of images per class without trans.

0

5

10

15

20

25

30

N
um

b
er

of
im

g.
p

er
cl

as
s

w
it

h
tr

an
s.

with 0 trans.
with 1 trans.
with 2 trans.
with 3 trans.
with 4 trans.
with 5 trans.

Figure 2.10: Equivalence in terms of accuracy of images with virtual examples
and lone examples on CUB (30 images per class is the whole dataset) with ITP.
Left: SIFT-Fisher. Right: Color-Fisher.

Alternatively, we show in Fig. 2.11 the number of labeled examples one needs
to reach a target accuracy, for varying number of transformations.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Target accuracy

0

5

10

15

20

25

30

N
um

b
er

of
im

ag
es

p
er

cl
as

s

0 trans.
1 trans.
2 trans.
3 trans.
4 trans.
5 trans.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Target accuracy

0

5

10

15

20

25

30

N
um

b
er

of
im

ag
es

p
er

cl
as

s

0 trans.
1 trans.
2 trans.
3 trans.
4 trans.
5 trans.

Figure 2.11: Evolution of the accuracy with an increased number of images per
class on the CUB dataset with transformations selected by ITP. Left: SIFT-Fisher.
Right: Color-Fisher.

CHAPTER 2. VIRTUAL EXAMPLES 41

Dataset Birds Aircrafts Cars
Raw BCNN + flip [Lin et al., 2015] 80.1 76.8 82.9

Our Raw BCNN 80.3 75.4 83.0
Our Raw BCNN + flip 81.4 77.8 84.6
Our Raw BCNN ITP 82.6 79.1 86.7

Fine-tuned BCNN + flip [Lin et al., 2015] 84.0 84.8 90.6
State-of-the-art (finetuning) 84.11 85.12 92.63

Table 2.6: Performance of our method compared to the state of the art. Our
method holds state-of-the-art performance for off-the-shelf features. References:
1Jaderberg et al. [2015] 2Lin et al. [2015] 3Krause et al. [2015].

2.4.9 Comparison to state of the art

We now compare our results against the state of the art. In particular, we use the
bilinear features of Lin et al. [2015] and are able to improve on them. We show
the results of adding up to 5 transformations with ITP on the performance of the
bilinear features in Table 2.6. One important conclusion of this experiment is that
careful selection of the classification parameters is crucial to get good performance.
The approach “Our Raw BCNN + flip” uses the same data as Lin et al. [2015] but
is consistently above because of it. Our proposed method, named “Our Raw BCNN
ITP” improves significantly over using only the flip transformation. Our method
holds state-of-the-art performance for non-finetuned features. We only use off-the-
shelf features without fine-tuning, as the process of applying ITP on fine-tuned
features is difficult and left as future work. We also argue that performing fine-
tuning on a new dataset requires considerably more time and resources (several
days on a GPU) than simple feature extraction. The last row of Table 2.6 is taken
from Lin et al. [2015] and is the current state-of-the-art on the datasets we use.
All these methods use fine-tuning.

2.4.10 Locality of transformed descriptors

The positioning of virtual examples with respect to their original one is unclear.
In particular, it is difficult to know if they provide a good candidate for a new
iid sample that would have been drawn from the class distribution. To investi-
gate these matters, we propose to compute several statistics. In figure 2.12, we
plot the average distance between a transformed example and its original, which
we compare to the mean inter-example distance, as well as the intra-class average
distance. This provides a good evaluation of the robustness of our features to cer-
tain transformations. Also, one can see that virtual examples are highly correlated

CHAPTER 2. VIRTUAL EXAMPLES 42

to their originals, as their distance to it is usually much lower than to an other
example of the same class.

Transformation
0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
e
a
n
 d

is
ta

n
ce

m
e
a
n

cl
a
ss

fl
ip

cr
o
p
0

cr
o
p
1

cr
o
p
2

cr
o
p
3

cr
o
p
4

cr
o
p
5

cr
o
p
6

cr
o
p
7

cr
o
p
8

cr
o
p
9

h
o
m

o
0 h
o
m

o
1

h
o
m

o
2 h
o
m

o
3

h
o
m

o
4 h

o
m

o
5

h
o
m

o
6 h
o
m

o
7

jp
g
7

0

jp
g
5

0

jp
g
3

0

sc
a
le

0

sc
a
le

1

sc
a
le

2

sc
a
le

3 sc
a
le

4

co
lo

r0

co
lo

r1

co
lo

r2 ro
t-

3 ro
t-

6 ro
t-

9 ro
t-

1
2

ro
t-

1
5

ro
t3

ro
t6

ro
t9 ro

t1
2

ro
t1

5

Figure 2.12: Histogram of the average distance of a transformed example to its
original. Note that since all features are normalized, the upper bound is effectively
1. The “mean” bar is the average distance between all original examples, and
“class” the average distance between examples of the same class. Results are for
CNN features on the CUB dataset. As we can see, these features are more robust
to color changes and flip than to crops or rotations.

CHAPTER 2. VIRTUAL EXAMPLES 43

flip crop0 crop1 crop2 crop3 crop4 crop5 crop6

crop7 crop8 crop9 homo0 homo1 homo2 homo3 homo4

homo5 homo6 homo7 jpg70 jpg50 jpg30 scale0 scale1

scale2 scale3 scale4 color0 color1 color2 rot-3 rot-6

rot-9 rot-12 rot-15 rot3 rot6 rot9 rot12 rot15

Figure 2.13: All transformations used in this article, applied to a CUB image.

Chapter 3

Patch Description with
Convolutional Kernel Networks

3.1 Introduction . 45
3.2 Related Work . 46
3.3 Convolutional Descriptors . 49
3.4 Convolutional Kernel Descriptors 52
3.5 Image and Patch Retrieval Datasets 61
3.6 Experiments . 64

Solche geringe Wahrnehmungen sind also von mehr Wirksamkeit, als man denken
mag. Sie sind es, welche dies wunderbare Etwas, [...] die in ihrem Zusammensein

klar, jedoch ihren einzelnen Teilen nach verworren sind.
Leibniz: Neue Abhandlungen über den menschlichen Verstand

44

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 45

3.1 Introduction

This chapter explores convolutional architectures as robust visual descriptors
for image patches and evaluates them in the context of patch and image re-

trieval. We explore several levels of supervision for training such networks, ranging
from fully supervised to unsupervised. In this context, requiring supervision may
seem unusual since data for retrieval tasks typically does not come with labels.
Convolutional Neural Networks (CNNs) have achieved state-of-the-art in many
other computer vision tasks, but require abundant labels to learn their parame-
ters. For this reason, previous work with CNN architectures on image retrieval
have focused on using global [Babenko et al., 2014] or aggregated local [Razavian
et al., 2014, Gong et al., 2014, Ng et al., 2015, Babenko and Lempitsky, 2015,
Tolias et al., 2015] CNN descriptors that were learned on an unrelated classifi-
cation task. To improve the performance of these transferred features, Babenko
et al. [2014] showed that fine-tuning global descriptors on a dataset of landmarks
results in improvements on retrieval datasets that contain buildings. It is unclear,
however, if the lower levels of a convolutional architecture, appropriate for a local
description, will be impacted by such a global fine-tuning [Yosinski et al., 2014].
Recent approaches have, thus, attempted to discriminatively learn low-level con-
volutional descriptors, either by enforcing a certain level of invariance through
explicit transformations [Fischer et al., 2014] or by training with a patch-matching
dataset [Zagoruyko and Komodakis, 2015, Simo-Serra et al., 2015]. In all cases, the
link between the supervised classification objective and image retrieval is artificial,
which motivates us to investigate the performance of new unsupervised learning
techniques.

To do so, we propose an unsupervised patch descriptor based on Convolutional
Kernel Networks (CKNs)[Mairal et al., 2014b]. This required to turn the CKN
proof of concept of Mairal et al. [2014b] into a descriptor with state-of-the-art
performance on large-scale benchmarks. This work introduces significant improve-
ments of the original model, algorithm, and implementation, as well as adapting
the approach to image retrieval. Our conclusion is that supervision might not be
necessary to train convolutional networks for image and patch retrieval, since our
unsupervised descriptor achieves the best performance on several standard bench-
marks.

One originality of our work is also to jointly evaluate our models on the problems
of patch and image retrieval. Most works that study patch representations [Brown
et al., 2011, Winder et al., 2009, Zagoruyko and Komodakis, 2015, Fischer et al.,
2014], do so in the context of patch retrieval only, and do not test whether con-
clusions also generalize to image retrieval (typically after an aggregation step). In
fact, the correlation between the two evaluation methods (patch- and image-level)
is not clear beforehand, which motivated us to design a new dataset to answer this

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 46

question. We call this dataset RomePatches; it consists of views of several loca-
tions in Rome [Li et al., 2010], for which a sparse groundtruth of patch matches is
obtained through 3D reconstruction. This results in a dataset for patch and image
retrieval, which enables us to quantify the performance of patch descriptors for
both tasks.

To evaluate the descriptor performance, we adopt the pipeline of Fig. 1.10,
described in detail in section 3.6.1.1. We use the popular Hessian-Affine detector
of Mikolajczyk and Schmid [2004], which has been shown to give state-of-the-art
results [Tuytelaars and Mikolajczyk, 2008]. The regions around these points are
encoded with the convolutional descriptors proposed in this work. We aggregate
local features with VLAD-pooling [Jégou et al., 2010] on the patch descriptors to
build an approximate matching technique. VLAD pooling has been shown to be
better than Bag-of-Word, and to give similar performance to Fisher Vectors [Per-
ronnin and Dance, 2007], another popular technique for image retrieval [Jégou
et al., 2012].

The remainder of this chapter is organized as follows. We discuss previous work
that is most relevant to our approach in Section 3.2. We describe the framework for
convolutional descriptors and convolutional kernel networks in Sections 3.3 and 3.4.
We introduce the RomePatches dataset as well as standard benchmarks for patch
and image retrieval in Section 3.5. Section 3.6 describes experimental results.

3.2 Related Work
In this section we first review the state of the art for patch description and then
present deep learning approaches for image and patch retrieval. For deep patch
descriptors, we first present supervised and, then, unsupervised approaches.

3.2.1 Patch descriptors

A patch is a image region extracted from an image. Patches can either be extracted
densely or at interest points. The most popular patch descriptor is SIFT [Lowe,
2004], which showed state-of-the-art performance [Mikolajczyk and Schmid, 2005]
for patch matching. It can be viewed as a three-layer CNN, the first layer comput-
ing gradient histograms using convolutions, the second, fully-connected, weighting
the gradients with a Gaussian, and the third pooling across a 4x4 grid. Local
descriptors that improve SIFT include SURF [Bay et al., 2006], BRIEF [Calon-
der et al., 2010] and LIOP [Wang et al., 2011]. Recently, Dong and Soatto [2015]
build on SIFT using local pooling on scale and location to get state-of-the-art
performance in patch retrieval.

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 47

All these descriptors are hand-crafted and their relatively small numbers of
parameters have been optimized by grid-search. When the number of parameters
to be set is large, such an approach is unfeasible and the optimal parametrization
needs to be learned from data.

A number of approaches learn patch descriptors without relying on deep learn-
ing. Most of them use a strong supervision. Brown et al. [2011] (see also Winder
et al. [2009]) design a matching dataset based on 3D models of landmarks and
use it to train a descriptor consisting of several existing parts, including SIFT,
GLOH [Mikolajczyk and Schmid, 2005] and Daisy [Tola et al., 2010]. Philbin
et al. [2010] learn a Mahalanobis metric for SIFT descriptors to compensate for
the quantization error, with excellent results in instance-level retrieval. Simonyan
et al. [2014] propose the “Pooling Regions” descriptor and learn its parameters, as
well as a linear projection using stochastic optimization. Their learning objective
can be cast as a convex optimization problem, which is not the case for classical
convolutional networks.

An exception that departs from this strongly supervised setting is [Bo et al.,
2010] which presents a match-kernel interpretation of SIFT, and a family of ker-
nel descriptors whose parameters are learned in an unsupervised fashion. The
Patch-CKN we introduce generalizes kernel descriptors; the proposed procedure
for computing an explicit feature embedding is faster and simpler.

3.2.2 Deep learning for image retrieval

If a CNN is trained on a sufficiently large labeled set such as ImageNet [Deng
et al., 2009], its intermediate layers can be used as image descriptors for a wide
variety of tasks including image retrieval [Babenko et al., 2014, Razavian et al.,
2014]. The output of one of the fully-connected layers is often chosen because it
is compact, usually 4,096-dim. However, global CNN descriptors lack geometric
invariance [Gong et al., 2014], and produce results below the state of the art for
instance-level image retrieval.

In [Razavian et al., 2014, Gong et al., 2014], CNN responses at different scales
and positions are extracted. We proceed similarly, yet we replace the (coarse)
dense grid with a patch detector. There are important differences between their
work and ours. While they use the penultimate layer as patch descriptor, we show
in our experiments that we can get improved results with preceding layers, that are
cheaper to compute and require smaller input patches. Closely related is the work
of Ng et al. [2015] which uses VLAD pooling on top of very deep CNN feature maps,
at multiple scales with good performance on Holidays and Oxford. Their approach
is similar to the one of Gong et al. [2014], but faster as it factorizes computation
using whole-image convolutions. Building on this, Tolias et al. [2015] uses an

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 48

improved aggregation method compared to VLAD, that leverages the structure of
convolutional feature maps.

Babenko et al. [2014] use a single global CNN descriptor for instance-level
image retrieval and fine-tune the descriptor on an external landmark dataset. We
experiment with their fine-tuned network and show improvement also with lower
levels on the Oxford dataset. CKN descriptors still outperform this approach.
Finally, [Jiang et al., 2014] proposes a Siamese architecture to train image retrieval
descriptors but do not report results on standard retrieval benchmarks.

3.2.3 Deep patch descriptors

Recently [Long et al., 2014, Fischer et al., 2014, Simo-Serra et al., 2015, Zagoruyko
and Komodakis, 2015] outperform SIFT for patch matching or patch classification.
These approaches use different levels of supervision to train a CNN. Long et al.
[2014] learn their patch CNNs using category labels of ImageNet. Fischer et al.
[2014] create surrogate classes where each class corresponds to a patch and distorted
versions of this patch. Matching and non-matching pairs are used in [Simo-Serra
et al., 2015, Zagoruyko and Komodakis, 2015]. There are two key differences be-
tween those works and ours. First, they focus on patch-level metrics, instead of
actual image retrieval. Second, and more importantly, while all these approaches
require some kind of supervision, we show that our Patch-CKN yields competitive
performance in both patch matching and image retrieval without supervision.

3.2.4 Unsupervised learning for deep representations

To avoid costly annotation, many works leverage unsupervised information to learn
deep representations. Unsupervised learning can be used to initialize network
weights, as in Erhan et al. [2009, 2010]. Methods that directly use unsupervised
weights include domain transfer [Donahue et al., 2014] and k-means [Coates and
Ng, 2012]. Most recently, some works have looked into using temporal coherence as
supervision [Goroshin et al., 2015, 2014]. Closely related to our work, Agrawal et al.
[2015] propose to train a network by learning the affine transformation between
synchronized image pairs for which camera parameters are available. Similarly, Ja-
yaraman and Grauman [2015] uses a training objective that enforces for sequences
of images that derive from the same ego-motion to behave similarly in the feature
space. In the smae spirit, Durand et al. [2016, 2015] uses weakly-supervised learn-
ing to select image regions from global image labels. While these three works focus
on a weakly supervised setting, we focus on a fully unsupervised one.

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 49

3.3 Convolutional Descriptors
In this section, we briefly review notations related to CNNs and the possible learn-
ing approaches.

3.3.1 Convolutional Neural Networks

In this work, we use convolutional features to encode patches extracted from an im-
age. We call convolutional descriptor any feature representation f that decomposes
in a multi-layer fashion as:

f(x) = γK(σK(WK . . . γ2(σ2(W2γ1(σ1(W1x)) . . .)), (3.1)

where x is an input patch represented as a vector, theWk’s are matrices correspond-
ing to linear operations, the σk’s are pointwise non-linear functions, e.g., sigmoids
or rectified linear units, and the functions γk perform a downsampling operation
called “feature pooling”. Each composition γk(σk(Wk•)) is called a “ layer ” and the
intermediate representations of x, between each layer, are called “maps”. A map
can be represented as pixels organized on a spatial grid, with a multidimensional
representation for each pixel. Borrowing a classical terminology from neuroscience,
it is also common to call “receptive field ” the set of pixels from the input patch x
that may influence a particular pixel value from a higher-layer map. In traditional
convolutional neural networks, the Wk matrices have a particular structure corre-
sponding to spatial convolutions performed by small square filters, which will need
to be learned. In the case where there is no such structure, the layer is called
“fully-connected”.

The hyper-parameters of a convolutional architecture lie in the choice of non-
linearities σk, type of pooling γk, in the structure of the matrices Wk (notably the
size and number of filters) as well as in the number of layers.

The only parameters that are learned in an automated fashion are usually
the filters, corresponding to the entries of the matrices Wk. In this chapter, we
investigate the following ways of learning: (i) encoding local descriptors with a
CNN that has been trained for an unrelated classification task (Sec. 3.3.2.1), (ii)
using a CNN that has been trained for a classification problem that can be directly
linked to the target task (e.g. buildings, see Sec. 3.3.2.1), (iii) devising a surrogate
classification problem to enforce invariance (Sec. 3.3.2.2), (iv) directly learning
the weights using patch-level groundtruth (Sec. 3.3.3) or (v) using unsupervised
learning, such as convolutional kernel networks, which we present in Section 3.4.

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 50

Mk(z0)
patch pz

convolution Wk
+ non-linearity σk

M ′
k(z

′
0)

feature pooling γk

Mk+1(z1)

Figure 3.1: Typical organization of two successive layers of a CNN. The spatial
map M ′

k is obtained from Mk by convolution and pointwise non-linearity, and the
top layer Mk+1 is obtained from M ′

k by a downsampling operation called feature
pooling. Usual CNNs use ReLU non-linearities and max-pooling [Krizhevsky et al.,
2012], while CKNs rely on exponentials and Gaussian pooling [Mairal et al., 2014b].

3.3.2 Learning Supervised Convolutional Descriptors

The traditional way of learning the weights W = (W1,W2, . . . ,WK) in (3.1) con-
sists in using a training set X = (x1, x2, . . . , xn) of examples, equipped with labels
Y = (y1, y2, . . . , yn), choose a loss function `(X ,Y ,W) and minimize it over W
using stochastic gradient optimization and back-propagation [LeCun et al., 1989,
Bottou, 2012]. The choice of examples, labelings and loss functional leads to dif-
ferent weights.

3.3.2.1 Learning with category labels

A now classical CNN architecture is AlexNet [Krizhevsky et al., 2012]. AlexNet
consists of 8 layers: the first five are convolutional layers and the last ones are fully
connected.

In this case, the training examples are images that have been hand-labeled into
C classes such as “bird” or “cow” and the loss function is the softmax loss:

`(X ,Y ,W) =
n∑
i=1

log
C∑
j=1

exp
(
M

(i)
K [j]−M (i)

K [yi]
)
. (3.2)

In Eq. (3.2) and throughout the chapter, M (i)
k is the output of the k-th layer (k ∈

{1, . . . , K}) of the network applied to example xi. The [j] notation corresponds to
the j-th element of the map.

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 51

Even though the network is designed to process images of size 224× 224, each
neuron of a map has a “receptive field”, see the “coverage” column in Table 3.2 from
Section 3.6. Using an image of the size of the receptive field produces a 1x1 map
that we can use as a low dimensional patch descriptor. To ensure a fair comparison
between all approaches, we rescale the fixed-size input patches so that they fit the
required input of each network.

We explore two different sets of labellings for AlexNet: the first one, which we
call AlexNet-ImageNet, is learned on the training set of ILSVRC 2012 (C = 1000),
as in the original paper [Krizhevsky et al., 2012]. This set of weights is popular
in off-the-shelf convolutional features, even though the initial task is unrelated
to the target image retrieval application. Following Babenko et al. [2014], we
also fine-tune the same network on the Landmarks dataset, to introduce semantic
information into the network that is more related to the target task. The resulting
network is called AlexNet-Landmarks.

3.3.2.2 Learning from surrogate labels

Most CNNs such as AlexNet augment the dataset with jittered versions of training
data to learn the filters Wk in (3.1). Dosovitskiy et al. [2014], Fischer et al. [2014]
use virtual patches, obtained as transformations of randomly extracted ones to
design a classification problem related to patch retrieval. For a set of patches P ,
and a set a transformations T , the dataset consists of all τ(p), (τ, p) ∈ T ×
P . Transformed versions of the same patch share the same label, thus defining
surrogate classes. Similarily to the previous setup, the network uses softmax loss
(3.2).

In this chapter, we evaluate this strategy by using the same network, called
PhilippNet, as in Fischer et al. [2014]. The network has three convolutional and
one fully connected layers, takes as input 64x64 patches, and produces a 512-
dimensional output.

3.3.3 Learning with patch-level groundtruth

When patch-level labels are available, obtained by manual annotation or 3D-
reconstruction [Winder et al., 2009], it is possible to directly learn a similarity
measure as well as a feature representation. The simplest way to do so, is to re-
place the virtual patches in the architecture of Dosovitskiy et al. [2014], Fischer
et al. [2014] described in the previous section with labeled patches of RomeTrain.
We call this version “FisherNet-Rome”.

It can also be achieved using a Siamese network [Chopra et al., 2005], i.e. a CNN
which takes as input the two patches to compare, and where the objective function

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 52

enforces that the output descriptors’ similarity should reproduce the ground-truth
similarity between patches.

Optimization can be conducted with either a metric-learning cost [Simo-Serra
et al., 2015]:

`(X ,Y ,WK) =
n∑
i=1

n∑
j=1

C(i, j, ‖M (i)
K −M

(j)
K ‖) (3.3)

with
C(i, j, d) =

{
d if yi = yj
max(0, 1− d) otherwise

(3.4)

or as a binary classification problem (“match”/“not-match”) with a softmax loss
as in eq. (3.2) [Zbontar and LeCun, 2014, Zagoruyko and Komodakis, 2015]. For
those experiments, we use the parameters of the siamese networks of Zagoruyko
and Komodakis [2015], available online1. Following their convention, we refer to
these architectures as “DeepCompare”.

3.4 Convolutional Kernel Descriptors
In this chapter, the unsupervised learning strategy for learning convolutional net-
works is based on the convolutional kernel networks (CKNs) of Mairal et al. [2014b].
Similar to CNNs, these networks have a multi-layer structure with convolutional
pooling and nonlinear operations at every layer. Instead of learning filters by
optimizing a loss function, say for classification, they are trained layerwise to ap-
proximate a particular nonlinear kernel, and therefore require no labeled data.

The presentation of CKNs is divided into three stages: (i) introduction of the
abstract model based on kernels (Sections 3.4.1, 3.4.2, and 3.4.3); (ii) approxima-
tion scheme and concrete implementation (Sections 3.4.4, 3.4.5, and 3.4.7); (iii)
optimization (Section 3.4.6).

3.4.1 A Single-Layer Convolutional Kernel for Images

The basic component of CKNs is a match kernel that encodes a similarity between
a pair of images (M,M ′) of size m×m×d pixels, which are assumed to be square.
The integer d represents the number of channels, say 3 for RGB images. Note
that when applied to image retrieval, these images M,M ′ correspond to regions
– patches – extracted from an image. We omit this fact for simplicity since this
presentation of CKNs is independent of the image retrieval task.

1https://github.com/szagoruyko/cvpr15deepcompare

https://github.com/szagoruyko/cvpr15deepcompare

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 53

We denote by Ω the set of pixel locations, which is of size |Ω| = m ×m, and
choose a patch size e × e. Then, we denote by Pz (resp. P ′z′) the e × e × d patch
of M (resp. M ′) at location z ∈ Ω (resp. z′ ∈ Ω). Then, the single-layer match
kernel is defined as follows:

Definition 1 Single-Layer Convolutional Kernel.

K(M,M ′) =
∑
z,z′∈Ω

e
− 1

2β2
‖z−z′‖2

κ(Pz, P
′
z′), (3.5)

with
κ(P, P ′) = ‖P‖‖P ′‖e− 1

2α2
‖P̃−P̃ ′‖2 , (3.6)

where α and β are two kernel hyperparameters, ‖ · ‖ denotes the usual `2 norm,
and P̃ and P̃ ′ are `2-normalized versions of the patches P and P ′.

K is called a convolutional kernel ; it can be interpreted as a match-kernel
that compares all pairs of patches from M and M ′ with a nonlinear kernel κ,
weighted by a Gaussian term that decreases with their relative distance. The
kernel compares indeed all locations in M with all locations in M ′. It depends
notably on the parameter α, which controls the nonlinearity of the Gaussian kernel
comparing two normalized patches P̃ and P̃ ′, and on β, which controls the size
of the neighborhood in which a patch is matched with another one. In practice,
the comparison of two patches that have very different locations z and z′ will be
negligible in the sum (3.5) when β is small enough. Hence, the parameter β allows
us to control the local shift-invariance of the kernel.

3.4.2 From Kernels to Infinite-Dimensional Feature Maps

Designing a positive definite kernel on data is equivalent to defining a mapping of
the data to a Hilbert space, called reproducing kernel Hilbert space (RKHS), where
the kernel is an inner product [Cucker and Zhou, 2007]; exploiting this mapping
is sometimes referred to as the “kernel trick” [Schölkopf and Smola, 2002]. In this
section, we will show how the kernel (3.5) may be used to generalize the concept of
“feature maps” from the traditional neural network literature to kernels and Hilbert
spaces.2 The kernel K is indeed positive definite (see the appendix of Mairal et al.
2014b) and thus it will suits our needs.

Basically, feature maps from convolutional neural networks are spatial maps
where every location carries a finite-dimensional vector representing information

2Note that in the kernel literature, “feature map” denotes the mapping between data points
and their representation in a reproducing kernel Hilbert space (RKHS). Here, feature maps refer
to spatial maps representing local image characteristics at every location, as usual in the neural
network literature LeCun et al. [1998].

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 54

from a local neighborhood in the input image. Generalizing this concept in an
infinite-dimensional context is relatively straightforward with the following:

Definition 2 Let H be a Hilbert space. The set of feature maps is the set of
applications ϕ : Ω→ H.

Given an image M , it is now easy to build such a feature map. For instance,
consider the nonlinear kernel for patches κ defined in Eq. (3.6). According to the
Aronzsjan theorem, there exists a Hilbert space Hκ and a mapping φκ such that
for two image patches P, P ′ – which may come from different images or not –,
κ(P, P ′) = 〈φκ(P), φκ(P

′)〉Hκ . As a result, we may use this mapping to define a
feature map ϕM : Ω → Hκ for image M such that ϕM(z) = φκ(Pz), where Pz is
the patch from M centered at location z. The first property of feature maps from
classical CNNs would be satisfied: at every location, the map carries information
from a local neighborhood from the input image M .

We will see in the next subsection how to build sequences of feature maps in
a multilayer fashion, with invariant properties that are missing from the simple
example we have just described.

3.4.3 From Single-Layer to Multi-Layer Kernels

We now show how to build a sequence of feature maps ϕ1
M , . . . , ϕkM for an input

imageM initially represented as a finite-dimensional map ϕ0
M : Ω0 → Rp0 , where Ω0

is the set of pixel locations in M and p0 is the number of channels. The choice
of initial map ϕ0

M is important since it will be the input of our algorithms; it
is thus discussed in Section 3.4.7. Here, we assume that we have already made
this choice, and we explain how to build a map ϕkM : Ωk → Hk from a previous
map ϕk–1

M : Ωk–1 → Hk–1. Specifically, our goal is to design ϕkM such that

(i) ϕkM(z) for z in Ωk carries information from a local neighborhood from ϕk–1
M

centered at location z;

(ii) the map ϕkM is “more invariant” than ϕk–1
M .

These two properties can be obtained by defining a positive definite kernel Kk

on patches from ϕk–1
M . Denoting by Hk its RKHS, we may call ϕkM(z) the map-

ping to Hk of a patch from ϕk–1
M centered at z. The construction is illustrated in

Figure 3.2.
Concretely, we choose a patch shape Pk, which is a set of coordinates centered

at zero along with a set of pixel locations Ωk such that for all z in Ωk and u in Pk,
the location z + u is in Ωk–1. Then, the kernel Kk for comparing two patches

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 55

Ω0ϕ0
M (z0) ∈ H0

{z1}+ P1

ϕ1
M (z1) ∈ H1

Ω1

{z2}+ P2

Ω2

ϕ2
M (z2) ∈ H2

Figure 3.2: Construction of the sequence of feature maps ϕ1
M , . . . , ϕ

k
M for an input

image M . The point ϕkM(z) for z in Ωk represents the mapping in Hk of a patch
from ϕk–1

M centered at z. Figure adapted from Mairal et al. [2014b].

from ϕk–1
M and ϕk–1

M ′ at respective locations z, z′ in Ωk is defined as∑
u,u′∈Pk

e
− 1

2β2
k

‖u−u′‖2
κk(ϕ

k–1
M (u+ z), ϕk–1

M ′ (u
′ + z′)), (3.7)

where
κk(ϕ, ϕ

′) = ‖ϕ‖Hk–1‖ϕ′‖Hk–1e
− 1

2α2
k

‖ϕ̃−ϕ̃′‖2Hk–1 ,

for all ϕ, ϕ′ in Hk–1, where ϕ̃ (resp. ϕ̃′) are normalized—that is, ϕ̃ = (1/‖ϕ‖Hk–1)ϕ
if ϕ = 0 and 0 otherwise. This kernel is similar to the convolutional kernel for
images already introduced in (3.5), except that it operates on infinite-dimensional
feature maps. It involves two parameters αk, βk to control the amount of invariance
of the kernel. Then, by definition, ϕkM : Ωk → Hk is the mapping such that the
value (3.7) is equal to the inner product 〈ϕkM(z), ϕkM ′(z

′)〉Hk .
This framework yields a sequence of infinite-dimensional image representations

but requires finite-dimensional approximations to be used in practice. Among
different approximate kernel embeddings techniques [Williams and Seeger, 2001,
Perronnin et al., 2010, Vedaldi and Zisserman, 2012], we will introduce a data-
driven approach that exploits a simple expansion of the Gaussian kernel, and which
provides a new way of learning convolutional neural networks without supervision.

3.4.4 Approximation of the Gaussian Kernel

Specifically, the previous approach relies on an approximation scheme for the Gaus-
sian kernel, which is plugged in the convolutional kernels (3.7) at every layer; this
scheme requires learning some weights that will be interpreted as the parameters
of a CNN in the final pipeline (see Section 3.4.5).

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 56

More precisely, for all x and x′ in Rq, and α > 0, the Gaussian kernel e−
1

2α2
‖x−x′‖22

can be shown to be equal to(
2

πα2

) q
2
∫
v∈Rq

e−
1
α2
‖x−v‖22e−

1
α2
‖x′−v‖22dv. (3.8)

Furthermore, when the vectors x and x′ are on the sphere—that is, have unit
`2-norm, we also have

e−
1

2α2
‖x−x′‖22 = Ev∼p(v)[s(v

>x)s(v>x′)], (3.9)

where s is a nonlinear function such that s(u) ∝ e−
1
α2

+ 2u
α2 and p(v) is the density of

the multivariate normal distribution N (0, (α2/4)I). Then, different strategies may
be used to approximate the expectation by a finite weighted sum:

e−
1

2α2
‖x−x′‖22 ≈ 1

p

p∑
j=1

ηjs(v
>
j x)s(v>j x

′), (3.10)

which can be further simplified, after appropriate changes of variables,

e−
1

2α2
‖x−x′‖22 ≈

p∑
j=1

ew
>
j x+bjew

>
j x
′+bj , (3.11)

for some sets of parameters wj in Rp and bj in R, j = 1, . . . , p, which need to
be learned. The dimension p is the main hyperparameter that determines the
quality of the approximation. This leads to the kernel approximations 〈ψ(x), ψ(x′)〉
where ψ(x) = [ew

>
j x+bj]pj=1, which may be interpreted as the output of a one-layer

neural network with p neurons and exponential nonlinear functions.
The change of variable that we have introduced yields a simpler formulation

than the original formulation of Mairal et al. [2014b]. Given a set of training pairs
of normalized signals (x1, x

′
1), . . . , (xn, x

′
n) in Rq, the weights wj and scalars bj may

now be obtained by minimizing

min
W,b

n∑
i=1

[
e
‖xi−x

′
i‖

2

2α2 −
p∑
j=1

ew
>
j xi+bjew

>
j x
′
i+bj

]2

, (3.12)

which is a non-convex optimization problem. How we address it will be detailed
in Section 3.4.6.

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 57

3.4.5 Back to Finite-Dimensional Feature Maps

Convolutional kernel networks use the previous approximation scheme of the Gaus-
sian kernel to build finite-dimensional image representations M1 : Ω1 → Rp1 ,M2 :
Ω2 → Rp2 , . . . ,Mk : Ωk → Rpk of an input image M with the following properties:

(i) There exists a patch size ek × ek such that a patch Pl,z of Ml at loca-
tion z—which is formally a vector of size e2

kpk–1—provides a finite-dimensional
approximation of the kernel map ϕlM(z). In other words, given another
patch P ′l,z′ from a map M ′

l , we have 〈ϕlM(z), ϕlM(z)〉Hl ≈ 〈Pl,z, P ′l,z′〉.3

(ii) Computing a mapMl fromMl–1 involves convolution with learned filters and
linear feature pooling with Gaussian weights.

Specifically, the learning and encoding algorithms are presented in Algorithms 4
and 5, respectively. The resulting procedure is relatively simple and admits two
interpretations.

• The first one is to consider CKNs as an approximation of the infinite-dimensional
feature maps ϕ1

M , . . . , ϕ
k
M presented in the previous sections [see Mairal et al.,

2014b, for more details about the approximation principles].

• The second one is to see CKNs as particular types of convolutional neural
networks with contrast-normalization. Unlike traditional CNNs, filters and
nonlinearities are learned to approximate the Gaussian kernel on patches
from layer k–1.

With both interpretations, this representation induces a change of paradigm in
unsupervised learning with neural networks, where the network is not trained to
reconstruct input signals, but where its non-linearities are derived from a kernel
point of view.

3.4.6 Large-Scale Optimization

One of the challenge we faced to apply CKNs to image retrieval was the lack of
scalability of the original model introduced by Mairal et al. [2014b], which was
a proof of concept with no effort towards scalability. A first improvement we
made was to simplify the original objective function with changes of variables,
resulting in the formulation (3.12), leading to simpler and less expensive gradient
computations.

3Note that to be more rigorous, the mapsMl need to be slightly larger in spatial size than ϕl
M

since otherwise a patch Pl,z at location z from Ωl may take pixel values outside of Ωl. We omit
this fact for simplicity.

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 58

Algorithm 4 Training layer k of a CKN.
Hyper-parameters: Kernel parameter αk, patch size ek × ek, number of fil-
ters pk.
Input model: A CKN trained up to layer k–1.
Input data: A set of training images.
Algorithm:

• Encode the input images using the CKN up to layer k–1 by using Algo-
rithm 5;

• Extract randomly n pairs of patches (Pi, P
′
i) from the maps obtained at

layer k–1;

• Normalize the patches to make then unit-norm;

• Learn the model parameters by minimizing (3.12), with (xi, x
′
i) = (Pi, P

′
i)

for all i = 1, . . . , n;

Output: Weight matrix Wk in Rpk–1e
2
k×pk and bk in Rpk .

Algorithm 5 Encoding layer k of a CKN.
Hyper-parameters: Kernel parameter βk;
Input model: CKN parameters learned from layer 1 to k by using Algorithm 4;
Input data: A map Mk–1 : Ωk−1 → Rpk–1 ;
Algorithm:

• Extract patches {Pk,z}z∈Ωk–1 of size ek × ek from the input map Mk–1;

• Compute contrast-normalized patches

P̃k,z =
1

‖Pk,z‖
Pk,z if Pk,z 6= 0 and 0 otherwise.

• Produce an intermediate map M̃k : Ωk–1 → Rpk with linear operations
followed by non-linearity:

M̃k(z) = ‖Pk,z‖eW
>
k P̃k,z+bk , (3.13)

where the exponential function is meant “pointwise”.

• Produce the output map Mk by linear pooling with Gaussian weights:

Mk(z) =
∑

u∈Ωk–1

e
− 1

β2
k

‖u−z‖2
M̃k(u).

Output: A map Mk : Ωk → Rpk .

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 59

The second improvement is to use stochastic optimization instead of the L-
BFGS method used by Mairal et al. [2014b]. This allows us to train every layer
by using a set of one million patches and conduct learning on all of their possible
pairs, which is a regime where stochastic optimization is unavoidable. Unfortu-
nately, applying stochastic gradient descent directly on (3.12) turned out to be
very ineffective due to the poor conditioning of the optimization problem. One
solution is to make another change of variable and optimize in a space where the
input data is less correlated.

More precisely, we proceed by (i) adding an “intercept” (the constant value 1) to
the vectors xi in Rq, yielding vectors x̃i in Rq+1; (ii) computing the resulting (uncen-
tered) covariance matrix G = 1

n

∑n
i=1 x̃ix̃

>
i ; (iii) computing the eigenvalue decom-

position of G = U∆U>, where U is orthogonal and ∆ is diagonal with non-negative
eigenvalues; (iv) computing the preconditioning matrixR = U(∆+τI)1/2U>, where
τ is an offset that we choose to be the mean value of the eigenvalues. Then, the
matrix R may be used as a preconditioner since the covariance of the vectors Rx̃i
is close to identity. In fact, it is equal to the identity matrix when τ = 0 and G is
invertible. Then, problem (3.12) with preconditioning becomes

min
Z

n∑
i=1

[
e
‖xi−x

′
i‖

2

2α2 −
p∑
j=1

ez
>
j Rx̃iez

>
j Rx̃

′
i

]2

, (3.14)

obtained with the change of variable [W>, b>] = Z>R. Optimizing with respect
to Z to obtain a solution (W, b) turned out to be the key for fast convergence of
the stochastic gradient optimization algorithm.

Note that our effort also consisted on implementing heuristics for automati-
cally selecting the learning rate during optimization without requiring any manual
tuning, following in part standard guidelines from Bottou [2012]. More precisely,
we select the initial learning rate in the following range: {1, 2−1/2, 2−1, . . . , 2−20},
by performing 1K iterations with mini-batches of size 1000 and choosing the one
that gives the lowest objective, evaluated on a validation dataset. After choosing
the learning rate, we keep monitoring the objective on a validation set every 1K
iteration, and perform backtracking in case of divergence. The learning rate is also
divided by

√
2 every 50K iterations. The total number of iterations is set to 300K.

Regarding initialization, weights are randomly initialized according to a standard
normal distribution. These heuristics are fixed over all experiments and resulted in
a stable parameter-free learning procedure, which we will release in an open-source
software package.

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 60

3.4.7 Different Types of CKNs with Different Inputs

We have not discussed yet the initial choice of the map M0 for representing an
image M . In this chapter, we follow Mairal et al. [2014b] and investigate three
possible inputs:

1. CKN-raw: We use the raw RGB values. This captures the hue information,
which is discriminant information for many application cases.

2. CKN-white: It is similar to CKN-raw with the following modification: each
time a patch P0,z is extracted fromM0, it is first centered (we remove its mean
color), and whitened by computing a PCA on the set of patches from M0.
The resulting patches are invariant to the mean color of the original patch
and mostly respond to local color variations.

3. CKN-grad: The input M0 simply carries the two-dimensional image gradi-
ent computed on graysale values. The map has two channels, corresponding
to the gradient computed along the x-direction and along the y-direction,
respectively. These gradients are typically computed by finite differences.

Note that the first layer of CKN-grad typically uses patches of size 1 × 1, which
are in R2, and which are encoded by the first layer into p1 channels, typically with
p1 in [8; 16]. This setting corresponds exactly to the kernel descriptors introduced
by Bo et al. [2010], who have proposed a simple approximation scheme that does
not require any learning. Interestingly, the resulting representation is akin to SIFT
descriptors.

Denoting by (Gx,z, Gy,z) the gradient components of image M at location z,
the patch Pz is simply the vector [Gx,z, Gy,z] in R2. Then, the norm ‖Pz‖2 can
be interpreted as the gradient magnitude ρz =

√
G2
x,z +G2

y,z, and the normalized
patch P̃z represents a local orientation. In fact, there exists θz such that P̃z =
[cos(θz), sin(θz)]. Then, we may use the relation (3.8) to approximate the Gaussian
kernel exp(−‖P̃z−P̃ ′z′‖2/(2α2

1)). We may now approximate the integral by sampling
p1 evenly distributed orientations θj = 2jπ/p1, : j ∈ {1, . . . , p1}, and we obtain,
up to a constant scaling factor,

e
− 1

2α21
‖P̃z−P̃ ′z′‖

2

≈
p1∑
j=1

e
− 1

α21
‖P̃z−Pθj ‖

2

e
− 1

α21
‖P̃ ′
z′−Pθj ‖

2

, (3.15)

where Pθ = [cos(θ), sin(θ)]. With such an approximation, the j-th entry of the
map M̃1(z) from (3.13) should be replaced by

ρze
− 1

2α21
((cos(θj)−cos(θz))2+(sin(θj)−sin(θz))2)

.

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 61

Figure 3.3: Vizualization of the possible CKN inputs: CKN-raw (left); input
when subtracting the mean color of each patch (middle-left); CKN-white, similar
to the previous but with whitening (middle-right) and CKN-grad (right). Patches
were extracted with a size of 3x3; images are reconstructed by averaging the pixel
values of the pre-processed patches (up to normalization to fit the 0-256 range).
Best viewed in color on a computer screen.

This formulation can be interpreted as a soft-binning of gradient orientations in a
“histogram” of size p1 at every location z. To ensure an adequate distribution in
each bin, we choose α1 =

(
(1− cos (2π/d1))2 + sin (2π/d1)2)1/2. After the pooling

stage, the representation becomes very close to SIFT descriptors.
A visualization of all input methods can be seen in figure 3.3. See [Mairal et al.,

2014a] for more analysis of image preprocessing.

3.5 Image and Patch Retrieval Datasets
In this section, we give details on the standard datasets we use to evaluate our
method, as well as the protocol we used to create our new dataset.

3.5.1 Standard datasets

We give details on the commonly used benchmarks for which we report results.

3.5.1.1 Patch retrieval

The dataset introduced in [Mikolajczyk et al., 2005] in now standard to bench-
mark patch retrieval methods. This dataset consists of a set of 8 scenes viewed
under 6 different conditions, with increasing transformation strength. In contrast
to [Winder et al., 2009, Zagoruyko and Komodakis, 2015] where only DoG patches
are available, the Mikolajczyk et al. [2005] dataset allows custom detectors. We
extract regions with the Hessian-Affine detector and match the corresponding de-
scriptors with Euclidean nearest-neighbor. A pair of ellipses is deemed to match if

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 62

the projection of the first region using the ground-truth homography on the second
ellipse overlaps by at least 50%. The performance is measured in terms of mean
average precision (mAP).

3.5.1.2 Image retrieval

We selected three standard image retrieval benchmarks: Holidays, Oxford and the
University of Kentucky Benchmark (UKB).

Holidays The Holidays dataset [Jégou et al., 2008] contains 500 different scenes
or objects, for which 1,491 views are available. 500 images serve as queries. Fol-
lowing common practice, in contrast to [Babenko et al., 2014] though, we use the
unrotated version, which allows certain views to display a 90◦ rotation with respect
to their query. While this has a non-negligible impact on performance for dense
representations (the authors of [Babenko et al., 2014] report a 3% global drop in
mAP), this is of little consequence for our pipeline which uses rotation-invariant
keypoints. External learned parameters, such as k-means clusters for VLAD and
PCA-projection matrix are learned on a subset of random Flickr images. The
standard metric is mAP.

Oxford The Oxford dataset [Philbin et al., 2007] consists of 5,000 images of
Oxford landmarks. 11 locations of the city are selected as queries and 5 views per
location is available. The standard benchmarking protocol, which we use, involves
cropping the bounding-box of the region of interest in the query view, followed by
retrieval. Some works, such as [Babenko et al., 2014] forgo the last step. Such a
non-standard protocol yields a boost in performance. For instance Babenko and
Lempitsky [2015] report a close to 6% improvement with non-cropped queries.
mAP is the standard measure.

UKB Containing 10,200 photos, the University of Kentucky Benchmark (UKB)
[Nister and Stewenius, 2006] consists of 4 different views of the same object, under
radical viewpoint changes. All images are used as queries in turn, and the standard
measure is the mean number of true positives returned in the four first retrieved
images (4×recall@4).

3.5.2 Rome

One of the goals of this work is to establish a link between performance in patch
retrieval with performance in image retrieval. Because of the way datasets are
constructed differs (e.g. Internet-crawled images vs successive shots with the same

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 63

camera, range of viewpoint changes, semantic content of the dataset, type of key-
point detector), patch descriptors may display different performances on different
datasets. We therefore want a dataset that contains a groundtruth both at patch
and image level, to jointly benchmark the two performances. Inspired by the sem-
inal work of [Winder et al., 2009], we introduce the Rome retrieval dataset, based
on 3D reconstruction of landmarks. The Rome16K dataset [Li et al., 2010] is a
Community-Photo-Collection dataset that consists of 16,179 images downloaded
from photo sharing sites, under the search term “Rome”. Images are partitioned into
66 “bundles”, each one containing a set of viewpoints of a given location in Rome
(e.g. “Trevi Fountain”). Within a bundle, consistent parameters were automati-
cally computed and are available4. The set of 3D points that were reconstructed
is also available, but we choose not to use them in favor of our Hessian-Affine key-
points. To determine matching points among images of a same bundle, we use the
following procedure. i) we extract Hessian-Affine points in all images. For each
pair of images of a bundle, we match the corresponding SIFTs, using Lowe’s reverse
neighbor rule, as well as product quantization [Jégou et al., 2011] for speed-up. We
filter matches, keeping those that satisfy the epipolar constraint up to a tolerance
of 3 pixels. Pairwise point matches are then greedily aggregated to form larger
groups of 2D points viewed from several cameras. Groups are merged only if the
reproduction error from the estimated 3D position is below the 3 pixel threshold.

To allow safe parameter tuning, we split the set of bundles into a train and a
test set, respectively containing 44 and 22 bundles.

3.5.2.1 Patch retrieval

We design our patch retrieval datasets by randomly sampling in each train and test
split a set of 1, 000 3D points for which at least 10 views are available. The sampling
is uniform in the bundles, which means that we take roughly the same amount of
3D points from each bundle. We then sample 10 views for each point, use one as
a query and the remaining as targets. Both our datasets therefore contain 1, 000
queries and 9, 000 retrieved elements. We report mean average precision (mAP).
An example of patch retrieval classes can be seen in Fig. 3.4.

3.5.2.2 Image retrieval

Using the same aforementioned train-test bundle split, we select 1,000 query images
and 1,000 target images evenly distributed over all bundles. Two images are deemed
to match if they come from the same bundle, as illustrated in Fig. 3.5

4www.cs.cornell.edu/projects/p2f

www.cs.cornell.edu/projects/p2f

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 64

Figure 3.4: Examples of patches matched under our procedure. We observe signif-
icant changes in lighting, but smaller changes in rotation and skew.

Figure 3.5: Example of classes of the image retrieval dataset of Rome. Each
class consists of a particular location. Some bundle display significant viewpoint
changes (extreme left and right), while others have little variation in appearance
(middle). Best viewed in color.

3.6 Experiments
In this section, we describe the implementation of our pipelines, and report results
on patch and image retrieval benchmarks.

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 65

Figure 3.6: Example of matching points in two different images. Salient points are
extracted (left), affine rectified (middle), and normalized in rotation (right). Note
that the level of invariance which remains to be covered by the patch descriptor is
relatively low, as most of the work has been accomplished by the detector.

3.6.1 Implementation details

We provide details on the patch and image retrieval pipelines. Our goal is to eval-
uate the performance of patch descriptors, and all methods are therefore given the
same input patches (computed at Hessian-Affine keypoints), possibly resized to fit
the required input size of the method. We also evaluate all methods with the same
aggregation procedure (VLAD with 256 centroids). We believe that improvements
in feature detection and aggregation are orthogonal to our contribution and would
equally benefit all architectures.

3.6.1.1 Pipeline

We briefly review our image retrieval pipeline.

Keypoint detection. A popular design choice in image representations, inspired
by text categorization methods, is to consider images as sets of local patches, taken
at various locations. The choice of these locations is left to the interest point
detector, for which multiple alternatives are possible.

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 66

In this work, we use the popular “Hessian-Affine” detector of Mikolajczyk and
Schmid [2004]. It aims at finding reproducible points, meaning that selected 3D
points of a scene should always belong to the set of detected image points when
the camera undergoes small changes in settings (e.g. viewpoint, blur, lighting).
Because of the “aperture” problem the set of such points is limited to textured
patches, to the exclusion of straight lines, for which precise localization is impos-
sible. This leaves “blobs”, as used for instance in Lowe’s Difference of Gaussians
(DoG) detector [Lowe, 2004] or corners, as is the case for our Hessian-Affine detec-
tor. Specifically, a “cornerness” measure is computed on the whole image, based
on the Hessian of the pixel intensities. The set of points whose cornerness is above
a threshold is kept. The detector takes the points at their characteristic scale
and estimates an affine-invariant local region. Rotation invariance is achieved by
ensuring the dominant gradient orientation always lies in a given direction. This
results in a set of keypoints with locally-affine invariant regions. Fig. 3.6 shows
the various steps for detecting keypoints. We sample the point with a resolution
of 51 × 51 pixels, value that was found optimal for SIFT on Oxford. Pixels that
fall out of the image are set to their nearest neighbor in the image. This strategy
greatly increases patch retrieval performance compared to setting them to black,
as it does not introduce strong gradients.

Note that the choice of a particular interest point detector is arbitrary and our
method is not specific to Hessian-Affine locations. To show this, we also experiment
with dense patches in section 3.6.3.5

Patch description. Because of the affine-invariant detectors, and as seen in
Fig. 3.6, for a given 3D point seen in two different images, the resulting patches
have small differences (e.g. lighting, blur, small rotation, skew). The goal of patch
description, and the focus of this work, is to design a patch representation, i.e. a
mapping Φ of the space of fixed-size patches into some Hilbert space, that is robust
to these changes.

Matching/Aggregation. Stereo-vision uses this keypoint representation to es-
tablish correspondences between images of the same instance, with 3D reconstruc-
tion as an objective. The cost of this operation is quadratic in the number of key-
points, which is prohibitive in image retrieval systems that need to scan through
large databases. Instead, we choose to aggregate the local patch descriptors into a
fixed-length global image descriptor. For this purpose, we use the popular VLAD
representation [Jégou et al., 2012]. Given a clustering in the form of a Voronoi dia-
gram with points {c1, . . . , ck} of the feature space (typically obtained using k-means
on an external set of points), VLAD encodes the set of visual words {x1, . . . , xn}

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 67

as the total shift with respect to their assigned centroid:

VLAD =
k∑
i=1

n∑
j=1

εi,j(xj − ci), (3.16)

where εi,j is the assignment operator, which is 1 if xj is closer to centroid ci
than to the others, and 0 otherwise.

The final VLAD descriptors is power-normalized with exponent 0.5 (signed
square-root), as well as `2-normalized.

3.6.1.2 Convolutional Networks training

AlexNet-ImageNet. We use the Caffe package [Jia et al., 2014] and its provided
weights for AlexNet, that have been learned according to Krizhevsky et al. [2012].
Specifically, the network was trained on ILSVRC’12 data for 90 epochs, using a
learning rate initialized to 10−2 and decreased three times prior to termination.
Weight decay was fixed to 0.0005, momentum to 0.9 and dropout rate to 50%. It
uses three types of image jittering: random 227 × 227 out of 256 × 256 cropping,
flip and color variation.

AlexNet-Landmarks. Following Babenko et al. [2014], we fine-tune AlexNet
using images of the Landmarks dataset5. Following their protocol, we strip the
network of its last layer and replace it with a 671-dim fully-connected one, ini-
tialized with random Gaussian noise (standard deviation 0.01). Other layers are
initialized with the old AlexNet-ImageNet weights. We use a learning rate of 10−3

for fine-tuning. Weight decay, momentum and dropout rate are kept to their de-
fault values (0.0005, 0.9 and 0.5). We use data augmentation at training time,
with the same transformations as in the original paper (crop, flip and color). We
decrease the learning rate by 10 when it saturates (around 20 epochs each time).
We report a validation accuracy of 59% on the Landmarks dataset, which was
confirmed through discussion with the authors. On Holidays, we report a mAP of
77.5 for the sixth layer (against 79.3 in [Babenko et al., 2014]), and 53.6 (against
54.5) on Oxford. Even though slightly below the results in the original paper,
fine-tuning still significantly improves on ImageNet weights for retrieval.

PhilippNet. For PhilippNet, we used the model provided by the authors. The
model is learned on 16K surrogate classes (randomly extracted patches) with 150
representatives (composite transformations, including crops, color and contrast
variation, blur, flip, etc.). We were able to replicate their patch retrieval results on
their dataset, as well as on Mikolajczyk et al’s dataset when using MSER keypoints.

5http://sites.skoltech.ru/compvision/projects/neuralcodes/

http://sites.skoltech.ru/compvision/projects/neuralcodes/

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 68

Figure 3.7: All 512 kernels of the first layer of our CKN-raw architecture.

PhilippNet-Rome. The patch retrieval dataset of RomePatches does not con-
tain enough patches to learn a deep network. We augment it using patches ex-
tracted in a similar fashion, grouped in classes that correspond to 3D locations
and contain at least 10 examples. We build two such training sets, one with 10K
classes, and one with 100K classes. Training is conducted with the default param-
eters.

Deepcompare. As previously described, we use the online code provided by Zagoruyko
and Komodakis [2015]. It consists of networks trained on the three distinct datasets
of Winder et al. [2009]: Liberty, NotreDame and Yosemity. For our image retrieval
experiments, we can only use the siamese networks, as the others do not provide a
patch representation. These were observed in the original paper to give suboptimal
results.

Convolutional Kernel Networks To train the convolutional kernel networks,
we randomly subsample a set of 100K patches in the train split of the Rome dataset.
For each layer, we further extract 1M sub-patches with the required size, and feed
all possible pairs as input to the CKN. The stochastic gradient optimization is run
for 300K iterations with a batch size of 1000, following the procedure described
in section 3.4.6. Training a convolutional kernel network, for a particular set of
hyperparameters, roughly takes 10 min on a GPU. This stands in contrast to
the 2-3 days for training using the L-BFGS implementation used in Mairal et al.
[2014b]. We show in Fig. 3.7 a visualization of the first convolutional filters of
CKN-raw. The sub-patches for CKN-grad and CKN-white are too small (3 × 3)
and not adapted to viewing.

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 69

3.6.2 Patch retrieval

3.6.2.1 CKN parametric exploration

The relatively low training time of CKNs (10 min. on a recent GPU), as well as the
fact that the training is layer-wise – and therefore lower layer parameters can be
reused if only the top layer change – allows us to test a relatively high number of
parameters, and select the ones that best suit our task. We tested parameters for
convolution and pooling patch sizes in range of 2 to 5, number of neuron features
in powers of 2 from 128 to 1024. For the σ parameter, the optimal value was found
to be 10−3 for all architectures. This goes opposed to the results of Mairal et al.
[2014b] who used a value of σ = 0.1. We attribute this result to the fact that the
rigidity of the ckn descriptor must be higher for normalized patches than for image
classification. For the other parameters, we keep one set of optimal values for each
input type, described in Table 3.1.

Input Layer 1 Layer 2 dim.
CKN-raw 5x5, 5, 512 —- 41,472
CKN-white 3x3, 3, 128 2x2, 2, 512 32,768
CKN-grad 1x1, 3, 16 4x4,2,1024 50,176

Table 3.1: For each layer we indicate the sub-patch size, the subsampling factor
and the number of filters. For the gradient network, the value 16 corresponds to
the number of orientations.

In Figure 3.8, we explore the impact of the various hyper-parameters of CKN-
grad, by tuning one while keeping the others to their optimal values.

3.6.2.2 Dimensionality reduction

Since the final dimension of the CKN descriptor is prohibitive for most applica-
tions of practical value (see Table 3.1), we investigate dimensionality reduction
techniques. Note that this step is unnecessary for CNNs, whose feature dimension
do not exceed 512 (PhilippNet). We only perform unsupervised dimensionality
reduction through PCA, and investigate several forms of whitening. Denoting X
the n× d matrix of n CKN features (we used n = 10K), the singular value decom-
position of X writes as

X = USV >, (3.17)

where U and V are orthogonal matrices and S is diagonal with non-increasing
values from upper left to bottom right. For a new n′ × d matrix of observations

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 70

88

89

90

91

92

1

3

4

5

128 256 512

1

2 3

5

6

8
10 12

10−1

10−2 10−4

20

Pooling size

Outputs

Sub-patch size

Gradient bins

Sigma (quantile)

Figure 3.8: mAP results on the train set of RomePatches with CKN-grad, whose
hyper-parameters have been changed one by one around the optimal point. Note
that 10 and 12 gradient bins give slightly better results but 16 was kept to align
with the logarithm scale of the grid.

X ′, the dimensionality reduction step writes as

X ′proj = XL>, (3.18)

where L is a d′ × d projection matrix.
The three types of whitening we use are: i) no whitening; ii) full whitening; iii)

semi-whitening. Full whitening corresponds to

L = V (1 : d′, :)/D(1 : d′, 1 : d′) , (3.19)

while semi-whitening corresponds to

L = V (1 : d′, :)/
√
D(1 : d′, 1 : d′) . (3.20)

The matrix division / denotes the matrix multiplication with the inverse of the
right-hand matrix. The square-root is performed element-wise.

Results of the different methods on the RomePatches dataset are displayed in
Fig. 3.9. We observe that semi-whitening works best for CKN-grad and CKN-
white, while CKN-raw is slightly improved by full whitening. We keep these meth-
ods in the remainder of the experiments, as well as a final dimension of 1024.

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 71

CKN-grad CKN-raw CKN-white

 90

 91

 92

 93

 64 256 1024

 50

 60

 70

 80

 90

 64 256 1024

 90

 91

 92

 93

 64 256 1024

no PCA
PCA

PCA+whitening
PCA+semi-whitening

Figure 3.9: Influence of dimensionality reduction on patch retrieval performance.
Results reported in mAP (%) on the train split of RomePatches as a function of
the PCA dimension. As a comparison, SIFT reports 91.6%.

3.6.2.3 Results

We compare the convolutional architectures on our three patch datasets: RomePatches-
train, RomePatches-test and Mikolajczyk et al’s dataset. Results are given in Table
3.2. For AlexNet CNNs, we report results for all outputs of the 5 convolutional
layers (after ReLU). We note that SIFT is an excellent baseline for these methods,
and that CNN architectures that were designed for local invariances perform better
than the ones used in AlexNet, as observed by Fischer et al. [2014]. The results of
the PhilippNet on Mikolajczyk et al’s dataset are different from the ones reported
by Fischer et al. [2014], as we evaluate on Hessian-Affine descriptors while they
use MSER. To have a comparable setting, we use their network with an input of
64x64 that corresponds to the coverage of one top neuron, as well as their proto-
col that slide it on 91x91 patches. We notice that this last step only provides a
small increase of performance (2% for patch retrieval and 1% for image retrieval).
We observe that PhilippNet outperforms both SIFT and AlexNet, which was the
conclusion of Fischer et al. [2014]; CKN trained on whitened patches do however
yield better results.

3.6.2.4 DeepCompare

As the architectures of DeepCompare [Zagoruyko and Komodakis, 2015] do not
rely on an underlying patch descriptor representation but rather on similarities
between pairs of patches, some architectures can only be tested for patch-retrieval.
We give in Table 3.3 the performances of all their architectures on RomePatches.

We note that the only networks that produce descriptors that can be used for
image retrieval are the architectures denoted “siam” here. They also perform quite

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 72

Architecture coverage Dim RomePatches Miko.
train test

SIFT 51x51 128 91.6 87.9 57.8
AlexNet-conv1 11x11 96 66.4 65.0 40.9
AlexNet-conv2 51x51 256 73.8 69.9 46.4
AlexNet-conv3 99x99 384 81.6 79.2 53.7
AlexNet-conv4 131x131 384 78.4 75.7 43.4
AlexNet-conv5 163x163 256 53.9 49.6 24.4
PhilippNet 64x64 512 86.1 81.4 59.7
PhilippNet 91x91 2048 88.0 83.7 61.3
CKN-grad 51x51 1024 92.5 88.1 59.5
CKN-raw 51x51 1024 79.3 76.3 50.9
CKN-white 51x51 1024 91.9 87.7 62.5

Table 3.2: Results of convolutional architectures for patch retrieval.

Network RomePatches-Train RomePatches-Test
2ch2stream Y 89.3 85.7
2ch2stream ND 88.3 84.9
2ch2stream L 90.2 86.6

2ch Y 86.6 83.5
2ch ND 81.2 78.4
2ch L 83.4 80.1
siam Y 82.9 79.2
siam ND 84.8 81.0
siam L 83.2 79.8

siam2stream Y 78.8 75.4
siam2stream ND 84.2 80.6
siam2stream L 82.0 78.6

Table 3.3: Evaluation of the deepcompare architectures on RomePatches in mAP
(%). Networks were trained on the three subsets of the Multi-view Stereo Corre-
spondence Dataset: Yosemity (Y), Notre-Dame (ND) and Statue of Liberty (L).
The network notations are as in the original paper [Zagoruyko and Komodakis,
2015].

poorly compared to the others. Even the best architectures are still below the
SIFT baseline (91.6/87.9).

The method of Zagoruyko and Komodakis [2015] optimizes and tests on dif-

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 73

Descriptor FPR@95% (%)
SIFT 19.9

Best AlexNet (3) 13.5
siam-l2 (trained on Notre-Dame) 14.7

2ch-2stream (trained on Notre-Dame) 1.24
CKN-grad 27.7
CKN-white 30.4
CKN-raw 41.7
best CKN 14.4

Table 3.4: Experiments on a set of pairs of the Liberty dataset. Measure is false
positive rate @95% recall, and therefore the lower the better. The third layer of
AlexNet is used, as it provides the best results.

ferent patches (DoG points, 64x64 patches, greyscale), which explains the poor
performances when transferring them to our RomePatches dataset. The common
evaluation protocol on this dataset is to sample the same number of matching
and non-matching pairs, rank them according to the measure and report the false
positive rate at 95% recall (“FPR@95%”, the lower the better). The patches used
for the benchmark are available online, but not the actual split used for testing.
With our own split of the Liberty dataset, we get the results in Table 3.4. We
note that all our results, although differing slightly from the ones of Zagoruyko
and Komodakis [2015], do not change their conclusions.

We note that our CKNs whose hyperparameters were optimized on RomePatches
work poorly. However, optimizing again the parameters for CKN-grad on a grid
leads to a result of 14.4% (“best CKN”). To obtain this result, the number of gra-
dient histogram bins was reduced to 6, and the pooling patch size was increased
to 8 on the first layer and 3 on the second. These changes indicate that the DoG
keypoints are less invariant to small deformations, and therefore require less rigid
descriptors (more pooling, less histograms). The results are on par with all com-
parable architectures (siam-l2: 14.7%, AlexNet: 13.5%), as the other architectures
either use central-surround networks or methods that do not produce patch rep-
resentations. The best method of Zagoruyko and Komodakis [2015], 2ch-2stream,
reports an impressive 1.24% on our split. However, as already mentioned, this
architecture does not produce a patch representation and it is therefore difficult to
scale to large-scale patch and image retrieval applications.

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 74

Figure 3.10: First convolutional filters of the PhilippNet learned with surrogate
classes (left), 10K Rome classes (middle) and 100K Rome classes. Best viewed in
color.

3.6.2.5 Impact of supervision

We study the impact of the different supervised trainings, between surrogate classes
and real ones. Results are given in Table 3.5.

Training parameters RomePatches-Train RomePatches-Test
PhilippNet 86.1 81.4

PhilippNet-Rome 10K 84.1 80.1
PhilippNet-Rome 100K 89.9 85.6

(Best) CKN-grad 92.5 88.1
(Baseline) SIFT 91.6 87.9

Table 3.5: Impact of supervision on patch retrieval. PhilippNet is trained on
surrogate classes, while PhilippNet-Rome is trained on a larger set of RomePatches-
Train, containing either 10K or 100K classes. We see that retraining improves
performance provided enough data is given. Supervised CNNs are still below the
SIFT baseline, as well as the unsupervised CKNs.

Figure 3.10 gives the first convolutional filters of the PhilippNet learned on
surrogate classes, and on Rome. As can be seen, the plain surrogate version reacts
to more diverse color, as it has been learned with diverse (ImageNet) input images.
Both Rome 10K and Rome 100K datasets have colors that correspond to skies and
buildings and focus more on gradients. It is interesting to note that the network
trained with 100K classes seems to have captured finer levels of detail than its 10K

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 75

20 15 10 5 0 5 10 15 20
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Rotation (deg)

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Scale (factor)

15 10 5 0 5 10 15
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

X-translation (pixels)

15 10 5 0 5 10 15
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Y-translation (pixels)

20 15 10 5 0 5 10 15 20
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Rotation (deg)

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Scale (factor)

15 10 5 0 5 10 15
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

X-translation (pixels)

15 10 5 0 5 10 15
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Y-translation (pixels)

20 15 10 5 0 5 10 15 20
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Rotation (deg)

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0
0.1
0.2
0.3
0.4
0.5
0.6

Scale (factor)

15 10 5 0 5 10 15
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

X-translation (pixels)

15 10 5 0 5 10 15
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Y-translation (pixels)

Figure 3.11: Impact of various transformations on CKN descriptors. Represented
is the average distance between a patch descriptor and its jittered version, as a
function of the transformation magnitude. Best viewed in numerical format.

counterpart.

3.6.2.6 Robustness

We investigate in Fig. 3.11 the robustness of CKN descriptors to transformations
of the input patches, specifically rotations, zooms and translations. We select 100
different images, and extract the same patch by jittering the keypoint along the
aforementioned transformation. We then plot the average L2 distance between the
descriptor of the original patch and the transformed one. Note the steps for the
scale transformation; this is due to the fact that the keypoint scale is quantized on
a scale of powers of 1.2, for performance reasons.

3.6.3 Image retrieval

3.6.3.1 Settings.

We learn a vocabulary of 256 centroids on a related database: for Holidays and
UKB we use 5,000 Flickr images and for Oxford, we train on Paris [Philbin et al.,
2008]. The vocabulary for RomePatches-Train is learned on RomePatches-Test
and vice-versa. The final VLAD descriptor size is 256 times the local descriptor
dimension.

3.6.3.2 Results

We compare all convolutional approaches as well as the SIFT baseline in the image
retrieval settings. Results are summarized in Table 3.6.

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 76

Holidays UKB Oxford Rome
train test

SIFT 64.0 3.44 43.7 52.9 62.7
AlexNet-conv1 59.0 3.33 18.8 28.9 36.8
AlexNet-conv2 62.7 3.19 12.5 36.1 21.0
AlexNet-conv3 79.3 3.74 33.3 47.1 54.7
AlexNet-conv4 77.1 3.73 34.3 47.9 55.4
AlexNet-conv5 75.3 3.69 33.4 45.7 53.1
PhilippNet 64x64 74.1 3.66 38.3 50.2 60.4
PhilippNet 91x91 74.7 3.67 43.6 51.4 61.3
CKN-grad 66.5 3.42 49.8 57.0 66.2
CKN-raw 69.9 3.54 23.0 33.0 43.8
CKN-white 78.7 3.74 41.8 51.9 62.4
CKN-mix 79.3 3.76 43.4 54.5 65.3

Table 3.6: Image retrieval results. Results are in mAP except for UKB where we
measure the average number of true positives in the first 4 results. CKN-mix is
the result of the concatenation of the VLAD descriptors for the three channels.

On datasets for which color is dominant (e.g. Holidays or UKB), the best indi-
vidual CKN results are attained by CKN-white, improved by combining the three
channels. On images of buildings, gradients still perform best and the addition of
color channels is harmful, which explains on the one hand the poor performance
of AlexNet and on the other hand the relatively good performance of PhilippNet
which was explicitly trained to be invariant to colorimetric transformations.

3.6.3.3 Influence of context

Through experiments with AlexNet-landmarks, we study the impact of context in
the local features. Specifically, we test whether fine-tuning on a dataset that shares
semantic information with the target retrieval dataset improves performance. We
compare the same network architecture – AlexNet – in two settings: when param-
eters are learned on ImageNet (which involves a varied set of classes) and when
they are learned on the Landmarks dataset which solely consists of buildings and
places. Results, shown in Table 3.7, show clear improvement for Oxford, but not
for Holidays. We explain this behavior by the fact that the network learns building-
specific invariances and that fewer building structures are present in Holidays as
opposed to Oxford.

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 77

Holidays Oxford
ImageNet Landmarks ImageNet Landmarks

conv1 59.0 57.7 18.8 20.7
conv2 62.7 72.4 12.5 23.8
conv3 79.3 76.1 33.3 38.6
conv4 77.1 73.9 34.3 38.3
conv5 75.3 66.1 33.4 32.5

Table 3.7: Influence of the pretraining dataset on image retrieval. With the same
architecture (AlexNet), training is conducted either on ILSVRC’12 data or on the
Landmarks dataset. Using semantic information related to buildings and places
yields improvements for Oxford, but not for Holidays.

Dataset Holidays UKB Oxford
(CKN-mix) (CKN-mix) (CKN-grad)

Full (262K-dim) 79.3 3.76 49.8
PCA (4096-dim) 82.9 3.77 47.2

Table 3.8: Impact of dimensionality reduction by PCA+whitening on the best
channel for each dataset. PCA to 4096 dimensions.

3.6.3.4 Dimensionality reduction

As observed in previous work [Jégou and Chum, 2012], projecting the final VLAD
descriptor to a lower dimension using PCA+whitening can lead to lower memory
costs, and sometimes to slight increases in performance (e.g. on Holidays [Gong
et al., 2014]). We project to 4096-dim descriptors, the same output dimension as
Babenko et al. [2014] and obtain the results in Table 3.8. We indeed observe a
small improvement on Holidays but a small decrease on Oxford.

3.6.3.5 Dense keypoints

Our choice of Hessian-Affine keypoints is arbitrary and can be suboptimal for
some image retrieval datasets. Indeed we observe that by sampling points on a
regular grid of 8 × 8 pixels at multiple scales, we can improve results. We learn
the CKN parameters and the PCA projection matrix on a dense set of points
in Rome, and apply it to image retrieval as before. We use SIFT descriptors as a
baseline, extracted at the exact same locations. We observe that for CKN-grad and
CKN-white, the previous models lead to suboptimal results. However, increasing

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 78

Descriptor SIFT grad raw white mix
Hessian-Affine 64.0 66.5 69.9 78.7 79.3

Dense (same parameters) 70.3 68.5 72.3 76.8 .
Dense (changed pooling) 70.3 71.3 72.3 80.8 82.6

Table 3.9: Dense results on Holidays. Right hand side of the table are CKN
descriptors. “Same parameters” correspond to CKNs that have the same param-
eters as Hessian-Affine ones, yet learned on densely extracted patches. “Changed
pooling” have pooling size increased by one at each layer (CKN-raw is unchanged
as it only has one layer, and already gives good performances).

Method \ descriptor SIFT CKN-grad
Hessian-Affine, no crop 45.7 49.0
Hessian-Affine, crop 43.7 49.8

Dense, no crop 51.1 55.4
Dense, crop 47.6 50.9

Table 3.10: Dense keypoints on the Oxford dataset. “Crop” indicates the protocol
where queries are cropped to a small bounding-box containing the relevant object,
while “no crop” takes the full image as a query. For CKN, parameters have increased
pooling sizes for dense keypoints, as on Holidays.

the pooling from 3 (resp. 2 for the second layer) to 4 (resp. 3), leads to superior
performances. We attribute this to the fact that descriptors on dense points require
more invariance than the ones computed at Hessian-Affine locations. Results on
the Holidays dataset are given in Table 3.9. As observed on Hessian-Affine points,
the gradient channel performs much better on Oxford. We therefore only evaluate
this channel. As explained in section 3.5, there are two ways to evaluate the Oxford
dataset. The first one crops queries, the second does not. While we only consider
the first protocol to be valid, it is interesting to investigate the second, as results in
Table 3.10 tend to indicate that it favors dense keypoints (and therefore the global
descriptors of Babenko et al. [2014]).

3.6.3.6 Comparison with state of the art

Table 3.11 compares our approach to recently published results. Approaches based
on VLAD with SIFT [Arandjelovic and Zisserman, 2013, Jégou et al., 2012] can be
improved significantly by CKN local descriptors (+15% on Holidays). To compare
to the state of the art with SIFT on Oxford [Arandjelovic and Zisserman, 2013], we

CHAPTER 3. PATCH DESCRIPTION WITH CKNS 79

Method \ Dataset Holidays UKB Oxford
VLAD [Jégou et al., 2012] 63.4 3.47 -
VLAD++ [Arandjelovic and Zisserman, 2013] 64.6 - 55.5*
Global-CNN [Babenko et al., 2014] 79.3 3.56 54.5
MOP-CNN [Gong et al., 2014] 80.2 - -
Sum-pooling OxfordNet [Babenko and Lempitsky, 2015] 80.2 3.65 53.1
Ours 79.3 3.76 49.8
Ours+PCA 4096 82.9 3.77 47.2

Table 3.11: Comparison with state-of-the-art image retrieval results for global
descriptors.

use the same Hessian-Affine patches extracted with gravity assumption [Perd’och
et al., 2009]. Note that this alone results in a 7% gain.

We also compare with global CNN [Babenko et al., 2014]. Our approach out-
performs it on Oxford, UKB, and Holidays. For CNN features with sum-pooling
encoding [Babenko and Lempitsky, 2015], we report better results on Holidays and
UKB, and on Oxford with the same evaluation protocol. Note that their method
works better than ours when used without cropping the queries (58.9%).

On Holidays, our approach is slightly below the one of Gong et al. [2014], that
uses AlexNet descriptors and VLAD pooling on large, densely extracted patches.
It is however possible to improve on this result by using the same dimensional-
ity reduction technique (PCA+whitening) which gives 82.9% or dense keypoints
(82.6%).

Chapter 4

Conclusion

4.1 Summary of Contributions . 81
4.2 Future Directions . 82

80

CHAPTER 4. CONCLUSION 81

4.1 Summary of Contributions
The focus of this thesis is on learning representations that are invariant to nuisance
factors such as geometric variability

A standard approach to learning invariant image classifiers is to generate trans-
formed versions of the original images. However, major challenges are which trans-
formations to select (ie , those that yield transformation improvements whithout
highly increasing the training cost), and how to incorporate the transformed ex-
amples into the classification process. We proposed in Chapter 2 an algorithm
called Image Transformation Weighting that is able to efficiently select a set of
weighting parameters to maximize classification accuracy. Its relaxation, called
Image Transformation Pursuit, yields a selection of the best performing trans-
formations, independently of the dataset, the initial set of transformations, the
classification loss, or the way to aggregate transformed examples. It is also more
scalable than ITW. We tested our algorithms on three standard fine-grained clas-
sification datasets and achieved significant improvements in terms of classification
accuracy with only a handful of transformations, for several features such as Fisher
Vectors and off-the-shelf CNNs. Another conclusion of our work is that among all
aggregation schemes for transformed examples, data augmentation performs best,
provided test images are also transformed and their individual scores averaged for
the final evaluation.

In Chapter 3, we showed that Convolutional Kernel Networks (CKNs) offer
similar and sometimes even better performances than classical Convolution Neural
Networks (CNNs) in the context of patch description, and that the good perfor-
mances observed in patch retrieval translate into good performances for image
retrieval, reaching competitive results on several standard benchmarks. The main
advantage of CKNs compared to CNNs is their very fast training time, and the
fact that unsupervised training suppresses the need for manually labeled examples.
We introduced a new patch descriptor called “Patch-CKN” and reported superior
results to both SIFT and other convolutional descriptors, on a new dataset, as well
as on standard benchmarks for patch and image retrieval.

Last, both contributions have shown that it is possible to reduce the time spent
annotating images. Virtual examples are always less informative than real ones, yet
they come at no cost because they can be generated efficiently. On the other hand,
we have shown in Chapter 3 that our new local descriptors not only outperform
hand-crafted and supervisedly learned features, but also only need unsupervised
data to learn their parameters. Practically, this means that our framework requires
no annotated data, which in the case of local descriptors can be of low quality.
If our descriptors were to be used for more semantically-oriented tasks such as
classification, this could also help reducing the amount of human labor required in
data acquisition.

CHAPTER 4. CONCLUSION 82

4.2 Future Directions
Our work can be extended in different ways. We now propose three directions.

Transformation selection and supervised learning. One possible extension
of our work is the application of our transformation selection procedures to end-to-
end learning. Indeed, fine-tuning gives state-of-the-art performance for fine-grained
image classification, and the application of ITP in this context is an open prob-
lem. Because our algorithm requires testing each individual transformation several
times, it requires fully learning a CNN each time, which is unpractical. One could
imagine several variants: for instance alternating one step of end-to-end-learning
with the selected transformations, and one step of descriptor extraction followed
by ITP to select the transformations. Our Image Transformation Weighting algo-
rithm (C.f. Chapter 2) could also be used in parallel of training to compute a new
weighting of virtual examples. A tentative algorithm would run like this:

1. Select an initial weighting of transformations, for instance a uniform weight-
ing.

2. Feed the examples to learn the neural network. Use weighting sampling to
select which transformation is to be used.

3. Every K iterations of the learning algorithm, extract tranformed examples
with the current network parameters.

4. Using ITW, compute an optimal weighting of transformations

5. Update the weighting and continue learning with it.

The ITW algorithm would be tractable as deep learning intermediate representa-
tions are usually low-dimensional (4096).

Patch-CKN for local descriptor search. Our initial goal for the Patch-CKN
descriptors of Chapter 3 was to replace SIFT as an all-purpose local descriptor. We
have shown the benefits of using Patch-CKNs in place of SIFT descriptors for patch
matching as well as the computation of aggregated descriptos such as VLAD. One of
the state-of-the-art approaches for image retrieval relies today on local descriptor
indexing and searching, as popularized by the Hamming Embedding scheme of
of Jégou et al. [2008] and more recently ASMK [Tolias et al., 2013]. It is easy to
replace the SIFT descriptor of these approaches with our descriptors or any other
one, and expect to get better results. As it turns out, this is not directly the case,
and preliminary experiments have shown that such a naive attempt does not give
the expected results. Several factors can play a role in this phenomenon. First,

CHAPTER 4. CONCLUSION 83

indexing methods typically start by heavy quantization (to 64 bits for HE, and 8
bit for the inverted files of ASMK) of the local descriptors. We have shown that our
Patch-CKN descriptors display better behaviour around 1024 dimensions. Second,
SIFTs are histograms and therefore have very different statistical distributions from
our deep descriptors. Last, most works that use SIFT have special normalization
against burstiness (see, e.g., the work of Jégou et al. [2009]), which do not translate
well to Patch-CKNs. It is suspected that these caveats can be lifted with careful
experiments and in particular proper local normalization. Since our descriptors
have been optimized for local description and patch-matching, they should also
perform better for searching and indexing, which is closer to the original task than
aggregation. Geometric verification should also benefit from our approach as it
only relies on local descriptor quality. These are possible directions to enhance
Patch-CKNs methods.

Dense Patch-CKN. One other direction for our new local descriptor Patch-
CKNs of Chapter 3 is the application to densely extracted keypoints, which have
been shown to give better performance for retrieval as well as classification. This
was partially covered in our work, but in a rather inefficient way, by extracting all
dense coordinates and computing independently one descriptor per patch (this was
done out of fairness, to be able to get exactly the same input for each descriptor,
and because knowing the exact coverage and location of a neuron of a higher layer
into the image is difficult) Yet, convolutional architectures have the advantage
that lower-level convolutions can be factorized when one needs to extract several
region descriptors. This is in particular used in image detection with the work
of Girshick et al. [2014]. The resulting feature map could be used as an input to
VLAD aggregation, or directly to a classifier for image classification. The early
works on CKNs of Mairal et al. [2014b] used these unsupervised feature maps for
classification but only restricted themselves to unrealistic datasets such as MNIST
(digits) and CIFAR (32x32 images). One interesting possible future work would
be to have an unsupervised convolutional descriptor relying on CKNs, able to per-
form classification on large-scale datasets similar to ImageNet. There are two main
problems for this approach. First, end-to-end learning allows to efficiently handle
data augmentation, and allows transformations of the input images at almost no
cost, while methods with precomputed descriptors suffer from longer extraction
times. This could be efficiently handled by our ITP algorithm, which provides a
way to directly link our two main contributions. Applying ITP to perform su-
pervised learning of features on ImageNet has already been used with a great bit
of success by Perronnin and Larlus [2015]. The second difficulty is that unsu-
pervisedly learned convolutional layers cannot efficiently filter non-discriminative
information, and therefore needs to be have higher dimensional feature maps to

CHAPTER 4. CONCLUSION 84

stay competitive with their supervised counterparts. This is the main downside
of this approach and would prove untractable if too many neurons are required.
One possible way to circumvent this would be to perform a supervised projection
step, for instance with Linear Discriminant Analysis after each layer. This would
effectively resemble the approach of Chan et al. [2014].

Appendix A

Publications

This thesis has led to several publications, which are listed below.

International Conferences
• Transformation Pursuit for Image Classification. Mattis Paulin, Jerome Re-

vaud, Zaid Harchaoui, Florent Perronnin and Cordelia Schmid. International
Conference on Computer Vision and Pattern Recognition. 2014.

• Local Convolutional Features with Unsupervised Training for Image Retrieval
Mattis Paulin, Matthijs Douze, Zaid Harchaoui, Julien Mairal, Florent Per-
ronnin and Cordelia Schmid, International Conference on Computer Vision.
2015.

International Journals
• Convolutional Patch Representations for Image Retrieval: an Unsupervised

Approach. Mattis Paulin, Julien Mairal, Matthijs Douze, Zaid Harchaoui,
Florent Perronnin and Cordelia Schmid. Accepted at the International Jour-
nal for Computer Vision.

Others
• Selection itérative de transformations pour la classification d’images. Mattis

Paulin, Jerome Revaud, Zaid Harchaoui, Florent Perronnin, Cordelia Schmid
Reconnaissance de Formes et Intelligence Artificielle 2014.

85

APPENDIX A. PUBLICATIONS 86

• The INRIA-LIM-VocR and AXES submissions to Trecvid 2014 Multime-
dia Event Detection. Matthijs Douze, Dan Oneata, Mattis Paulin, Clément
Leray, Nicolas Chesneau, Danila Potapov, Jakob Verbeek, Karteek Alahari,
Zaid Harchaoui, Lori Lamel, Jean-Luc Gauvain, Christoph Andreas Schmidt,
Cordelia Schmid. Technical report. 2014.

Appendix B

Released Software

This thesis has lead to three major software projects released by the author, de-
tailed in the following appendix. The first one is an all-purpose stochastic gradient
toolbox called JSGD, the two following correspond to the two main chapters.

B.1 JSGD
JSGD is a stochastic gradient descent toolbox for large-scale multiclass classifica-
tion problems, and was co-developped with Matthijs Douze (currently Facebook
AI Research). It contains

• Code to solve large-scale multiclass classification problems up to millions of
examples in thousands of dimensions with seven different losses and many
averaging options.

• Detailed instructions on how to install.

• Python and Matlab bindings.

• A readable matlab code designed to be comprehensive rather than fast.

• A realistic test samples with Bag-of-Words features.

To allow for large distribution, we designed a comprehensive website 1, featuring
sources and test data, details on the algorithms, an FAQ and a detailed installation
walkthrough.

We now describe the technical content of the toolbox.
1http://lear.inrialpes.fr/src/jsgd

87

http://lear.inrialpes.fr/src/jsgd

APPENDIX B. RELEASED SOFTWARE 88

B.1.1 Stochastic gradient descent

The idea behind stochastic gradient descent (SGD) is to use a non-deterministic
oracle for optimization, that whose expectation is equal to the true oracle. In
particular, and this is the case for the JSGD toolbox, we sudy losses that write
as empirical means of example-wise losses `i(w) = `(xi, yi|w). In this case, (xi, yi)
are couples of (example,label) for a multiclass classification task. The optimization
problem writes as:

Optimize
w

Ω(w) +
1

n

n∑
i=1

`i(w), (B.1)

where Ω is a regularization term.
This problem is the empirical mean of the general expectation problem:

Optimize
w

Ex,y [Ω(w) + `(x, y|w)] . (B.2)

Therefore if i is drawn uniformely, Ω(w)+`i(w) is an approximate oracle for the
original problem. Stochastic gradient descent theory states that optimizing such an
oracle with simple gradient descent optimizes the full problem with a convergence
rate that is independant of the number of examples n [Bottou and Bousquet, 2007].
This particularity can be extremely useful when dealing with large-scale datasets.

The optimization algorithm draws a sample (xt, yt) at each iteration and uses
the update rule:

wt+1 → wt − ηt∇[Ω + `t](wt), (B.3)
where ηt is a decreasing function that verifies

∑∞
t=1 ηt =∞.

It can be shown [Bottou and Bousquet, 2007] that such an algorithm converges
for convex functions with a linear convergence rate for smooth ones.

B.1.2 Featured losses

The JSGD Toolbox proposes several standard machine learning losses for multi-
class classification. For a given weight parameter w and bias b, these write as an
average over (x, y) tuples of (examples,labels) of an elementary loss L(w, b, x, y).

The proposed losses are:

Weighted One-versus-rest.

LOVR(w, b, x, y) =
C∑
`=1

n∑
i=1

max{0, 1− yi,`(w`xi + b`)}, (B.4)

with
yi,` =

{
1 if yi = `
−1 if yi 6= `

(B.5)

APPENDIX B. RELEASED SOFTWARE 89

Multiclass Structured Support Vector Machine (MUL)

LMUL(w, b, x, y) =
n∑
i=1

max
y

(wyxi + by − wyixi − byi + ∆(y, yi)). (B.6)

Multiclass Squared Hinge Loss (MUL2)

LMUL2(w, b, x, y) =
n∑
i=1

[max
y

(wyxi + by − wyixi − byi + ∆(y, yi))]
2. (B.7)

Ranking (RNK)

LRNK(w, b, x, y) =
n∑
i=1

C∑
y=1

max(0, wyxi + by − wyixi − byi + ∆(y, yi)). (B.8)

Weighted Average Ranking (WAR)

LWAR(w, b, x, y) =
n∑
i=1

C∑
y=1

C∑
j=1

1

j

max(0, wyxi + by − wyixi − byi + ∆(y, yi))∑C
c=1[[wcxi + bc + ∆(y, c) ≤ wyx+ by]]

. (B.9)

Multinomial Logistic Loss (LOG)

LLOG(w, b, x, y) =
n∑
i=1

−wyixi − byi + log
C∑
y=1

exp(wyxi + by). (B.10)

Entropy Regularized Hinge Loss (STF)

LSTF(w, b, x, y) =
n∑
i=1

−wyixi−byi +
1

β
log

C∑
y=1

exp(β(wyxi+by+∆(y, yi))). (B.11)

B.1.2.1 Averaging

To improve the convergence rate and consistency of the descent, two averaging
schemes are implemented. It is also possible to not average at all.

Optimal averaging. For ρ ∈ (0, 1], it keeps only the ρT last weights, where T
is the total number of iterations.

w̄ =
1

ρT

T∑
t=d(1−ρ)T e

wt. (B.12)

Note that ρ = 1 is exactly the standard averaging SGD.

APPENDIX B. RELEASED SOFTWARE 90

Weighted averaging. Weighted averaging is conducted over all iterations, but
gives a higher influence to the last weights:

w̄ =
2

T (T + 1)

T∑
t=1

t wt. (B.13)

Auto-determination of the step size. The main issue with SGD is to de-
termine the step size η0 of the descent. To do so, we use a trick due to Leon
Bottou [Bottou, 2012]. If η0 is input as 0, JSGD starts by running a few iterations
with various possible step sizes, and keeps the one that gives the highest decrease
in objective. This heuristic usually leads to good step sizes.

Bias post-processing. There are two parameters optimized during the algo-
rithm: the weight w and the bias b. There is no garantee for a step size η0 that
would fit w to also give a good descent rate for b, which usually leads to subopti-
mality in the latter. To remedy to this problem, we use the following heuristic. We
select a step size as usual, and normally run the SGD procedure. We then find b
that minimizes the loss, where w is fixed, equal to the previous result. This can be
done exactly in the OVR case, or with a new SGD for the others. If verbose mode
is set, the objective before and after this post-processing is displayed, usually with
significant ameliorations. This option can of course be deactivated.

B.2 ITP
Posterior to the publication of the conference article from which Chapter 2 stems,
all the code that was used for the experiments was released, including:

Image transformation snippets. The package includes code to generate all
transformations that were described in the conference article, includeing, crops,
flips, homographies and colorimetric changes. The exact parameters that were
used for our experiments can be used to reproduce results.

Classification software. The code features a binding to the previously de-
scribed JSGD software that allows to adapt general purpose multi-class classifica-
tion to classification with virtual examples. In particular, it proposes all schemes
to aggregate scores as described in the related chapter.

Image Transformation Pursuit Algorithm. This is the main part of the
package. It contains all variants of our proposed ITP algorithm, with all exposed

APPENDIX B. RELEASED SOFTWARE 91

losses, as well as virtual examples usage variants. It is optimized to work with small
features in an uncompressed way, and large features with Product Quantization
(PQ) encoding.

Complete documentation and sources. The code is commented and heavily
documented to support extensions and allow for easy understanding.

A website with installation procedures. The website to download the code
is accessible at http://lear.inrialpes.fr/people/paulin/projects/ITP/. It
contains detailed installation guidelines, toy features to test the software, and an
FAQ for addressing common problems.

B.3 Patch-CKN
As with the previous conference article, material consisting of sources and data
was released for the content of Chapter 3

The website is found at http://lear.inrialpes.fr/people/paulin/projects/
RomePatches/ and it includes:

The complete RomePatches dataset. We make publicly availale for down-
load the dataset which we created to benchmark our descriptors for both patch
and image retrieval tasks. The actual patches can be directly downloaded. Un-
fortunately we could not make available the entire images due to copyright issues,
and therefore only link to the urls. The train/test split is explicited in every case.

Precomputed descriptors. The descriptors (both CKN and SIFT) used in the
article’s experiments are available. They are able to reproduce the results that we
reported in the corresponding chapter.

CKN generation code. The provided code is able to adapt the toolbox avail-
able on J. Mairal’s website to our settings. In particular it makes use of the change
of variable that we introduced in Section 3.4. The exact steps to download and
modify the code are detailed in a comprehensive tutorial.

Installation guide Included is a quick tutorial guide to install and run test
examples on custom data.

http://lear.inrialpes.fr/people/paulin/projects/ITP/
http://lear.inrialpes.fr/people/paulin/projects/RomePatches/
http://lear.inrialpes.fr/people/paulin/projects/RomePatches/

Bibliography

Y. S. Abu-Mostafa. Hints. Neural Computation, 1995.

P. Agrawal, J. Carreira, and J. Malik. Learning to see by moving. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.

Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Good practice in large-scale
learning for image classification. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2013.

Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label-Embedding for Image
Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2015.

G. An. The effects of adding noise during backpropagation training on a general-
ization performance. Neural Computations, 1996.

R. Arandjelovic and A. Zisserman. All about VLAD. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2013.

A. Babenko and V. Lempitsky. Aggregating deep convolutional features for image
retrieval. In International Conference on Computer Vision, 2015.

A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky. Neural codes for image
retrieval. In European Conference on Computer Vision, 2014.

P. Baldi and P. J. Sadowski. Understanding dropout. In Advances in Neural
Information Processing Systems, 2013.

H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features. In
European Conference on Computer Vision, 2006.

Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine
Learning, 2009.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

92

BIBLIOGRAPHY 93

T. Binford and T. Levitt. Quasi-invariants : theory and exploitation. In Proceedings
of Darpa Image Understanding Workshop, 1993.

C. Bishop. Training with noise is equivalent to Tikhonov regularization. In Neural
computation, 1995a.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford UP, 1995b.

L. Bo, X. Ren, and D. Fox. Kernel descriptors for visual recognition. In Advances
in Neural Information Processing Systems, 2010.

L. Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the
Trade. Springer, 2012.

L. Bottou and O. Bousquet. The tradeoffs of large-scale learning. In Advances in
Neural Information Processing Systems, 2007.

M. Brown, G. Hua, and S. Winder. Discriminative learning of local image descrip-
tors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011.

J. B. Burns, R. S. Weiss, and E. M. Riseman. View Variation of Point-Set and
Line-Segment Features. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1993.

M. Calonder, V. Lepetit, C. Strecha, and Fua. BRIEF: Binary robust independent
elementary features. In European Conference on Computer Vision, 2010.

T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma. Pcanet: A simple deep
learning baseline for image classification? arXiv preprint arXiv:1404.3606, 2014.

K. Chatfield and A. Zisserman. Visor: Towards on-the-fly large-scale object cat-
egory retrieval. In Asian Conference on Computer Vision, Lecture Notes in
Computer Science. Springer, 2012.

M. Chen, Z. Xu, K. Weinberger, and F. Sha. Marginalized denoising autoencoders
for domain adaptation. In International Conference on Machine Learning, 2012.

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively,
with application to face verification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2005.

R. G. Cinbis, J. Verbeek, and C. Schmid. Multi-fold mil training for weakly super-
vised object localization. In IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2014.

BIBLIOGRAPHY 94

S. Clinchant, G. Csurka, F. Perronnin, and J.-M. Renders. XRCE’s participation
to Imageval. ImageEval workshop at CVIR, 2007.

A. Coates and A. Y. Ng. Learning feature representations with k-means. In Neural
Networks: Tricks of the Trade. Springer, 2012.

F. Cucker and D.-X. Zhou. Learning theory : an approximation theory view-
point. Cambridge Monographs on Applied and Computational Mathematics.
Cambridge University Press, Cambridge, New York, 2007.

D. DeCoste and M. Burl. Distortion-invariant recognition via jittered queries. In
International Conference on Computer Vision and Pattern Recognition, 2000.

D. Decoste and B. Schölkopf. Training invariant support vector machines. Machine
Learning, 2002.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-
scale hierarchical image database. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell.
DeCAF: A deep convolutional activation feature for generic visual recognition.
In ICML, 2014.

J. Dong and S. Soatto. Domain-size pooling in local descriptors: Dsp-sift. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2015.

A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox. Discriminative
unsupervised feature learning with convolutional neural networks. Advances in
Neural Information Processing Systems, 2014.

T. Durand, N. Thome, and M. Cord. Mantra: Minimum maximum latent struc-
tural svm for image classification and ranking. In IEEE Conference on Computer
Vision and Pattern Recognition, 2015.

T. Durand, N. Thome, and M. Cord. Weldon: Weakly supervised learning of deep
convolutional neural networks. In IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent. The difficulty of
training deep architectures and the effect of unsupervised pre-training. In Twelfth
International Conference on Artificial Intelligence and Statistics (AISTATS),
2009.

BIBLIOGRAPHY 95

D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio. Why
does unsupervised pre-training help deep learning? The Journal of Machine
Learning Research, 2010.

P. Fischer, A. Dosovitskiy, and T. Brox. Descriptor matching with Convolutional
Neural Networks: a comparison to SIFT. arXiv Preprint, 2014.

M. A. Fischler and R. A. Elschlager. The representation and matching of pictorial
structures. IEEE Transactions on computers, 1973.

L. Florack, B. t. Haar Romeny, J. Koenderink, and M. Viergever. General intensity
transformations and second order invariants. In Theory & Applications of Im-
age Analysis: Selected Papers from the 7th Scandinavian Conference on Image
Analysis. World Scientific, 1992.

W. T. Freeman and E. H. Adelson. The design and use of steerable filters. Trans-
actions on Pattern Analysis & Machine Intelligence, 1991.

E. Gavves, B. Fernando, C. G. M. Snoek, A. W. M. Smeulders, and T. Tuyte-
laars. Fine-grained categorization by alignments. In International Conference
on Computer Vision, 2013.

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2014.

H. Goh, N. Thome, M. Cord, and J.-H. Lim. Learning deep hierarchical visual
feature coding. IEEE transactions on Neural Networks and Learning Systems,
2014.

Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of deep
convolutional activation features. In European Conference on Computer Vision,
2014.

D. Gorisse, M. Cord, and F. Precioso. Salsas: Sub-linear active learning strategy
with approximate k-nn search. Pattern Recognition, 2011.

D. Gorisse, M. Cord, and F. Precioso. Locality-sensitive hashing for chi2 distance.
IEEE transactions on Pattern Analysis and Machine Intelligence, 2012.

R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and Y. LeCun. Unsupervised feature
learning from temporal data. In Advances in Neural Information Processing
Systems, 2014.

BIBLIOGRAPHY 96

R. Goroshin, M. Mathieu, and Y. LeCun. learning to linearize under uncertainty.
In Advances in Neural Information Processing Systems, 2015.

P.-H. Gosselin, N. Murray, H. Jégou, and F. Perronnin. Revisiting the Fisher vector
for fine-grained classification. Pattern Recognition Letters, 2014.

C. Harris and M. Stephens. A combined corner and edge detector. In Alvey vision
conference, 1988.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385, 2015.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors.
arXiv preprint arXiv:1207.0580, 2012.

C. Huang, S. Zhu, and K. Yu. Large scale strongly supervised ensemble metric
learning, with applications to face verification and retrieval. Technical report,
arXiv, 2012.

M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks. In
Advances in Neural Information Processing Systems, 2015.

D. Jayaraman and K. Grauman. Learning image representations equivariant to
ego-motion. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015.

H. Jégou and O. Chum. Negative evidences and co-occurrences in image retrieval:
the benefit of PCA and whitening. In European Conference on Computer Vision,
2012.

H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak geometric
consistency for large scale image search. In European Conference on Computer
Vision, 2008.

H. Jégou, M. Douze, and C. Schmid. On the burstiness of visual elements. In IEEE
Conference on Computer Vision and Pattern Recognition, 2009.

H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into
a compact image representation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2010.

H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011.

BIBLIOGRAPHY 97

H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid. Aggregat-
ing local image descriptors into compact codes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2012.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. In ACM multimedia, 2014.

W. Jiang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, and
Y. Wu. Learning fine-grained image similarity with deep ranking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2014.

T. Kadir, A. Zisserman, and M. Brady. An affine invariant salient region detector.
In Proceedings of the European Conference on Computer Vision. Springer, 2004.

D. Keysers, T. Deselaers, C. Gollan, and H. Ney. Deformation models for image
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2007.

J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations for fine-
grained categorization. In IEEE International Conference on Computer Vision
Workshops, 2013.

J. Krause, H. Jin, J. Yang, and L. Fei-Fei. Fine-grained recognition without part
annotations. In IEEE Conference on Computer Vision and Pattern Recognition,
2015.

A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep
convolutional neural networks. In Advances in Neural Information Processing
Systems, 2012.

M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable
models. In Advances in Neural Information Processing Systems, 2010.

C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object
classes by between-class attribute transfer. In IEEE Conference on Computer
Vision and Pattern Recognition, 2009.

C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for
zero-shot visual object categorization. IEEE Transaction on Pattern Analysis
and Machine Intelligence, 2013.

M. T. Law, N. Thome, and M. Cord. Quadruplet-wise image similarity learning.
In International Conference on Computer Vision, 2013.

BIBLIOGRAPHY 98

Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and
L. Jackel. Handwritten digit recognition with a back-propagation network. Ad-
vances in Neural Information Processing Systems, 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. In Proc. of the IEEE, 1998.

Y. Li, N. Snavely, and D. P. Huttenlocher. Location recognition using prioritized
feature matching. In European Conference on Computer Vision, 2010.

T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear cnn models for fine-grained
visual recognition. In International Conference on Computer Vision, 2015.

T. Lindeberg. Feature detection with automatic scale selection. International
journal of computer vision, 1998.

J. Long, N. Zhang, and T. Darrell. Do Convnets learn correspondances? In
Advances in Neural Information Processing Systems, 2014.

G. Loosli, S. Canu, and L. Bottou. Training invariant support vector machines
using selective sampling. In Large Scale Kernel Machines. MIT Press, 2007.

D. G. Lowe. Object recognition from local scale-invariant features. In Computer
vision, 1999. The proceedings of the seventh IEEE international conference on.
Ieee, 1999.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal on Computer Vision, 2004.

L. Maaten, M. Chen, S. Tyree, and K. Q. Weinberger. Learning with marginal-
ized corrupted features. In Proceedings of the 30th International Conference on
Machine Learning (ICML-13), pages 410–418, 2013.

J. Mairal, F. Bach, and J. Ponce. Sparse Modeling for Image and Vision Processing.
Foundations and Trends in Computer Graphics and Vision. now publishers, Dec.
2014a.

J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid. Convolutional kernel networks.
In Advances in Neural Information Processing Systems, 2014b.

S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-grained visual
classification of aircraft. Technical report, 2013.

S. Mallat. A wavelet tour of signal processing (3rd ed.). Academic Press, 2008.

BIBLIOGRAPHY 99

J. Marín, D. Vázquez, D. Gerónimo, and A. López. Learning appearance in virtual
scenarios for pedestrian detection. In IEEE Conference on Computer Vision and
Pattern Recognition, 2010.

K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. In
European Conference on Computer Vision. Springer, 2002.

K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors.
International Journal on Computer Vision, 2004.

K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky,
T. Kadir, and L. Van Gool. A comparison of affine region detectors. International
Journal on Computer Vision, 2005.

J. Y. H. Ng, F. Yang, and L. S. Davis. Exploiting Local Features from Deep
Networks for Image Retrieval. In DeepVision Workshop (CVPRW), 2015.

D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2006.

P. Niyogi, F. Girosi, and T. Poggio. Incorporating prior information in machine
learning by creating virtual examples. Proceedings of the IEEE, 1998.

S. Nowozin, P. V. Gehler, J. Jancsary, and C. H. Lampert. Advanced Structured
Prediction. Neural Information Processing series, 2015.

M. Paulin, J. Mairal, M. Douze, Z. Harchaoui, F. Perronnin, and C. Schmid. Con-
volutional patch representations for image retrieval: an unsupervised approach.
International Journal of Computer Vision, 2016.

M. Perd’och, O. Chum, and J. Matas. Efficient representation of local geometry for
large scale object retrieval. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2009.

F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image cat-
egorization. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2007.

F. Perronnin and D. Larlus. Fisher vectors meet neural networks: A hybrid clas-
sification architecture. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 3743–3752, 2015.

BIBLIOGRAPHY 100

F. Perronnin, J. Sánchez, and Y. Liu. Large-scale image categorization with explicit
data embedding. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2010.

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with
large vocabularies and fast spatial matching. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2007.

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization:
Improving particular object retrieval in large scale image databases. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2008.

J. Philbin, M. Isard, J. Sivic, and A. Zisserman. Descriptor learning for efficient
retrieval. In European Conference on Computer Vision, 2010.

L. Pishchulin, A. Jain, C. Wojek, M. Andriluka, T. Thormählen, and B. Schiele.
Learning people detection models from few training samples. In IEEE Conference
on Computer Vision and Pattern Recognition, 2011.

A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN features off-the-
shelf: an astounding baseline for recognition. preprint arXiv:1403.6382, 2014.

J. Sánchez, F. Perronnin, and T. de Campos. Modeling the spatial layout of images
beyond spatial pyramids. Pattern Recognition Letters, 2012.

J. Sánchez, F. Perronnin, T. Mensink, and J. J. Verbeek. Image classification
with the fisher vector: Theory and practice. International Journal on Computer
Vision, 2013.

B. Schölkopf and A. J. Smola. Learning with kernels: Support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

S. Shalev-Shwartz and N. Srebro. Svm optimization: inverse dependence on train-
ing set size. In International conference on Machine learning, 2008.

J. Sietsma and R. Dow. Creating artificial neural networks that generalize. Neural
Networks, 1991a.

J. Sietsma and R. J. Dow. Creating artificial neural networks that generalize.
Neural Networks, 1991b.

P. Simard, Y. LeCun, and J. Denker. Efficient pattern recognition using a new
transformation distance. In Advances in Neural Information Processing Systems,
1992.

BIBLIOGRAPHY 101

P. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural
networks applied to visual document analysis. In ICDAR, 2003.

E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, and F. Moreno-Noguer. Discrimi-
native learning of deep convolutional feature point descriptors. In International
Conference on Computer Vision, 2015.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. ArXiv preprint ArXiv:1409.1556, 2014.

K. Simonyan, A. Vedaldi, and A. Zisserman. Learning local feature descriptors
using convex optimisation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2014.

J. Sivic and A. Zisserman. Video google: A text retrieval approach to object
matching in videos. In International Conference on Computer Vision, 2003.

K. Sohn and H. Lee. Learning invariant representations with local transformations.
International Conference on Machine Learning, 2012.

R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

E. Tola, V. Lepetit, and P. Fua. Daisy: An efficient dense descriptor applied
to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2010.

G. Tolias, Y. Avrithis, and H. Jégou. To aggregate or not to aggregate: selective
match kernels for image search. In International Conference on Computer Vision,
2013.

G. Tolias, R. Sicre, and H. Jégou. Particular Object Retrieval with Integral Max-
Pooling of CNN Activations. In International Conference on Representation
Learning, 2015.

T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: A survey.
Foundations and Trends in Computer Graphics and Vision, 2007.

T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: A survey.
Foundations and Trends in Computer Graphics and Vision, 2008.

V. N. Vapnik. Statistical Learning Theory. Wiley Interscience, 1998.

A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2012.

BIBLIOGRAPHY 102

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and com-
posing robust features with denoising autoencoders. In International Conference
on Machine Learning, 2008.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The CUB-200-2011
Dataset. Technical report, CalTech, 2011.

L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regularization of neural
networks using dropconnect. In International Conference on Machine Learning,
2013.

Z. Wang, B. Fan, and F. Wu. Local intensity order pattern for feature description.
In International Conference on Computer Vision, 2011.

C. Williams and M. Seeger. Using the Nyström method to speed up kernel ma-
chines. In Advances in Neural Information Processing Systems, 2001.

S. Winder, G. Hua, and M. Brown. Picking the best Daisy. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2009.

C. Wu. SiftGPU: A GPU implementation of scale invariant feature transform
(SIFT). http://cs.unc.edu/~ccwu/siftgpu, 2007.

L. Yaeger, R. Lyon, and B. Webb. Effective training of a neural network character
classifier for word recognition. In Advances in Neural Image Processing Sytems,
1996.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in
deep neural networks? In Advances in Neural Information Processing Systems,
2014.

S. Zagoruyko and N. Komodakis. Learning to compare image patches via convo-
lutional neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015.

J. Zbontar and Y. LeCun. Computing the stereo matching cost with a convolutional
neural network. preprint arXiv:1409.4326, 2014.

http://cs.unc.edu/~ccwu/siftgpu

	Contents
	List of Figures
	List of Tables
	Introduction
	Goals
	Context
	Contributions

	Selecting Virtual Examples for Image Classification
	Introduction
	Related Work
	Virtual Examples: Generation and Selection
	Experiments

	Patch Description with Convolutional Kernel Networks
	Introduction
	Related Work
	Convolutional Descriptors
	Convolutional Kernel Descriptors
	Image and Patch Retrieval Datasets
	Experiments

	Conclusion
	Summary of Contributions
	Future Directions

	Publications
	Released Software
	JSGD
	ITP
	Patch-CKN

	Bibliography

