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A B S T R A C T

The spread of pervasive computing through the Internet of Things
(IoT) represents a challenge for privacy preservation. Privacy threats
are directly related to the capacity of the IoT sensing to track indi-
viduals in almost every situation of their lives. Allied to that, data
mining techniques have evolved and been used to extract a myriad
of personal information from sensor data stream. This trust model
relies on the trustworthiness of the data consumer who should infer
only intended information. However, this model exposes personal in-
formation to privacy adversary. In order to provide a privacy preser-
vation for the IoT, we propose a privacy-aware virtual sensor model
that enforces privacy policy in the IoT sensing. This mechanism in-
termediates physical sensors and data consumers. As a consequence,
we are able to optimize the use of privacy preserving techniques by
applying them selectively according to virtual sensor inference inten-
tions, while preventing malicious virtual sensors to execute or get di-
rect access to raw sensor data. In addition, we propose an ontology to
classify personal information based on the Behavior Computing, facil-
itating privacy policy definition and information classification based
on the behavioral contexts.
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R É S U M É

La vulgarisation de l’informatique omniprésente à travers l’internet
des objets (IdO) représente un défi pour la préservation de la vie pri-
vée et la confidentialité des individus. Les menaces contre la confi-
dentialité sont directement liées à la capacité de détection de capteur
dans l’IdO en suivant les individus dans presque toutes les situations
de leur vie. Alliée à cela, les techniques d’exploration de données ont
évolué et ont été utilisées pour extraire une multitude d’informations
personnelles à partir de données du flux des données des capteurs.
Ce modèle de confiance repose sur la fiabilité du consommateur de
données pour extraire uniquement des informations accordées. Ce-
pendant, ce modèle permet l’exposition d’informations personnelles
à des adversaires de la vie privée. Afin de fournir un mécanisme
pour préserver la confidentialité dans l’IdO, nous proposons un mo-
dèle de capteur virtuel qui renforce une politique de confidentialité
dans le flux des données des capteurs. Ce mécanisme intermédiaire
se met en place entre les capteurs physiques et les consommateurs
de données. En conséquence, nous sommes en mesure d’optimiser
l’utilisation des techniques de preservation de confidentialité, telles
qu’anonymisation, en les appliquant de manière sélective selon les
intentions d’inférence des capteurs virtuelles, tout en empêchant les
capteurs virtuels malveillants d’exécuter ou d’obtenir un accès direct
aux données brutes des capteurs physiques. En outre, nous propo-
sons une ontologie pour classer les informations personnelles basées
sur la science du comportement (Behavior Computing), ce qui facilite
la définition de la politique de confidentialité et à la classification de
l’information en fonction des contextes comportementaux.
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1 I N T R O D U C T I O N

�.� �������
The most profound

technologies are

those that disappear.

They weave

themselves into the

fabric of everyday

life until they are

indistinguishable

from it". — Mark

Weiser

Pervasive computing is spreading as sensors map the physical real-
ity and its phenomena into digital traces, providing a fertile research
area to explore statistical models that could be interpreted and corre-
lated to a variety of personal information. The development of per-
vasive computing has incorporated the advances in sensing, commu-
nication, networking, web service, and information processing tech-
nologies, creating a new era of connected things, so called the Internet
of Things (IoT) [1].

Along with the Cloud Computing, IoT boosted the sensing capac-
ity of the pervasive computing by delivering scalable, virtualized and
nearby (edge computing) resources. Besides that, the pay-as-you-go

model offered by the Cloud Computing, which traditionally deliv-
ers services at the layers of infrastructure, platform, and software;
promoted the development of a wide range of specialized services,
such as sensing, networking, and specific software-based functionali-
ties [2].

The gradual increment of the sensing omnipresence has, as a con-
sequence, allowed observing individuals in numerous situations. Al-
lied to that, the intensive usage of Knowledge Discovery and Data
Mining (KDDM) techniques to interpret this data has leveraged the
capacity to perceive and learn about individuals and their behaviors.
Consequently, a new generation of interconnected smart applications,
smart devices and smart actuators that interpret these observations –
and respond to them – are emerging in different fields, such as social
networks, e-Health, mobility, environmental monitoring, and smart
cities [3]. This has raised concerns about privacy in the IoT both from
the research community and the industry [4].

From a legal perspective, the IoT has contributed to a discussion
about society, politics, and market, which has been reflected in recent
changes to countries’ privacy regulation and data protection laws that
reinforce citizens’ privacy and address data protection and owner-
ship issues, such as the new European Union directives [5]. These
regulations are being strategically negotiated between countries. Re-
cently the European Commission and the United States reached an
agreement on a new framework to permit cross-border transfers of
personal data [6], pushing higher requirements and obligations on
American data consumers 1 by requiring transparency, accountability,
law and privacy mechanisms to ensure European citizens’ rights.

1. Data consumers are those who are interested in the use and value of the per-
sonal content.[7]

1
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From a personal perspective, individuals (data owners 2) are highly
concerned about their privacy [8]. However, their privacy risk per-
ception [9] and privacy behavior [10] are paradoxical, since they con-
tinue consuming services that explicitly outbreak their privacy. This
is partly explained by the choices in privacy strategies and mecha-
nisms that privilege data processing in data consumers’ side, which
often mislead users to trust data consumers and to reveal more infor-
mation than necessary by offering access to raw sensor data, such as
geographic location, camera, microphone, or step counters from their
smartphones. Therefore, trust and ethical issues related to the manip-
ulation and discovery of personal information become more critical
in the IoT given its pervasiveness.

In this new politic, economical and social era ignited by the IoT, we
wonder what is the place of privacy and technology in this complex
scenario.

�.� �������
"The need for

privacy is a socially

created need.

Without society

there would be no

need for privacy" —

Barrington Moore

Privacy is a multidimensional concept associated with cultural, po-
litical, economical, social, and temporal aspects that cause social fric-

tion and individual harm. The consequences associated with privacy
problems go beyond mental pain or distresses, such as reputational
or dignitary injury, risking to damage physically, economically or po-
litically a person [11]. These social frictions are inherent to life in soci-
ety and have molded the conceptualization of privacy from the first
scholar reference of physical privacy – "the right to be left alone" [12] –
to the contemporary data protection regulation that covers informa-

tional privacy, such as "the right to be forgotten" [13]. In the exercise
of their right to seclusion, individuals can freely behave and express
themselves without the threat of censure, and thus exercising their
moral right to autonomy [14]. This notion of privacy based on the
seclusion is redefined by Nissenbaum [15] who argues that violation
of privacy is a function of several variables, which includes situation
(context), the roles of agents receiving information and their relation-
ship to information subjects, how the information is shared by the
individual and by the agents. The definition of privacy, therefore, is
an evolving concept and should be understood in the light of social
and behavioral contexts in different eras.

In the information age, individual’s dignity and physical integrity
are affected by opportunistic harmful activities that may take place
during the information collection, processing, and dissemination.
The morality system code of conduct and social judgment can be
used as scrutiny of individual’s behavior and decision where surveil-
lance through continuous collection and inference of sensor data
and personal information act to intimidate individual freedom. The
exposure of private behaviors through information system should

2. Data owners are subject or producers of the personal content and who owns
it.[7]



1.3 �������� ����������� ��� �������� 3

be carried more cautiously than previous privacy threats since the
extraction of information through recorded and sensed behaviors
are more detailed and stay indeterminately available for processing
techniques often more efficient than human analysis capacities. The
moral impact of privacy invasion extrapolates the ethical behavior
and decisions as "data privacy protection furthers still another sort of

liberty–that of self-determination, expressed through the power to define

oneself to the world in the way one wishes" [16]. As argued by Foucault,
this surveillance is a type of continuous oppressive presence of a
multiple, automatic, and anonymous power that excesses indirectly
force and violence and induces passivity in the surveilled [17].
This passivity in the technological information world, in particular
in the IoT, therefore, is distilled with limited choices and privacy
protection mechanisms. As a consequence, individuals are led with
motivation to pursue their expressed interests based on these limited
choices, following the path of least resistance and friction. Fou-
cault’s epistemological perspective could not be more contemporary,
as individuals are led to accept privacy intrusion by continuous
surveillance through the IoT, and where privacy mechanisms are
offered conveniently by data consumers who claim to have ethics to
protect and process personal data. This established trust model has
been assumed mostly as the only choice for the dissemination and
discovery of personal information through the IoT. However, privacy
preservation in the IoT should be investigated and addressed from
another perspective that privileges the interests of data owners instead
of those of data consumers.

�.� �������� ����������� ��� ��������

Currently, the Oxford Dictionary defines information as a fact pro-
vided or learned about something or someone; or as something that is
conveyed or represented by a particular arrangement or sequence of
things. In information systems, information is defined as "an assembly

of data in a comprehensive form capable of communication and use" [18]. In
the remainder of this manuscript, we adopted Ackoff’s vision of the
Data-Information-Knowledge-Wisdom (DIKW) triangle, as depicted in
Figure 1.1. In DIKW, each level is generated by the observation and
generalization of the lower-level informational entity. All these infor-
mation entities represent properties, objects, individuals, events, ab-
stract concepts, and information entity itself in different abstraction
levels.

Personal information is a commonly overloaded term referring both
to an individual and information about oneself; as well as to informa-
tion controlled and owned by someone [20]. In this thesis, personal

information is defined as all data, information, knowledge, and wisdom

related to an individual and/or under her control.
The sheer volume of data generated by the IoT sensing requires an

adaptation in the perceptive of personal information for inference and
privacy purposes. The pervasiveness and ubiquitousness of the IoT
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Figure 1.1 – The Data-Information-Knowledge-Wisdom triangle [19]

sensing cause a continuous observation and surveillance, mapping
physical phenomena and behaviors to sensor data. Along with data
collection, the data processing and inference aggregate semantics to
the informational entity in each DIKW level.

Most privacy approaches for the IoT target access control and pol-
icy enforcement at the lowest informational layer (sensor data), while
applications (data consumers) and individuals (data owners) tend to
privilege the highest informational levels (wisdom, knowledge, and
information). Moreover, the behavioral aspect of the IoT sensing for
personal information is not considered, limiting the chances to con-
textualize inference and privacy policy conditions based on the in-
dividual’s situation. We claim that the behavioral model found in
the research domain of Behavioral Computing [21] can be applied to
model personal information efficiently.

The Behavior Computing (BC) is a systematic way to structure and
study behaviors (events) using a set of concepts, definitions, and tools
to represent, explain and predict behaviors. For BC, behavior is defined
as actions, operations or events conducted by agents within certain
context and environment (virtual or physical ones), focusing on sym-
bolic behaviors that represent these activities into a computational
model. Thereby, it can be stated that BC intends to enrich the pro-
cess of behavior pattern analysis, by modeling features and allowing
in-depth analysis of behavior and its impacts.

Based on the premise that observations are made in behavioral tem-
poral frames using sensors, it is possible to model different levels
of abstraction of personal information, involved features around the
concept of behavior and its temporal dimension. As a result, we
are able to represent information about the individual (agent), the in-
volved physical, mental and abstract features that participates in the
observed behavior, and the behavior itself.

�.� ���������� ��� ������� ���������

The research in privacy engineering points to requirements of
design, strategy, and mechanisms to address privacy issues in
systems [22]. In this manuscript, we focus on the privacy preser-
vation for the IoT sensing with regard to its design, considering a
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privacy-by-policy strategy. More specifically, we address privacy issues
associated with the Sensing as a Service (S2aaS) 3 [23] model (privacy-

by-design) in the IoT and the privacy preservation strategy on top of
the S2aaS implemented by a mechanism that enforces privacy-by-policy.
In order to assess the IoT from a privacy engineering viewpoint, we
need to understand its enabling technologies, architectures and the
recent incorporation of Cloud Computing to IoT sensing services.
Given its novelty and complexity, studies about privacy issues in
the IoT are incipient and sparse, which hamper the development of
approaches to the design privacy-sensitive IoT systems [24], and to
determine requirements that needs to be met to evaluate the efficacy
of the proposed privacy mechanisms. Motivated by these concerns,
we state the following research questions:

— Q1: How to design a privacy model for the IoT sensing as a
service S2aaS to enable a more efficient approach to the design
of privacy preserving IoT systems?

— Q2: How to design a privacy-by-policy mechanism in the S2aaS

that facilitates the definition of the privacy policy by end users
based on intelligible personal information and its context?

— Q3: Are these privacy model and privacy-by-policy mechanism
implementable in an IoT testbed platform?

Available approaches rely on Privacy-Enhancing Technolo-
gies (PETs) conventionally on the data owners’ side (user sphere)
or on the data consumer’s side (recipient sphere). Both paradigms
pose challenges due to its trust model, resource limitation, and
architecture. The user sphere may safely prevent private data to
be released since it is completely under data owner’s control. On
the other hand, it may limit the development of more sophisticated
privacy preserving mechanisms that demand computational power
or penalize resource-constrained devices, which are commonly
found in the IoT objects 4, by draining their resources.

Conversely, once data and personal information are released to the
recipient sphere, privacy adversaries or malicious data consumers can
exploit privacy breaches, extracting unintended personal information
from the published data, even from anonymized datasets [25]. Be-
sides that, the increasing number of portable devices that publish
sensor data related to the participatory sensing of the IoT objects has
been associated with dense, dynamic, location-aware and onerous to
manage networks of device [26]. Therefore, server-centric solutions
where personal information is published or kept on data consumer’s
control present several privacy threats and architectural challenges,
demanding an alternative model to minimize these issues.

In addition, few of these approaches have considered the cognitive
bias that plays an important role in the definition of policies, which
should reflect the data owner’s concerns in an intelligible manner. In
general, sensor observations (and other lower level data that is ex-

3. The acronym S2aaS is adopted in this manuscript with the only objective of
differentiating it from the traditional SaaS acronym normally related to Software as
a Service.

4. IoT objects correspond to physical devices connected to the IoT network.
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changed among IoT entities 5) demand technical knowledge to be un-
derstood and classified. By employing Semantic Web technology to
overcome the barriers of knowledge representation and knowledge
interpretation, some privacy preservation approaches have proposed
Access Control Models (ACMs) based on ontologies, such as the SSN-O.
However, these approaches do not provide an ontology capable of
bridging the semantic sensor network world, that is currently used
to annotate sensor data in the IoT, to a higher-level information, that
would permit end-users to express their privacy concerns more accu-
rately.

Allied to that, the use of KDDM techniques, that support the dis-
covery of personal information, makes humanly impossible to clas-
sify sensor data in terms of potential malicious inference, due to the
multitude of techniques and possible statistical correlation of their re-
sults to personal information. Privacy-Preserving Data Mining Tech-
niques (PPDMTs) 6 are commonly used in these scenarios to degrade
data utility in order to minimize the chance of extracting private infor-
mation. However, the direct application of these techniques degrades
data utility continuously, even when there is no private information
to hide, consuming computational resources unnecessarily. Moreover,
PPDMT approaches suffer from cyclic re-identifications 7 which restricts
the usefulness of such techniques.

Many attempts to provide privacy mechanisms in the IoT sensing
are proposed, but as we will explain, they consider neither mod-
ern privacy engineering principles in its design nor comprehensive
privacy-by-policy mechanisms tailored for the IoT.

�.� ���������� ��� ��������

In this thesis, we aim at providing an approach for privacy preser-
vation in the IoT through a privacy model and a privacy-by-policy mech-
anism for the S2aaS. Since the system design plays a crucial role in
privacy preservation, we aim at redefining a privacy model based on
modern privacy engineering principles and the available IoT enabling
technologies. In this direction, we envision a privacy-aware Sensing as

a Service (S2aaS) using the Cloud-IoT infrastructure that intermediates
IoT objects (data providers) 8 and IoT applications (data consumers) with
a Virtual Sensor Network (VSN), as depicted in Figure 1.2.

In order to provide this, we address the three research questions
specified in the previous section by:

— Providing a privacy model for the IoT S2aaS to intermediate IoT

objects (data providers) and IoT applications (data consumers)

5. IoT entities refer to middleware, system, application, and object that exchange
data in the IoT network.

6. The acronym stands for the abbreviation for Privacy-Preserving Data Mining

Techniques to minimize longer acronyms in the following chapters.
7. The process of identifying private attributes and correlation from a dataset

that was previously anonymized.
8. Data providers are represented by IoT objects and belongs to data owners.
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Figure 1.2 – Privacy-aware Sensing as a Service

to mitigate privacy risks related to privacy-sensitiveness of IoT

sensing services.
— Defining an ontology for the Sensor Web that supports the clas-

sification of personal information based on behaviors (contexts),
improving the representation of personal information to be clas-
sified and used to define privacy policies;

— A privacy-by-policy mechanism that prevents unintended and
malicious inference by executing PETs selectively on-the-fly ac-
cording to privacy policy conditions.

— Implementing a privacy-aware Sensing as a Service (S2aaS) testbed
in a real IoT platform based on our proposed privacy model and
privacy-by-policy mechanism.

�.�.� Privacy Model

Figure 1.3 – Privacy-aware Sensing as a Service

The proposed approach for privacy preservation in the IoT is based
on the IoT S2aaS design that brings to an independent zone the data
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processing and the privacy enforcement. The goal of our proposed
design is to shift the provision of privacy and data processing from
the recipient sphere toward a joint sphere on which a privacy policy eval-
uation and enforcement are guaranteed between the data owners and
data consumers. To this end, we designed the IoT S2aaS based on VSN,
Cloud Computing technology, and a privacy-by-policy mechanism. In
this new model, the VSN delivers high-level information stream in-
stead of sensor data stream, while enforcing privacy by evaluating
on-the-fly preventively the inference intention and the produced per-
sonal information using the privacy-by-policy mechanism.

From the data owner’s perspective, her privacy policy is defined
based on personal information and contexts, allowing the VSN to
evaluate it for each sensor data stream from this data owner. From
the data consumer’s perspective, the service model of the S2aaS that
provides information subscription will be restricted to high-level in-
formation. Additionally, data consumers (or outsourced independent
developers) are able to specify, implement and execute their KDDM

processes using the concept of virtual sensors that must be specified
and deployed in the VSN to be executed and to provide the intended
personal information.

The privacy model is based on the Sensor Web which employs se-
mantic sensor annotations, such as those defined in the SSN-O, to pro-
vide services, such information retrieval, sensor interoperability, and
sensor discovery using a high-level information about sensor, its char-
acteristics, sensing conditions, platforms, observations and observed
feature of interest. However, despite the fact that SSN-O is the most
adopted and a World Wide Web Consortium (W3C) standard, its se-
mantic representation for sensor and feature of interests are limited.
To address this problem, we designed an ontology based on SSN-O, as
described in the next section.

�.�.� Ontology for Personal Information Classification on the Sen-

sor Web

In the envisioned privacy model, virtual sensors and high-level per-

sonal information are key concepts. SSN-O represents personal infor-
mation as features of interest, along with its observed properties, and
sensors as anything that senses. Each feature has properties that can
be observed by sensors which, in turn, produces observations. The
domain-agnosticism of the SSN-O restricts the classification of a fea-

ture of interest as personal information due to its inability to represent
its association with the data owner. Another limitation is the lack of
representation for virtual sensors which are basically in-network data
processing units, instead of sensors who detect stimuli to produce
observations.

As part of our approach, we propose Ontology for Personal Infor-
mation on the Sensor Web (OPIS), an Ontology for Personal Informa-
tion on the Sensor Web, to represent personal information and vir-

tual sensors. The proposed ontology aims to address shortcomings of
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Figure 1.4 – OPIS overview

SSN-O regarding the representation of virtual sensors – KDDM process,
implementation, and execution – and personal information – features

of interest and observed properties. Our goal is to provide a modular
ontology that extends the expressiveness of SSN-O and support the
definition of privacy policies and the preventive evaluation of unin-
tended inference as proposed in our privacy model.

To this end, we propose to extend the SSN-O concept of feature of

interest to represent personal information, grounded on key concepts
of the Behavior Computing (BC) [21], and the SSN-O concept of sen-
sor into virtual sensor, providing semantic representation for KDDM

process specification, implementation, and execution based on the
Ontology of Data Mining (OntoDM). By extending the SSN-O, the pro-
posed ontology is compatibility to IoT platforms and their sensor in-
teroperability services.

�.�.� Privay-aware Virtual Sensor Model: A Privacy-by-Policy

Mechanism

Figure 1.5 – Privacy-aware Sensing as a Service

Along with the privacy model, we developed a The proposed
privacy-by-policy mechanism encapsulates the data processing with
a two-fold Privacy Enforcement Point (PEP) that evaluates privacy
policies with regard to inference intention and inference (data
processing output), as depicted in Figure 1.5. The mechanism
includes the data processing as part of the privacy enforcement,
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controlling the access of the input data flow or its data utility; as
well as, the release of data processing output. Its goal is to improve
the traditional mechanism by adding a preventive privacy policies
evaluation based on the specified information to be produced by the
data processing. This evaluation relies on the capability of the PEP to
interpret the information that flows in and out of the data processing
execution, and the KDDM process specification implemented in this
data processing. We envision the preventive and selective execution
of PETs, such as anonymization techniques or access denial, according
to personal information classification; and the detection of malicious
inference 9 by comparing KDDM processes.

To this end, we propose an ontology-based privacy mechanism
that employs Semantic Web technology to represent and evaluate pri-
vacy policies and related information. In particular, these policies
are defined by a set of Privacy Policy Conditions (PPCs), each of it
composed by a personal information classification (antecedent) and
a PET that should be executed (consequent). We define formally an
extensible ontological framework to express these PPCs extending and
reusing concepts of the Semantic Sensor Network Ontology (SSN-O) 10,
OntoDM 11, and a domain specific ontology for personal information.
This ontological framework benefits from the Ontology Web Lan-
guage (OWL) reasoning capability to provide a flexible and powerful
classification for personal information. The PEP is mainly composed
by SPARQL queries to retrieve PETs and to compare similar KDDM spec-
ifications to detect malicious inference intention. Grounded on an
analysis of privacy issues in the IoT, we propose to implement this
model using the concept of virtual sensor.

�.�.� Privacy-aware Sensing as a Service Testbed

Aiming to evaluate the viability of implementation for our ap-
proach, we provide an architecture for the privacy-aware S2aaS,
extending the eXtended Global Sensor Network (xGSN) platform [27],
which configures an implementable testbed to verify the viability to
implement the privacy model and the privacy-by-policy mechanism.
Since our approach relies mainly on the reasoning capacity using
OPIS, SSN-O, and the proposed ontological framework to define pri-
vacy policies, we implement SPARQL queries and instantiate classes of
personal information, virtual sensors, and privacy policy conditions
to evaluate the viability and response time of our proposed policy
enforcement.

9. An inference is considered malicious when does not match its specification.
10. SSN-O is considered a de facto standards for semantic sensor annotation.
11. OntoDM is a meta mining ontology used to specify KDDM processes.
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�.� ������ ���������

The remainder of this manuscript is organized in two parts: Gen-
eral Introduction and Contribution. Chapter 2 begins with a descrip-
tion of key concepts and enabling technologies of the IoT and the
Cloud Computing that are important to understanding the privacy
design choice of our approach. In order to define the guidelines and
principles for the analysis of privacy approaches, we present key con-
cepts of privacy engineering. We also present the most relevant works
that address privacy in the IoT. Aiming to analyze privacy from differ-
ent viewpoints, we discuss of IoT enabling technologies that impact in
the strategy for privacy enforcement in the IoT. We elicited three per-
spectives – sensor-centric, data-centric, human-centric – that reflect the
three main issues related to personal information in the IoT sensing.

In Chapter 3, we review the Semantic Web technology, ontologies
for the Sensor Web, Meta-Mining (MM) and the theory of Behavior
Computing (BC). We investigate shortcomings of the Semantic Sen-
sor Network Ontology (SSN-O) with regard to its expressiveness to
represent personal information and data processing techniques. In
addition, we identify the Ontology of Data Mining (OntoDM) as the
most suitable ontology to address the limitation of SSN-O to represent
virtual sensors and KDDM processes. Next, we present key concepts
of the BC and how it can be applied to address the problem of per-
sonal information representation in the behavioral context commonly
found in situations of IoT sensing. Lastly, some related works for rep-
resentation of personal information using ontologies are discussed,
followed by conclusions of how these approaches can be employed to
propose an ontology for personal information.

In Chapter 4, we review the two main Privacy-Enhancing Technolo-
gies (PETs): Privacy-Preserving Data Mining Techniques (PPDMTs) and
Access Control Models (ACMs). These technologies provide privacy
using different strategies. We investigate these approaches in order to
understand how they address privacy preservation, analyzing them
from a privacy engineering perspective and having in mind the pri-
vacy model that we intend to propose. Lastly, we conclude with a
discussion about advantages and limitations of these works and how
PPDMTs and ACMs could be incorporated to our proposed solution.

In Chapter 5, we present OPIS in details, setting formally class and
property definitions. The ontology design process is also described,
along with external imports and the realist vs descriptive views. The
proposed ontology provides concepts to represent personal informa-
tion in the IoT and virtual sensors, being the foundation to define
privacy policies and Privacy-Enhancing Technologies (PETs).

In Chapter 6, we present the Privacy-aware Virtual Sensor Model
(PA-VSM), our proposed privacy-by-policy mechanism implemented ac-
cording to the privacy model based on the Cloud-IoT architecture. In
this chapter, the ontological framework for Privacy Policy Condi-
tion (PPC) based on OPIS is formally defined, enabling an effective
and extensible classification structure, a selective privacy preserva-
tion, and a user-friendly privacy policy definition. This ontological
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framework is used to define SPARQL queries and algorithms that form
the foundation of our two-fold Privacy Enforcement Point (PEP), en-
forcing privacy preventively and belatedly.

In Chapter 7, we present a testbed for our approach by defining the
implementable architecture of an IoT sensing platform – xGSN – ex-
tended to incorporate the PA-VSM. We demonstrate the usability and
viability of OPIS by instantiating concepts to represent personal infor-
mation and virtual sensors. In addition, the ontological framework
proposed to be used as knowledge representation for the PA-VSM is
also instantiated with PPCs. At last, we present the preliminary results
of this experiment, the SPARQL queries used to query the Virtuoso
triple store and their response times.

Finally, we summarize our contributions in Chapter 8, pointing the
main contributions, drawbacks and future endeavors related to our
approach.
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In this thesis, we propose an approach for privacy preservation
in the Sensing as a Service (S2aaS). In order to understand our mo-
tivations and research endeavor and to propose an implementable
privacy model, it is necessary to understand basic concepts of the IoT,
and its enabling technology and architecture. We introduce these con-
cepts in Section 2.1. Due to the convergence of the IoT and the Cloud
Computing service model, we include a brief explanation about the
IoT architectures, middleware and its convergence with the Cloud-
IoT paradigm and its sensing as a service model. In Section 2.2, we
present privacy engineering principles, main concerns about privacy
and preservation paradigms that will support the analysis of privacy-
aware approaches and the design of our privacy model. Then, in
Section 2.3, we describe IoT technologies from three viewpoints –
device-centric, data-centric and human-centric perspectives – to fa-
cilitate the investigation of privacy issues in the complex Cloud-IoT
infrastructure. In Section 2.4 we discuss a representative selection
of approaches that deal with sensor data streaming, stream mining,
stream reasoning, privacy preservation and access control for data
streams in the IoT sensing service that support the definition of our
privacy by design model. Lastly, in Section 2.5, we conclude by briefly
summarizing the concepts of this chapter.

15
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The term Internet of Things was initially coined to refer uniquely
to identifiable interoperable interconnected objects equipped with
Radio-Frequency IDentification (RFID) technology [28]. Today, along
with the advances of IoT enabling technologies, the concept of
IoT has evolved to a "dynamic global network infrastructure with
self-configuring capabilities based on standard and interoperable
communication protocols where physical and virtual things have
identities, physical attributes, and virtual personalities; using intel-
ligent interfaces to be seamlessly integrated into the information
network" [29].

The IoT has participated in the dissemination of pervasive com-
puting through these identifiable, ubiquitous, autonomous objects,
hereby called IoT objects, that effectively connect the real world to the
virtual world. Thus, the IoT envisages a connected world where phys-
ical objects, beings, and information interact with each other seam-
lessly regardless of place and time. In [30], IoT objects are classified,
according to design and architectural principles, in three dimensions:
awareness, representation, and interaction. The awareness is the ability
to understand (i.e., sense, interpret, and react to) real-world stimuli,
including human behaviors. The representation refers to computational
models on which IoT objects can be specified, such as programming
languages or rules. The interaction denotes the ability to interact di-
rectly with other IoT objects, things or end-users.

The capacity to address uniquely a device or an identification tag
through the Internet allows tracking this device or item wherever it
is researchable through a network or communication channel, such
as the Near Field Communication (NFC). More generally, the IoT ob-
jective of connecting things around the world supports the implemen-
tation of the ubiquitous computing and context-awareness [31].

�.�.� IoT Enabling Technologies

The IoT architectural design is influenced by the assembled tech-
nology that enables IoT capabilities. Evidently, these technologies
are not new, but together, they form a complex and interconnected
infrastructure on which the IoT is based. On the other hand, the
impulse caused by the IoT adoption also pushes the development of
these enabling technologies. For example, the growing presence and
scalability of wireless network access, such as Wireless Local Area
Network (WLAN) and 4G-LTE, increases the IoT ubiquitousness. As
a consequence, the development of the 5G is influenced by the IoT

challenges and trends [32]. Figure 2.1 illustrates the main enabling
technology incorporated in IoT which are discussed next.

�������������� As previously mentioned, the initial concept of IoT

was introduced when the RFID technology was presented, along with
its identification and communication capacities. The RFID tag was
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Figure 2.1 – IoT enabling technologies

crucial to enable IoT object discovery and unique identification, com-
plementing the public and private networks limitation of global ad-
dressing 1. From that on, several identification methods have been
proposed, such as the open Standard Ubiquitous ID (SUID) [33], for
uniquely identifying a data source or an IoT object. Moreover, iden-
tifiable objects are not limited to electronic devices and gadgets, but
also includes non-electronic items, such as food, papers, official doc-
uments, works of art, equipment, and furniture.

������� The sensing technology has been claimed to be the major
enabler of the IoT [34]. Its capacity to digitalize physical stimuli and
to produce data that can be used to measure, aggregate, and perceive,
provide insights about any observed feature of interest, changing the
way systems interact with the things, situations and humans. The re-
cent advances in sensing technology have achieved efficient low-cost
sensors in large-scale production. As a consequence, this technology
was widely adopted in personal devices, such as embedded sensors
in smartphones (e.g, Global Positioning System (GPS), gyroscope, ac-
celerometer, infrared) and in industrial environment sensors, such as
a thermostat, smoking detector, and infrared surveillance cameras.

������������� The variety of available communication technolo-
gies enables data exchange, connecting a wide range of heteroge-
neous IoT objects. Proprietary and open communication protocols
have been proposed to operate in different conditions, such as power,
noise, latency, distance, and so forth. In addition, communication
liability is crucial to the IoT and is related to the network capability
of self-adaptation and multi-path routing. Currently, wireless com-

1. The number of address of Internet address protocol Internet Protocol version
4 (IPv4) was limited and could not support the number of connected devices in the
Internet. Its new version Internet Protocol version 6 (IPv6) fixes IPv4 addressing
limitation.
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munication technology is preferred to provide seamless integration
of IoT objects in environments and mobile devices. Main communica-
tion protocols adopted in the IoT are: RFID, NFC, IEEE 802.11 (WLAN),
IEEE 802.15.4 (ZigBee), IEEE 802.15.1 (Bluetooth), Multihop Wireless
Sensor/Mesh Networks, IETF Low power Wireless Personal Area
Network (6LoWPAN), Machine to Machine (M2M), 3G, 4G-LTE, IPv4,
IPv6 [35, 36, 37].

����������� In order to provide smart services, the IoT has a com-
putational capacity that is concretely implemented in its processing
units, such as micro-controllers, microprocessors, and software ap-
plications [38]. Several IoT-friendly hardware technologies were con-
ceptualized to suit the IoT, such as Raspberry PI 2, Arduino 3, and
Galileo 4. On top of these hardware technologies, modern Operating
Systems (OSs) provides a richer real-time platform to control IoT ob-

jects, adapted to their resource constraints. For instance, Android
and iOS are operating systems that provide a rich interface experi-
ence for the end-user, at the same time, that deliver computational
capacity for mobile applications in smart-phones and smart gadgets.
Additionally, smaller devices designed to work in limited computa-
tion capacity and low energy consuming require lighter weight OSs

that efficiently balance functionalities and resource constraints, such
as TinyOS 5, LiteOs 6 or RiotOS 7.

Despite their heterogeneity, the probable solution for privacy en-
forcement in the IoT should consider the memory, storage, and com-
putational power limitations which part of the IoT objects have. This
restriction has been addressed in the IoT by shifting resource demand-
ing processing toward the network layer, where computational re-
sources are more likely to be available. Allied to that, one of the main
characteristics proposed by the IoT relies on the capacity to retrieve
data from several IoT objects in order to respond coordinately to mul-
tiple sensing observations. Consequently, data aggregation and pro-
cessing must take place somewhere other than the sensing layer. In
this context, the virtualized and unlimited processing and storage ca-
pacity provided by Cloud Computing have been referred to deliver an
effective solution for the IoT. In fact, IoT and Cloud Computing are ar-
gued to be complementary technologies [34]. Cloud Computing and
its relationship to the IoT is described in more details in Section 2.1.3.

������� Service refers to the implementation and management
model oriented towards the quality of services and requirement
specifications. The IoT paradigm is constructed on this concept of
service where information retrieval and communication are accessed
through services. Most of IoT architectures have been proposed based

2. https://www.raspberrypi.org/ (accessed on 26/04/2017)
3. https://www.arduino.cc/ (accessed on 26/04/2017)
4. https://software.intel.com/en-us/articles/when-to-use-the-intel-galileo-board (ac-

cessed on 26/04/2017)
5. http://www.tinyos.net/ (accessed on 26/04/2017)
6. http://www.liteos.net/ (accessed on 26/04/2017)
7. https://riot-os.org/ (accessed on 26/04/2017)

https://www.raspberrypi.org/
https://www.arduino.cc/
https://software.intel.com/en-us/articles/when-to-use-the-intel-galileo-board
http://www.tinyos.net/
http://www.liteos.net/
https://riot-os.org/
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on the Service-Oriented Architecture (SOA) [31] which implements
services by encapsulating the underlying complexity, heterogeneity,
and technical details.

In [39], IoT services are categorized into four classes:
— Identity-related: services that consist in retrieving and communi-

cating passively or actively to IoT objects based on its identity;
— Information aggregation: refers to services that aggregate and in-

fer higher-level information based on sensor data collected from
IoT objects;

— Collaborative-aware: services that use the information processed
in information aggregation service to provide decision making
information for end-users or to concretely ignite IoT objects to act
(or react) according to a perceived situation.

— Ubiquitous: refers to the highest level of information reporting
and IoT coordination, which provides autonomous, collabora-
tive, pervasive computing any place, any time. The concept of
smart cities, for example, is based on the ubiquitous services.

��������� The Semantic Web is a W3C effort to produce a formal
knowledge representation to the World Wide Web (WWW) capable of
expressing semantics for the information on the web. The W3C aims
at standardizing concepts and encodings for the knowledge repre-
sentation, shifting Web data towards a linked and semantic world, so
called the Semantic Web. Semantics have been extensively used to im-
prove the Machine to Machine (M2M) and Human to Machine (H2M)
communications in IoT. In general, Semantic Web technology lever-
ages IoT services enabling knowledge representation which is the key
component to automate tasks in all IoT architecture layers and mini-
mize the need for human intervention. Information discovery, sensor
interoperability, data aggregation, information retrieval and complex
event processing are a few examples of semantics potential to create
more intelligent mechanisms that interpret conditions, contexts, data
quality and sensor heterogeneity. Moreover, ontologies, such as the
SSN-O [40], are used in the IoT to enrich the communication between
things, and between things and IoT users.

�.�.� IoT Architectures and Middlewares

Architectures aim to represent, modularize, and structure system
functionalities. Many aspects and functions of IoT enabling technolo-
gies are combined to deliver the IoT paradigm. In fact, besides that,
other issues related to the IoT exponential growth, security, account-
ability, and privacy have also been addressed in IoT architectural de-
sign [41, 42, 31].

Table 2.1 presents a mapping between abstract layers of proposed
IoT architectures, as studied in [38]. The most basic model is concep-
tualized in a three-layer architecture and it was originally inspired by
the network stacks. Although this classification does not comprise
the current state of the art and complexity of the IoT, it provides us
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Table 2.1 – Mapping between IoT architecture abstraction layers

a starting point to understand the evolution of IoT architectures and
how the network layer was specialized to handle its architectural di-
mensions.

In the lower level, the perception layer and its likewise pairs repre-
sent the pervasive part of the IoT that performs the real-world sensing
and acting, through smart sensors and actuators; the access to data
sources (e. g. existing legacy systems) and to edge technologies, such
as routers and RFID reader.

In the middle level, the network and its respective specialized lay-
ers represent the intermediary process that receives data from the
lower-level layers in order to make it available for storage, process-
ing, and administration. It is worth remarking that the lower and
mid-level layers communication protocols are designed to be comple-
mentary. Sensor networks tend to be composed of a high number
of sensors. Therefore, protocols, gateways and wireless networks are
typically represented in the backbone network and object abstraction
layers. In order to abstract from this network protocol heterogeneity,
the middleware, coordination, and service management layers are
proposed to deliver Application Programming Interfaces (APIs) and
services to interact with the underlying layers and coordinate these
services.

In the higher level, the application and business layers represent
APIs and services request by external applications or IoT end-users. IoT

applications, such as smart cities and smart environments, are based
on top of these layers that access the underlying middle-level ser-
vices to retrieve aggregated information and interact with IoT objects.
Since the application layer can be used to intermediate end-users and
underlying layers through the business layer, in the five-layer archi-
tecture, the application layer is sometimes classified as intermediary
or highest/end-user layer.

It is evident the influence that the service technologies have on IoT

architectures. In fact, the key concept of service is based on the pro-
visioning of common functions and services through published and
discovered interfaces that typically encapsulates complexities and un-
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derlying heterogeneity. The service technology has been successfully
employed in the software industry and, recently, have been used as
building blocks of complex architectures and middlewares.

Figure 2.2 – Middleware structure

Middleware is a software layer that intermediate different level of
complexities, as presented in Figure 2.2. Applications, services, and
devices in different abstraction levels are intermediated by middle-
wares that provide interfaces for the higher and lower-level layers
and a set of programming abstractions to implement the service pro-
visioning. In the IoT, middlewares are commonly employed to facil-
itate the integration and the communication of heterogeneous data
sources (e. g. IoT objects, edges technologies, and systems) [43]. The
advantage of middlewares as an architectural design is the ability to
incorporate, in a decoupled fashion, several issues and aspects that
must be considered, such as interoperability, trust, scalability, security,
privacy, extensibility, and so forth. Recent works in the IoT have con-
firmed the establishment of middleware as part of the IoT paradigm,
comprising SOA, publish/subscribe mechanisms, semantic web tech-
nology, and Cloud Computing [44].

�.�.� The Cloud Computing Service Model

The National Institute of Standard and Technologies (NIST) 8 de-
fines Cloud Computing as "a model for enabling ubiquitous, conve-
nient, on-demand network access to a shared pool of configurable
computing resources (e. g. networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with min-
imal management effort or service provider interaction" [45]. The
Cloud Computing has profoundly impacted the Information Technol-
ogy (IT) sector and the way Internet services are delivered, targeting
client’s needs through a scalable and reliable information infrastruc-
ture. It was characterized by its successful pay-as-you-go model that

8. http://www.nist.gov/ (accessed on 26/04/2017)

http://www.nist.gov/
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allows clients to pay only the consumed resources while permitting
service providers to manage resource costs and allocation.

Figure 2.3 – Traditional cloud computing service layers and key character-
istics

The advances in virtualization and hypervisor technologies for the
Cloud service model enabled the dynamic resource allocation, pro-
viding elasticity (on-the-fly resource provisioning) and allowing the
measurement and pricing of computational resource usage as com-
modities. Key characteristics of the Cloud Computing demonstrate
how different is the Cloud model from traditional computing ap-
proaches, such as multi-tenancy, elasticity, on-demand service, cost,
reliability, and so forth [46]. These characteristics are illustrated in
Figure 2.3 divided into service customer’s and provider’s perspec-
tives. Furthermore, services in the Cloud are traditionally classified
in three layers [47]: Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS).

IaaS comprises computational infrastructures as data centers that
provide storage and computing services. PaaS refers to an enterprise-
grade cloud computing infrastructure that aims to provide the virtu-
alized infrastructures for multiple tenants based on the physical in-
frastructure of computing nodes, storage units, and network that de-
liver services according to a Quality of Service (QoS) – performance,
security, isolation. SaaS consists of software features that are made
available on virtualized infrastructures according to a QoS. It repre-
sents the software functionality that is actually accessed, therefore,
being the most visible part of the Cloud Computing for end-users.

The Cloud service model, so called Everything as a Service (XaaS),
can be applied to any kind of service and technology layers [2]. In par-
ticular, the provisioning of IoT service through the Cloud infrastruc-
ture and service model have been evident in the increasing number of
new services paradigms created by the integration of the Cloud and
the IoT, such as Thing as a Service (TaaS), Database as a Service (DBaaS),
Data as a Service (DaaS), Identity and Policy Management as a Ser-
vice (IPMaaS), Video Surveillance as a Service (VSaaS), S2aaS , Sensing
and Actuation as a Service (SAaaS), Sensor as a Service (SEaaS), and so
forth [48, 34].

The Cloud Computing has been employed in the IoT as an inter-
mediate layer between IoT objects and IoT users, shifting the com-
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Figure 2.4 – Comparison of the business process perspective in the tradi-
tional, cloud-based and sensor-cloud-based scenarios.

plexity, maintenance and risk of information infrastructures towards
the infrastructure provider – generally the IT sector – who is better
equipped to manage it [34]. Indeed, the Cloud facilitates the flow of
the IoT data collection and provides data processing capacity, while
billing the cloud customer (IoT user) according to the amount of data
collected, transmitted, processed and stored. Furthermore, many
technological issues faced by the IoT have been partly addressed by
the Cloud Computing, such as scalability, interoperability, reliability,
efficiency, availability, and security [36]. On the other hand, the Cloud
benefits from IoT real-world and pervasive scenarios that promote its
adoption [34].

This novel paradigm called Cloud-IoT emerges from a synergy of
complementary technological aspects, such as displacement (perva-
sive vs. centralized), reachability (limited vs. ubiquitous), compo-
nents (real world things vs. virtual resources), computational capa-
bilities (limited vs. unlimited), big data (source vs. means to man-
age) [34].

This disruptive model has a profound impact on business and per-
sonal computing. While businesses are highly interested in the in-
formation chain that can be ignited through the Cloud-IoT, individ-
uals are concerned about information ownership, participation and
how IoT services are seamlessly delivered to them. Business appli-
cations can carry on trend analysis, behavior observation, benefit
identification, business process representation, business logic mod-
eling, price and cost modeling, performance evaluation; ultimately
igniting a faster information chain by incorporating the IoT sensing
service [49]. It is evident the added value and real-timing that the
Sensor-Cloud delivers to the business and its business process infor-
mation chain. Figure 2.4 illustrates a comparison between different
business process scenarios and the type of service delivered at each
IoT architecture layer. From traditional to Cloud-IoT based business
processes, the technological incorporation level stepped from a sim-
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ple application usage to a complex interconnected process that com-
municates and integrates directly to anything (real world devices and
virtual resources), relying on data management capabilities provided
by the Cloud infrastructure.

�.� ������� �����������

The role of personal data protection principles is to support the
maintenance of trust in the continued usage and benefits of personal
information. After In information systems, these principles emerged
in the form of guidelines, such as privacy-by-design, privacy impact
assessment, and data breach notification, due to the convergence of
best practices and the commitment of different actors, stakeholders,
and advocates on privacy protection [50].

The concept of privacy-by-design, in particular, includes a holistic
and robust approach to address the systematic effects of Information
and Communications Technology (ICT) and large-scale networked in-
frastructure, which has been particularly witnessed with the expan-
sion of the IoT. It started to gain attention in 2010 [51], at the Inter-
national Conference of Data Protection and Privacy Commissioners,
recognizing that privacy should be inherently embedded into archi-
tecture design, operations, management of ICT systems along with
the entire information life cycle. Its foundational principles include
proactivity, privacy as the default, privacy embedded into the design,
full functionality, end-to-end life cycle protection, transparency, and
respect for user privacy.

Practically, privacy-by-design is a holistic paradigm that considers
preventively Privacy-Enhancing Technologies (PETs), processes, and
practices into the system architecture in order to protect privacy seam-
lessly [50]. Besides that, it includes guidelines that emphasize the
importance of thinking about privacy protection through the architec-
ture design. Langheinrich [52] emphasizes six main areas of system
design that should consider in ubiquitous computing and ICT sys-
tem development: i) notice of data usage, collection, and inference
(transparency); ii) choice and consent; iii) de-identification 9, which
guarantees data utility and usability not linkable to the concerned
individuals; iv) proximity and locality that constitute a common cri-
teria between physical and information privacy; v) adequate security;
and vi) data minimization that restricts data collection and usage for
a well-defined purpose (no "in advance" storage or unnecessary data
collection).

According to privacy-by-design guidelines, PETs should be in-
cluded in the IoT system as part of their architectures and privacy
preservation strategies since its conception. It is worth to mention
that these guidelines should be considered during the process defi-
nition in different levels, such as business process, system workflow,

9. In this manuscript, the terms "de-identification", "pseudomyzation", and
"anonymization" are used interchangeably. The focus is on the classification of these
techniques instead of the importance in the subtle differences between them.
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and PET procedures, algorithms and development patterns. Different
types of PETs can be combined or used separately to preserve privacy
in several contexts, such as those of security multi-party compu-
tation, homomorphic encryption, private information retrieval,
anonymous credentials, and communication, trusted environments
and platforms [53]. Not surprisingly, security is inherent to privacy
considerations because of the need for a safe environment and tech-
nology upon which privacy protection and trusted communication
can be ensured. However, in this manuscript, although we identify
security as an indispensable component in privacy-aware systems,
which deserves attention and further investigation, we solely focus
on the privacy protection of IoT systems.

Figure 2.5 depicts the orthogonality among privacy-by-design
guidelines and components of privacy-aware system architecture;
illustrating the plurality of PETs that may be adopted by one single
systems and how the privacy-by-design guidelines can influence the
development of different strategies for the same type of PET, such as
security multi-part computation, right to be forgotten, access control
based on attribute, role, or social network criteria.

Figure 2.5 – Privacy-by-design strategy overview

The principles of openness on which the concept of notice is defined
are the starting point of individual’s awareness about her own pri-
vacy. The current privacy control provided by IoT objects and smart-
phones are not able to present the real privacy threat of disclosing
specific information, such geographic location sensor data or list of
contacts. The informed consent or agreement should be based on the
full exposure of the facts the concerned individual needs to make a
decision intelligently, including awareness of risks, usage, and alter-
natives to provide personal data [54]. Mechanisms based on privacy-
by-policy, for example, should ensure compliance with requirements
defined by privacy regulation, privacy risk management, and individ-
ual’s choices on the consent of data subject, access and usage from an
individual-centric perspective. In an opposite direction, IoT systems
collect sensitive data and information about an individual, her iden-
tity and behaviors continuously, providing privacy control remotely
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from the individual’s control zone. In practice, privacy-by-policy ac-
tivities are often limited to the fulfillment of compliance requirements,
which are pre-defined by the data consumer, providing little effective
protection [22]. In other words, the fact that IoT systems are adopting
different privacy-by-policy PETs do not guarantee that it is designed
to protect the individual’s privacy or that implements the designed
privacy strategy efficiently. In addition, the intensive data flow of ICT

and IoT systems – from portable devices, environment sensors, and
personal information systems to third-party servers, owned by data

consumers, – increases this doubt by collecting data indiscriminately,
without notice nor consent.

The de-identification techniques aim at removing personal informa-
tion, or its association, between a set of identifying data and the data
subject, that can be the individual’s identity or a sensitive data. The
collect of techniques is vast and they vary in terms of levels of effec-
tiveness and data utility. The great controversy around its efficacy
has been argued due to the possibility of re-identification. For ex-
ample, privacy-by-architecture that incorporate anonymization natively
can suffer from chronic issues in these techniques related to data qual-
ity and background knowledge-based attacks.

Among these technologies, anonymization techniques are com-
monly employed to preserve privacy in the IoT sensing services, since
it is built based on the premises that after anonymized, personal
data could be released. In the remarkable work of Paul Ohm [25],
he argues that anonymization has failed in the anonymize-release-

forget paradigm. The process of anonymization-re-identification (or
anonymization-deanonymization) has become a cyclic process, where
anonymization methods intend to pointedly erase traces of sensitive
information, respecting a level of data utility, while re-identification

(or deanonymization) pushes the inference capacity of KDDM 10 algo-
rithms further as a countermeasure. Thus, once a more powerful
anonymization technique is proposed, it is commonly followed by
the development of more effective KDDM workflow to re-identify

sensitive information. However, while KDDM workflows have the
possibility to aggregate unlimited background knowledge gathered
elsewhere to increase its rate of re-identification, anonymization is
limited to modify the original data set having in mind its data utility.
In other words, the anonymized data set can become useless if it is
transformed in a way to hide all possible sensitive information.

On the other hand, anonymization suits eventually the trade-off
between system usability of IoT sensing services and privacy concerns,
since most of these techniques offer a mechanism to control the level
of data utility to be guaranteed in detriment of privacy preservation.

Gürses and del Alamo [22] claim that purely technical approaches
to privacy preservation might prove insufficient for aligning nuanced legal

policies with engineering artifacts, pointing to three principles of privacy
engineering that must be observed:

10. KDDM concerns the entire knowledge extraction process which include data
mining, machine learning and knowledge discovery research domain. Further infor-
mation in Section 3.
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— Plurality: refers the transversal classification for the diversity
of approaches to privacy, such as those based on policy, social
affinity, intimacy, trust, economic trade-off or simply the right to

be forgotten paradigm.
— Contextuality: reflects the context-dependence of privacy prefer-

ences where the same person can be inattentive about certain
information in some situations, and extremely concerned about
privacy issues in others.

— Contestability: consists in the existence of privacy conditions,
which can be evaluated and contest, if multiple interpretations
or conflicting privacy requirements happen.

Therefore, the data utility of IoT sensing data or the PET could be
adapted according to the risk of privacy harm. Some aspects of
the use and processing of personal information can minimize the
chances of privacy attacks. Ohm [25] highlights five characteristics
that should be considered while designing a strategy to address these
privacy harms:

— data processing techniques: privacy attacks should be antic-
ipated and prevented based on data mining techniques.
Re-identification and unintended inference intentions should be
detected based on KDDM specifications, implementation, and
workflows in order to adapt the privacy strategy;

— private release: public data releases are more likely exposed than
private data exchange. Private data release offers better con-
ditions to preserve privacy, and privacy accountability (data
breach traceability);

— data quantity: privacy adversaries tend to find it easier to employ
background knowledge by increasing the level of confidence of
their inferences using a large amount of data. By controlling
unnecessary data stream or data release, privacy harms can be
minimized;

— motive: declared re-identification intention is commonly an-
nounced for private or governmental research purposes,
supporting the user decision making to disclosure datasets
or data streams. The declaration of usage intention for data
release can be a good practice and may serve as evidence for
lawful dispute related to privacy harms;

— trust: trust in data consumers and their reputations can server as
parameters to assess privacy risk. In this context, social network
and affinity degrees can be used to approximate their level of
trustworthiness.

Privacy-by-policy mechanisms, on the other side, are designed to
allow individuals to choose what to disclose, considering different
types of criteria that can vary from data type, proximity, or social
context. However, most of the time these mechanisms are provided
by data consumers who, ultimately, have the major interest in extract-
ing valuable personal information from collected data. In the end, the
bad or unintentional design of system and technology, that cannot be
legally accounted or assessed, can expose personal identity and infor-
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mation, defeating any intention of individual’s privacy awareness or
policy enforcement.

Given current IoT architectures, it is evident that traditional sys-
tem engineering methods, in particular, conventional de-identification

and privacy-by-policy PETs only covers partly these privacy engineer-
ing principles.

Part of the responsibility for privacy risks and breaches is under en-
gineers, which may adopt these privacy-by-design guidelines and pri-
vacy engineering principles to minimize privacy intrusions. Nonethe-
less, the exercise of selective control of access to the self (consent) and
the awareness of the potential consequences of this exercise (notice)
rely on data owners and data consumers. These boundaries of (legal and
accounting) responsibility, trust, and influence in ICT and IoT systems
can be classified into three distinct spheres of influence [24]:

— User sphere: refers to the user’s zone of control and responsibil-
ity to store, process and share data, relying on the individual’s
expertise to control access through the use of Privacy-friendly
Information Systems (PISs) and PETs in personal computers, mo-
bile devices, and, recently, computational resources provided by
the Cloud.

— Recipient sphere: consists in the zone of the data consumer’s con-
trol where the offered back-end infrastructure (which can also
be virtualized in the Cloud) provides services to collect, stor-
age, and process data, minimizing privacy risks through secu-
rity and privacy mechanisms.

— Joint sphere: denotes to a third-party zone of responsibility, trust-
ed by the data consumer to intermediate the data collection, pro-
cessing and sharing, and which offers an independent service
that allows data consumers to protect their privacy while commit-
ting levels of quality of service to data consumers.

The joint sphere is compelling due to the outsourcing of data collec-
tion, processing, storage and privacy enforcement to a third indepen-
dent party. By shifting the data operations from the recipient sphere

to the joint sphere, independent trustee parties can take over these
responsibilities without compromising individual’s privacy, once in-
formation would not be its core business, but rather the provision of
services to empower individuals to administrate their own informa-
tion.

�.� ��� ������������

The ethical issues associated with the social and personal impact
of these information-centric technologies limits the confidence in and
acceptance of the IoT by individuals who participate actively or pas-
sively in this information chain. In order to investigate the privacy
issues in the IoT sensing service based on the privacy engineering
principles and privacy harm risks, we propose to examine the IoT

from three main perspectives: device-centric [55], data-centric [56, 57],
and human-centric [58, 59].
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Originally the IoT was built based on a device-centric perspective
that focused on establishing the technology needed to integrate and
manage devices. From this point, more complex bottlenecks related
to the capacity of these devices for data processing, data storage, sensor

discovery and interoperability support our conclusion to propose a pri-
vacy preservation strategy towards device virtualization. Besides that,
the Cloud-IoT paradigm from a data-centric perspective aggregates
approaches proposed to solve data streaming, aggregation, storage,
search, and analytics issues. The data stream, Complex Event Process-
ing (CEP) and Semantic Stream Reasoning (SSR) are important con-
cepts that enable our proposed privacy preserving mechanism. Fi-
nally, the intrinsic human involvement in the current IoT sensing sce-
narios needed to be inspected, along with information ownership and
intention of data usage notions. These concepts will permit us to under-
stand why current approaches to personal information classification
are insufficient to address current privacy threats in the IoT sensing
service. Table 2.2 presents the sensor, data, and human-centric per-
spectives, its key concepts, characteristics and issues that are detailed
in the following subsections.

�.�.� Device-centric Perspective

In the device-centric perspective, the integration and management
capabilities of sensing resources are crucial features that aim to mini-
mize the device heterogeneity issue typically found in the IoT [55].

����������� ��� ���������� ������������ Many sensor network

protocols and standards are proposed to address sensor integration to
the IoT network (see Section 2.1.1). These protocols and standards are
part of the communication technology that aims to deliver reliable
and safe communication channels to enable seamlessly user enroll-
ment and device integration in the sensing service scenarios. Another
key feature to integrate sensors in the IoT is its capacity to abstract
sensor interfaces and sensor data management capabilities from hetero-
geneous hardware solutions, offering standard interfaces that inter-
mediate the access, interaction and communication with sensors [55].

Recent review studies and surveys have indicated challenges re-
lated to the sensing service, such as availability, reliability, mobility,
sensor density, sensor distribution, scalability [38, 76]. The degree of
human intervention can also represent an excessive presence of user

sphere approaches, which increases the human error propensity in
the sensing, data processing human participation, and an exceeding
user intervention for security and privacy enforcement. Low human
intervention, therefore, should be compensated with IoT object self-*

capabilities, among which the most notable are self-adaptation, self-
organization, self-reaction, and self-processing [77].

Security can refer to data transfer, storage or processing. As we
analyze the sensor integration capability, security protocols are inten-
sively investigated in the perception layer and communication layer
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Perspective Key concept Issues & Characteristics

device-
centric

integration and
managament
capacilities [60, 61,
55, 38]

sensor network protocols and standards

sensor interface, sensor data management

availability, reliability, mobility, sensor density
sensor distribution, scalability

self-capabilities

security and privacy

system partitioning
scheme [62, 63, 64,
26]

in-device

in-network

in-cloud virtualized

sensor discovery and
interoperability [60,
40, 65]

mobility and geographic localization

quality of service

sensor provenance

security and privacy

data-centric

data taxonomy [66,
56]

data generation

data interoperability

data quality

data streams [56]
general and identifiers (RFID) data stream pro-
cessing

semantic stream reasoning

data analytics [67, 68,
69, 70, 71, 26]

data stream mining

complex event processing(CEP)

data storage [72, 26,
56]

large-scale storage in distributed environments

storage on resource-constrained devices

data search and
aggregation [70]

deep web and semantic web

web search (linked data)

human-centric

information
ownership [73]

personal and household

private organizations public organization

commercial sensor data providers

participatory sensing
[74]

humans as targets of sensing

humans as sensor operators

human as data sources

opportunistic sensing
[59]

user awareness / human behavior

ambient awareness / contextual environment

social awareness / social context

sensing scale [75]
individual sensing

group sensing

community sensing

participation in data
fusion and data
analytics [60, 74]

human intelligence / crowd-sourcing

semantic and cognitive perception

data usage
intention [75]

learn, inform, share, persuade, act
research purposes

Table 2.2 – Perspectives and characteristics of the Cloud-IoT
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of the IoT. Despite the fact that security is a basic feature to guaran-
tee privacy, the former refers essentially to access authentication and
authorization, while the latter is related to the identity and personal
information protection, i. e. it is able to distinguish private content.
At the perception layer, security and privacy must be implemented in
hardware firmware with secure communication protocols that estab-
lish secure transmission channels and encryption.

������ ������������ ������ Originally, the IoT network layer
stratification was not developed in different sub-layers, which con-
sequently presented two system partitioning schemes: in-device or in-

network. System partitioning refers to the distribution of data process-
ing tasks and storage in different computational layers. The hetero-
geneity of IoT objects in terms of resource limitations can be gracefully
addressed by system partitioning systems that are able to balance
their resource restrictions, their intensive processing tasks, and the
IoT infrastructure [62].

Recently, in accordance with the trend of Virtual Sensor Net-
work (VSN) [63] and its software-defined management [78] in the
Cloud-IoT paradigm, system partitioning approaches towards device

virtualization have gained the attention of the industry and research
communities [64, 27, 26, 79, 80]. Device virtualization delivers a
higher-level layer to provide sensor integration, interoperability, and
management [55]. In-cloud virtualized partitioning scheme refers to
approaches that address the IoT sensing data-centric issues (filtering,
processing, and storing) from a device-centric perspective. In fact, as
Cloud Computing evolves, so does the Cloud-IoT sensing service in
terms of efficiency to deal with data-centric problems. Therefore, shift-
ing towards device virtualization is strategically relevant to incorporate
the advances in the Cloud Computing technology. Additionally, the
Cloud-IoT paradigm also offers the advantage to implement joint

sphere solutions for privacy, addressing technological, informational
and human-centric issues by intermediating these perspectives with
services.

������ ��������� ��� ������ ���������������� Service discov-

ery is a fundamental service as other upper-level services highly rely
on its result to provide service composition, provisioning, and sensor

interoperability [81]. The device heterogeneity in the IoT makes neces-
sary to define a minimum set of functions implemented by sensors in
order to provide sensor discovery and sensor interoperability. Ontologies,
such as the SSN-O [40] and SemSOS [82], are used in these approaches,
allowing semantic representation of the sensor capacity and semantic
enrichment for IoT sensor data. Several criteria can be defined seman-
tically about devices to ignite these services, such as mobility, qual-

ity of service, sensor provenance, security, and privacy. As the number
of geographic location embedded sensor increases, mobility and geo-

graphic localization are commonly used to retrieve sensor. The quality

of service, such as network latency, bandwidth, availability, and device
processing capabilities can be represented using semantics, allowing
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fine-grained criteria for sensor discovery. Sensor provenance refers to
the representation of sensing features, data generation, data process-
ing, and involved agents that can be used to assist data consumers
to understand, verify, and assess the data quality, and its trustworthi-
ness [83]. Therefore, sensor provenance can be used to implement data

processing-based privacy mechanism to anticipate inference intention.
However, current ontologies for sensor discovery and sensor interoper-

ability, such as SSN-O, are not expressive enough to represent device

virtualization and its KDDM-based processing capacities. In terms of
security and privacy, sensor discovery approaches do not consider trust

as part of its criteria and, therefore, are unable to compare trustwor-
thy sensors.

�.�.� Data-centric Perspective

The data-centric viewpoint focuses on issues related to data taxon-
omy and the consequence of the Cloud-IoT as a big data major driv-
ing force. From a data-centric perspective, data taxonomy, data stream,
data storage, data search, data aggregation, and data analytics are critical
for effective IoT sensing enablement. The data taxonomy can be de-
scribed according to its generation, quality, and interoperability [56].

���� �������� The amount of data generated in IoT have different
rates (velocity), scale (volume), heterogeneity (variety), and dynamics
(mobility and geographic location distribution) [66]. These character-
istics of data generation are commonly aligned to big data challenges,
which are typically addressed by the Cloud infrastructure. Another
important aspect is the data interoperability. As explained in the pre-
vious section, the semantic enrichment plays an important role in
this aspect, adding a complementary information to the collected raw
data, and modeling its meaning. Lastly, the data quality aspects con-
stitute an important characteristic of the data taxonomy, such as pre-
cision and probability distribution. Due to the heterogeneity of IoT

objects, common data quality issues includes uncertainty, redundancy,
ambiguity, and inconsistency.

Figure 2.6 – Overview of information flow processes. (a) Generic model. (b)
Data stream model. (c) Complex event processing model.
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���� ������ The continuous data generation in the IoT sensing can
be classified as a data stream. Figure 2.6 presents an overview com-
parison between (a) generic information flows, (b) data stream and
(c) Complex Event Processing (CEP). A data stream is a sequence of
timestamped data packages which are potentially unbounded; and
characterized by continuous data arrival, data window size, and vari-
able probability distribution [56]. Instead of asking for updated in-
formation, Data Stream Management Systems (DSMSs) provide active
notification based on predefined queries. These queries are typically
defined using a query language derived from SQL, including instruc-
tions to specify windows and to isolate portions of input streams
to be converted into relational tables or to compose another data
stream [84]. In Figure 2.6.(b), this scheme is depicted using several
input streams, which are submitted to different queries, resulting in
an output stream or stored data. The temporary memory illustrates
the system working memory used to support aggregation operations,
while discarded data represents unwanted data that has not been cap-
tured by query criteria. Each data package in the input stream can be
an atomic value or a multi-dimensional attribute vector of atomic val-
ues. In general, raw sensor data and semantic annotations constitute
the main streaming of data packages in the IoT.

Several challenges are related to data streams. Devices should con-
sider its own limitation (battery, processing, and storage) and the IoT

network layers, such as gateways and local connection bandwidth, to
properly implement data streaming. RFID data streaming consists in
a particular case of data stream for being one of the IoT cornerstones.
Ambiguous, incomplete or missing identifiers may obfuscate the data
streaming since it precludes IoT object traceability. Besides that, the
data volume generated by the IoT object identification demands effec-
tive compressions techniques to minimize the network and storage
consumption. Resource Description Framework (RDF) 11 triple stream
processing issues arise as a consequence of the semantic enrichment
of sensor data. Semantic Stream Reasoning approaches are proposed
to query and reason about semantic annotation in the data stream in
real-time, such as C-SPARQL [85], EP-SPARQL [86], CQELS [87].

���� ��������� The extraction and transformation of information
from sensor data are implemented using Knowledge Discovery and
Data Mining (KDDM) techniques. The continuous nature of data stream

requires that data processing operations are executed on-the-fly. This
process is known as Data Stream Mining (DSM) and intends to extract
patterns and trends from data streams. Many data mining techniques
have been implemented natively in queries mechanisms, supporting
powerful data mining tasks, such as clustering, classification, and out-
liers detection [71, 67]. In this same direction, Complex Event Pro-
cessing (CEP) consists in associating a precise semantics to the result
of filtering, aggregating and mining the sensor data [88] (see Figure
2.6.(c)). KDDM techniques are extensively employed in CEP to generate

11. The RDF is general knowledge modeling framework designed by the W3C to
specify metadata of resources in the WWW. Further information in Chapter 3.
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abstractions that can be associated with background knowledge and,
consequently, generate higher-level information based on abductive-
deductive reasoning 12 [89]. More recently, particular CEP processes,
such as Semantic Perception (SP) [68, 90, 58] and Perception Comput-
ing (PC) [69], have been proposed, aiming at delivering perception
and learning capacity to the IoT.

���� ������� The traditional database management systems are
not adapted to the Cloud-IoT big data scenario. The data storage in
the IoT has two opposite concerns: big data and device storage con-
straints. Large-scale storages in distributed environment approaches have
been proposed to support big data scenarios. In fact, the Cloud in-
frastructure behind the IoT sensing service addresses this issues, pro-
viding optimized distributed storage systems that guarantee consis-
tency, availability, and partition-tolerance. More recently, innovative
approaches that take advantage of the IoT characteristics, such as mo-
bility, mutual information interest, and unique identification, have
been proposed to provide more efficient data processing and stor-
age [72, 26].

���� ������ ��� ���� ����������� The task of resource
search in the IoT is a challenge as the Internet search implemented
by the main searching engines (Google, Bing). Structured and
semi-structure types of information in the WWW are indexed and se-
mantically annotated, aiming to provide the best match for end-users’
search request. The Deep Web targets at semi-structured information
search, using Semantic Web technology (RDF and OWL) to enrich
sensor data. By holding indexed and RDF-based information, web
search mechanisms, such as real-time web search, RDF-based data
search, and collaborative web search are proposed in the IoT to
minimize the searching problem in a virtual space with billions of
connected things. Initiatives to incorporate semantic and interlink
public datasets use the Semantic Web to expose, share, and connect
information from diverse areas are adopted in the IoT by some
approaches [91, 92].

�.�.� Human-centric Perspective

The human-centric perspective investigates the relations and roles
that people have in the IoT sensing. As the density of IoT object per
physical spaces increases, the IoT becomes more personal and social
through the proliferation of mobile phones, smart gadgets, and social
network based services. The human involvement in the Cloud-IoT is
not limited to the role of information consumer. In fact, the distin-
guishing aspect of human-centric in the IoT sensing service is transver-
sal in the data-to-decision or data-to-action paths.

12. Abductive inference or abductive reasoning seeks the most likely explaining
from a set of observation. Deductive reasoning or deductive inference has a guaran-
teed conclusion based on premises and observations.
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����������� ��������� An IoT object is owned by an agent (in-
dividual or organization) at a given time. Hence, the information
ownership produced by (or related to) these IoT objects may change
over time. In [73], the IoT object ownership is classified in personal

and household, private organizations, public organizations, and commercial

sensor data providers. A personal item, such as mobile phone, smart
watch, or tagged work of art belongs to the personal and household cat-
egory. All IoT objects, including sensors, which are not owned by the
public or private sector should be classified as personal. Private orga-

nizations and public organizations categories consist of buildings, facil-
ities, and other traceable assets that are part of the IoT and owned by
private companies or the government. The main difference between
them is that public assets and infrastructures, such as bridges, roads,
and parks are normally of public domain and, therefore, different
rules must be applied in terms of security and privacy. The commer-

cial sensor data providers are business entities that distribute, deploy,
and manage IoT objects by keeping ownership. Mostly, they focus on
public and private spaces where sensing is economically or strategi-
cally valued.

������������� ������� In the perception process, the human in-
volvement fills a mobility gap that the traditional sensing lacks, be-
ing able to follow the dynamic nature of crowds and covering areas
where normally continuous fixed sensing are economically unfeasi-
ble. There are two paradigms of human involvement in the percep-
tion process [75]: participatory sensing and opportunistic sensing. In
the participatory sensing, the agent who owns the IoT object actively
engages in the data collection activity. It addresses information dis-
semination and sharing withing and among opportunistic communi-
ties (equipped with sensing devices) that are formed based on the
movement and opportunistic contact nature of humans [59]. The op-

portunistic sensing does not depend on agents’ involvement and auto-
matically collect information based on its awareness.

The participatory sensing can be classified in [74]: humans as targets

of sensing, humans as sensor operators, and humans as data sources. The
most obvious and explored category is humans as targets of sensing that
uses embedded sensors and applications to collect data to infer hu-
man activities, crowd behaviors, behavior patterns, etc. The humans

as sensor operators search topic investigates how people can become
part of the sensing infrastructure by allowing access to their mobile
applications and embedded sensors and, consequently, expand the
sensing network. The humans as data sources category refers to human
knowledge and human intelligence as sensing. For example, the hu-
man participation in the recognition and identification of people and
faces in a picture constitutes a type of human sensing.

������������� ������� In the opportunistic sensing, the data col-
lection is automated with no user involvement. In fact, the context is
perceived in order to activate opportunistically the sensing based on
user awareness, ambient awareness, and social awareness. User awareness
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concerns the ability to understand individual’s context and behavior.
Ambient awareness refers to the environment perception and situations.
Social awareness consist of social contexts on which an individual is,
such grouped activities, social events, and friend detection.

������� ����� Allied to the capacity to perceive social interac-
tions, the sensing scale can target specific individuals sensing, group

sensing, or community sensing [75]. The individual sensing consists of
data collection and analysis of a single specific individual. Group sens-

ing is related to a social network of individuals who shares common
interests and characteristics, such as neighborhood safety or body
sensing of a soccer team. Community sensing refers to a large number
of individuals who participates in the sensing normally used to in-
fer crowd patterns, such as the spread of disease across a geographic
region and daily transport urban migration. The opportunistic sensing

can facilitate the adoption of participation in IoT sensing by automatic
adaptation t the user context. Without user intervention, sensing ser-
vices can efficiently use computational resources only in situations
when data collection is needed, considering restrictions imposed by
users. However, the lack of privacy preserving mechanism to inter-
mediate IoT services is still insufficient to create data producers’ con-
fidence and foment user participation [4].

������������� �� ���� ������ ��� ���� ��������� The human
participation in data fusion and data analytics consists in incorporat-
ing the human intelligence in the data collection, data analysis, and
result visualization, leveraging the IoT capacity in tasks that are nor-
mally better executed by humans than by computers. Crowdsourcing

platforms, such as Amazon Turk 13 and CrowdSource 14, implements
this human-machine processing paradigm. However, this paradigm
(and available tools) usually privileges the data consumer, offering
data processing and data management collecting further information
about the involved individual to increase the level of confidence and
liability in produced information. In the Cloud-IoT, this type of hu-
man participation in data processing tasks can be realized using the
application layer or the direct interaction with smart objects in the
real world.

The perception and cognition of the world through a physical-
cyber-social computing prism plays an important role in the human
participation. As mentioned previously, sensor data are semantically
annotated during the perception layer, supporting sensor integration,
sensor interoperability, Semantic Stream Reasoning (SSR), Data Stream
Mining (DSM), and Complex Event Processing (CEP). From a cognitive
view, these device-centric (or sensor-centric) ontologies are overly tech-
nical or low-level to be interpreted and classified by end-users. This
limits the capacity of human intervention in data analytics and data fu-

sion, which minimizes the exposure of personal information but max-
imizes information accuracy and process automation. Therefore, the

13. https://www.mturk.com/mturk/welcome (accessed on 26/04/2017)
14. http://www.crowdsource.com/workforce/ (accessed on 26/04/2017)

https://www.mturk.com/mturk/welcome
http://www.crowdsource.com/workforce/
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high-level semantic abstraction provided by some data analytics, such
as SSR, DSM, and CEP, can provide a more suitable and meaningful
information layer to support human participation and, consequently,
privacy harm perception. Nonetheless, data analytics are typically de-
ployed on the application side, where privacy mechanisms are under
recipient sphere influence and control. In this model, individuals who
are concerned about their privacy do not have other choice but trust
applications to access its personal information and sensor data to ex-
tract only non-private information.

��������� �� ���� ����� At last, the intention of data usage con-
cerns the usage of the collected data afterward. The concept of trust
is intrinsically related to it and currently gravitates in the application
layer, where business normally administrates information workflow.
In particular, the IoT sensing service that continuously and oppor-
tunistically streams data from IoT objects is extremely sensitive. Once
published and made available in the service layer, there is no guaran-
tee that an application or service will not misuse this data stream to
promote privacy attacks. For example, specific privacy attacks are de-
veloped to exploit stream queries to increase the level of confidence
using some background knowledge. If intentions are specified for
data usage, privacy preservation mechanisms could anticipate them
in order to evaluate permission for data publishing.

�.� �������� ������������ ��� �������
������������ �� ��� ���

As described in the previous section, the complex Cloud-IoT in-
frastructure opens several aspects and issues related to privacy. The
flow of sensor data and personal information in the IoT sensing can
be exploited varyingly. In this section, we present the main enabling
technologies that support the Sensing as a Service (S2aaS) and the key
concepts that we employ in our privacy by design solution and privacy

by policy mechanism.

�.�.� Analysis Criteria

Before discussing these works, we present the rationale used to
elicit these enabling technologies. As mentioned in Section 2.2, effi-
cient privacy strategies must address the inference intention of data
processing techniques, the minimization of public data release, the
data quality made available, the motive of data usage, and data con-

sumer’s trust.
The first step toward efficient privacy preservation in the IoT (or in

any informational context) is empowering individuals to choose the
type of information they want to expose based on intelligible infor-
mation, knowledge or wisdom, instead of sensor data.
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The balance between the right to seclusion and the opt-in choice for

participatory sensing demands privacy strategies with multiple mecha-
nisms (plurality) that adapt with minimum human intervention (con-

textuality) and based on clear privacy policies (contestability).
For this reason, enabling technologies that can support the preven-

tive evaluation of privacy policies based on the inference intention
and human context. Therefore, the inference intention of data pro-
cessing techniques should be represented explicitly somehow, allow-
ing automatic interpretation and evaluation. The in-network data pro-
cessing and privacy verification should take place into a controlled en-
vironment that meets the requirements to minimize a large amount of
public data release commonly found in IoT streaming systems. Lastly,
the motive of data usage and trust model should be encompassed in
the access control model and design of the privacy verification. There-
fore, we investigate technologies in the IoT sensing from a sensor and
data-centric perspectives that deal with:

— In-cloud sensor virtualization which addresses the resource re-
striction of physical sensors, bringing the data processing and
privacy verification to a joint sphere where it is possible to an-
notate semantically sensor data, and thus, assure sensor prove-
nance;

— Data Stream Mining (DSM), Complex Event Processing (CEP),
and Semantic Stream Reasoning (SSR) approaches that may infer
any private personal information. Since these approaches pro-
duce semantic annotation along with its outputs, privacy verifi-
cation can be incorporated along using Semantic Web technol-
ogy on-the-fly. Additionally, these approaches perform KDDM

processes that can be represented semantically and then evalu-
ated to scrutinize data consumer’s motive and to prevent unin-
tended inferences.

These technologies are investigated also from a privacy viewpoint.
From a human aspect, we focus on personal and household information

ownership of sensing services that have humans as targets of sensing in
an individual scale, considering semantic and cognitive perception. The
human as targets of sensing focuses on the personal information which
is directly related to a person identity that can be extracted using
data collected by A summary of our investigation scope is presented
in Table 2.3.

������ ������������ ������� The approaches to the develop-
ment of privacy enforcement in-network or in-cloud virtualized are par-
ticularly interesting due to the Cloud elasticity and the possibility to
provide a neutral and safe environment to store and process personal
information. The shift of data processing towards neutral independent
parties in the joint sphere allows us to implement privacy by design

away from the data consumer’s trust paradigm. By offering data pro-

cessing or storage as a service, these independent parties can bill for
privacy-aware S2aaS by demand.

In [93], the data processing in large-scale sensor network was orig-
inally addressed using virtual sensors as part of a Global Sensor Net-
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Perspective Key concept Issues & Characteristics

device-centric
system partitioning
scheme

in-cloud virtualized

sensor discovery
and interoperability

sensor provenance

privacy

data-centric
data streams semantic stream reasoning

data analytics
data stream mining

complex event processing

human-centric

information
ownership

personal and household

participatory
sensing

humans as targets of sensing

opportunistic
sensing

user awareness / human behavior

ambient awareness / contextual environment

social awareness / social context

sensing scale individual sensing

participation in data
analysis and data fu-
sion

semantic perception and cognitive perception

Table 2.3 – Analysis criteria based on IoT perspectives

work (GSN) middleware. In this work, the virtual sensors are logical
abstractions of one or more IoT object or other virtual sensors that cap-
ture, filter, and aggregate sensor data. The data stream processing
mechanisms are natively implemented in GSN virtual sensors through
SQL-like query language – TelegraphCQ 15. Later in [27], the xGSN

is proposed, leveraging the GSN capability using a semantics-based
approach to address sensor interoperability, sensor discovery, Semantic
Stream Reasoning (SSR) and data analytics. In xGSN, virtual sensors

are extended and semantically represented using the SSN-O, which
allows specifying sensor characteristics, platforms, observations, and
sensing conditions. The xGSN virtual sensor provides wrappers that
establish communication to the perception layer; and extensible data
processing classes that allow local data filtering, aggregation, and pro-
cessing. Each virtual sensor instance has an associated sensor instance
in a triple cloud store. In addition, streaming observation annotations
are generated in real-time and stored in a triple cloud store, such
as the Linked Stream Middleware (LSM) 16, or redirected straight to
a query processor, such as CQELS and EP-SPARQL. The LSM-based
strategy allows asynchronous data analysis and high latency scenar-
ios, while direct query processors must address scalability issues in
order to deliver semantic streaming querying in (quasi) real-time. Re-
garding the abstraction level, the ontological framework provided
by the SSN-O permits specifying sensor data semantic, such as geo-
graphic location points. However, while xGSN leverages sensing ser-
vice by incorporating Semantic Web technology, SSN-O is not expres-
sive to represent virtual sensor capacity and provenance, restricting
sensor discovery and sensor interoperability capabilities. Also, the lack

15. http://telegraph.cs.berkeley.edu/telegraphcq/v0.2/ (ac-
cessed on 26/04/2017)

16. https://code.google.com/archive/p/deri-lsm/ (accessed on 26/04/2017)

http://telegraph.cs.berkeley.edu/telegraphcq/v0.2/
https://code.google.com/archive/p/deri-lsm/
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of KDDM process representation limits the evaluation of inference in-
tention of virtual sensors. Currently, xGSN virtual sensors provide a
basic access control based on authorization and authentication, but
no privacy preservation mechanism.

In [26], another work for in-network partitioning scheme is pro-
posed based on multiple cloud tiers. Similarly, to the xGSN, this ap-
proach shifts from a ’collect sensor data now and analyze it later’ scenario

to a usage scenario that directly provides meaningful information from in-

network processing of sensor data. The implementation of sensor inte-
gration and management services, such as sensor discovery and sensor

interoperability, in Cloud-IoT infrastructures nearby physical sensors,
can contribute to the network latency optimization. In this approach,
location specific cloud agents, such as supercomputers, mobile de-
vices, gateways, are made available to provide computational through
conventional cloud platforms. These local cloud platforms constitute
the first tier clouds that hide technical complexities and sensor hetero-
geneity in order to provide a unified and standard sensor interface
and a distributed multi-tier infrastructure for data analytics using the
concept of virtual sensors. Even though this approach draws attention
to the benefits of in-cloud data processing, most of the works for pri-
vacy preservation based on this platform focus on security instead of
privacy issues.

������ ��������� ��� ������ ���������������� The discovery
and search of sensing resource in the S2aaS is one of the most impor-
tant functionalities in the IoT. As previously presented, the semantic
annotation about observed features and properties provides means
to discovery sensors and merge their data. In [94], an example of
privacy enforcement is implemented in the sensor discovery and sensor

interoperability services. An ontology-based trust model for Semantic
Sensor Networks (SSNs) is introduced to represent trust relationships
between data consumers (trustees) and data producers (trustors). The
relationship is represented as a vector comprising both involved par-
ties, the value that represents this relationship, trust type, scope of
interest, and trust measurement function.

The type can be expressed as functional (direct between two
agents), referral trust (transitive indirect), or non-functional trust
(distrust). The scope captures the attribute on which the trust
relationship is valid, such as some property of a feature of interest.
The trust value is a discrete or categorical data used to evaluate
trustworthiness, such as partial ordering or the binary representation,
such as 0 and 1, false or true, trusted or non-trusted; and can be
calculated according to a domain-specific function. Trust function
represents the algorithm used to compute trust validation, aggrega-
tion, and management, such as policy-based, reputation-based, and
evidence-based trust. These trust relationships are used to grant
or deny access to sensor data in sensor interoperability and sensor

discovery sensors.
However, for efficient privacy policy evaluation, one needs to un-

derstand what kind of personal information may be inferred from



2.4 �������� ������������ ��� ������� ������������ �� ��� ��� 41

the sensor observation stream. Ontologies commonly adopted to this
end, such as the SSN-O, do not support representing the input and the
result of KDDM processes, such as those implemented by DSM, CEP,
and SSR. Consequently, even if sensor discovery and sensor interoper-

ability are layers that certainly intermediate applications and sensors
(or services and sensors), they can only enact privacy enforcement
based on raw physical sensor data or result of KDDM process exe-
cutions. Neither solution is optimum because not the raw physical
sensor data contains relevant personal information to be evaluated
nor the latter prevent the execution of unintended KDDM processes.

���� ������� The IoT sensing service relies mainly on the data
stream and on-the-fly semantic enrichment to enable mainly sensor

discovery and sensor interoperability services. Data Stream Manage-
ment Systems (DSMSs) are specialized in dealing with large and tran-
sient data that is continuously updated, where no assumption can
be made about data arrival order and boundness. DSMS isolates por-
tions of the data stream in windows, transforming it into relational
tables in order to use query mechanism from the relational model.
These query mechanisms are issued once and run continuously and
incrementally producing new output streams over time from one or
more append-only input data streams. Similarly, to the relational
model, two type of query algebra are defined for data streams: stream-

to-stream and mixed algebra [92]. The former implements data opera-
tor that transform incrementally one or more streams into an output
stream, such as the SQL statements for selection, projection, join, and
aggregation functions. The latter includes three operator categories:
stream-to-relation operator, relation-to-relation operator, and relation-to-

stream operators. The first category consists of operators that trans-
form streams into relation, such as a time-based sliding window or
tuple-based sliding window. The second category refers to relational
operators, such as the SQL statement DISTINCT. The third category
consists of operators that transform relations back to the stream, such
as Continuous Query Language (CQL)~[95] statement ISTREAM and
DSTREAM, which insert and delete streams respectively. DSM lays
the ground for more complex data processing over S2aaS. However,
the approach itself provides only a limited capacity to process data
through its aggregation built-in functions.

SSRs use the same concepts to query semantically enriched data
streams but incorporating reasoning capacity in the process. Obser-
vation stream annotation is commonly established in S2aaS with SSN-O.
Along with the Semantic Web technology, SSR can leverage the simple
relational operations of general data streaming processing into higher-
level semantic perception operations. In [70], the most representative
work of the capacity of SSR is presented: an ontology-based frame-
work to support intelligence data analysis of sensor data (IDA frame-
work). The approach uses four ontologies to provide perception and
classification of qualitative temporal patterns: Temporal Abstractions
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Ontology (TAO) [70], SWRL Temporal Ontology (SWRLTO) 17, DOLCE-
DnS UltraLite (DUL) 18 and SSN-O. The logical upper-level structure
of DUL makes possible to aggregate available domain-specific knowl-
edge based on the same upper ontology. The semantic enrichment in-
corporates sensor information, temporal information modeling, tem-
poral abstract entities that enable stream reasoning capabilities using
OWL and Semantic Web Rule Language (SWRL) technology to infer
knowledge from S2aaSs. Regarding privacy principles, the approach
demonstrates the potential of Semantic Web technology to draw con-
clusions about higher-level information based on semantically anno-
tated sensor data.

���� ��������� The integration of powerful data analytics in the
S2aaS combines the concept of data stream mining [67, 71] and the IoT

sensing service. As previously mentioned, by moving the data process-

ing model to the Cloud-IoT, privacy mechanisms can be prompted
by anticipation based on the inference intention of KDDM process.
In order to foresee unintended inference intention, we need to inter-
pret KDDM process representation and outputs. Therefore, we discuss
data analytics of data stream that produces interpretable results: Data
Stream Mining (DSM), Semantic Stream Reasoning (SSR), and Com-
plex Event Processing (CEP).

In [96], sensor data stream is segmented to infer activities using
supervised vector machine techniques. These applications are impor-
tant in the S2aaS because it constitutes part of the data-to-decision
path that can be shifted from the application layer to the in-cloud vir-

tualized partition. In [97], the KDDM workflow is designed to be exe-
cuted in parallel to the IoT sensing service. These approaches explore
KDDM as a service and incorporated it into the IoT sensing service
to provide knowledge or higher-level information to the application
and business layer. These KDDM techniques output data generaliza-
tions, patterns, or other technical predictive model or statistics that
normally demands expertise in mathematical models. In these cases,
the privacy breach consists in the incorporation of KDDM techniques
as part of the S2aaS without proper interpretation, which could be
active, for instance, using semantic annotation.

Sophisticated data stream mining approaches that use sensor data
and DSMS query mechanisms have been proposed [98, 99, 100, 96,
101]. This type of works focuses on applying KDDM techniques to
extract data generalizations from sensor data streams.

In complex event processing, the usage of KDDM techniques in sensor
data streams or lower-level event streams(primitive events) focuses on
making sense of higher-level information (composite events) [92], en-
capsulating this transformation process into a conceptual processing

17. https://github.com/protegeproject/swrlapi/wiki/SWRLAPITemporal (ac-
cessed on 26/04/2017). SWRL is a W3C query languange and protocol. Further
information in Chapter 3.

18. http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_

Ultralite (accessed on 26/04/2017). DOLCE is an upper level ontology. Fur-
ther information in Chapter 3.

https://github.com/protegeproject/swrlapi/wiki/SWRLAPITemporal
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite
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block. The association of precise semantics to the information being
processed and inferred allows that data consumer (application, busi-
ness, and services) take actions based on this semantic annotation.
On top of that, new streams of composite events deliver a higher-level
information stream to applications instead of raw sensor data or prim-

itive event stream. In [102], an open source system called ETALIS
proposes to detect complex events over streaming data, following a de-
ductive rule-based paradigm to evaluate domain knowledge on-the-

fly and recognize pattern related to semantics. ETAILS implements
a rule-based language for events, expressing single or multiple event
occurrences, sequence, interval, precedence, and comparison. To en-
able semantic reasoning over complex event pattern, EP-SPARQL is
developed to represent background knowledge about complex events
and its relation to sensor data. ETALIS represent a class of applica-
tion that leverages the stream reasoning, employing logic inference
to infer higher-level information. This approach to abstract informa-
tion using semantics can be incorporate in privacy mechanisms to
decrease efficiently quantity of data, while increasing the expressive-
ness and context-awareness of semantic rule-based privacy policies.
As the KDDM process in the IoT becomes more autonomous, SSR and
CEP processes can be verified and interfered on-the-fly, facilitating the
shifting of privacy enforcement to the joint sphere control.

�.� ����������

In this chapter, we reviewed the key concepts of the Internet of
Things (IoT) and its main enabling technologies. We discussed about
IoT platforms and its convergence with the Cloud Computing that ex-
tends the IoT capacity. In addition, we pointed out main concepts of
privacy engineering that will guide us in the rest of this manuscript
to analyze related works and guide the definition of a privacy by de-

sign model. In order to efficiently scrutinize the IoT architecture and
its design to propose a holistic privacy by design model, we present the
main IoT technologies that are interrelated to provide IoT functional-
ities from three viewpoints: device-centric, data-centric, and human-
centric. Lastly, we described in greater details some enabling IoT tech-
nologies related to the privacy paradigm that we intended to develop,
delineating the scope of our investigation.
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The flexibility of the Semantic Web to represent knowledge using
OWL can be employed to provide formal and user-friendly privacy
mechanisms. Its formality permit to specify privacy policies, personal
information and Privacy-Enhancing Technologies (PETs) unambigu-
ously, as well as to infer information based on its reasoning applicabil-
ities. In addition, Semantic Web technologies offer human-readable
features that allow creating user-friendly interfaces to end-users. In
this chapter, we review and investigate enabling technologies and
approaches that will support to define our ontology for personal in-
formation and our privacy by design model.

In Section 3.1, we start by introducing the Semantic Web tech-
nologies and key concepts of the Resource Description Framework
(RDF) framework, Ontology Web Language (OWL), ontology levels,
and SPARQL Protocol and RDF Query Language (SPARQL). In Sec-
tion 3.2, we describe the SSN-O, a de facto ontology for the Sensor
Web, that is extensively used in the IoT services. We present a brief
description of its origin and why SSN-O has become widely adopted.
Moreover, we investigate its capacity to represent personal informa-
tion and KDDM scenarios that are commonly found in the IoT and on
which we based our privacy by design model. Next, in Section 3.3, we
formally define the concept of Knowledge Discovery and Data Min-
ing (KDDM) and review ontologies that propose its representation. In
particular, we justify the reasons why we believe that the Ontology
of Data Mining (OntoDM) can address SSN-O limitations that concern
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Figure 3.2 – Examples of URL, IRI, and RDF instances

to represent not just locators, but also identifiers, data about infor-
mational and physical resources, such as documents, links, people,
physical objects, computers, and abstract concepts [103]. Since 2005,
the new Internet standard Internationalized Resource Identifier (IRI)
was introduced, aiming to extend URI to express things (instead of
just resources) described using concepts defined in ontologies. An
RDF statement is composed by a simple triple format:

<subject> <predicate> <object>

The subject and object represent the resources being related, while the
predicate expresses their relationship. The concept of subject and object

are extensible, based on IRI or self-denoting datatypes called literals.
An example of RDF graph is presented below.

@prefix f o a f : < ht tp :// xmlns . com/ f o a f /0.1/ > .
@prefix example : < http ://www. example . org/~simon/card .\ ac {RDF}# >.

example : Simon rdf : type f o a f : Person .
example : Simon f o a f : age <" 31 " , xsd : in teger > .

⇧

Figure 3.2 illustrates the evolution from the URL to RDF semantics
using this RDF graph. The URL for a file (http://www.example.org/
~simon/card.rdf (accessed on 26/04/2017)) and for the elements Per-

son and age in the Friends Of A Friend Ontology (FOAF) page 2 are
presented in Figure 3.2.(a). These URLs can be referred, but no fur-
ther semantics can be inferred from this relationship. On the other
hand, IRI allows referencing any type of information. This semantic
representation permits addressing resources (parts of information) to
construct the notion of rich context. The triple format of RDF state-
ments allows referring these resources, as depicted in Figure 3.2.(b).
For example, the element ’Simon’ in example 3 is of type (rdf: 4:type)
’Person’, which is defined in foaf 5:Person. Furthermore, the element

2. http://xmlns.com/foaf/.0.1/ (accessed on 26/04/2017)
3. example is a namespace for http://www.example.org/~simon/card.rdf (ac-

cessed on 26/04/2017)
4. rdf is a namespace for https://www.w3.org/TR/rdf11-concepts/ (ac-

cessed on 26/04/2017)
5. foaf is a namespace for http://xmlsns.com/foaf/0.1/ (ac-

cessed on 26/04/2017)

http://www.example.org/~simon/card.rdf
http://www.example.org/~simon/card.rdf
http://xmlns.com/foaf/.0.1/
http://www.example.org/~simon/card.rdf
https://www.w3.org/TR/rdf11-concepts/
http://xmlsns.com/foaf/0.1/
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Constructor N-triple First-Order Logic

Class specialization C1 rdfs:subClassOf C2 8(C1(X) ) C2(X))

Property specialization p1 rdfs:subPropertyOf p2 8X8Y(p1(X,Y) ) p2(X,Y))

Restriction of property
domain

p rdfs:domain C 8X8Y(p(X,Y) ) C(X))

Restriction of property
co-domain

p rdfs:range C 8X8Y(p(X,Y) ) C(Y))

Table 3.1 – Main RDFS constructors

’Simon’ can be related to the integer value ’31’ (resource data) through
the predicate foaf:’age’.

�.�.� RDF Schema and Ontology Web Language

In order to model and represent the semantics related to
these resources used in the RDF, the W3C suggests the RDF
Schema (RDFS) [104]. It extends the RDF semantics, providing axioms
to describe groups of related resources and the meaning of the
relationship between these resources. RDFS allows defining the class
(rdfs:Class) of a resource, which property (rdfs:Property) a specific
predicate represents, or which datatype a data value corresponds to.
The main RDFS constructors are presented in Table 3.1 using the
N-triple 6 encoding and the First Order Logic notation.

The OWL is defined on top of RDF and RDFS semantics, extending
their expressiveness to describe knowledge about things, group of
things, and relation between things [105]. An ontology is a set of log-
ical descriptive statements about some domain of interest, composed
of a set of three syntactic categories [106]:

— Axioms: statements expressed using the RDF representation and
asserted as true in the scope of an ontology. For example, by
defining the class Male as a specialization of the class Human
using the subclass axiom, this statement is considered true when
the ontology is used during a reasoning or inference;

— Entities: an atomic constituent of statements, such as objects,
categories, and relations, identified by IRIs. Objects are called
individuals, categories denoted as class, and relation referred
as properties. OWL accepts two type of individuals: named
(owl:NamedIndividual) and anonymous (represented by individ-
uals which declarations starts with "_:" in RDF graphs). Class

can be understood as a set of individuals, where owl:Thing

referent the category of everything and owl:Nothing the empty
set of individual. Properties are specialized in three types:
object properties (owl:ObjectProperty) that express object-to-object
relation, datatype properties (owl:DatatypeProperty), which as-
sign data values directly to objects, and annotation properties

(owl:AnnotationProperty) that assign data values as annotation
to objects.

6. https://www.w3.org/TR/n-triples (accessed on 26/04/2017)

https://www.w3.org/TR/n-triples
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— Expressions represent complex representations constructed
based on combinations of up-mentioned entities or expres-
sions.

The OWL expressiveness relies on its semantics to represent the
relation between classes, their properties, and relationships to
datatypes. For example, class can be associated based on equivalence
(owl:equivalentClasses), disjointedness (owl:disjointWith), union
(owl:disjointUnionOf ), intersection (owl:intersectionOf ) , complement
(owl:complementOf ), and so forth. Properties can be defined accord-
ing to functionality (owl:FunctionalProperty), as inverse of another
property (owl:inverseOf ), reflexive (owl:ReflexiveProperty), symmetric
(owl:SymmetricProperty), transitive (owl:TransitiveProperty),
cardinality (owl:minCardinality, owl:maxCardinality, owl:cardinality),
and so on. These attributes are defined along with its logical
negatives, such as asymmetry and symmetry properties.

Two important features of OWL are the universal and existential op-
erators that allow restricting properties according to values, similarly
to the First Order Logic operators. In Listing 3.1, some of these axioms
are depicted in a fragment of the FOAF.

Listing 3.1 – Fragment of FOAF ontology

<rdf:RDF xmlns:foaf=" http://xmlns .com/foaf/0.1/"
xmlns:owl=" http://www.w3. org/2002/07/owl#"
xmlns:wgs84=" http://www.w3. org/2003/01/geo/wgs84_pos#"

<owl:Ontology rdf:about=" http://xmlns .com/foaf/0.1/" />

<rdfs:Class rdf:about=" foaf:Person" rdfs:label="Person" >

<rdf:type rdf:resource="owl :Class" />

<owl:equivalentClass rdf:resource=" http://schema. org/Person"
/>

<rdfs:subClassOf>

<owl:Class rdf:about=" foaf:Agent"/>
</rdfs:subClassOf>

<owl:disjointWith rdf:resource=" foaf:Organization"/>
<owl:disjointWith rdf:resource=" foaf:Project "/>

</rdfs:Class>

...

OWL also defines semantics to compare individuals, such as
owl:sameAs, and owl:differenteFrom. In term of ontology properties,
OWL permits importing and configuring ontology versioning
(owl:versionInfo, owl:priorVersion, owl:backwardCompatibleWith,
owl:DeprecatedClass). In Figure 3.3, the concepts of foaf:Person
and foaf:age are defined as OWL class (owl:Class) and extended using
the properties rdfs:subClassOf and owl:equivalentClass. OWL semantics
make it possible to conceive a conceptualization of the world to
describe resources (IRIs) that can be typified (using RDFS semantics).
Additionally, restrictions to the cardinality of this typification, such
as owl:maxCardinality, leverages the level of expressiveness of RDFS.
Lastly, specific semantics for annotation, such as owl:label, transform
ontology in representational artifacts, allowing computational agents
to reason logically using the OWL semantic and present intelligible
results for end-users using entity annotations.
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Figure 3.3 – An example of RDFS and fragment of FOAF ontology

�.�.� SPARQL Query Language and Protocol

The OWL, RDFS, and RDF semantics provide support for logical infer-
ences. W3C recommends the SPARQL to express reasoning and update
queries for RDF graphs and implement endpoint interfaces. SPARQL

query language is an SQL-like language that uses RDF graph criteria
matching in an open-world 7 assumption [107]. Where clause is then
specified using the RDF format, i. e. a <subject predicate object> triple,
separated by the and operator denoted by a "."(dot). The use of pre-
fixes (prefix) is commonly employed in SPARQL queries for simplifi-
cation, as shown below:

PREFIX f o a f : < ht tp :// xmlns . com/ f o a f /0.1/ >
SELECT ?x ? age
WHERE
{ ?x rdf : type rdf : c l a s s .

?x f o a f : age ? age }
⇧

This SPARQL query retrieves the following result if applied to the
example of RDF depicted in Figure 3.3:

class age

foaf:Person "’31’ˆˆxsd:integer"

Besides the select clause, SPARQL has also construct, ask, and describe

as query forms. Construct returns an RDF graph with the query re-
sult. Ask returns true or false if there are matches for a specific query
pattern. Describe returns a single result RDF graph containing all re-
sources linked to a specific resource (IRI). SQL-base clauses, such as
order by, limit, offset, distinct, join, left join, union and so forth are also
available in SPARQL query language. The where clause provides the
representation of graph patterns to be retrieved. On the other hand,
the logical operator to test values in SPARQL is implemented using the
clause filter.

7. Oppositely to the close-world assumption on which relational database
paradigm is based and where facts are considered false if it is not present in the
database.
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Syntax Description

iri A IRI, a path of length one

ˆpp Inverse path

!iri Negated path

(pp) Grouped path where the brackets control precedences

pp1 / pp2 A sequence path (pp1 and pp2)

pp1 | pp2 A alternative path (pp1 or pp2)

pp* A path of zero or more occurrences of pp

pp+ A path of one or more occurrences of pp

pp? A path of zero or one occurrences of pp

pp{n,m} A path of length between n and m of pp

pp{n} A path of exactly n occurences of pp

pp{,n} A path of exactly n occurences of pp

pp{,m} A path of exactly n occurences of pp

Table 3.2 – SPARQL property path syntax

Another important feature of the SPARQL language is the concept
of property path. A property path expression (or simply a path) is sim-
ilar to a string regular expression that uses object property instead
of characters [108]. It represents a possible route of arbitrary length
through a graph between two graph nodes. In this case, query evalua-
tion determines the matches for a path expression. Table 3.2 presents
the main syntax forms of SPARQL property paths, where iri expresses
IRI, and pp property path.

Good practices in ontology engineering suggest to separate termi-
nology definition – Terminological Components (TBox) – from individ-
ual assertion definitions – Assertion Components (ABox) [109]. The
first represents the elements of an ontology, i.e., classes and prop-
erties, which is structural and intensional 8. The latter corresponds
to attributes of individuals, the roles between instances, data values,
and class membership (rdf:type). OWL reasoning is commonly split
using this TBox/ABox concept, facilitating the analysis and implemen-
tation of logic-based reasoning tasks. TBox reasoning is related to
property path inference, classes and properties equivalence, class sat-
isfiability (verification whether a concept is consistent, i. e. different
from owl:Nothing), logical implication (rule-based), and so on. ABox

reasoning observes the entailment between class and individual, can
be used for knowledge base consistency (verification whether the on-
tology admits a minimum set of individuals), individual realization
(find the best class match for an individual), individual retrieval etc.

�.�.� OWL Profiles

The OWL offers profiles – commonly called fragments or sublan-
guages – that restrict OWL expressiveness in exchange of reasoning ef-
ficiency and decidability. Originally, OWL Lite and OWL Description
Logic (OWLDL) were proposed as fragments of the OWL Full 9. The

8. Intension is a linguistic, logic, and phylosophy property or quality connoted
by a linguistic entity (word, phrase, symbol).

9. Full OWL semantic set
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Figure 3.4 – OWL Profiles

OWLDL is a sublanguage of OWL that restricts a number of OWL con-
structs. It is related to (and based on) the semantics of the Description
Logic (DL) SROIQ [110] and guarantees decidability in reasoning. The
OWL Lite constitutes the same restrictions imposed by OWLDL, forbid-
ding additionally constructs of unions, intersections, disjoints, data
ranges, and data values.

Figure 3.4 illustrates the scope of each up-mentioned OWL pro-
file. The second version of OWL (OWL2) defines the following pro-
files [111]:

— OWL2 EL profile: stands for basic reasoning problems in on-
tologies with very large number of classes and properties, such
as those found in genealogy where ontologies can easily reach
more than 25 thousand classes. It represents the smallest set of
OWL expressiveness including only conjunction and existential
restrictions.

— OWL2 RL profile: provides scalable reasoning and considerable
expressiveness through implication (if/then) rules. It is typi-
cally adopted for large datasets that need to represent the exist-
ing data using (business) rules;

— OWL2 QL profile: aims at applications that use a very large
volume of individuals, benefiting from the polynomial perfor-
mance for query answering by restricting implications This pro-
file can be translated into relational queries or UML class dia-
grams, for example.

�.�.� Ontology levels

The conceptualization of a knowledge domain through ontologies
requires common accordance about vocabulary and conceptual
modeling designs. Upper-level ontologies and middle-level on-
tologies address this problem by defining ontology design choices
and a common knowledge base for building new ontologies. The
assumption behind upper-level ontologies is that, by generalizing on-
tologies from different domains, it is possible to extract a minimum
set of classes and properties that represent these specific domain
entities in a higher-level. Good practices in ontology engineering
suggest the use of upper-level ontologies in order to align ontology
entities in different levels of abstractions and to support designers
to negotiate meaning. As illustrated in Figure 3.5, ontologies are
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Figure 3.5 – Ontology level hierarchy

typically classified in four levels of abstraction. Upper-level ontologies

(or foundational ontologies) map the reality according to specific
ontological design choices, such as descriptive vs. revisionary, or
endurantism vs. perdurantism. Several upper-level ontologies are
proposed, such as Descriptive Ontology for Linguistic and Cognitive
Engineering (DOLCE) [112], Basic Formal Ontology (BFO) [113], and
Suggested Upper Merged Ontology (SUMO) [114]. Middle-level

ontologies correspond to domain-spanning knowledge, serving to
bridge between general entities in upper-level ontologies and the
domain-level ontologies. The Information Artifact Ontology (IAO),
for example, is a middle-level ontology which attempts to capture
the essence of information entities, the relationship between these
entities, and their meanings [115]. Domain-level ontologies represent
a specific domain of interest, generalizing categories of individuals.
For instance, the SSN-O [40] proposes to describe sensors and obser-
vations. Sub-domain-level ontologies refer to particular sub-domain
that is too specific to be considered a domain of interest, such as an
ontology that specializes a specific type of sensor by extending the
SSN-O.

�.�.� Semantic Web Rule Language

Nonetheless, neither OWL nor SPARQL can express dynamic rela-
tions between individuals with which an individual has relations. For
this purpose, the W3C recommends the SWRL to express axiom rules.
SWRL is based on the combination of OWLDL and the Rule Markup
Language (RuleML) [116] that extends the OWL syntax to represent
implications between antecedent and consequent. For example, the
statement child of divorced parents, which is not possible to be declared
using OWL, can be expressed using SWRL. The rule hasParent(?x1,?x2)
∧ hasParent(?x1,?x3) ∧ isDivorcedTo(?x2,?x3) ) ChildOfDi-
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vorcedParents(?x1) is presented in Listing 3.2 using SWRL syntax.

Listing 3.2 – SWRL example

Implies(

Antecedent(hasParent(I-variable(x1) I-variable(x2))

hasParent(I-variable(x1) I-variable(x3)))

Consequent(ChildOfDivorcedParents(I-variable(x1)))

)

�.� �������� ������ �������

Part of the Linked Data Web in the WWW comes from the network
of connected sensors. The so-called Sensor Web represents a sensor
network with integration and management capabilities that incorpo-
rate Semantic Web technology.

Aiming to propose a generic solution for the Sensor Web, the Open
Geospatial Consortium (OGC) proposes a set of open standards for
exploiting connected sensors and sensory system of all types called
Sensor Web Enablement (SWE) [117]. The models, encoding, and ser-
vices introduced by the SWE initiative have already been applied
to several other standards, such as Observations and Measurements
Schema (O&M) [118] and Sensor Model Language (SensorML) [119].
The focus of this initiative is to enable the discovery, determination of
capabilities and measurement quality, access to parameters, retrieval
of observations and coverages, task management, alert subscription,
and publishing of sensors.

These standards provide syntactic interoperability, but no domain
semantic compatibility [40]. In this context, ontologies and seman-
tic technologies play an important role in sensor networks, enabling
representation of domain knowledge related to a feature of interest
and observations. In [120], an extensive analysis of aspects of sen-
sors covered by sensor network ontologies is presented, classifying
these aspects into four categories: sensor, physical, observation, and
domain. However, as demonstrated by the authors, none of the sur-
veyed ontologies met modern requirements of the sensor network
and the Sensor Web. Based on that, the W3C Semantic Sensor Net-
work Incubator group 10 proposed the Semantic Sensor Network On-
tology (SSN-O) aiming to address those gaps related to sensors, obser-
vations, and domain knowledge representations.

SSN-O has become a de facto standard for the Sensor Web and oper-
ates at an abstraction level above technical details of format and inte-
gration, working with features of interest, observation, sensor and re-
strictions on quality [40]. The ontology is designed using the OWLDL

profile of OWL2 and is aligned with the upper ontology DOLCE-DnS
UltraLite (DUL) , a lightweight version of the foundational ontology
DOLCE. DUL has a clear cognitive bias in the sense that it aims at cap-

10. http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/ (ac-
cessed on 26/04/2017)

http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
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Figure 3.6 – SSN-O modules [40]

turing the ontological categories underlying natural language and hu-
man commonsense [112]. By aligning an ontology to SSN-O and DUL,
an extensible ontological framework is provided, being compatible with
other DUL-based ontologies and inheriting semantic matching that ex-
ists between DUL and other upper-level ontologies, such as the BFO 11.

The DUL conceptual framework distinguishes abstract, information

entities, objects, quality, and events. This structure describes entities
in a posthoc way, reflecting more or less the surface structure of lan-
guages and cognition [112]. An abstract entity represents anything
that cannot be located in space-time, such as mathematical entities,
format semantic elements, regions (quality spaces), and so forth. Infor-

mation entity represents datum or information that can be concretely
realized or not, such a document file (information object) or a printed
document file (information realization). Objects in DUL are specialized
into physical objects, agents, and social objects. The first represents any-
thing that is located in a space region and has an associated mass.
The second represents any agentive object that can be physical (e.g.,
animal, robot, person) or social (eg., corporation, community, collec-
tive). The third is a special entity in DUL that exists only within some
communication event, in which at least one physical object participates
in. Social objects exist for the sake of communication, expressed by in-

formation object, for: i) incorporating individuals (social agents, places);
ii) collecting entities (collection); and iii) describing them (description,
concept).

The SSN-O is organized conceptually in ten modules, as illustrated
in Figure 3.6. The SSN-O class sensor is a DUL physical object that im-
plements a DUL sensing process that observes a property of a feature

of interest. In order to conceptualize the events that link observations
and sensors, the Stimulus-Sensor-Observation (SSO) design pattern is
present in the SSN-O [121]. The purpose of SSO design pattern is to
bridge sensors and observations by focusing on stimuli as objects of

11. https://github.com/BFO-ontology/BFO (accessed on 26/04/2017)

https://github.com/BFO-ontology/BFO
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sensing, which consequently constitutes a proxy for observed prop-

erties. Basically, SSN-O sensors are event-based (stimuli), and, conse-
quently, work in conditions and constraints (e.g. limited power avail-
ability, variable data quality, limited memory, bad environmental con-
ditions) that needs to be accounted in the post-processing phases. As
implementation of sensing process, SSN-O sensors produce sensor out-

puts by detecting (only) stimulus. These sensor outputs have values of
the type observation value, which are expressed by DUL regions, along
with spatiotemporal or amounts, that can be extended using an exter-
nal ontology, including, for instance, units of measurements. SSN-O is
intended to be used as sub-domain ontology, having its classes spe-
cialized to represent specific sensors, features of interest (and their
properties), and its sensing processes.

In addition, the SSN-O sensor can be represented in terms of its
properties and technical specifications, such as measurement capabili-

ties. SSN-O sensor is DUL systems that can be deployed on DUL plat-

forms. Systems can be represented in terms of survival range and oper-

ating range, which are defined based on conditions (constraint block);
and platforms in terms of its deployment related process. Thus, prove-

nance and diagnosis of observations are inherent benefits of SSN-O,
allowing evaluating the context in which data has been produced.
Moreover, SSN-O takes a liberally inclusive view of what a sensor
is: any (physical) thing that observes; allowing such sensors to be de-
scribed as simple physical objects that play a role of sensing, as well
as semantically enriched sensor systems that are described in terms
of their components and methods of operation to support data inter-
operability and Sensor Web integration and management [40].

�.� ���� ��� ��� ����-������

Virtual sensors are suitable to constitute a new conceptual layer
that implements Semantic Stream Reasoning (SSR), Data Stream Min-
ing (DSM), and Complex Event Processing (CEP) approaches. How-
ever, the main works for semantic sensor annotation do not cover
representation for KDDM techniques which are implemented by these
approaches. The SSN-O ontology defines sensor as physical entities
and, although it is possible to represent the sensing process of these
physical sensors, it does not provide representation for algorithms
used in this process.

�.�.� KDDM process

The concept of Knowledge Discovery in Databases (KDD) was orig-
inally defined in [122] as a "nontrivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns in
data". According to the authors, data mining is only one step in the
KDD process focused on searching patterns of interest in data sets.
Besides that, related fields, such as machine learning and logical rea-
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Figure 3.7 – Overview of the KDDM process

soning, were also included as part of this process, consisting of alter-
native techniques to extract knowledge. More recently, an attempt to
describe knowledge extraction and involved technology in the knowl-
edge extraction process has been described in the Knowledge Discov-
ery and Data Mining (KDDM) model [123]. In this survey, several
KDDM models are compared to each other, resulting in six general
steps, as depicted in Figure 3.7, and described as following:

1. application domain understand: incorporates tools to define KDDM

objectives and analysis requirements based on business prob-
lems, goals, and context;

2. data understanding: consists of tools for identification of data
quality issues, data exploration, selection of data subsets, and
usefulness of data;

3. data preparation: corresponds to tools for the preparation of
dataset that will be used as input for data mining. This
preparation includes methods for attribute selection, cleaning,
outlier removal, functions to compose new attributes, data
transformation, dimensionality reduction, and mechanisms to
treat heterogeneity issues;

4. data mining: refers to the data mining, machine learning and
reasoning techniques and their applications using the prepared
dataset and generating generalizations, information, and knowl-
edge;

5. evaluation: consists of tools for interpretation, filtering, valida-
tion, and visualization of the generated results based on the
KDDM objectives;

6. knowledge consolidation and deployment: represents the incorpora-
tion of the discovered knowledge into a system or reports for
end-user presentation.

We illustrate in the bottom of Figure 3.7 the steps of the KDDM that are
automatable: A) identification of data analytical model, B) identification

of data mining techniques, and C) application of data mining techniques.
Each automatable step is aligned with its respective KDDM correspon-
dent. In this manuscript, we focus on steps 3 to 5, as highlighted in
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Figure 3.7. In particular, we aim to map these steps in virtual sensors

in order to support IoT services that rely on steps A, B, and C. In ad-
dition, the remainder of this thesis considers KDDM and data mining
as interchangeable concepts.

�.�.� Meta-Mining

The MM research field consists of an extension of traditional meta-

learning research domain. Meta-learning refers to the application of
machine learning techniques to meta-data that describes past learn-
ing experiences in order to improve future performances and results
of these algorithms [124]. Meta-mining extends the meta-learning
approach to the full KDDM process. In this context, several ontolo-
gies are under development, aiming to model KDDM algorithms and
process [125]. These ontologies have been employed to support the
automation of KDDM composition and the optimization of KDDM al-
gorithm execution by adjusting pre/post-processing steps based on
meta-data and performance evaluation. None of these ontologies has
been universally established. However, some criteria ground the deci-
sion for a most suitable ontology to describe KDDM techniques in the
context of virtual sensors.

Most of these ontologies are complementary or overlapping. For
instance, in [126] the Data Mining OPtimiation Ontology (DMOP) 12

is proposed to support all decision-making steps that determine the
outcome of the data mining process in the data preparation, KDDM

modeling, and KDDM evaluation [126]. DMOP is a OWL2 DL ontol-
ogy that provides a conceptual framework to represent data mining
tasks, algorithms, models, datasets, workflows, and experiments. In
[127], an OWL2 modular OntoDM 13 is proposed. In this approach, core
data mining entities are represented, such as datatypes, data sets,
data mining tasks, data mining algorithms, functions, generalizations,
workflow, and evaluation scenarios and so forth. OntoDM is based on
the foundational ontology BFO and reuses other middle-level ontolo-
gies to represent auxiliary entities, such as algorithm executions, data
items, and objectives. In [128], Exposé Ontology (Exposé), a generic
ontology for data mining and machine learning representation of sci-
entific experiment is proposed. The initial goal of Exposé was to rep-
resent experimental methodology based on data processing opera-
tions of the upper-level ontology SUMO. It provides a representation
for experiment context, evaluation metrics, performance metrics, data
sets, algorithms, which are complementary to those entities defined
in OntoDM.

In this thesis, OntoDM were chosen to represent KDDM techniques
that are implemented in virtual sensors based on its generality, that
maximizes its adoption in different domains; its alignment to a foun-
dational ontology, BFO version 1.1, which is compatible to DOLCE and
consequently to SSN-O; and its design process that followed good prac-

12. DMOP: http://www.dmo-foundry.org/DMOP (accessed on 26/04/2017)
13. http://www.ontodm.com/ (accessed on 26/04/2017)

http://www.dmo-foundry.org/DMOP
http://www.ontodm.com/
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Figure 3.8 – OntoDM structure [129]

tices for ontology development by reusing class and relation from
established upper-level and middle-level ontologies, as illustrated in
Figure 3.8. The reconciliation between the BFO realistic and the DUL

cognitive perspectives have been studied in [130], suggesting the most
classes of both ontologies are compatible, which expands OntoDM in-
teroperability.

�.�.�.� OntoDM

The semantics provided by OntoDM consists of a family of three on-
tologies: OntoDM-core [131], Ontology for Data type (OntoDT) [132],
and OntoDM for KDD (OntoDM-KDD) [133]. OntoDM-core is designed
following Open Biomedical Ontologies (OBO) 14 Foundry design prin-
ciples, such as the use of an upper-level ontology, formal ontology
for relations, reuse of established ontologies, and preference for more
strict ontology profiles. Similarly to the best practices for ontology
engineering, these principles enable the interoperability of ontolo-
gies that adopt the same principles and reasoning among ontologies
based on the same upper-level ontologies. Besides the foundational
ontology BFO version 1.1, the ontological framework of OntoDM is com-
posed by OBO Relational Ontology (OBO RO) version 1.14, BFO version
2.0 (relations), Ontology for Biomedical Investigation (OBI) 15 RC1 (re-
lease candidate 1) version, IAO 16, and Software Ontology (SWO) 17.

The expressiveness and ability to describe different use case of the
OntoDM are due to the reuse of these ontologies that provide concepts

14. OBO Foundry: http://www.obofoundry.org/principles/fp-000-summary.

html (accessed on 26/04/2017)
15. OBI: http://purl.obolibrary.org/obo/obi (accessed on 26/04/2017)
16. IAO: https://github.com/information-artifact-ontology/IAO/ (ac-

cessed on 26/04/2017)
17. SWO: http://theswo.sourceforge.net/ (accessed on 26/04/2017)

http://www.obofoundry.org/principles/fp-000-summary.html
http://www.obofoundry.org/principles/fp-000-summary.html
http://purl.obolibrary.org/obo/obi
https://github.com/information-artifact-ontology/IAO/
http://theswo.sourceforge.net/
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to describe the data mining classes, data transformation classes, and
auxiliary data processing concepts. The OntoDM-core defines the core
set of data mining entities, such as data mining objective, dataset spec-
ification, and algorithm implementation parameters. OntoDT defines
basic entities to represent datatypes, such as properties of a datatype,
its specification, or taxonomy. The OntoDM-KDD specifies basic enti-
ties to represent information discovery process and its components,
such as knowledge discovery phases, workflows, and information dis-
covery scenarios. For the sake of readability and space, we present
a more detailed description of the OntoDM ontological framework in
Appendix 9. In the remainder of this manuscript, OntoDM is used as
the set of these three ontologies, except cases when we explicitly refer
to them uniquely.

OntoDM is structured in three abstraction levels:
— Specification level: consists of classes to represent dependent con-

tinuants, such as data, datasets, data processing goal, data min-
ing algorithm, and generalizations;

— Implementation level: refers to classes that represent specifically

dependent continuants, such as the implementation of data pro-
cessing algorithms, data mining algorithms, workflow, training
data sets (roles), functions, operators that realize some imple-
mentation, parameters, and quality aspects;

— Application level: consists of classes to represent planned processes,
such the execution of data mining algorithms and generaliza-
tions.

Theses layers are important to represent separately the specification
of entities that participate in the KDDM processes, their implementa-
tions, and their execution. This three-level structure matches to our
need of specifying these level of abstractions in virtual sensors in or-
der to allows reasoning of inference intention using design specifica-
tion (objective, process, type of algorithms, datatypes, and generaliza-
tions), deployment level ( virtual sensors, algorithm implementations,
functions, operators), and application level (virtual sensor executions,
algorithm executions, datasets). The three-level structure provides
flexibility in terms of representation of data processing operations
and their specifications. In the following subsections, these levels are
described briefly, restraining on classes relevant to the scope of this
manuscript. Further information can be found in www.ontodm.com (ac-
cessed on 26/04/2017) or in the literature [129].

������������� ����� The specification level of OntoDM-core consists
of classes specializations of IAO Information Content Entity (ICE), OBI

data representational model and OBI protocol. As depicted in dash-dotted
boxes in Figure 3.9, OntoDM specifies specializations for IAO data item

and Directive Information Entity (DIE), as well as for ICE itself. For
data item, OntoDM defines data example, parameter setting, and special-
izes data sets. Data example represents one unit of data and it is part
of a DM-dataset. DM-datasets are datasets formed by data examples,
which can be specified according to a data specification, such as bags

or folds. A data specification is a specification entity that isAbout a data

www.ontodm.com
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Figure 3.9 – OntoDM-core specification level. Orange boxes represent IAO

classes. Yellow boxes represent OBI classes. Dash-dotted boxes
represent OntoDM extension.

example. Parameter setting is a quality specification of some algorithm
parameter.

A specification entity is related to other ICE entities using the OBO RO

is-about relation, and it is specilized in data specification, dataset specifi-

cation, mapping specification, parameter specification, feature specification,
feature set specification, generalization language specification. Data speci-

fication can be of the type descriptive data specification and output data

specification. The former consists of a specification for the datatype of
the descriptive part of a dataset, while the latter denotes the datatype
for data on the output part of a dataset, typically found in modeling
tasks. These data specifications can be formed by primitives (string,
integer, complex, discrete) or structured datatypes (tree, array, tuple).
OntoDM uses the mapping specification to associate which part of the
data example a concrete datatype applies to. Parameter specification con-
sists of an algorithm implementation quality specification (parameters).
Feature specification and feature set specification are specification entities
related to primitive data feature or a set of data features (i. e., tuples)
used to identify features for data mining algorithms. Generalization

language specification consists in the language formalism used to ex-
press a generalization 18, such as trees, rules, neural networks, etc.

The DIE represents specifications of entities that can be concretized
or realized, such as processes, functions, datatypes, and information
processing tasks. Data format specification is a DIE that specifies the

18. Generalization is the outcome of applying a data mining task for a given
dataset.
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Figure 3.10 – OntoDT datatype. Yellow boxes represent OBI classes. Orange
dash-dotted boxes represent OntoDM extension of IAO classes.

format a data is encoded, such as XML, RDF, and binary format.
Objective specification is extended by the OBI as a data transformation

objective, such as a normalization or a partitioning objective. OntoDM

proposes to specialize the concept of objective specification in informa-

tion processing objectives. Instead of data transformation, information

processing objective represents algorithms to extract information from
data using data mining tasks, such as clustering task, pattern discovery

task, predictive modeling task, and probability distribution estimation task.
In order to represent their plan specification, OntoDM extends the IAO

classes algorithm, software, and protocol to represent data mining algo-

rithms, scenarios (KDDM processes), and data mining scenarios (KDD

processes) respectively. In addition, OntoDM proposes to represent
software toolkits and data mining software toolkits, such as the Waikato
Environment for Knowledge Analysis (WEKA) 19.

OBI extends DIE by specifying data representation models. From
this concept, OntoDM specializes mathematical function specifications,
datatypes, and generalization specifications. The mathematical function

specification represents distance function sets, scoring functions,
cost functions, optimization functions, and so forth. Generalization

specification specifies the type of generalization, the datatype used to
produce the generalization, and the generalization language.

19. WEKA:http://www.cs.waikato.ac.nz/ml/weka/ (accessed on 26/04/2017)

Figure 3.11 – OntoDT datatype taxonomy. Yellow boxes represent OBI classes.
Dash-dotted boxes represent OntoDM extension.

http://www.cs.waikato.ac.nz/ml/weka/
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Figure 3.12 – OntoDM implementation level. Gray boxes represent BFO

classes. Orange boxes represent IAO classes. Dash-dotted
boxes represent OntoDM extension.

Datatype is defined in OntoDT and specifies a set of distinct val-
ues, their properties, and permitted operations, as illustrated in
Figure 3.10. Value space specification is a specification entity that defines
the collection of values. Characterizing operation specification is a spec-

ification entity that comprises types of operations (niladic, monodic,
dyadic, n-adic) and their association to value space specifications.
Data quality is a specification entity to represent ordering, exactness,
numeric quality, cardinality, and the boundary of a datatype. Datatype is
specialized in three subclasses: primitive datatype, generated datatype,
subtype, as presented in Figure 3.11.

Generated datatypes can specify structured collections of primitive

datatype, allowing to represent sophisticated data structures, such as
tuple, class (similar to object oriented classes), bag, set, sequence, array,
table, pointer (such as variable address reference), and procedure (an op-
eration on values of other datatypes). Subtype represents restrictions
on primitive or generated datatypes, such as a range of a discrete
datatype.

�������������� ����� The implementation level of OntoDM-core
consists of classes that are extension of the BFO specifically dependent

continuant and IAO plan, as illustrated in Figure 3.12. OntoDM spe-
cializes BFO class quality, representing parameters for algorithm imple-
mentations; and BFO class realizable entity, specifying the concept of
generalization. Parameters are realizable entity, being concretized by the
implementation of an algorithm. Generalization has a dual nature and
denotes the outcome of applying a data mining task (related to an al-
gorithm execution through an isSpecifiedOutputOf relation), while
still being a realizable entity. It acts as a representation of data mining

algorithm execution outputs, and as a generalization execution that has
an input dataset and an output dataset. For example, by executing a
predictive modeling task over a given DM-dataset, a predictive model is
outputted. Subsequently, by executing this predictive model using an
input dataset, a predicted data set is produced.

BFO role entity is specialized in OntoDM to represent dataset roles,
such as train set or test set, and agent roles. In addition, algorithm im-

plementation is extended from the IAO plan entity, as an intermediary
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Figure 3.13 – OntoDM application level. Red boxes represent IAO classes. Yel-
low boxes represent OBI classes. Dash-dotted boxes represent
OntoDM extension. Dotted boxes represent examples of class
reuse from IAO and OBI.

entity between the information processing objective specification and
the actual information processing execution. Algorithm implementa-

tions can play roles in certain KDDM processes. Therefore, OntoDM rep-
resents these roles and data mining roles by extending BFO roles entity.
Lastly, the concept of workflow is defined as a specialization of IAO

plan that concretizes (isConcretizationOf) scenario. Workflows have
(hasPart) one or more algorithm implementations, representing realiz-
able KDDM implementation. Data mining workflows are the concretiza-
tion of data mining scenario.

����������� ����� The application level of OntoDM-core consists
of classes that are extensions of OBI class planned process and SWO

class information processing, as illustrated in 3.13. OntoDM specializes
SWO class information processing to represent the algorithm execution,
which realizes an operator. Data mining algorithm execution specializes
algorithms execution, which realizes a data mining operator, having DM-

datasets as input and generalizations as outputs.
Generalization execution represents the application of a data mining

task outcome, such as predictive models. Nonetheless, SWO defines
a wide range of information processing classes that could be used to
describe data processing algorithms in virtual sensors. We highlight
some of these examples, using dotted box classes: utility operation,
data storage, correction, class prediction, query and retrieval, parse, distance

calculation, and descriptive statistical calculation.
Figure 3.14 presents OntoDM representation levels in five conceptual

modules. In Figure 3.14.(a), a KDDM is represented using OntoDM-KDD
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Figure 3.14 – OntoDM representation levels. Green boxes represent the specification level. Yellow boxes represent the implementation level. Blue boxes represent
the application level. Dash-dotted boxes are OntoDM extended from reused classes of middle and upper-level ontologies.
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classes. The scenario has (hasPart) a knowledge discovery scenario objec-

tive as objective specification, and, optionally, action specifications. The
main composition of scenarios is the plan specification of the type al-

gorithms and data transformations. A workflow is a OBI plan that con-
cretizes (isConcretizationOf) a scenario and is mainly composed by
(hasPart) algorithm implementations. Each algorithm implementation
has a role (inverse property of isRoleOf) of some operator. Practi-
cally, algorithm implementations, such as those found in the WEKA

toolkit, are implemented as operators by having parameters specified
(hasInformation some parameter setting). Then, a workflow execution,
which is a OBI plan execution, satisfies this workflow and achieves a
knowledge discovery scenario objective through algorithm executions that
realize each operator defined in that workflow (see Figure 3.14.(b)). Al-

gorithms, algorithm implementations, and algorithm executions, following
the same enchained concretization relation among scenario, worflow,
and workflow execution. In addition, it is possible to represent prece-
dence relation in the each of these levels of representation of algo-
rithm entities.

OntoDM class data mining algorithm introduces a new level of abstrac-
tion in this recursive structure: the generalization representation. As
explained previously, data mining algorithms produce generalizations,
which can be conceived as a representation or a generalization execu-

tion, as depicted in Figure 3.14.(c). Each data mining algorithm has
parts data specification that defines which part refers to descriptive data

specification and output data specification, explicit by mapping specifica-

tions. In addition, data specifications are about datatypes and constitute
dataset specifications, as illustrated in Figure 3.14.(d). Lastly, in Figure
3.14.(e), dataset representation consists of DM-dataset that are com-
posed by data examples. Algorithm executions and generalization execu-

tions have specified DM-dataset as input and output, which are in turn
specified (isAbout) according to dataset specifications.

�.� ���������� ���������

As described previously, the term personal information is tradition-
ally defined as all data, information, and knowledge related to an in-
dividual and/or under her control. The analysis, classification, and
management of personal information is a challenging task due to its dif-
ferent aspects and perspectives. The Behavior Computing (BC) offers
a systematic way of understanding features that explains or predicts
behaviors, which can be exploited to represent personal information
in contexts. BC aims to build formal methods and computational
theories of behavior representation, processing, and engineering [21].
In BC, behaviors refer to actions, operations or events conducted by
agents within certain context and environment (virtual or physical
ones), focusing on symbolic behaviors that represent these activities
into a computational model. Thereby, it can be stated that BC intends
to enrich the process of behavior pattern analysis, by modeling be-
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havior features and allowing in-depth analysis of behavior and its
impacts.

The research field of behavior analysis has been conducted based
on scrutiny of data using KDDM techniques to recognize and identify
behaviors. For instance, McIlwraith and Yang [134] identify key re-
search areas for data processing within body sensor networks, such
as dimensionality reduction, feature extraction, feature selection, and
inference in order to observe human behaviors. The behavior recogni-
tion, identification, and selection are conceived as part of the design
of the experiments. Thus, patterns and data generalizations are as-
sociated with behaviors based on the background knowledge of the
experiment designers. However, no further contextual information
about the real behavior is encoded. BC provides methods and repre-
sentation to address these shortcomings of the traditional behavioral
analysis. It focuses on the subsequent analysis phase and interpre-
tation of this information, particularly meeting the objectives of our
privacy by design model that aims to classify sensor data based on the
personal information that can be inferred from it.

���������� ����� Cao [21, 135] proposes an empirical behavioral
model, defining behavior(γ) as a vector of the following key aspects
called behavioral features:

— Subject (s): entity that issues the activity (agent);
— Object (o): entity on which a behavior is imposed;
— Place (w): location where a behavior happens (spatial aspect);
— Context (e): environment in which a behavior happens (it may

include pre-condition and post-condition);
— Belief (b): the subject’s informational state and knowledge by

which the subject conceives the world in the moment of the
observed behavior;

— Action (a): actionable task being executed by the subject during
the observed behavior;

— Goal (g): objectives intended to be accomplished by the subject;
— Plan (l): sequences of actions that the subject can perform to

achieve one or more of its intentions;
— Impact (f): the results achieved by the execution of a behavior on

its object and/or context;
— Constraint (c): conditions that impact on the behavior;
— Status (u): stage on which the behavior is currently stated;
— Associate (m): relationship of interaction or impact between dis-

tinct behaviors; and
— Time (t): time when a behavior occurs (temporal aspect).
According to these behavior features, a behavioral vector (−!γ ) can

be represented as follows:

−!γ = {s, o,w, e, b, a, g, l, f, c, u,m, t} (3.1)

These features are extensive to describe behaviors in different con-
texts and are not intended to be a minimal set of features. In fact,
this vector of behavior features describe classes of all possible phys-
ical, relational, and abstract elements that one needs to describe any
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behavior regardless of the domain of interest. The BC framework has
been used in several works [136, 137, 138, 135, 139]. In [140], the
authors represent behaviors using causal relationships, representing
the causality among behavioral features and demonstrating an im-
provement in activity prediction and user identification. Besides the
spatio-temporal, social, organizational and environmental aspects re-
lated to the behavior (−!γ ), a behavior sequence can be represented as
an ordered vector −!⌧ of behaviors as follows:

−!⌧ =
−!γ 1,

−!γ 2, . . . ,
−!γ n (3.2)

This representation attempts to provide a richer representation for
behavior analysis, capturing features that participate in the observed
event, the relationship between these features, and the relation be-
tween a behavior and its subsequent one. Personal information is,
therefore, intrinsically represented in this model, since it is produced,
used or managed in the behavioral context. This sequence also pro-
vides a more comprehensive and informative vector-oriented for be-
havior pattern analysis. The BC includes nine research axes [21]:

— Behavior data construction: consists in transforming data into be-

havioral data. This transformation intends to associate behav-
ioral entities to each data. Semantic annotation and mapping
functions are studied in this axis;

— Behavior modeling and representation: corresponds to formal
methods and techniques to capture behavioral entities, their
attributes, and properties, as well as their relationship among
themselves. Modeling languages, such as OWL, can be used to
represent these entities and to reveal the interaction, causality,
evolution, divergence, convergence of behaviors;

— Behavior pattern analysis: refers to the extraction of patterns
based on the behavior modeling and representation. Classical
KDDM techniques are exploited to extract information from
behaviors through behavior clustering, cause-effect analysis,
behavior streaming mining, activity mining, correlation, and so
forth;

— Behavior impact analysis: refers to the analysis of relational
causality based on the representation of behavior. Techniques
to detect, predict, prevent behaviors are supported by impact
modeling, impact analysis, risk analysis, and other tools to
measure the behavior impact;

— Behavior network: consists in analysis of patterns, flocks, and
rules based on the network and its dynamic nature of individual
and crowd behavior;

— Behavior simulation: represents the investigation of behavior sim-
ulation aiming to anticipate consequences and scenarios to base
decision making. Multiagent intelligent-based simulations are
part of this research axis;

— Behavior measurement and evaluation: corresponds to techniques
to quantify and evaluate the impact and behavior networks to
measure the significance of behavior patterns. Specific measure-
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Figure 3.15 – Behavior Computing Research Axes [21]

ment such as utility, privacy harm risk, costs, and organiza-
tional image impact are some example;

— Behavior presentation: consists in techniques to present all the in-
formation up-mentioned. Similarly to data mining, challenges
to present patterns and statistical models, behavior presentation
aims to adapt this information in a visual presentation;

— Behavior use: represents the research axis that investigates how
this information can be practically used. The possibility to rep-
resent and reason about behavior allows incorporating this in-
telligence into systems that will respond more accordingly to
human behaviors.

Figure 3.15 further illustrate these research axes and the relation
among them. The use of BC to represent personal information
involves more than one of these axes. In particular, the behavioral

modeling and representation and behavior use are aligned to our needs
of representing and reasoning personal information using Semantic
Web technologies.

Cao’s model provides a flexible way to structure personal informa-

tion, since its behavioral features, that participate in the observed be-
havior, can be related to the agent and extended according to the
domain of usage. However, BC does not define which behavioral fea-

tures should be used to describe behaviors. Consequently, behaviors
can be represented according to any of the behavioral entities. For in-
stance, if bike (object) is a central element for a mobility application,
features that are important to the behavioral observation related to
this object should be represented. Hence, it is indispensable to con-
struct our definitions of personal information around the concept of
behavioral agent. This premise ensures that once identified the behav-
ioral temporal frame and the involved behavioral agent(s), it is possible
to classify the data as personal.
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Few attempts to describe personal information using Semantic Web
and ontologies have been proposed. However, most of them do not
cover the IoT sensing issues, such classification of sensor data and its
contextual information. They target in the classification of general
information artifact entities, such as files or documents. Some of
these works are solely focused on the ontology definition, while other
are proposed in the context of Privacy-Enhancing Technologies (PETs),
which are covered in the next chapter. We refrain on describing two
approaches for classification of personal information that are mainly
based on ontologies.

In [141], a framework for representing personal information mod-
els – Personal Information Model Ontology (PIMO) – is proposed. The
framework is defined using ontologies and focuses also on the con-
ceptualization of personal information around the concept of an infor-
mation owner. Personal information is defined in terms of projects,
tasks, contacts, organizations, files, e-mails, and other resources of
interest to the user to be categorized. The approach also employs
upper-level and middle-level domain ontologies, aiming to provide a
cognitive classification system for a personal knowledge workspace.
The first constraint of this work consists of its exclusivity to personal
workspaces, such as devices and computer applications. The ap-
proach does not address cases when the classification of information
are challenged for end-user, such as the scenario of IoT and its sensor
data. Another restriction comprises its inability to describe collective
entities, such as a group of people or multiple owners. In addition,
the class of personal information are defined by the end-users and
are not associated with contexts, which hampers the possibility to
automatize privacy policies based on user’s context.

In [142], an ontological framework is defined using the concepts of
points of views and organizing the reuse of domain-specific ontolo-
gies to classify and contextualize personal information. Each user has
the possibility to design ontologies that will support the classification
of personal information and contexts. The framework provides a for-
mal definition for ontologies that represent: i) personal information,
ii) information type and classification, and iii) personal and informa-
tional context. Based on these ontologies, a set of semantic mappings
between different contexts and information type delivers a powerful
inference that is used to enforce privacy. For this, the approach de-
fines a web service composition that employs SPARQL queries to con-
trol access to personal information according to privacy policies and
the set of ontologies defined by the user. Nonetheless, this ontological
framework does not define axioms to classify personal information,
restraining to specify formally the structure of the up-mentioned on-
tologies. Besides that, none of the concerns about privacy in IoT are
addressed, such as classification of sensor data and detection of mali-
cious inference intention.
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In this chapter, we reviewed key concepts of Semantic Web that
will be used to define our ontology for personal information and en-
abling technologies that will be used to define our privacy by design

model. We discuss how Semantic Sensor Network Ontology (SSN-O)
can be used as a starting point to understand the current issues in
the classification of sensor data regarding privacy issues. We noticed
its limitation to describe the information that flows in the IoT and the
lack of information about data processing that is executed in the IoT

platform during the sensing service.
Aiming to address these problems, we introduced the concepts of

Meta-Mining (MM) and Behavior Computing (BC). For this, we intro-
duced the concept of Knowledge Discovery and Data Mining (KDDM)
and delimited the part that we intend to map in our ontology and
privacy model. We investigated the most relevant ontologies to repre-
sent KDDM process and techniques, outlining the similarities and dif-
ferences that guided us to select Ontology of Data Mining (OntoDM).
We presented BC as the theory that will permit us describing per-
sonal information in behavioral contexts. The choice of this theory
is justified based on its capacity to focus on the meaningful infor-
mation that can be extracted from data. BC structures research axes
and behavioral features that facilitate to model personal information.
Lastly, we presented the most relevant works related to the definition
of personal information using the Semantic Web technologies and
ontologies.
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Several Privacy-Enhancing Technologies (PETs) attempt to guaran-
tee privacy for data publishing. In the context of privacy in the IoT

sensing, these approaches are incorporated intothe data stream, aim-
ing to preserve data privacy on-the-fly. In this manuscript, we intend
to propose a privacy by design model based on the principle of plurality,
which assumes that several PETs can be opportunistically employed.

In this chapter, we investigate two categories of PETs: Privacy-
Preserving Data Mining Technique (PPDMT) and Access Control
Model (ACM). The former addresses the problem of privacy by
degrading data utility of data stream and dataset. The latter enforces
privacy by controlling access to private information based on the eval-
uation of privacy policies or rules. We intend to present an overview
of these works and their key concepts to introduce the subject of
privacy issues and strategies addressed by these technologies.

In Section 4.1, main categories of PPDMT are presented, along with
works related to privacy preservation in data mining results and data
streams. Next, in Section 4.2, we focus on relevant ACMs related to
some enabling technologies that we intend to employ in our privacy

by design model. Lastly, we conclude with an overview of these ap-
proaches and a brief analysis.

�.� �������-���������� ���� ������ ����-

������

In the recipient sphere, published or streamed data may be exploited
by privacy adversary to extract private information. While ACMs of-
fer binary decisions for granting or denying authorization to perform
operations on private information, Privacy-Preserving Data Mining
Techniques (PPDMTs) may provide a more flexible solution to preserve
privacy. PPDMT aims to preserve privacy in published or streamed

73
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data by degrading data utility selectively in a way that remains prac-
tically useful for KDDM scenarios.

The most basic form of PPDMT is based on the perturbation ap-
proach. Randomization or data perturbation is a technique for mod-
ifying data adding noise generated by a random process. Sensitive
data can be perturbed by transforming it using functions, such as
add, subtraction, nullification, or any other mathematical function.
Traditionally used in the context of distorting data by probability dis-
tributions, randomization methods were applied to data mining tech-
niques as an initial approach for anonymization. This perturbation
configures a challenge for data mining techniques since they are in-
herently dependent on statistics. The main advantage of this method
is that it is relatively simple. An example of randomization methods
is the multiplicative perturbations that focus in reducing data dimen-
sionality by perturbing multi-dimensionality. Its main flaws rely on
adversarial attacks where the privacy adversary knows some linearly
independent collection of the records or data samples. Another type
of randomization is based on data swapping that aims to preserve pri-
vacy by swapping values of different records.

More sophisticated privacy-preserving techniques were proposed,
so-called anonymization methods, based on the concept of hiding
groups of anonymous attributes, making harder for privacy adver-
sary attacks to distinguish between individuals and, consequently,
the association between privacy information and the concerned indi-
vidual. The anonymization problem can be generically defined based
on the following types of attributes:

Sensitive content

explicit identifiers quasi-identifiers sensitive attributes non-sensitive attributes

Explicit identifiers are the set of attributes that contain explicit infor-
mation about individual’s identity, such as Social Security Number
or name. Quasi-identifier is a set of attributes that could be correlated
to explicit identifiers and potentially discloses individual’s identity.
Sensitive attributes refer to sensitive information other than identity,
such as medical records, religion, and salary. Non-sensitive attributes

consist of all other attributes that previously classified. Therefore,
anonymization refers to approaches that seek to remove all explicit sen-
sitive content and hide all statistical traces that could be correlated to
quasi-identifiers.

A myriad of PPDMT has been proposed in the literature. In fact, the
anonymization-reidentification cycle described in Section 2.2, is proba-
bly the main reason why so many variants of anonymization tech-
niques have been proposed. Most of these techniques are implemen-
tations of same strategies to remove traces from the published data
that would allow correlating it with private content.

Anonymization attacks can be classified generally into two
groups [143]: linkage-based and probabilistic-based. Linkage-based attacks

consist of threats that envision to link record, attributes or tuples to
a sensitive content based on explicit identifiers or quasi-identifiers.
These attack models are called record linkage, attribute linkage, and



4.1 �������-���������� ���� ������ ���������� 75

Privacy model Attack Model

Record
linkage

Attribute
linkage

Table linkage Probabilistic
attack

k-Anonymity •

MultiR k-Anonymity •

l-Diversity • •

Confidence bounding •

(↵,k)-Anonymity • •

(X,Y)-Privacy • •

(k,e)-Anonymity •

(✏,m)-Anonymity •

t-Closeness • •

δ-Presence •

(c,t)-Isolation • •

✏-Differential Privacy • •

(d,γ)-Privacy • •

Distributional Privacy • •

Table 4.1 – Privacy-Preserving Data Mining Technique (PPDMT) [143]

table linkage respectively. Probabilistic attacks refer to attacks that use
statistical hypothesis tests to discover identifiers or quasi-identifiers
based on the uninformative principle whose goals is to ensure that
the difference between the prior and posterior beliefs is small. For
the matter of brevity, we refrain on describing the main categories
of anonymization techniques surveyed in [143], and summarized
in Table in Table 4.1 according to the up-mentioned attack models.
Further information about PPDMTs can be found in [144, 54, 145, 146,
147].

In the record linkage attack model, the privacy adversary tries to
identify uniquely a record that belongs to the victim. Therefore, the
k-anonymity approach consists in hiding this identification in k − 1

records, i. e., in a k-anonymous table, each record is indistinguishable
from at least k − 1 other records with regard to the sensitive content.
In (X,Y)-anonymity, X and Y are disjoint sets of attributes, where
each element in X is linked to at least k elements in Y. k-anonymity
is a single case in (X,Y)-anonymity where Y is a surrogate key in the
table. MultiR k-anonymity extends the traditional k-anonymity to a
multi-table scenario, where the uniqueness of the joint-tuple must be
guaranteed.

In attribute linkage attack model, even if the adversary cannot
precise the record of the victim, it will try to infer private attribute
from the published or streamed data based on group association.
Therefore, the diversity principle may prevent the attribute linkage.
The l-diversity technique requires that every group that shares a
specific quasi-identifier contains at least l other sensitive attributes.
In order to puzzle the occurrence of the other sensitive attributes,
minimizing the chances of identifying the l diversity group, the
(c,l)-diversity guarantees a normal distribution to these values.
Confidence bounding techniques assure the maximum level of
confidence of inferring a sensitive attribute on a group of one or
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more quasi-identifiers, focusing on the confidence probability instead
of group size. Similarly to the application of confidence bounding
to k-anonymity, the (X,Y)-Privacy combines the confidence bounding
concept to (X,Y)-anonymity, controlling the maximum level of
confidence of inferring Y (and consequently X). The (↵,k)-anonymity
is similar to (X,Y)-Privacy approach, except by the fact that X are
always quasi-identifier attributes.

Since most works on k-anonymity consider only categorical sensi-
tive attributes, (k,e)-anonymity proposes to anonymize numerical val-
ues by dividing groups containing at least k different sensitive values
with a range of at least e. Similarly, (✏,m)-anonymity proposes to guar-
antee the privacy of numerical sensitive attributes, but limiting the
confidence of inferring values in a given range [value− ✏, value+ ✏].
In order to prevent skewness attack, i. e., when the chances of pri-
vacy attack increase because of the overall asymmetric distribution
of quasi-identifiers, t-Closeness approaches propose to normalize the
distributions of sensitive attributes to the same t level.

In the table linkage attack model, the privacy adversary intends to
identify the presence or absence of a record in the table. To prevent
this attack, the δ-Presence techniques propose to bound the probabil-
ity of inferring the existence of record within a specific range δ.

The probabilistic attack model focuses on systematically assuring a
level of uncertainty about a prior belief of a privacy adversary. By
believing that the background information does not influence in the
privacy attack, (c,t)-Isolation approaches prevent record linkage guar-
anteeing a radial distance between the real private attribute value and
its inferred counterpart value sought by the privacy adversary.

The ✏-Differential privacy is currently called the silver bullet of the
PPDMT and consists in guaranteeing that is safe for a user to share her
information, guaranteeing that one single record containing sensitive
content in the published dataset or data stream will not harm her
privacy. These approaches aim at calculating the probability differ-
ence between the results obtained by executing a randomized func-
tion over the records of the table that contains the private record
and the table that does not. The logarithm difference should not be
greater than the ✏ threshold. On top of this reasoning, (d,γ)-Privacy
approaches propose to bound this threshold to a data utility mea-
surement, respecting a reasonable trade-off between privacy and util-
ity. (d,γ)-Privacy approaches assume that for each record in the pub-
lished dataset, the probability of privacy adversary identifying this
record is not greater than d. At last, distributional privacy increments
the model of ✏-Differential privacy aiming to make sure that the pub-
lished dataset reveals only information about a specific underlying
distribution.

Another important strategy in privacy preservation takes into ac-
count the data decentralization to minimize the chances of a compro-
mised data source or a data center exposing sensitive information. A
frequent scenario involves groups of stakeholders who may be inter-
ested in performing data mining on the union of their datasets, but
are restricted to share their data for legal, commercial or privacy pol-
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icy reasons. The strategy aims at partitioning the data vertically or
horizontally. In the vertical partitioning, each party a has different
subset of attributes describing a common instance. In the horizontal
partitioning, each party has the same set of attributes, but a subset of
distinct instances. The main idea of these approaches is to encrypt
data before sharing so the dedicated data mining algorithm can de-
crypt and works with the encrypted data in order to provide results
to all the involved parties. Several approaches propose data mining
techniques in partitioning strategy to preserve privacy, such as found
Bayesian Network [148], clustering [149], support vector machines
[150], decision trees [151], and so forth. The major advantage of the
partitioning strategy relies on the lossless data quality, since the ded-
icated data mining algorithm can decrypt and use the original data
set, only exposing its results. Its drawback remains the computational
overhead added to encrypt, decrypt, and aggregate separate datasets
to provide data mining [152]. In addition, the inability to classify and
control access to data mining result may expose unintended informa-
tion.

�.�.� Privacy-Preserving Data Mining for Data Streams

Several approaches incorporate the up-mentioned PPDMTs works in
the data stream to provide anonymization to degrade the data utility
of KDDM results. A comprehensive survey of privacy model for big
data is presented in [153]. Victor et al. [153] identify anonymization
approaches for social network data, stream data, and differential
privacy using Map-Reduce distributed strategy for data processing
[154] and anonymization [155]. along with the anonymization
approach, privacy model and addressed privacy issues. Data
stream anonymization is particularly addressed by the Continuously
Anonymizing STreaming data via adaptive cLustEring (CASTLE)
approach [156] and Sensitive Attribute Bucketization and REdistribu-
tion framework (SABRE) t-closeness [157]. These approaches intend
to calculate privacy measures and data utility factors for data mining
generalizations in order to apply the same strategies exploited by
traditional PPDMTs. However, by restricting the search space of
private information through generalization, these approaches may
increase the probability of privacy breaches. Bhattacharya et al.[158]
study this limitation preliminarily but further results are needed to
confirm that degrading data utility in data mining generalization are
as efficient as traditional PPDMT approaches.

That et al. [159] propose PAMPAS, a privacy-aware mobile par-
ticipatory sensing system for efficient mobile distributed query pro-
cessing that collects, aggregates, and extracts information from geo-
graphic location data. PAMPAS implements a two layer architecture
that enhance the security at the device level with its secure probe
while orchestrating the data distribution and partitioning in a central-
ized supporting server infrastructure. The secure probes collect and
encrypt data at the first moment, and can also be selected to decrypt
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and process the sensor data collected by other secure probes during
the partitioning phase. The communication between probes and cen-
tral supporting servers relies on the anonymized network, similarly
as found in the Tor network, hiding user’s identity in the crowd, as a
premise to provide its privacy-aware sensing service.

�.� ������ ������� ����������

Access Control Models (ACMs) consist of authorization mechanisms
that allow specifying policy conditions to grant or deny authoriza-
tion to execute an operation over resources. Basically, these models
have four main elements: policy conditions, operations, resources,
and the requester. Conditions represent the circumstances when the
operation is authorized to a specific requester over a specific resource.
Operations are commonly described in terms of access, modification,
creation, and so forth; normally associated with the type of resources,
such as systems, devices, and information. Requesters represent
those users who demand access to resources. These users can be
represented by individuals, groups, or roles profiles. ACMs offers con-
testability by design. The formal evaluation of conditions constitutes
an unambiguous way to decide about granting or denial of resources
and operations on-the-fly, but also posteriorly, in a privacy audit for
instance.

There exist several types of ACM available covering different as-
pects of these four elements. For instance, in Mandatory Access Con-
trols (MACs), an access policy is controlled by a security policy admin-
istrator, on which users do not have the ability to delegate or grant
access to their own resources. Conversely, Discretionary Access Con-
trols (DACs), commonly found in modern operating systems, allow
users to modify or override permissions, such as access to files and
directories. Another well-adopted ACM is the Role-based Access Con-
trol (RBAC) [160] which is defined around the concepts of roles and
privileges, relying on the simplicity to assign permissions to roles,
rather than for each user. Similarly, the Attribute-based Access Con-
trols (ABACs) [161], an access control paradigm, offers a fine-grained
policy condition definition, addressing some of the shortcomings that
RBAC can generate regarding its unmanageable set of roles. In fact,
the attribute granularity of ABAC allows defining policy conditions
based on attributes of resources, requesters, and operations in a logic
expression [162], instead of roles, which facilitate to express policy
rules and compress the number of conditions. A survey of main
ACMs can be found in [163].

Chronologically, first contributions for privacy in ubiquitous sys-
tems were proposed in [164] based on anonymous and secure con-
nections to data source devices. This approach intended to inform
data providers about who had or was requesting access to protected
devices, evaluating privacy policies that are contextualized only by
location and proximity. Similarly, in [165] a role-based privacy-aware
access control is proposed for context-aware applications on mobile
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agents. The concept of policy rules is analyzed based on the con-
text where the application requests personal information expressed
in pairs of key values, such as location/office, social role/friend. A
set of conditions defines a privacy rule to permit or deny access to
private resources. These key values represent static conditions that
are evaluated without any further knowledge about its content.

Ardagna et al. [166] propose an approach for privacy-aware access
control based on a framework provides an expressive policy defini-
tion. The framework and the policy conditions encompass not just
the access request evaluation but the subsequent usage of this infor-
mation. The concept of certified and uncertified is also employed in
this approach, classifying the platform to which data is going to be
released. Each rule identifies subject (requester), object (information),
purpose, conditions, and actions. The subject can be a specific request
identifier or an expression to define the requester specifications based
on a data structure, such as requester.age, requester.nationality,
and so forth. The object can be a specific attribute or an expression
that specifies a set of information, such as object.createdAt > 2015.
Table 4.2 presents some example of access control policy rules and
data handling policy rules and their descriptions.

The purpose describes the intention of how data are going to
be used. The conditions correspond to run-time conditionals to
be evaluated, such as a non-empty form, trusted platform, or any
boolean function. The concepts of data handling and data handling
policies allow specify the strategy in terms of processing sphere
(server-side, user-side, or customized), access level (identity-based,
category-based, attribute-based), meta-data type, restrictions based
on provision (pre-conditions) and obligations (during and pos-
conditions). However, the representation of data processing and
KDDM are defined hard-coded, and thus, limited to code templates
that must be respected to be compatible with its safe environment.
Considering how dynamic IoT scenarios can be, the idea of providing
a set of data mining templates or, more generically, pre-defined
KDDM processes would limit the development of IoT applications.
Additionally, this type of solution extends to certified platforms,
which are trusted to produce personal information and to permit the
custodian by data consumers following a specific privacy policy, is
not suitable for the IoT sensing scenario of release-and-forget where
data will inevitably be manipulated and exploited according to data
consumer’s need.

Along with the advantages of the Cloud Computing and its suc-
cessful XaaS model, some privacy as a service model were proposed.
In [167], Service Level Agreement (SLA) are proposed to specify trust
model and data privacy. The concept of software execution and the
data processing protocol are similar to the previous approach, lim-
iting trusted KDDM applications to extract information using private
datasets, which are encrypted in trusted Cloud platforms. The strat-
egy consists in releasing only a subset of private datasets, decrypting
according to privacy categories defined in the SLA, and allowing only
authorized data consumers to have access to the output. Data providers
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Rule Description

Access
Control
Rule #1

any WITH credential(employeeCard(

equal( user.job,’Director’)),ACME)

AND declaration(equal(user.company,

’ACME’)) CAN read ON cc_info WITH

greaterThan(object.expiration,today)

FOR {marketing,service_release} IF

{in_area(user.sim,’ACME’) and

log_access()}

ACME’s directors are authorized
to read valid (i. e., not yet expired)
cc_info for marketing and service
release purposes, if they are lo-
cated inside the ACME building
and the access is logged.

Access
Control
Rule #2

any WITH credential(

employeeCard(equal(

user.job,’Seller’),

equal(user.jobLevel,’A’)),

ACME) AND

declaration(equal(user.company,

’ACME’)) CAN read ON cc_info WITH

greaterThan(object.expiration,

today) FOR service_release IF

log_access()

Sellers of level A of ACME are au-
thorized to read valid cc_info for
service release purpose if the ac-
cess is logged.

Access
Control
Rule #3

any WITH credential(employeeCard(

equal( user.job,

’BusinessConsultant’)), ACME)

CAN read ON cc_info WITH

greaterThan(object.expiration,

today) FOR reimbursement

ACME’s business consultants are
authorized to read valid cc_info
for reimbursement purpose. Table

Data
Handling
Policy
Rule #1

declaration(EQUAL (user.type,

’BusinessPartners’)) CAN read FOR

market PROVIDED pay_a_fee()

Business partners of ACME can
read for market purpose the name
and the contact info of user pro-
vided that they have paid a fee.

Data
Handling
Policy
Rule #2

declaration( EQUAL(user.type,

’BusinessPartners’)) CAN

{read,write} FOR service_release

FOLLOW delete_after(30 days)

Business partners of ACME can
read and write for service release
the name and the contact info of
Alice. The name and contact info
must then be deleted after thirty
days.

Data
Handling
Policy
Rule #3

declaration( EQUAL(user.type,

’MarketAgencies’) AND

credential(IMB_Cert(

equal(user.speciality.category,

’computer’)), IMB) CAN read FOR

statistic

Market agencies specialized for
distribution of computers and
whose specialization has been cer-
tified by the International Market
Board (IMB) authority can read
the name and the contact info of
the user for statistic purpose.

Table 4.2 – Examples of access control and data handling policy rules [166]
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have only SLA to specify privacy policies to their sensitive data, be-
ing completely agnostic about the KDDM process executed by trusted
softwares and their results. In addition, no further assumption about
the context and contestability about the KDDM process execution can
be inferred.

In [168], a privacy by policy approach was developed using ontology
and Semantic Web technology. The approach defines a privacy by pol-
icy enforcement based on privacy protection ontologies and domain
ontologies, following privacy engineering principles. The solution is
based on queries that retrieve PEPs according to conditions as shown
below:

Context(node-type= ’ server ’ and requestor= ’TrafficStateApp ’)
{

Permit process-query On location, trafficstate, vehicle-

type As query-result

Permit retrieve On query-result With (k-anonymity > 10)

Permit TableAnonymization(metric= ’k−anonymity ’, anonymity

-value= ’10 ’) On query-result Retrieve=true

}

The approach proposes also a mechanism to define and evaluate pri-
vacy risks that are used to detect privacy issues in order to select,
configure, and execute PETs. These privacy indicators are calculated
based on the application properties and privacy engineering princi-
ples that describe aspects of the performed data processing and the
application design, such as personal information and the number of
performed functionalities, privacy principles, performed operations
on personal information. In order to minimize the ambiguity of these
concepts and calculate these indicators formally, an ontological frame-
work is proposed constituted by three ontologies: ICT base ontology,
ICT privacy ontology, and ICT privacy protection ontology. The ICT base on-

tology specifies concepts of information, data, system, and other con-
cepts related to ICT and the application domain. The ICT policy base

ontology contains the description of policy elements, such as privacy
policy, policy statement, context, resource, permission, and condition.
The ICT privacy ontology extends concepts from these both ontologies
to represent data controllers, data processors, personal information,
and so forth. The ICT privacy protection ontology provides a knowledge
model for PETs, its inputs, outputs, concepts and parameters.

This ontological framework provides a domain-level ontology that
needs to be extended to describe private information and PET. By
associating ICT base ontology class individuals to privacy ontology and
privacy protection ontology, the approach is capable of reasoning which
PET should be performed depending on conditions based on domain
specific concepts and applications data processing. Although the
approach does not provide insights of context based on IoT sens-
ing, such as behavior or personal workspace, it provides a base that
could be exploited to specify such concepts. An example of an in-
stance of this framework is presented in Figure 4.1. A data process-
ing model is depicted in Figure 4.1.(a) composed by system, com-
ponent, operation, access, process, result item (operation output),
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to retrieve all inferred values of such semantic representation, which
can be class subsumption, SWRL inference or SPARQL query. Next, the
PDP evaluates the policy and notifies the Context Handler of its deci-
sion (12), which, in turn, would translate it back to the PEP (13). Then,
the PEP would verify if the request satisfies all obligations (14) before
responding to the requester. This evaluation response, however, it is
restricted to grant or deny access to resources.

In [172], an XACML-based approach is proposed for access control
on the data provider’s side. The XACML semantics are extended to
represent the service type and contextual elements of the private re-
source, such as purpose, recipient, retention, and purpose of usage.
The extended representation improves the XACML expressiveness of
both privacy policy conditions and classification of private informa-
tion. The approach also provides predefined intention of data usage:
read, collect, and share. A first step towards the creation of a richer
semantics for data operations and a classification for private informa-
tion is proposed, although as a predefined structure.

�.� ����������

In this chapter, we presented Privacy-Enhancing Technolo-
gies (PETs) and works related to our proposed privacy by design

model. We introduced the main categories of Privacy-Preserving
Data Mining Techniques (PPDMTs) and a brief presentation of works
that implement these privacy-preserving strategies to KDDM results.
From a privacy engineering perspective, these approaches do not
provide contestability due to its premise that data is published in
an untrusted environment where privacy adversaries can exploit
underlying statistical information. However, this strategy permits
to relax the trade-off between privacy and data utility, which is
binary and strict in ACMs. We identify two main issues in PPDMT

concerning the privacy by design model that we intend to propose.
Firstly, the number of private attributed defined by the end-user can
be numerous and may impact the performance of these PPDMTs on
the sensor data stream. Secondly, the untrusted model that allows
publishing anonymized datasets or data stream is one entry door
for privacy attacks. We intend to address these two shortcomings of
PPDMTs in or privacy by design model.

We also introduce key concepts of Access Control Models (ACMs)
and related works that allow us to understand the main challenges of
privacy by policy approaches and the most relevant works. Since our
privacy by design model implements a privacy by policy mechanism, the
review of such related works supported our process of definition of
our privacy by policy mechanism. The ACM related works were ana-
lyzed from a perspective of privacy engineering and privacy preser-
vation directives discussed in Section 2.2.
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In Chapter 2, the Semantic Web was identified as a key IoT enabling
technology that can be used to leverage privacy enforcement in the
IoT sensing. In this thesis, we address the problem of privacy en-
forcement in the IoT by providing an ontology-based privacy-by-policy

mechanism sensing that anticipating data processing and evaluating
privacy conditions using semantic annotation of sensor data, data an-
alytics algorithms, and personal information.

In this chapter, we present our first contribution related to the de-
velopment of OPIS, an ontology to represent personal information on
the Sensor Web using concepts from the Behavior Computing (BC)
and Meta-Mining (MM). For this reason, in Chapter 3, we introduced
three knowledge representations: the Semantic Sensor Network On-
tology (SSN-O), the Ontology of Data Mining (OntoDM), and the Be-
havior Computing (BC). The SSN-O constitutes the base on which we
extend the concepts of sensor and feature of interest. The OntoDM is
used to represent KDDMs processes, extending the concept of physi-

89



90 ���� : �� �������� ��� �������� ����������� �� ��� ������ ���

cal sensors into virtual sensors. The BC is used to model and represent
personal information as behavioral features.

In the remainder of this chapter, Section 5.1 presents the rationale
for designing the proposed ontology. Next, in Section 5.2, the goal,
scope, and competencies of this ontology are described. Then, the
ontology design choices, methodology, engineering principles, and
guidelines used to develop the ontology are presented in Section 5.3.
An overview of OPIS is presented, along with its conceptual layers and
core concepts in Section 5.4. Next, knowledge models for personal
information and behavior recognition are presented in Section 5.5,
basing our behavior-centric model for personal information. In Sec-
tion 5.6 the concept of information abstraction and SP are explained
and used to define the concept of virtual sensors and to extend the
concept of SP. The Personal Information Layer is presented in Sec-
tion 5.7, followed by the Semantic Perception Layer (Section 5.8). We
present examples, a use case, and the semantic queries in Section
5.9 to demonstrate the ontology competencies; and summarizes the
contributions of our work in Section 5.10.

�.� ��� ���������

The Semantic Sensor Network Ontology (SSN-O) [40] has become a
de facto standard for semantic sensor annotation on the Sensor Web. It
provides a semantic abstraction to describe sensor, observation, and
features of interest, creating an interoperability layer and a common
vocabulary to abstract these concept and deal with sensor data seam-
lessly. However, its semantic representation is not competent to de-
scribe the association of sensor data to inferred information and data
features that arise in the context of information processing, such as
level of confidence, the degree of freedom, accuracy, precision etc.

The intensive usage of data mining techniques to infer meaningful
information from sensor data has partially introduced these issues.
Traditionally, these techniques were executed over sensor data sam-
ples. More recently, with the dissemination of sensor data stream-
ing, and the challenges created by its big data aspect, approaches
for reasoning over data streams have become necessary if one in-
tends to extract information continuously in a timely fashion [84].
This shifts the sensing process toward an in-network data process-
ing paradigm, which can be defined as a reasoning layer between
physical sensors and final applications. The virtualization of physi-
cal sensors addresses resource limitation issues, common in portable
devices, such as storage and computing capacities, in the same time
that encapsulates the complexity of information discovery and data
mining implementations.

In fact, the manipulation and usage of high-level information, in-
stead of raw sensor data, have been the main concern of the perceptual

computing and the cognitive computing paradigms that are claimed to
be the next stage of context-aware applications [69, 173]. In this con-
text, Henson et al. [68] define the perception computing using the con-



5.2 ���� , ����� , ��� ������������ 91

cept of Semantic Perception (SP) that aims to infer information by
emulating the human perception. The SP generalizes observations
in order to identify known patterns and abstractions that can be as-
sociated with a high-level information (perceptions) using abductive
inference. For this, a background knowledge is expressed and associ-
ated with patterns, so these perceptions can be systemically derived.

Personal information is intrinsically related to the concept of in-
formation processing and human behaviors due to its extensive use
of machine learning and data mining techniques to recognize hu-
man activities, behaviors and related information from sensor data
stream [174]. The myriad of contexts and situations, on which this in-
formation is collected and interpreted on the Sensor Web, is too vast
and has not been covered by any Semantic Sensor Network ontology.
In the case of the SSN-O, the concept of feature of interest represents an
entity whose qualities are observed and associated with the context
of an observation. No further representation for personal informa-
tion or human context exists associated with features of interest as
a consequence of the SSN-O design for domain agnosticism, pushing
this definition toward applications and sub-domains. In addition, the
ontology design privileges the sensing process context instead of the
information discovery that produces or infers meaningful informa-
tion from the sensor observation. In particular, the SSO pattern [121],
proposed in the SSN-O, is not designed to express information pro-
cess scenarios. SSN-O sensors can only represent systems that sense a
stimulus to produce an observation about some feature of interest.

OPIS, an Ontology for Personal Information on the Sensor web is
introduced in this chapter aiming to address these limitations of the
SSN-O. For this purpose, the SSN-O concept of sensor (ssn:sensor) is
extended to represent reasoning over sensor data stream as virtual sen-

sors. Concepts from the OntoDM [131], a Meta-Mining (MM) ontology,
are imported to represent a virtual sensor in terms of its process, im-
plementation, and execution. In lieu of the SSO pattern, virtual sensors

are modeled around the concept of SP. In order to represent personal
information, features of interest are modeled according to the context
of human behavior. In order to make this conceptual model suitable
for a range of use case scenarios, we assert that personal information
is collected, produced, managed, and controlled based on the con-
text of behavior and its temporal frame. Therefore, the conceptual
framework of the BC [21] is used to define the behavioral entities, a set
of semantic representation for features of interests involved during a
human behavior, that is capable of serving as a conceptual framework
for personal information.

�.� ���� , ����� , ��� ������������

OPIS is a modular ontology for the Semantic Sensor Network. Its
main goal is to provide an ontological framework capable of repre-
senting personal information on the Sensor Web, considering the be-
havioral context where this information is collected, managed, and
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used; and the information discovery scenarios that are specified, im-
plemented and executed to produce it.

Qn Question

1 Which type of personal information (behavioral entity) is related to a sensor data
X?

2 Which virtual sensors produce personal information X?

3 What is the behavior (context) related to the observed/perceived personal informa-
tion X?

4 Which parameters are related to the quality of personal information using the
semantic perception process X?

5 Which information processing techniques are used to infer personal information
X?

6 Which information processing techniques are used in virtual sensor X?

7 On which (virtual or physical) machine a personal information X has been in-
ferred?

8 Which properties of features of interest are used as input of semantic perception
process X?

Table 5.1 – Competency questions

In order to describe virtual sensors and personal information, the con-
cepts of sensor and feature of interest from the SSN-O are extended.
Virtual sensors can be expressed in terms of specification (process),
implementation, and execution. The process extends the SSN-O sens-
ing process (ssn:sensingProcess), allowing to specify scenarios, algo-
rithms, objectives, inputs, outputs, and data types. The implementa-
tion permits to describe how the process is concretized, along with
run-time parameter specifications and values, toolkits, and programs.
The execution represents how the implementation is concretely real-
ized (executed) in a machine, as well as its input and output. The
personal information is defined through behavioral entities that extend
the SSN-O concept of feature of interest (ssn:featureOfInterest), its re-
strictions, and it is associated with virtual sensor inputs and output
through the Semantic Perception paradigm. Therefore, the scope of
OPIS is defined around the concepts of semantic perception, virtual sen-

sor and behavioral entities that are described in detail in Section 5.6, 5.8,
and 5.7 respectively.

The competency of an ontology can be evaluated by querying indi-
viduals based on the semantics provided. For this reason, a list of nat-
ural language questions is useful for defining clearly what wants to
be represented using the ontology. Considering the goals and scope
presented in this Section, we established a list of competency ques-
tions, presented in Table 5.1, which OPIS is designed to answer.

�.� �������� ������

The development of a new ontology is an exhaustive process that
aims to build a formal representation consensus over a knowledge
domain. This demands rigor to ensure characteristics considered rel-
evant to ontologies, such as vocabulary, robust structure, and founda-
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tional ontology alignment that can maximize the chances of its wide
adoption.

We followed principles and best practices for ontology develop-
ment from the OBO Foundry 1 and the NeOn Project 2. The com-
mon principle in both projects is the reuse of existing ontologies that
intends to unify the vocabulary. This principle was based on the
perspective of standardization and developed to improve ontology
design progressively while aligning reciprocally ontological frame-
works around shared and reused vocabularies [175]. The use of foun-
dational ontologies, middle-level, and domain-level ontologies to ac-
quire established knowledge representation in the researched domain
is strongly suggested in HCOME, a methodology for ontology engi-
neering proposed by Kotis and Vouros [176]. Other OBO Foundry
principles followed in the development of OPIS include to: i) define
a clearly bounded subject-matter, ii) make use of coherent natural
language definitions of top-level terms, incorporating cross-product
links to other OBO Foundry ontologies, and iii) represent common
relations that are unambiguously defined.

The scope and content of the ontology must coverage a specific
subject domain, providing a balanced coverage on the subject-matter.
For this reason, the reuse of middle-level and domain ontologies can
provide an ontological framework to verify this balance. Moreover,
well-adopted ontologies can offer a consensus over a high-level de-
scription of a domain of knowledge and support interoperability with
other ontologies.

In that direction, the ontology proposed in this thesis adopts the
SSN-O as the domain-level ontology and extends its capacity to repre-
sent personal information. As described in Chapter 3, SSN-O is aligned
to the foundational ontology DOLCE-DnS UltraLite (DUL), which is
a simplification of the upper-level ontology DOLCE [177]. DOLCE was
conceived as a foundational ontology in the context of project Won-
derWeb, which settles DOLCE formalization, formal mapping to BFO,
and practical use cases based on the description of web services,
the application server for the semantic web, and web service infras-
tructure. In order to propose domain-level instantiation of DOLCE,
DOLCE-Lite was proposed, aligned to DOLCE and extended using the
Description & Situations Ontology (DnS) [178], which is designed to
represent situations, contexts, hypothetical assumptions, and method-
ology applied to several domains. This extension with DnS is used as
a plug-in to DOLCE and provides a cognitive ontology that can be
used to describe situations and contexts, called DOLCE-DnS UltraLite:
DUL.

By extending its classes to represent semantic sensor annotation,
the SSN-O benefits of DUL commonsense language to represent fea-
tures of interest. As a consequence, these features can be represented
using the same cognitive commitment commonly found in informa-
tion discovery scenarios. Ultimately, the inference of information,
such as events, physical objects, agents, places, mobile objects, docu-

1. http://www.obofoundry.org/ (accessed on 26/04/2017)
2. http://www.neon-project.org/ (accessed on 26/04/2017)

http://www.obofoundry.org/
http://www.neon-project.org/
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Figure 5.1 – An example to evidence the differences between DOLCE and
BFO design choices.

ments, sentiments, is the objective of perceptual computing and cog-
nitive computing paradigms used in context-aware applications that
consume sensor data. On the other hand, the description of KDDM it-
self, its implementation and execution, cannot be specified using DUL.
In this case, BFO-based ontologies such as the OntoDM offers a bet-
ter representation, being capable of describing these entities on three
important endurances: specification, implementation, and execution.
This difference occurs because DOLCE (and DUL) is methodologically
fundamentally conceptualist while BFO is essentially realist [179]. For
example, DOLCE distinguishes between abstract and concrete entities,
including agents and intention, being an ontology of instances that rep-
resent classes for these particular instances [112]. In contrast, BFO

is committed to representing classes for particulars and for universal
concepts, which allows representing temporal or spatial models while
in DOLCE, these temporal and spatial models are not built natively. To
cope with this discrepancy between the design commitments of SSN-O

and OntoDM foundational ontologies, we propose to extend classes
from both domain ontologies simultaneously.

In Figure 5.1, we present an example that evidences the difference
between DOLCE and BFO in the context of our ontology design. The
entities KDDM and its representation in different time endurance are
not captured by DOLCE (SSN-O and DUL). It concentrates in describing
KDDM as a process and a computer program (subclass of information

object) without differences of endurance between its specification, im-
plementation, and so forth. From a BFO realistic perspective, KDDM as
a specification of a process can be expressed in two level of specifica-
tion: KDDM specification (subclass of generically dependent continuant)
and KDD implementation (subclass of specifically dependent continuant).
The capacity to express a specific dependence to any dependent con-
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Level Origin Namespace

Upper-
level

DOLCE-DnS UltraLite dul

Basic Formal Ontology 3version 1.1 bfo11

Basic Formal Ontology version 2 bfo2

OBO Relational Ontology 4 ro

Middle-
level

Ontology for Biomedical Investigation 5 obi

Information Artifact Ontology 6 iao

Software Ontology swo

Domain

Semantic Sensor Network Ontology ssn

Ontology of Data Mining (OntoDM) odm

Environment Ontology [180] envo

Ontology for General Medical Science [181] ogms

Mental Functioning Ontology [182] mf

Neuro Behavioral Ontology [183] nfo

Phenotypic quality [184] pato

Ontology for clinical research and base expertise 7 visf

Informed Consent Ontology 8 ico

Table 5.2 – Ontology imports.

tinuant leverages BFO expressiveness. A KDDM execution is then ex-
pressed as an occurent, achieving the objective defined in KDDM speci-
fication. The concept of information object which is defined as a "piece
of information independently how it is concretely realized" is repre-
sented separately using the realization (KDD implementation) and its
concretization (execution).

The clear definition of terms for classes and properties varies ac-
cording to the ontology developing community. The OBO Foundry
demands a clear and unambiguous definition, using human-readable
property annotations, such as rdfs:label (as primary label), iao:Im-
portedFrom, obo:hasExactSynonym, to annotate synonyms, abbrevia-
tions, examples of use, and other information that can help ontology
users to understand the context of the term definition. The NeOn
Project and the OBO Foundry highlight the importance of making
reference to external classes whenever is possible in order to mini-
mize duplication of efforts. OPIS imports and/or extends classes from
SSN-O, the OntoDM, and their respective upper and middle-level on-
tologies (DUL, BFO, OBI, IAO, and SWO).

In addition, OPIS also makes cross-references with classes from ex-
ternal ontologies, as presented in Table 5.2 and described below:

— Environment Ontology (ENVO) 9: ontology for specifying a wide
range of environments relevant to multiple life science disci-
plines [180].

4. https://github.com/BFO-ontology/BFO (accessed on 26/04/2017)
5. http://www.obofoundry.org/ontology/ro.html (accessed on 26/04/2017)
6. http://purl.obolibrary.org/obo/obi (accessed on 26/04/2017)
7. https://github.com/information-artifact-ontology/IAO/ (ac-

cessed on 26/04/2017)
8. https://github.com/openrif/vivo-isf-ontology (accessed on 26/04/2017)
9. https://github.com/ICO-ontology/ICO (accessed on 26/04/2017)
9. http://environmentontology.org/ (accessed on 26/04/2017)

https://github.com/BFO-ontology/BFO
http://www.obofoundry.org/ontology/ro.html
http://purl.obolibrary.org/obo/obi
https://github.com/information-artifact-ontology/IAO/
https://github.com/openrif/vivo-isf-ontology
https://github.com/ICO-ontology/ICO
http://environmentontology.org/
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— Ontology for General Medical Science (OGMS) 10: ontology of
entities involved in a clinical encounter, describing the human

being, bodily process and medical disciplines, such as diseases,
disorders, patients, so forth [181].

— Mental Functioning Ontology (MF) 11: ontology for describing
human mental functioning, such as belief, cognitive capabilities,
personality, mental processes, and so forth. [182].

— Neuro Behavioral Ontology (NBO) 12: ontology for systematic
representation of behavior process and behavioral pheno-
type [183]. The behavior process is extended from the Gene
Ontology (GO) [185] class of biological behavior while the be-
havior phenotype characterizes behavior and allows classifying
its quality as normal or abnormal.

— Phenotypic quality (PATO) 13: ontology for phenotype quality
ontology [184], which provides a framework to represent phe-
notypes and its qualities. The quality branch of PATO can be
used to describe behaviors using one or more entities [183].

— Ontology for clinical research and base expertise (VIVO-ISF) 14:
ontology for researchers and research domain based on the
open-source project CTSAConnect 15. It includes classes of
project, laboratory, and geographic location, providing a
well-defined ontological framework integrated to other OBO

Foundry ontologies.
— Informed Consent Ontology (ICO) 16: ontology for documenta-

tions and processes in human subject research involved in in-
formed consent. ICO provides representation for personal infor-
mation, anonymized data, and informed consent processes.

In order to deal with the extensive number of classes and imports,
we followed the Minimum Information to Reference an External On-
tology Term (MIREOT) guidelines, created in the context of OBI de-
velopment [186]. These guidelines provide a method for optimizing
the reuse of existing ontology resources, minimizing rework for tasks
related to import specific classes. The method consists of gathering
the minimum information from the external class, targeting only the
class or branch of the ontology relevant to represent the imported
class. The OntoFox tool 17 [187] was developed to assist the MIREOT

method.

10. https://github.com/OGMS (accessed on 26/04/2017)
11. https://github.com/jannahastings/mental-functioning-ontology (ac-

cessed on 26/04/2017)
12. https://github.com/obo-behavior/behavior-ontology (ac-

cessed on 26/04/2017)
13. https://github.com/pato-ontology/pato/ (accessed on 26/04/2017)
14. https://github.com/openrif/vivo-isf-ontology (accessed on 26/04/2017)
15. https://github.com/openrif (accessed on 26/04/2017)
16. https://github.com/ICO-ontology/ICO (accessed on 26/04/2017)
17. http://ontofox.hegroup.org/ (accessed on 26/04/2017)

https://github.com/OGMS
https://github.com/jannahastings/mental-functioning-ontology
https://github.com/obo-behavior/behavior-ontology
https://github.com/pato-ontology/pato/
https://github.com/openrif/vivo-isf-ontology
https://github.com/openrif
https://github.com/ICO-ontology/ICO
http://ontofox.hegroup.org/
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The ontology contains 69 classes and 5 object properties, 1 data
property and it is available at https://github.com/thiagomoreirac/
opis (accessed on 26/04/2017). These classes and object properties
are aligned to upper-level ontologies, and extended from middle-
level and domain ontology classes, as previously described in Ta-
ble 5.2. Besides that, the equivalence between BFO-based classes and
these extensions are provided.

Figure 5.2 – OPIS overview. Red boxes represent behavioral entities. Blue,
yellow, and orange boxes represent respectively the specifica-
tion, implementation and execution representation for KDDM

processes according OntoDM. Cyan boxes represent the SSN-O

classes.

OPIS is defined in two layers of semantic representation: the
Semantic Perception Layer (SPL) and the Personal Information
Layer (PIL). Figure 5.2 illustrates in a higher-level how these two
layers are arranged among each other and associated with the
physical layer constituted by the SSN-O.

In the SPL, the Semantic Perception Process (SPP) is described, along
with its implementation (virtual sensor), and execution (virtual sensor

execution). The SPP extends the ssn:sensing and denotes the observed
properties (ssn:property) and perceived behavioral entities. The virtual

sensor execution is an extension of the ssn:sensor. Instead of stimulus,
virtual sensor execution has observation datasets (virtual sensor input)
as input and one semantic observation value in a virtual sensor output as
output. This semantic observation value ultimately points to an IRI of a
semantic representation (class, object property, data property, annota-
tion property) that describe a personal information.

In the PIL, a set of interrelated concepts is defined to represent any
feature that may describe or participate in a behavior performed by
some behavioral agent. Each class is extended from the concept of be-

havioral entity and should be specialized according to the application

https://github.com/thiagomoreirac/opis
https://github.com/thiagomoreirac/opis
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domain. Three levels of abstractions are defined in PIL: behavioral fea-

ture, behavior, and behavioral entity profile. Behavioral features are the
lowest level of information modeling and are formed by class axioms
and object properties that concretely represent personal information,
such as information about personal plans, belief, objects, work con-
texts, and so forth. Behaviors correspond to events on which these
entities participate. Behavioral entity profiles represent higher-level in-
formation derived from aggregations of behavioral entities.

�.� ���������� ����� ��� �������� �����-

������

Personal information is a commonly overloaded term referring
both to an individual and information about oneself; as well as to
information controlled and owned by someone [20]. As stated in
Section 1.3, in the scope of this thesis, personal information is defined
as all data, information, and knowledge related to an individual and/or

under her control.
The analysis, classification, integration and management of per-

sonal information is a challenging task due to its different aspects
and perspectives. Traditionally, personal information annotation and
classification were proposed in the context of Personal Information
Management (PIM) systems [188]. With the diffusion of the Seman-
tic Web technology and ontologies for knowledge representation and
management, personal information started to be formalized using OWL
encoding. However, since personal information were essentially cre-
ated and managed using computers, most of the PIM-based ontolo-
gies describe personal information as artifacts or media, such as files,
documents, images, email etc. More recently, with the advance of
pervasive computing and information processing techniques, all sort
of personal information can be inferred based on the continuous ob-
servation of individuals using sensor data.

The behavioral modeling provided by the Behavior Computing (BC)
offers a systematic way of understanding features that explains or pre-
dicts behaviors. In BC, behaviors refer to actions, operations or events
conducted by agents within certain context and environment (virtual
or physical ones), focusing on symbolic behaviors that represent these
activities into a computational model. The convergence between per-
sonal information representation and the recognition of human be-
haviors is due mainly because of the extensive use of machine learn-
ing and data mining techniques to extract information from sensor
data. BC not only provides the model and tools to structure, model,
represent, simulate, analysis, and use, but also the behavioral feature
space to convert transactional data and sensor data to behavioral data.
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�.�.� Ontologies for Personal Information and Behavioral Recogni-

tion

The use of ontologies to represent personal information has been
investigated in different contexts, such as PIMs and desktop environ-
ments [189, 141]; and behaviors/human activity recognition [190, 191,
192, 174]. Ontologies for personal information on the desktop envi-
ronment are semantically richer about subjects (agents) and objects
(personal information managed during a behavior) while ontologies
for human activity recognition tends to focus on the description of
behaviors (activities), contexts and locations. Table 5.3 presents a rep-
resentative set of ontologies for personal information in the context
of PIMs, desktop applications, and human activity recognition, and its
mapping to the set of behavioral features proposed by the BC.

Several concepts are specialized according to the knowledge do-
main. For example, PIMO [141] describes specific concepts of file
system organization, folders, views, and tags used to classify me-
dia and artifacts in a computer. On the other hand, behavior recog-
nition approaches have traditionally exploited probabilistic models,
sensor types, body positions, human interactions, and environment
conditions [197]. For instance, CoDAMoS represents information
about user, environment, platform, and service in ambient intelli-
gence. Users can be specified in term of task, profile, role, mood, and
preferences. Platform has software, hardware, and environment with
location, time, and environmental conditions, such as temperature,
pressure, and noise. Service has profile, model, software provider
and is used by tasks (and activities).

Practically, both sets of information are related to individuals and
the way they interact with the computer, information, or the envi-
ronment. Smart meters that capture environment conditions, such
as CO2, luminance, and air quality levels, are currently used to opti-
mize temperature regulation in smart building [198]. However, these
smart meters can impose serious privacy threats because of the infor-
mation that can be inferred and predicted about details of a home
place, such as a number of occupants, their daily routine, and their
devices [199]. The gap between this information and the concept of
privacy (i.e., personal information) evidences the inability of current
ontologies to represent the association between lower-level data and
meaningful person information that is understandable by end-users.

There are still several concept overloads in this subset of personal
information approaches. The lack of the adoptions of Linked Data
principles 18 or ontology design best practices, such as the alignment
with foundational and middle-level ontologies, are one of the main
reasons for this problem, and hence limits the interoperability of sys-
tems that adopt these ontologies.

In that direction, Khefifi [142] proposes an ontological framework
using the concepts of points of views, organizing the reuse of domain-
specific ontologies to classify and contextualize personal information.

18. https://www.w3.org/DesignIssues/LinkedData.html (ac-
cessed on 26/04/2017)

https://www.w3.org/DesignIssues/LinkedData.html


1
0
0

�
�

��
:

�
�

�
�

�
�

��
�

�
�
�

�
�

�
�

�
�

�
�
�

��
��

��
��

��
�

�
�

��
�

�
�

�
�

�
�

�
�

�

Behavioral Fea-

ture

CoDAMoS Ontol-

ogy [193]

PiVOn - Context

Model Ontol-

ogy[194]

Complex Human Activi-

ties Ontology[195]

Personal Ontology[196] PIMO[141] Foundational Ontology-based

Human Activity Model[192]

subject
user user person - actor person - organization party - person - organiza-

tion - group of persons
user - agent

object

service - object -
content

artifact animal - plan - artifact -
document - book - journal
- food - substance - natural
object

person - organization - so-
cial event - document - in-
formation element

physical object

place
location environment - area -

space
symbolic location place - country - city - state

- - home
location - building - city -
country - room - state -

place

context
environment condi-
tion

user situation - event event event - social event - meet-
ing

situation

belief - knowledge education - expertise - abil-
ity

knowledge base

action task task action task

goal goal

plan schedule project

impact

constraint physical characteristics

status

associate role role - contact interaction type class role - role of person role

time time time time extent SWRL temporal

behavior
activity activity - social activity -

individual activity -
activity - research - teach-
ing -

activity

profile - pattern profile user profile profile

Table 5.3 – Comparison of approaches for personal information representation based on ontologies
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Term Description Example SSN-O mapping Information Processing

entity An object or event in the world. apple ssn:entity ssn:featureOfInterest

quality An inherent observable property of an entity. red ssn:quality dul:region

quality-type A category (or class) of quality color ssn:quality ssn:property

percept A quality that has been detected red ssn:quality ssn:observationValue

observer An agent that executes the observation-process sensor ssn:sensor ssn:sensor

perceiver An agent that executes the perception-process computer - information processing unit

focus A quality-type whose detection may reduce the perceptual-theory color ssn:quality ssn:property

perceptual-
theory

A set of entities that each explains a set of percepts {apple, nose} - predictive models

inheres-in A relation between a quality and an entity red inheres-in apple ssn:isQualityOf ssn:isPropertyOf

has-type A relation between a quality and a quality-type red has-type color - ssn:hasRegion

observation-
process

An act of detecting a quality and generating a perception observation-process(red)! red ssn:observation ssn:observation

perception-
process

An act of inferring a perceptual-theory from a set of percepts perception-process(red)!{apple,
nose}

- information processing

execution

perception-cycle An act of minimizing a perceptual-theory by focus attention perception-cycle (...)!{apple} -

- Information quality related to the information processing {information accuracy, level of confi-
dence}

- inference quality

- Information about the perception-process {algorithms, parameters} - inference provenance

Table 5.4 – The original mapping IntelleO x SSN-O from [200] versus our mapping based on information processing concepts.
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The framework focus on a formal definition for ontology matching to
associate: i) personal information, ii) information type and classifica-
tion, and iii) personal and informational context. The set of semantic
mappings between different contexts, ontology axioms, and informa-
tion type delivers constitute the user’s preference and it is used to
infer about personal information and privacy policy conditions. A
similar approach for multi-ontology-based PIM is proposed in [201].
Xiao et al. [201] define a layered ontology-based framework with an-
notations, association and navigation capabilities. Both strategies do
not define any ontology for personal information, restraining to for-
malize the ontological framework necessary to annotate and retrieve
artifacts.

The representation of personal information in different contexts has
not been properly addressed, in particular in situations related to the
pervasive computing and the Sensor Web. In the next section, we
present the Semantic Perception (SP) paradigm to address the prob-
lem of representation between personal information and sensor data.

�.� ��� �������� ���������� ��������

�.�.� Information Abstraction and the Semantic Perception

The concept of information abstraction is commonly found in infor-
mation processing scenarios, referring to the process of generalization
and incorporation of knowledge from a low-level context to a high-
level context. Sigg et al. [202] define information abstraction as the

amount of processing applied to the data and the accumulated information

accuracy associated with this process. This highlights how the data prove-
nance, such as physical and virtual environment contexts, parameters
and conditions, are part of the information obtained from data pro-
cessing. Ganz et al. [203] define two level of information abstraction
with regard to the sensor-centric and user-centric perspective of the
IoT: data abstraction and semantic abstraction. The former represents
atomic and static information obtained by gathering timestamped
data from physical sensor streams or its semantic annotation, such
as sensor type, capability, accuracy etc. These annotations are com-
monly represented using the Semantic Sensor Network ontologies
such as the SSN-O. The latter corresponds to the inferred informa-
tion obtained by observing data abstractions and generalizing these
observations using logical inference, data mining or machine learn-
ing techniques. The result of this process is interpreted according to
known patterns and expressed as semantic representations.

Henson et al. [200] introduce an ontology-based solution for seman-

tic abstraction based on the theories of perception and logical inference.
The approach provides a Semantic Perception (SP) process using se-
mantic reasoning and an ontology – IntellegO – that perceives higher-
level information based on sensor data. The main ideas underlying
this work relies on the cyclic nature of the SP process, background
knowledge representation, and the hypothesis test using the sensor
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data. The perception process is formally modeled into IntellegO, al-
lowing to infer, through OWL reasoning, semantic representations that
better interpret a set of low-level observations (sensor data). Henson
et al. utilize the concept of perception-cycle (focus) and graceful degrada-

tion (abductive inference) to provide the best explanation for the per-
ception process, even when sensor observations are incomplete [68].

In order to provide compatibility to the SSN-O, a mapping between
IntellegO and the SSN-O is provided in [200]. This correspondence
is presented in Table 5.4 (in columns term, description, example, and
SSN-O mapping), along with our mapping to SSN-O and information
processing concepts. Our mapping to SSN-O diverges from their origi-
nal one based on the criteria of using the most specialized SSN-O enti-
ties as substitutes for generic terms. For example, instead of specifies
ssn:entity as object or event in the world, the ssn:featureOfInterest
represents more specifically the same concept.

Some semantic representations not covered by the SSN-O or the In-
tellegO, such as the information processing unit, predictive model, infor-

mation processing execution, inference quality and inference provenance,
are a consequence of the increasing usage of information processing
to process sensor data. In the next section, we discussed these char-
acteristics and the available semantic representations for them.

�.�.� Meta-Mining for Semantic Perception and Virtual Sensors

The strong influence of the Sensor Web and the IoT has brought at-
tention to the connected things with sensory and information process-
ing capabilities [1], enlarging the boundaries of sources (sensors, so-
cial network streaming, databases) and application partitioning [62].
Thus, virtual sensors constitute a conceptual layer that concretely im-
plements information processing scenarios, leveraging the Semantic
Sensor Network from a physical to a perceptual and cognitive sens-
ing.

However, the term semantic perception, which was originally coined
in [200], implemented the perceptual model using an ontology-based
abductive logic framework. Even if virtual sensors implement other
information processing scenarios that result in the perception of se-
mantic representations, such as those works classified as CEP [84], the
term SP would not be employed correctly.

In this thesis, we retain the semantics of the term Semantic Percep-

tion (SP) to represent any information processing scenario that infers high-

level information from lower-level data. However, we extend the scope
of its applications beyond the original focus on the use of logical in-
ference to include data mining and machine learning techniques for
realizing SP. We use this concept to address the issue of association
between sensor data and personal information by designing SP as the
new paradigm of sensing for virtual sensors that implement perceptual
or cognitive sensing. As a consequence, virtual sensors are defined as
information processing implementations of SPs that produce semantic
representations, in particular, those defined as personal information.
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Behavior

Feature

Behavioral Entity Realist Mapping BFO-based Descriptive Mapping

DUL-based

s behavioral agent v obi:human being v dul:agent

o actionable object v bfo:object v dul:object

w
geographic feature ⌘ envo:geographicFeature v dul:physicalPlace

geographic location ⌘ visf:geographic location v dul:place

b belief ⌘ mf:belief v dul:concept

a behavior action v ogms:bodily process v dul:action

g behavioral goal v iao:objective specification v dul:goal

e context v envo:environmentCondition v dul:situation

l behavioral plan v iao:planSpecification v dul:Plan

u status v pato:processQuality v dul:planExecution

t temporalRegion ⌘ bfo:temporalRegion ⌘ dul:timeInterval

Table 5.5 – Behavioral entity classes origin and mapping

Since SP and virtual sensors are the specification and implementa-
tion of information processing scenarios, they are representable with
OntoDM concepts. This Meta-Mining (MM) ontology provides seman-
tic representations that were found neither in IntellegO nor in the
SSN-O to specify virtual sensors.

�.� ��� �������� ����������� �����

According to the SSN-O, features of interest can represent an abstrac-
tion of real-worldd phenomena, such as persons, events, data, or
any measurable thing. SSN-O purposely defines features at this level
so domain-specific applications can instantiate them. This domain-
agnosticism related to the observed feature of interest and its proper-
ties does not permit to classify as personal either these features or the
sensing data of the observed properties. In the Personal Information
Layer (PIL), we specify a new conceptual layer to represent personal
information by extending features of interest into behavioral entities.

Behavior entity is the semantic concept that represents the BC con-
cept of behavioral feature based on the SSN-O concept of feature of inter-

est ( v ssn:Feature-OfInterest), as defined in Vector 3.1. As features of

interest, behavioral entities can be observed using sensors and virtual

sensors where the sensor output represents the ssn:observationValue
of a specific ssn:property, and the virtual sensor output represents the
semantic observation value of behavioral entity representations. We clas-
sify behavioral entities in behavioral entity classes and behavioral entity

properties. The former is related to entities that exists from observable
individuals, and it is defined as:

γc = {s, o,w, b, a, g, e, l, u, t} (5.1)

The latter consists of properties that are observable from associative
relations or state transitions, defined as follow:

γp = {f, c,m} (5.2)
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Figure 5.3 – Behavioral entity classes and their relationships. Cyan boxes rep-
resent SSN-O/DUL entities. Dotted arrows represent the sub-
sumption relationship.

Figure 5.3 presents the behavioral entity classes (γc) and their rela-
tionships. Behavior entities is a superclass of all behavioral features,
including behavior itself and pattern vectors of behaviors (behavioral

entity profile). Aiming to represent behavioral entities as personal infor-

mation, we conceive behavioral entities as subclasses of ssn:featureOfIn-
terest and the ICO class of personal information.

B e h a v i o r a l E n t i t y v ssn : f e a t u r e O f I n t e r e s t u
v i c o : personal Informat ion

⇧

For the definition of γc entities, we observed DUL and BFO concepts,
aiming to represent them from a descriptive and realist perspective.
The terminology was inspired or incorporated from external ontolo-
gies indexed in the OBO Foundry (BFO-based) and from DUL entities.
Consequently, two mapping were generated from this process, result-
ing in the terminology, imports, and reuses of behavioral entity classes

presented in Table 5.5. The behavior feature place is represented in
two senses: physical location and geographic location, contemplating re-
spectively the physical and descriptive view. The remainder of the γc

entities has the same semantics of behavioral features.

Object Property Realist Mapping BFO-based Descriptive Mapping

DUL-based

hasGeographicLocation ⌘ visf:hasGeographic-
Location

v dul:locationFor

isUsedIn v ro:functionallyRelatedTo –

hasSpatialRegion v ro:locatedIn v dul:hasRegion

contributesTo – v dul:isConceptUsedIn

isAcknowledgedBy – v dul:isConceptualized-
By

Table 5.6 – Set of behavioral entity class properties (descriptive perspective)

Any information produced by or related to an individual is per-
sonal. These relationships are represented as object properties restric-
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tions in behavioral entity classes. DUL provides the most part of these
object properties. However, five new object properties were not found
in DUL nor in BFO-based ontologies to describe some relationships be-
tween behavioral agent and γc entities are presented in Table 5.6. How-
ever, as highlighted in the table, differently from the γc entities, not
all correspondences in DUL and OBO Foundry ontologies are found
for the proposed object properties. The object property hasGeographi-

cLocation defines a geographic location where a physical object or place
exists in a specific time. The isUsedBy property represents the util-
ity of an actionable object for a behavioral agent. Next, hasSpatialRegion

defines a spatial region for a physical object or place. ContributesTo

represents the influence of a belief in behavioral goal. Lastly, isAcknowl-

edgedBy property corresponds to the mental capacity of a behavioral

agent to know, reason, assume, believe, or understand a specific belief.

Axiom Expression

geographic
feature

v 9 hasSpatialRegion dul:spaceRegion

v 9 6 1 isGeographicLocationOf behavioralAgent

geographic
location

v 9 6 1 locationFor owl:Thing

behavioral
agent

v 8 dul:isAgentInvolvedIn behavior

actionable
object

v 9 hasGeographic location geographicFeature

v 8 isUsedBy behavioralAgent

belief
v 9 contributesTo BehavioralGoal

v 8 isAcknowledgedBy behavioralAgent

behavior action
v 8 dul:involvesAgent behavioralAgent

v 9 dul:executes dul:task

behavioral goal v 8 isConceptualizedBy behavioralAgent

behavioral
plan

v 9 dul:hasComponent dul:task

v 9 dul:hasComponent behavioral goal

v 8 isConceptualizedBy behavioralAgent

status v 8 dul:satisfies behavioral plan

context
v 9 dul:hasPostCondition context

v 9 dul:hasPreCondition context

v 8 dul:includesEvent behavior

impact v 96 2 dul:isSettingFor behavioral

Table 5.7 – Semantic expressions for behavioral entity class restriction

Based on these object properties, we present in Table 5.7 the initial
and extensible set of semantic expressions that defines intensionally γc

entities based on the relationship between behavioral agent and the rest
of γc entities. Firstly, we define the geographic feature as a spatial entity
that has hasSpatial regions. Next, we related the spatiotemporal exis-
tence of physical object entities behavioral agent and actionable object

to geographical location (hasGeographicLocation) using the geographic

feature. Geographic features were additionally described as being a ge-
ographic location for at least a behavioral agent. The descriptive entity
for place, geographic location, defined as location for (dul:locationFor)
at least one thing.



5.7 ��� �������� ����������� ����� 107

Behavior

Feature

Behavioral Entity Realist Mapping BFO-based Descriptive Mapping

DUL-based

f impact v ro:causalRelationBetween-
Processes

v dul:precedes

c constraint v ro:causesCondition v dul:isConstraintFor

m associate v ro:temporallyRelatedTo v dul:associatedWith

Table 5.8 – Relational behavioral entities

The involvement (dul:isAgentInvolvedIn) and its inverse property
(dul:involvesAgent) of the behavioral agent to the behavior is required
and becomes the entailment that associates the observation and the
behavior abstraction level.

The actionable object is defined as any object (dul:object) used by
some behavioral agent, i.e., any physical, agent, or social object that
has a utility in the context of a behavior observation. This object can
participate and imposes restrictions to the behavior. For instance, the
object "bike" can restrict the mobility behavior to bike lanes and the
agent’s speed.

The notion of belief as mental representation is precedent and nec-
essary in shaping our action and contributes to determine our be-
havior strictly depending on the pursuit goals [204]. Therefore, we
extended the DUL class of concept (dul:concept) to represent beliefs

which, in turn, can be used to define, characterize, parametrize, cover
social objects (dul:socialObjects). The mental function performed by a
behavioral agent is represented in using the property isAcknowledgedBy.

Action is an event realized by one or more agents aiming to ac-
complish a goal or follow a plan. Thus, we specify behavior action as a
specialization of DUL class of action (dul:action) on which participates
(dul:involvesAgent) any behavioral agent. The concept of dul:action is
conceptualized as a task execution. We specialize hence the DUL class
of plan (dul:plan) to described behavioral plan as some social object
composed of tasks and goals and conceptualized by behavioral agents.
In addition, DUL defines properties that permit specifying precedence
and part-hood of actions, tasks, and plans. Then, the concept of status

is a process quality that expresses a state of the plan execution using
a DUL class of description (dul:description).

Lastly, the concept context defines a condition of an environment
that may have post condition (dul:hasPostCondition) or pre-condition
(dul:hasPreCondition), and it is involved in some behavior.

The set of behavior entity properties γp is presented in Table 5.8.
These entities are conceived as properties because of its relational
nature. The concept of impact property captures the causality
between two or more behaviors or precedence in terms of that
causality, extending the DUL property of precedence (dul:precedes)
and the OBO RO property of causal relation between processes
(ro:causalRelationBetweenProcesses). The concept of constraint has a
causality between a behavior and a behavioral entity class, extending the
DUL property of constraint relationship (dul:isConstraintFor) and the
OBO RO property of condition causality (ro:causesCondition). Lastly,
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the associate property represents the relationship that behavioral

entities have with each other, being an extension of DUL property of
association (dul:associatedWith) and OBO RO property of temporal
relation (ro:temporallyRelatedTo).

A behavior is an event which concept is defined by the set of behav-

ioral entities that participates in the event. Since behaviors can be com-
posed of other behaviors (v 9 ro:hasPart behavior), the level of gran-
ularity of behaviors can also be represented semantically. Figure 5.4
depicts an example of behavior granularity that can be represented
using OPIS. Besides that, behavioral entities that have a temporal aspect

Figure 5.4 – Example of behavior hierarchy

of occurrence can be integrated or derived, changing the represen-
tational abstraction level. For instance, the spatial extension of an
observed geographic feature or the average wind speed associated with
a moving agent can change substantially if measured during one sec-
ond or during one hour.

In particular, behaviors can be arranged hierarchically in a tree-like
structure which increases the level of detail toward its leaves. Since it
is possible to scrutinize and observe behaviors, its abstraction level is
logically extended to behavioral entities.

Ultimately, a behavior pattern can be represented in terms of a se-
quence of behaviors (−!⌧ ) . We define behavioral entity profile as a special
behavioral entity that represents a type of collection and a data mining
generalization about behavioral entities that shares certain characteris-
tics and is unified by a pattern.

Behaviora lPat te rn v ( dul : t y p e C o l l e c t i o n u
8 dul : i sUnif iedBy dul : pa t te rn ) u
v odm: g e n e r a l i z a t i o n

⇧

This social object provides an effective way to describe generaliza-
tions found in behavioral entities and their properties. Its descriptive
capability based on DUL allows describing the pattern used to unify
such collection. For instance, a sportive profile can represent a recur-
ring pattern of running (behavior) during a period of a month. Besides
that, it can be used to represent data abstraction and patterns, using
the concept of odm:generalization.

Subsumption allows modeling behavioral entity extensionally, i.e., re-
stricting the class membership by conceptual definition, and intension-

ally, i.e., defining restrictions to object properties, cardinalities, and so
forth.
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�.� ��� �������� ���������� �����

The Semantic Perception paradigm describes a virtual sensor in
terms of its input, information processing, and semantic observations.
The information processing, its specification, implementation, and
execution is described in the Semantic Perception Layer (SPL), as
presented in Figure 5.5 and formally defined in Table 5.9. The three
levels of representation are grouped around three main aspects:
a) semantic perception process specification; b) virtual sensor -
implementation and execution; and c) virtual sensor data and dataset
specification.

�.�.� Semantic Perception Process Specification

The OntoDM specification layer provides concepts to describe the
information processing scenario (scenario) and its process in terms of
algorithms, objectives, and data specifications. Figure 5.6 isolates the
entities that are used to specific the Semantic Perception Process (SPP).

OntoDM defines the concept of scenario (odm:scenario) that speci-
fies a sequence of data processing algorithms with inputs and out-
puts. The SPP is thus defined as a specialization of odm:scenario and
ssn:sensing, representing the process which objective is a Semantic
Perception (SP). The SPP is composed of (hasPart) a semantic perception

objective and a sequence of algorithms (obi:algorithm), such as data
processing algorithm, data mining algorithm, and evaluation algo-
rithm; each of them formed by their respective objective specification.
It is important to note that OntoDM specializes data mining algorithms
and their structures, offering a richer representation of those informa-
tion processing techniques not presented here for brevity matters.

Each algorithm has an objective specification which contains
data specifications and descriptive information about the objective.
OntoDM defines two types of data specification: output data specification

and descriptive data specification. Both are about some odm:datatype
and has mapping specifications (odm:mappingSpecification), which
concretely associate the data to its data type. In OPIS, SPP are
restricted to have algorithms which objective specification contains
data specifications associated with observed property and perceived
semantic representation. Therefore, the output data specification in
OPIS is composed of some semantic mapping specification and is about
some semantic perception datatype. The descriptive data specification in
OPIS is formed by some property mapping specifications or semantic

mapping specifications, which allows specifying input using both the
SSO pattern and the SP paradigm. Property mapping specification and
semantic mapping specification extend the OntoDM concept of odm:map-
pingSpecification to denote, respectively, ssn:property and semantic
representation. Datatypes are detailed in the subsection 5.8.3.
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Figure 5.5 – Semantic Perception Layer. OntoDM concepts of specification, implementation and execution levels are represented respectively in blue, yellow, and
orange. OPIS concepts are highlighted in bold and dotted line boxes in the same color of the extended concepts. SSN-O is represented in cyan.
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Axiom Expression

semantic perception ob-
jective

v iao:objectiveSpecification

semantic perception
process

v odm:scenario

v ssn:sensing

v 9 ro:hasPart (iao:algorithm
u 9 ro:hasPart (iao:objectiveSpecification
u 9 ro:hasPart (odm:outputDataSpecification

u 9 iao:isAbout SemanticPerceptionDatatype
u 9 ro:hasPart semanticMappingSpecification)

t (odm:descriptiveDataSpecification u
9 iao:isAbout odm:datatype
u 9 ro:hasPart (propertyMappingSpecification

t semanticMappingSpecification))))

v 9 ro:hasPart SemanticPerceptionObjective

virtual sensor

v odm:workflow

v dul:informationObject

v 8 obi:isConcretizationOf SemanticPerceptionProcess

v 9 ro:hasPart (odm:operator u 9 ro:hasRole (
odm:algorithmImplementation u

9 obi:isConcretizationOf ( iao:algorithm 9

u ro:partOf SemanticPerceptionProcess)))

virtual sensor execution

v odm:workflowExecution u 9 ro:hasAgent obi:computer

v ssn:sensor

v 8 odm:realizes virtualSensor

v 8 obi:achievePlannedProcess semanticPerceptionObjective

v 8 ro:hasPart (odm:algorithmExecution
u 9 ro:realizes (odm:operator u 9 ro:partOf virtualSensor) u
8 obi:hasSpecifiedInput VirtualSensorInput u

8 obi:hasSpecifiedOutput VirtualSensorOutput)

virtual sensor input v odm:DM-dataset u 9 ro:hasPart (odm:dataExample
u 9 ro:hasPart ObservationValue)

virtual sensor output v odm:DM-dataset u 9 ro:hasPart (odm:dataExample
u 9 ro:hasPart SemanticObservationValue)

property mapping
specification

v odm:mappingSpecification

v 9 = 1 iao:isAbout ssn:property

v 9 iao:denotes ssn:observationValue

behavioral entity
mapping specification

v odm:mappingSpecification

v 9 6 1 iao:isAbout owl:Thing

v 9 iao:denotes semanticObservationValue

Table 5.9 – Semantic Perception Layer (SPL) entities
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Figure 5.6 – Semantic perception process specification. OPIS classes in bold.
Central concepts in thicker line boxes.

�.�.� Virtual Sensor Implementation and Execution

The association of the implementation and execution of SPP to its
specification is realized by object properties between these three en-
durance representations, such as isConcretizationOf, achievePlannedOb-

jects etc. The OntoDM implementation layer provides concepts to de-
scribe the information processing implementation in terms of algo-
rithm implementations, parameter specifications, parameter settings,
and operators. The OntoDM execution layer describes the process by
input and output representations used during the information pro-
cessing execution. Figure 5.7 focus on the implementation and execu-
tion representations, adding contextual entities from the SPP specifi-
cation.

The concept of virtual sensor is extended from the OntoDM class of
workflow (odm:workflow), and the DUL concept of information ob-
ject, and must concretize a SPP. Each odm:workflow can be composed
of algorithm implementations (odm:algorithmImplementation) and
their operators (odm:operator). An odm:algorithmImplementation
concretizes an iao:algorithm in the same way that odm:workflow con-
cretizes an odm:scenario. Therefore, a virtual sensor concretizes a SPP

and its odm:algorithmImplementations concretizes iao:algorithms
that are part of this SPP.

An odm:operator plays a role to represent an odm:algorithm-
Implementation that has defined parameter settings (odm:parameter-
Setting). Parameters (odm:parameter) are optionally related
to odm:algorithmImplementations. They have a specification
(odm:parameterSpecification) and act as quality specification repre-
sentation for odm:operators. For example, data mining algorithm
implementations of specific software toolkits, such as Weka, can be
represented as algorithm implementations along with their param-
eters (v 9 obi:hasQuality odm:parameter) which are used to adjust
the algorithm execution. In addition, these parameters can have
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Figure 5.7 – Virtual sensor implementation and execution. OPIS classes in
bold. Central concepts in thicker line boxes. Dotted line arrows
represent subsumption relationship.

specification (odm:parameterSpecification) to describe format and an
identifier for an odm:parameter (v 9 iao:isAbout odm:parameter).

At the execution level, the virtual sensor execution extends the
OntoDM concept of workflow execution (odm:workflowExecution)
and the ssn:sensor, which depends (ro:hasAgent) of a computer
(obi:computer) to be executed. It must realize (bfo:realizes) some
virtual sensor and must achieve (obi:achievesPlannedObjective) a SPP.
The OntoDM concept of algorithm execution (odm:algorithmExecution)
represents the realization of an odm:operator during the execution
of a virtual sensor (runtime). In addition, Virtual sensor execution has
specified input (virtual sensor input) and output (virtual sensor output)
that are used and produced by the virtual sensor.

From information discovery perspective, semantic perception

process is an obi:scenario composed of a sequence of algorithms.
This part-hood is reflected into its implementation (virtual sensor)
and execution (virtual sensor execution) structure. For example,
if a given semantic perception process has specified algorithms
A and B, then the virtual sensor and virtual sensor execution re-
lated to this semantic perception process will also have respectively
sequentially odm:algorithmImplementations Ai and Bi, and
odm:algorithmExecutions Ae and Be.

Virtual sensor input and virtual sensor output are specified as
extensions of the OntoDM concept of dataset (odm:DM-dataset),
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formed by data examples (odm:dataExamples) that contain
ssn:observationValue and semantic observation values respectively.
SSN-O defines observation value as a region for the sensor output,
which is captured during one observation. Sensors produce one
data example per observation, which is specified according to
the observed feature, property, stimulus, sensor, sensing process,
sampling time and so forth. In OPIS, the SSN-O concept of observation
(ssn:observation) for virtual sensors is represented by the OntoDM

concept of mapping specification (odm:mappingSpecification) which
plays a similar role, associating data specification, data type, and data
example. OPIS also specializes the ssn:observationValue to represent
semantic observation values that contain ssn:observationValue and
semantic representations. As a consequence, virtual sensor input can
be composed of ssn:observationValues or semantic observation values.
The structure of the semantic observation value is described in details
in the following subsection.

�.�.� Virtual Sensor Dataset

Data example are extensions of IAO concept of data item
(iao:dataItem) that form an odm:DM-dataset and can represent a
single datum, set of discrete, tuple of specific data type, or more
a complex structure. Data examples are OntoDM representation
for observation values and can be specified according to a data
specification (iao:dataSpecification). Conversely, SSN-O define neither
the ssn:observationValue formats nor the units of measurements.
The OntoDM and the SSN-O designs for observation values and data
examples are thus complementary and compatible.

However, the definition of data examples as a set of ssn:observa-
tionValues produced by sensors do not address completely
the problem of expressing semantic representations as a re-
sult of the information processing. Neither odm:datatype nor
odm:mappingSpecification, that are part of the data specification
that describes odm:DM-dataset, can express this information. OPIS

extends the odm:mappingSpecification, the ssn:observationValue,
and the odm:datatype to express semantic representation in the
algorithm data specification, observation value, and data type.
Figure 5.8 presents the concepts used to specify data and datasets,
and its association to semantic representations and data types.

�������� ��� �������� ������� ������������� As previously
introduced, the odm:mappingSpecification represents the concrete as-
sociation specified in the odm:dataSpecification between the odm:da-
tatype (specification) and the odm:dataExample (execution). In the
OPIS, the odm:mappingSpecification is specialized as property map-

ping specification and semantic mapping specification. The former rep-
resents the concrete relationship among the descriptive data specifi-
cation (odm:descriptiveDataSpecification), the observed ssn:property,
and the ssn:observationValue. The latter represents the relationship
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Figure 5.8 – Data and Dataset Specification. OPIS classes in bold. Central
concepts in thicker line boxes. Dotted line arrows represent
indirect subsumption relationship.

among the output data specification (odm:dataSpecification), the per-
ceived semantic representation (owl:thing), and the semantic observa-

tion value (ontology axiom, ontology assertion, ssn:observationValue).
The odm:outputDataSpecification and odm:descriptiveDataSpeci-

fication are specialized from the IAO concept of data specification
(iao:dataSpecification) in OntoDM to differ between output data, its
description part, and input data. In that direction, OPIS incorporates
odm:descriptiveDataSpecification to specify virtual sensor input, link-
ing its odm:mappingSpecification to ssn:property whose observation
values compose the data examples of virtual sensor input. Similarly,
OPIS includes odm:outputDataSpecification to define virtual sensor out-

put, associating its odm:mappingSpecification to a semantic represen-
tation (owl:Thing) whose instances and classes are part of the data
examples of the virtual sensor output. Data examples can be also spec-
ified according to a data example specification that defines some of its
quality aspects.

�������� ����������� ����� According to SSN-O, ssn:observa-
tionValues represent abstract regions that specify sensor output struc-
ture and units. SSN-O leaves this definition to the application domain.
Complementarily, OntoDM provides representation for data specifica-
tion and data types. This capacity of OntoDM is used to offer semantic
representations to infer automatically about information processing
techniques and data compatibility between them.

In OPIS, we propose to bridge the semantic representation by spe-
cializing ssn:observationValue and odm:datatype toward the concept
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of SP. Virtual sensors differ mainly from ssn:sensor because of its ca-
pacity to produce semantic representation along with observations.
Practically, instead of outputting a description or data mining gener-
alization from sensor data, virtual sensors are capable of mapping this
output as a class assertion, object property assertion, or data property
assertion. For the matter of structure, SP can comprise TBox/RBox,
ABox, and data properties. The TBox/RBox corresponds to the on-
tology axiom declarations that will be asserted, ABox refers to the
instances of those declarations in class assertions, object property as-
sertions, and data properties. Figure 5.9 presents the semantic observa-

tion value structure, composed of axiom declarations and assertion set.

Figure 5.9 – Semantic Observation Value Structure. Central concepts in
thicker line boxes. Dotted line arrow represent subsumption
relationship.

OWL2 does not provide native support for object property asser-
tions to refer to ontology axioms. For example, be an object property
P, which range is A and domain is B, and ClassAssertion(:B :b). It
is not possible to assert ObjectPropertyAssertion(:P :b :A). There are
few possible solutions for this problem. We propose to represent on-
tology axioms and assertions which have annotation properties that
refer to IRIs in order to intermediate the reference between Abox and
TBox/RBox entities. For this purpose, OPIS extends iao:dataItem in
two representations: ontology axiom and axiom assertion.

The first represents ontology axioms, such as class axiom, object prop-

erty axiom, and data property axiom; and has an annotation hasIRI to
any ontology axiom (owl:Thing). Each ontology axiom extension can
refer to any semantic representation of an ontology using the annota-
tion property hasIRI, in particular to axioms defined in OPIS. hasIRI is
defined with a datatype xsd:anyURI.

Class axioms can refer to any ontology axiom
(owl:Thing), object property axiom can make reference to semantic
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property, and data property axiom can refer to ssn:property. This
mapping concretely defines how the feature-property perspective
from SSN-O is represented in OPIS. In SSN-O, ssn:property is an
observable property that results in an observation value ultimately.
OPIS represent this perception as data property axioms and asso-
ciate ssn:observationValues to data property assertions. However,
ssn:property does not comprise explicitly properties observed in
semantic representation. OPIS defines thus semantic property as
observable qualities in a class axiom, in particular, the restrictions
defined by object property axioms in class axioms. It is important
to remark that OPIS definition of data property assertion allows a
complex data type value in the triple (class axiom, data property axiom,
ssn:observationValue).

�������� ���������� �������� OntoDM has an extensive
datatype representation, from primitive datatypes, such as real and
characters, to aggregate datatypes, such as classes, pointers, and
subtypes. Therefore, the data structure of ssn:observationValue
or semantic observation value, produced by a virtual sensor, can be
specified by reusing or extending one of the OntoDM datatypes.

Traditionally, information processing output primitive or ag-
gregated datatypes. OntoDM defines several types of information
processing outputs, from the simplest primitive result, such as a real
value, to complex data mining results, such as binary classification
dataset, multi-target multi-class classification dataset, tree-based
hierarchical classification dataset.

Figure 5.10 – Semantic perception datatype specification. OPIS classes in
bold. Central concepts in thicker line boxes. Dotted line
boxes represent class instances. Dotted line arrow represents
instanceOf (rdf:type).

In order to provide a semantic representation for SP that can in-
volve such complexity, OPIS contain a datatype specification – seman-

tic perception datatype – that extends the OntoDM concept of the class
datatype (odm:classDatatype), as depicted in Figure 5.10.

The class is defined with a semantic perception attribute-list that con-
tains three attributes: axioms assertion attribute, object property assertion
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attribute, and data property assertion attribute. Each of these attributes
denotes a datatype and contains an attribute identifier: class assertion

attribute id, object property assertion attribute id, and data property asser-

tion attribute id.
In order to represent axioms, we defined IRI datatype as an exten-

sion of character datatype (odm:characterDatatype) that have an IRI

value space. Figure 5.11 presents the datatypes used to specify an IRI
(IRI datatype), a set of IRIs (record of IRI datype), RDF triple (object prop-

erty field component and data property field component), and a set of RDF
triples (record of triple of IRI datatype). We define IRI datatype in the
same value space of OWL2, however, further specialization to restrict
the base of IRIs can be achieved using the IRI base datatype to specify
subtypes of IRI datatype (a subset of IRI, for instance).

Figure 5.11 – IRI Datatypes. OPIS classes in bold. Central concepts in
thicker line boxes. Dotted line boxes represent class instances.
Dotted line arrow represents instanceOf (rdf:type).

Two types of datatypes are defined to be used in the seman-

tic perception datatype: record of IRI datatype and record of triple of

IRI datatype. The former is an extension of record of character
(odm:recordOfCharacter) and has an IRI field-list specification that
contains exactly one IRI field component. The latter is an extension
of record of primitives (odm:recordOfPrimitives) and has a triple

of IRI specification that contains exactly three field components
(odm:fieldComponent) on which a minimum of two are IRI field

component. These IRI field components are specialized to represent
object property field component and data property field component and
have one of the triple of IRI field identifiers: subject, object, and predicate.

Figure 5.12 presents an example of specification for ssn:observation-
Value using the concepts of record of real (odm:recordOfRealDataty-
pe), an aggregate datatype, to represent the WGS84 standard 19. From
the SSN-O perspective, an observed geolocation property from an agent

is associated with a property mapping specification. Each observation
generated has one sensor output associated, which, in turn, has a
geolocation observation value that is defined in the WGS84 specification.

The WGS84 datatype has a primitive field-list that specifies two
fields of real type: latitude and longitude (instances of field identifier).

19. http://earth-info.nga.mil/GandG/wgs84/ (accessed on 26/04/2017)

http://earth-info.nga.mil/GandG/wgs84/
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Figure 5.12 – An example of WGS84 data type specification for geographic
location (property) observation value. Data type specification
represented in dark blue. Observation value classes repre-
sented in light blue. Observed property and feature repre-
sented in orange.

Therefore, the specialization of the geolocation observation value defines
two object properties (latitude and longitude) which ranges are the
respective observed latitude and longitude values, and whose data
properties must match the same component datatype (real datatype).
In addition, object properties (latitude and longitude) from the geolo-

cation observation value match the field component identifiers.

�.� �������� ����������

OPIS is a modular ontology, which allows using its conceptual lay-
ers separately. In this section, examples and a use case are provided
to illustrate the use and instantiation of OPIS. In the first part, three ex-
amples from published papers are represented to demonstrate how
different applications can use the same conceptual framework pro-
vided in the PIL. In the second part, an algorithm for human activ-
ity perception is explained and represented using OPIS. Finally, the
competence questions (Table 5.1) are answered using the SPARQL-DL
notation 20.

�.�.� Examples

The first case is based on the work of Liu et al. [205] that exploits
sportive activities using a machine learning time series shapelets tech-
nique to detect atomic and multi-layered human activity, such as
sitting, walking, jumping, jogging, and dribbling; from accelerome-
ter and gyroscope sensors embedded in mobile phones. The second
use case is a medical cloud-based approach proposed by Mohammad
Forkan et al. [206] for disease symptoms detection based on vital signs
captured from body sensors that read pulse rate and blood pressure.
The third case is based on the work of Krishnan et al. [96] that use
machine learning techniques to infer about in-door activities from
smart-home sensors.

20. http://www.derivo.de/en/resources/sparql-dl-api/ (ac-
cessed on 26/04/2017)

http://www.derivo.de/en/resources/sparql-dl-api/
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The second part of the examples shows the usage of SPL concepts
to represent the data mining and machine learning techniques used
to recognize disease symptoms, as defined in [206].

�������� ����������� �������������� The Personal Informa-
tion Layer (PIL) of OPIS offers a conceptual framework to associate
several types of information to individuals. Three different scenarios
are depicted in Figure 5.13, as highlighted in different colors, showing
how the behavioral entities can associate information to individuals.

In the first use case (Krishnan et al. [96]), in-door activities of el-
derly residents were detected using smart meters that sense lumi-
nance, motion, and doors. To describe in-door environments, the
geographic location is specialized in home place and then extended to
represent a living room, kitchen, room, bathroom etc. The sensors
that detect human interaction with the environment are associated
with these geographic locations as properties. The obtained activities
are represented as an extension of behavior / activity. The data min-
ing classification algorithms are capable of detecting bathing, eat, en-
ter home, leave home, cook, take medicine, relax, sleep activities.

In the second use case (Liu et al. [205]), smartphones were installed
in different parts of the body to collect gyroscope and accelerometer
sensor data in order to detect atomic and complex movements dur-
ing the sport practice. Therefore, the concept behavior is extended to
describe activities, which, in turn, is extended to represent the activ-
ities of bouncing, walking, dribbling, throwing, and jumping. The
jump-shot activity is defined as composed movement of jumping and
throwing. The class person is extended from behavioral agent to repre-
sent the body members (limb and arm) used to observe the property
acceleration and rotation.

Lastly, the ViSiBiD approach proposed by Mohammad Forkan et

al. [206] detects hypoxia, tachycardia, and hypertensive symptoms
based on pulse rate and blood pressure. For this purpose, pulse
rate, diastolic blood pressure, and systolic blood pressure are repre-
sented using the Foundational Model of Anatomy 21 and associated
as properties to behavioral agents / persons. The disease symptoms
are represented importing classes from the Human Disease Ontol-
ogy 22 and are associated with behavioral agents / person through the
doid:hasSymptons.

The ontological framework provided by OPIS allows associating in-
formation that was not directly related to individuals. Smart meter
sensors, for instance, can be considered personal when its instance
are defined along with the assertion isLocationFor between its feature
(home place, living room, etc) and a person.

�������� ���������� �������������� The main objective of the
Semantic Perception Layer (SPL) is to provide information about in-

21. fma:http://www.obofoundry.org/ontology/fma.html (ac-
cessed on 26/04/2017)

22. doid:http://www.obofoundry.org/ontology/doid.html (ac-
cessed on 26/04/2017)

http://www.obofoundry.org/ontology/fma.html
http://www.obofoundry.org/ontology/doid.html
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Figure 5.13 – An example of personal information representation from three use case. Colors represent the use case and are described in the legend. Activity
and person are not colored because it is used in more than one use cases. Red line arrows represent behavioral entity properties that exist due to the
restrictions declared between super-classes. Dotted line arrow represent subsumption relationship.
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formation processing scenarios that were not capable of being repre-
sented using the SSN-O. Figure 5.14 illustrates this information in class
assertions (instances) for the OPIS concepts in the specification, execu-
tion, and implementation levels, highlighting the information flow,
its origin, and result. The ViSiBiD approach [206] is implemented us-
ing the Random Forest classification algorithm from Weka toolkit and
has a window size parameter of 30. Other data processing and data
mining techniques, such as segmentation feature computations, used
to extract features in this use case, are not described in the illustration
for the matter of readability.

In the specification level, the scenario has objective specification of
the SPP and algorithms that define the SPP input (rotation property
#1 and acceleration property #1) and output (disease#1). Annotations
in these class assertions can describe in a human-readable format
relevant information, such as ViSiBiD objective description disease de-

tection.
In the execution level, the same workflow is represented using the

virtual sensor execution class assertion, along with the parts of its
execution input (virtual sensor input #1, #2) and result (virtual sen-
sor output #1). Each of data examples (#1 to #3, #4 to #6) has an
ssn:observationValue of a gyroscope (related to the rotation ssn:prop-
erty described in Figure 5.13), and accelerometer (associated with the
acceleration ssn:property). The output (virtual sensor output #1) has
a data example (data example #7) with a defined precision (precision
data example specification #1 hasValue 95.18f), corresponding to a
semantic observation that contains a class axiom (fma:hypertension)
and a class assertion (hypertension #01).

Lastly, the implementation level contains the specification of
a window size parameter that is used to aggregate sensor data
during the data processing. In addition, it provides the information
about the Random Forest implementation, such as an identifier
(weka.classifiers.trees.RandomForest) and an IRI.

�.�.� Use Case: an illustrative scenario for activity perception

The variety of possible use cases using OPIS is as wide as those
observed in the SSN-O. We focus on presenting the TBox reasoning
capacity related to the provenance provided by OPIS, which permits
gathering information about the Semantic Perception Process (SPP)
and the implementation parameters. The objective is to show how
this process can be described using OPIS and how it represent data
quality, data provenance, and information retrieval through examples
of SPARQL queries, answering the competency questions presented in
Table 5.1.

For this use case, we consider the process of inferring human ac-
tivities from geographic location points, as described in [207] and
presented in Algorithm 1. In this case, human activities are personal
information classified as extensions of the behavior concept. The algo-
rithm has a set of geographic location points (trajectory T ) as input
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Figure 5.14 – An example annotation for human activity perception (a fragment)



124 ����: �� �������� ��� �������� ����������� �� ��� ������ ���

Input : A trajectory T

Output : The activities done during the stops
1 Stops StopDetection (T ,δspatialAccuracy, ⌧temporalAccuracy);
2 foreach stop in Stops do

3 PossiblePOIs SelectedPOIs (stoppoint, stoptime, WalkingDistancemax);
4 Activity Probability (PossiblePOIs);
5 return Activity;
6 end

Algorithmus 1 : Algorithm for inferring human activities from
geographic location points [207].

Figure 5.15 – An example annotation for human activity percetion (a frag-
ment)

and produces the descriptions of activities done during the stops. It
starts with function StopDetection, calculating stops according to
spatial and temporal thresholds. Then, for each stop, the algorithm
retrieves possible points of interest (SelectedPOIs), according to a
maximum distance. Finally, the activity is computed based on the
probable points of interests visited by the agent (Probability).

Figure 5.15 presents a fragment of the representation of
Algorithm 1 using OPIS, simplified to be illustrated. The seman-

tic perception process (SPP) (activity perception process 01) has a
semantic perception objective (SPO) (activity perception objective) that
may be annotated with description, name and author data properties.
The SPP activity perception process 01 comprises three algorithm
specification related to the functions – obi:data processing algorithm

(DPA): stop detection function, selected point of interest function,
and activity probability function.
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The OntoDM object property of odm:precedes allows describing the or-
der that each algorithm has in the process execution. In addition, the
odm:information process objective (IPO) is part of each algorithm spec-
ification, which, similarly to the SPO activity perception objective,
may have specified description, title, author, or any other supplemen-
tary information that can be used to analyze a virtual sensor based on
its process and objective.

For the matter of presentation, the relations between information

processing objectives and data specifications are not illustrated in
Figure 5.15. Even so, the data specification 01 denotes the data type
specification (WGS84 datatype), being part of the IPO trajectory

stop extract. In turn, the property mapping specification 01 that
denotes the geographic location property is also part of the data

specification 01, making possible to infer which properties are
related to each algorithm. Mapping specification is explained in
more detail later.

The virtual sensor (VS) activity perception 01 concretizes
the activity perception process 01 and is composed of three
odm:algorithmImplementations (AIM) (AIM function 01,02,03), that
concretizes their respective algorithm specification as defined in the
SPP activity perception process 01. Each algorithm implementation

plays a role of an odm:operator (OPE) that holds information about
algorithm implementation odm:parameters (VSP). In particular, the
AIM function 01 that implements the IPO stop detection function

has a spatial accuracy – virtual sensor parameter– to tune the
computation of trajectory stops, referenced as δspatialAccuracy in
Algorithm 1. This parameter is specified according to (iao:is about) a
spatial accuracy parameter specification which contains information
about parameter name and description, denoting a real datatype. In
Figure 5.15, only the odm:operator related to AIM function 01 is
depicted for the matter of presentation clarity.

The OPE function 01 sets the information specified by the spatial

accuracy. This semantic annotation allows retrieving the conditions
(odm:parameterSettings) on which personal information (behavior entity)
is generated, which, in this example, is directly associated with the
data quality of the inferred human activity.

The information about semantic process specification and virtual sen-

sor permits reasoning about similarities among virtual sensors. In a
situation where virtual sensors are verified before its execution, for
example, anticipating virtual sensor’s output or misbehavior, this can
support IoT platforms to prevent virtual sensor execution.

The hierarchical structure found both in the specification and in the
implementation is equally followed in the execution, where each algo-
rithm execution (including the virtual sensor execution itself) achieves
a planned objective. At the execution level, each function has speci-
fied inputs and outputs. Each dataset has (ro:has part) iao:dataExample

(data example 01), which are composed of (ro:has part) ssn:observa-

tionValues. As defined in SSN, ssn:observationValues are annotated
with specific unit of measure. In this use case, we are considering
WGS84 standard for the geographic location values.
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Figure 5.16 – An example of TBox and ABox instances of datatypes, ob-
servation values and related behavioral entities. Dash-dotted
arrows represent instance-of relationships (rdf:type). Dotted
arrows represent hasIRI data annotations, which red are asso-
ciated with object property axioms and blue are associated with
class axioms.

It is important to note the subtle relationship between the OntoDM

specification level of information processing entities, such as algo-
rithms and data mining scenarios, and the representation of the phys-
ical world described in SSN-O through sensors and features of inter-
est. The pre and post-virtual sensor execution representations provide
a two level mapping to conceptual and observational mapping. In
OPIS, the mapping specification is extended to represent this map-
ping at two levels: i) the specification level, denoting SSN-O proper-

ties (geographic location property 01); and ii) the execution level, us-
ing data example (data example 01) as a set of ssn:observationValues
(geographic location observation value 01).

Regarding the content of virtual sensor input and virtual sensor out-

put, the data example concretely comprises the parts of ssn:observation-
Values (from SSN-O sensors) and semantic observation values (from vir-

tual sensors) according to a specific odm:datatype. Figure 5.16 presents
the input and output specification for the Algorithm 1. Despite the
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fact that the original algorithm output is a description of human ac-
tivity, it is possible to represent and associate semantically it using
OPIS. A conceptual set based on behavioral entities can be used to
model the personal information. The inference about human activity,
based on geographic location points, is related to the classification of
points of interests, such as restaurants and workplace, as described
in [207]. In Figure 5.16.a, the specialization of ssn:observationValue
in geographic location observation value contemplates the WGS84

data type structured (see Figure 5.12). In Figure 5.16.b, the set of be-

havioral entities and object properties used to represent the result of
the Algorithm 1 has activity (behavior specialization), point of interest
(geographic location specialization) and behavioral agent.

Therefore, the instances of sensing data and personal information are
concretely representing the result from a physical sensor (as showed
in Figure 5.16.a), and from a virtual sensor execution (as illustrated in
Figure 5.16.b). Hence, the set of semantic annotation provided by OPIS

allows relating physical sensor data to personal information (behavioral

entities). As showed in Figure 5.15, geographic location points can be
associated with any behavioral entity through object property paths de-
fined, using the set of object properties defined on PIL. For each OPIS

class assertion (individual), an instance of the class axiom is generated
and related to it through the annotation property hasIRI. Similarly,
object properties that assert a relationship between two individuals
is associated with an instance of object property axiom through the an-
notation property hasIRI. In the figure, these are represented respec-
tively by the group of class axiom 01,class axiom 02,class axiom 03

and object property axiom 01 and object property axiom 02.
The dataset specification 01 describes (iao:is about) virtual sensor in-

put and virtual sensors outputs, containing data specification 01 which
relates property mapping specification 01 and the WGS84 datatype.
The property mapping specification 01 concretely links geographic

location properties 01 to the iao:dataSpecification, and then, to each
part of the data example 01.

Finally, it is important to note that the quality associated with a
perceived semantic is related to the type of algorithm used to infer the
information and the parameter settings. In this use case, the spatial
threshold to calculate points of interest can influence directly in the
confidence level of the result.

�.�.� Competence Questions

The capacity to express natural language questions using semantic
representations and queries is a manner to demonstrate the ontology
competence. Table 5.10 presents semantic representation for the ques-
tions proposed in the begin of this chapter.
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Qn SPARQL Query

Q1 Type(_:sobsv, opis:semanticObservationValue). Type(_:obsv, ssn:observationValue).
Type(_:dtExample1, odm:dataExample). Type(_:dtExample2, odm:dataExample).
Type(_:vsinput, opis:virtualSensorInput). Type(_:vsoutput, opis:virtualSensorOutput).
Type(_:vsexec, opis:virtualSensorExecution). Type(_:classAxiom, opis:classAxiom).
PropertyValue(_:dtExample1, ro:hasPart, ?obsv).
PropertyValue(_:vsinput, ro:hasPart, ?obsv).
PropertyValue(_:vsexec, obi:hasSpecifiedInput, _:vsinput).
PropertyValue(_:vsexec, obi:hasSpecifiedOutput, _:vsoutput).
PropertyValue(_:vsoutput, ro:hasPart, _:sobsv).
PropertyValue(_:dtExample2, ro:hasPart, _:sobsv).
PropertyValue(_:sobsv, ro:hasPart, _:classAxiom).
Annotation(_:classAxiom, hasIRI, ?be). SubClassOf(?be, behavioralEntity).
FILTER (?obsv,:X)

Q2 Type(?vs, opis:virtualSensor).
Type(_:spp, opis:semanticPerceptionProcess).
Type(_:sems, opis:semanticMappingSpecification). Type(?be, opis:behavioralEntity).
PropertyValue(?vs, obi;isConcretizationOf, _:spp). PropertyValue(_:spp, ro:hasPart, _:sems).
PropertyValue(_:sems, iao:isAbout, ?be). FILTER (?be,:X)

Q3 Type(?behavior, opis:behavior). Type(?be, opis:behavioralEntity).
PropertyValue(?be, dul:isParticipantIn, ?behavior). FILTER (?be=:X)

Q4 Type(?spp, opis:semanticPerceptionProcess). Type(?vs, opis:virtualSensor).
Type(_:ope, odm:operator). Type(_:algImp, odm:algorithmImplementation).
Type(?setting. odm:parameterSetting). Type(?quality, odm:parameter).
PropertyValue(?vs, obi:isConcretizationOf, ?spp).
PropertyValue(?vs, ro:hasPart, _:ope). PropertyValue(_:ope, ro:roleOf, _:algImp).
PropertyValue(_:algImp, obi:hasQuality, ?quality).
PropertyValue(_:ope, exact:hasInformation, ?setting).
PropertyValue(?setting, iao:isQualitySpecificationOf, ?quality). FILTER (?spp=:X)

Q5 Type(?be, opis:behavioralEntity). Type(_:spp, opis:semanticPerceptionProcess).
Type(_:smes, opis:semanticMappingSpecification). Type(?algorithm, obi:algorithm).
Type(?objective, iao:objectSpecification).
PropertyValue(_:spp, ro:hasPart, _:sems).
PropertyValue(_:spp, ro:hasPart, ?algorithm).
PropertyValue(?algorith, ro:hasPart, ?objective).
FILTER (?be=:X)

Q6 Type(?vs, opis:virtualSensor).
Type(_:spp, opis:semanticPerceptionProcess).
Type(_:smes, opis:semanticMappingSpecification). Type(?algorithm, obi:algorithm).
Type(?objective, iao:objectSpecification).
PropertyValue(?vs, obi:isConcretizationOf, _:spp).
PropertyValue(_:spp, ro:hasPart, ?algorithm).
PropertyValue(?algorith, ro:hasPart, ?objective).
FILTER (?vs=:X)

Q7 Type(?machine, obi:computer).
Type(?be, opis:behavioralEntity). Type(?vsExec, opis:virtualSensorExecution).
Type(_:vsoutput, opis:virtualSensorOutput). Type(_:classAxiom, opis:classAxiom).
Type(?algorithm, obi:algorithm).
PropertyValue(?vsExec, ro:hasAgent, ?machine).
PropertyValue(?vsExec, obi:hasSpecifiedOutput, _vsoutput).
PropertyValue(_:vsoutput, ro:hasPart, _:classAxiom).
Annotation(_:classAxiom, opis:hasIRI, ?be) FILTER (?be=:X)

Q8 Type(?spp, opis:semanticPerceptionProcess).
Type(_:pms, opis:propertyMappingSpecification). Type(?property, ssn:property).
PropertyValue(?spp, ro:hasPart, _:pms). PropertyValue(_:pms, iao:isAbout, ?property).
FILTER (?spp=:X)

Table 5.10 – Formalization of competency questions using the SPARQL-DL
notation.
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�.�� ����������

We presented OPIS, an ontology for personal information on the
Sensor Web. OPIS is competent to describe personal information by
leveraging the semantics of the sensor network to describe Semantic
Perceptions (SPs) that infer personal information. We employed the
concepts from the BC to model the set of information that could be
considered as personal. As consequence, a set of classes (behavioral

entities) and properties are proposed to represent personal informa-
tion. Moreover, the descriptive and realist perspectives used in our
approach provide a cognitive interface for individuals to better un-
derstand and classify their information, in the same time that offers a
realist viewpoint normally adopted to describe the physical, mental,
neural, biological, and environmental world. Along with this, we rep-
resent KDDM processes using the concept of virtual sensors, encapsu-
lating the process of personal information inference while associating
to it a semantic annotation.
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In this chapter, we introduce our privacy mechanism for the IoT

sensing based on a privacy-by-policy strategy and the compositional
and modular Privacy-aware Virtual Sensor Model (PA-VSM) as privacy-

by-design. Our approach adopts the principle of plurality of Privacy-
Preserving Data Mining Techniques (PPDMTs), applying selectively
these techniques according to contextuality and contestability defined
in the privacy policy. The contextuality is based on the expressive-
ness of OPIS to describe personal information according to the behav-
ioral context, while the contestability relies on the capacity to represent
KDDM and reason about inference intentions of Semantic Perception
Process (SPP). In addition, the PA-VSM introduces privacy-by-design im-
plementing a joint sphere paradigm, shifting the privacy mechanism
from the recipient sphere to the cloud.

The advantage of incorporating Semantic Web technologies to our
solution is the capacity of reasoning over OWL Description Logic
(OWLDL) [208], using any off-the-shelf DL reasoner to process Ontol-
ogy Web Language (OWL) axioms using SPARQL. The formality of
OWL allows an unambiguous meaning representation of personal in-
formation type, context, SPPs, PPDMTs, and policy conditions, making
possible to draw conclusions about inference intentions that are im-
portant to privacy-by-policy mechanisms.

The remainder of this chapter is organized as follows. Section 6.2
we present the ontological framework to provide an extensive classifi-
cation scheme for personal information. In Section 6.3, we present our

131
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Figure 6.1 – Classification Taxonomy vs Personal Information direct map-
ping schema.

novel privacy-aware virtual sensor model for the IoT sensing. Lastly,
Section 6.4 presents conclusions.

�.� ��������-����� �������-��-������

�.�.� Personal Information Classification

The classification of personal information using OPIS can admit
several possibilities based on classifying behavioral entities directly
or through its taxonomy-like structure, assuming that subclasses are
classified according to its superclasses. However, these approaches
restrict the re-usability of classification structures and couple classifi-
cation to the ontology axioms. One way to address this problem is
providing an external classification structure to index concepts that
classify entities using mapping functions. We propose an external a
taxonomy as classification structure. This approach provides a clas-
sification structure targeting the same set of axioms (OPIS), which is
reusable, decoupled and flexible.

������ �������������� The basic case consists of a direct classifi-

cation between the classifier and a classified entity, where the classi-
fier is defined in a classification taxonomy, as depicted in Figure 6.1.
The taxonomy root classification is the most top classifier and con-
sidered to be the classifier by presupposition 1. In this thesis, we em-
ploy the descriptive ontological framework of DUL to specify concepts
(dul:concept) to be used as a classification taxonomy. The dul:concept
can be used to classify OPIS axioms (class axiom, object property ax-
iom, or data property axiom) directly through the object property
dul:classifies. As described in chapter 5, OPIS axioms, or any extension
of them, represent personal information. In Figure 6.2 we depict two
examples of this classification taxonomy. One illustrates concepts of
aspects of human life, such as social, professional, and homelike, that
may be used to classify OPIS axioms. The other depicts the specializa-

1. Assumption that all elements have this property if nothing else is asserted.
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Figure 6.2 – Example of classification based on behavior types and human
life aspects.

tion of dul:eventType to represent behavior types, such as mobility,
cognitive, or emotional.

In order to define formally the concepts in this chapter, we need
to provide formalization for RDF term and RDF graph, which are the
base to represent and exchange information that is retrievable using
SPARQL queries. We define formally RDF terms and RDF graphs ac-
cording to the definitions described in [209] as follows:

Definition 1 (RDF Term) Let i, l, b be an IRI, rdf:literal, and blank

nodes respectively. Denote I, L, and B as infinite disjoint sets of IRIs,

rdf:literals, and blank nodes respectively, then:

— the set of all RDF terms T is I[L[B;

— a RDF triple is a triple (s,p,o) from T ⇥ I ⇥ T;

— a RDF graph is a finite set of RDF triples.

Most of the syntactic forms of OWLDL have equivalent syntactic sugar

forms, which are common axiom constructors or statements used to
make ontology construction and maintenance easier. For example,
the disjointWith statement can be used to declare that class X disjoin-

tWith class Y. This is a syntactic sugar for the axiom X v ¬Y. Aiming
to simplify the definition in this chapter, we adopted the SPARQL-
DL Language (SPARQL-DL) query atoms, as defined in [210], referring
to it using the namespace owldl. The foundation for SPARQL queries
is the basic graph patterns, which are formed by triple patterns. Both
concepts are defined formally as follows:

Definition 2 (Triple and graph patterns) Denote V as an infinite set

{?x, ?y, . . . } of query variables disjoint from T where:

1. a triple pattern is an element tp 2 (T[V)⇥(I[V)⇥(T[V);

2. a basic graph pattern is a set of triple patterns.

As defined in Section 3.1.3, property paths can be specified based
on RDF terms and used to query RDF graphs concisely. Property

paths simplify triple patterns, which are the basic unit to describe
RDF graph using RDF triple patterns. Syntactically, property paths are
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expressions defined according to a specific grammar. The property

path expression that defines the syntax of property paths are formalized
following the definitions in [108], as described below:

Definition 3 (Property path expression) Property path expression is de-

fined recursively according to the grammar:

e = i|e−|e1· e2|e1 + e2|e
+|e⇤|e?|!{i1 . . . in}|!{i−1 . . . i−n},

where i, i1, . . . in 2 I, and the operators have the same semantics defined in

Table 3.2: e− represents an inverse path ˆe, e1 · e2 represents the sequence

operator (/), and e1 + e2 refers to alternative paths (|). The last two forms

correspond to negated property sets.

Denote E the set of all property path expressions. Property path ex-

pressions are therefore incorporated on the atomic level of SPARQL by
means of triples with IRIs (I), rdf:literals (L) and variables (V) on the
edges and property path expressions (E) between them.

Figure 6.3 – (a) Property path pattern representation. (b) Property path ex-
ample using FOAF. (c) Property path pattern example using
FOAF

This pattern is depicted in Figure 6.3.(a), along with two examples
of property paths and property path pattern. Property path patterns are
defined formally as follows:

Definition 4 (Property path pattern) A property path pattern is a triple

in (I[L[V)⇥E⇥(I[L[V)

By using the SPARQL-DL query language to define an RDF graph,
we assume that exists at least one valid evaluation mapping in the RDF
graph that satisfies the query. An evaluation mapping is a result of an
evaluation function JPKG, where P is a basic graph pattern over the RDF
graph G, as formally defined in [211].

For example, by defining the RDF graph G using the query atom
"SubClassOf(A,B)", we assume that there is an evaluation mapping for
the RDF graph form "A owldl:SubClassOf B" of this SPARQL-DL query
atom in G. Thus, if the RDF triple "A rdfs:subClassOf B" or the RDF
graph "A rdfs:subClassOf [rdfs:subClassOf B]" exists in G, they are
valid evaluation mappings for "A owldl:SubClassOf B", and G satisfies
the SPARQL-DL query "SubClassOf(A,B)".
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Based on these concepts, the classification taxonomy are RDF graph
formed by RDF triples that specify subclasses of dul:concept and an-
notation properties related to them. We formally define classification

taxonomy as follows:

Definition 5 (Classification Taxonomy) The classification taxonomy is

an RDF graph C formed by the union of two RDF graph O and AO, iff:

— J SubClassOf(c, dul:concept) KO is satisfied;

— J Annotation(c , a , dul:concept) KAO
is satisfied and c 2 O.

Nonetheless, it is important to remark that we develop in this chap-
ter the notions of personal information classification from a descrip-
tive perspective, i. e. using DUL classes. Although, the mapping be-
tween DOLCE-based and BFO-based entities, presented in the previous
chapter, allows applying the realist perspective to represent and clas-
sify behavioral entities, using the same definitions and mechanisms
described in this chapter.

A direct classification is an RDF graph constituted by RDF triples,
representing class assertions that contain one annotation property
(hasIRI) that points to personal information – class axiom or object
property axiom –, class assertions of dul:concepts (or subclasses of
them) and object property assertions relating both class assertions.
Based on these concepts, direct classification can be formally defined
as follows:

Definition 6 (Direct Classification) Be O an RDF graph that represents

individuals of personal information, C an RDF graph that represents the clas-

sification taxonomy, and hasIRI a data property which range is xsd:anyURI.

A direct classification is an RDF graph D formed by the union of four RDF

graphs IC, CO, IT, and IO, iff:

— J Type(c, dul:concept) KIC is satisfied, and c 2 C;

— J Type(o, owl:Thing),Annotation(o, hasIRI, i),

SubClassOf(i, owl:class) KIL is satisfied, o 2 O and i 2 I;

— J Type(o, owl:Thing),Annotation(o, hasIRI, i),

SubPropertyOf(i, owl:ObjectProperty) KIO is satisfied, o 2 O

and i 2 I;

— J PropertyValue(c, dul:classifies, o) KCO is satisfied;

����������� �������������� Aiming to take advantage of the se-
mantic relationships among classes, we extend the concept of direct

classification to contemplate extensional and intensional abstraction
levels. In the extensional abstraction level, classification is transitively
transferred from a class to its subclasses, while in the intensional
abstraction level classification is transitive from a class to another
through object properties and axiom expressions.

The conceptual layers of OPIS provide the foundation to describe
personal information using behavioral entities, as defined in Table
5.5. In fact, OPIS classes are designed to be extended in sub-domain
concepts, similarly to the usage of the Semantic Sensor Network On-
tology (SSN-O). For example, the class behavioral agent can be extended
to represent a patient, doctor, or runner. This rationale is analogous
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to the object properties, that can be extended to specialize their in-
tension. For instance, the object property isAcknowledgedBy can be
specialized as isLearnedBy or isConsideredBy. The intentional ab-
straction level is constituted by the object properties that relates one
entity to another, as initially defined in Table 5.6. Moreover, in PIL

behavioral entity represents three abstraction levels: i) behavioral en-
tity classes and behavioral entity properties (Vectors 5.1 and 5.2); ii)
behavior; and iii) behavior pattern. Since we define behavioral agent

as central "hubs" that needs to be related to other behavioral features
on classes and object property extensions, we guarantee that an in-
tensional abstraction level is also defined along with the extensional
abstraction level.

Based on this ontological framework, we define the concept of clas-

sification transitivity that allows classifying a graph of connected en-
tities transversally based on their sets of object properties and sub-
classes. While the direct classification was represented by an RDF
graph, the concept of classification transitivity is based on the results
of SPARQL queries due to its capacity to represent property paths, and
therefore, transversal classifications.

In order to restrict property paths to express only transversal classi-

fication property path expressions, we need to describe the expres-
sion structure of property paths and property path patterns firstly. The
intended transversal classification is achieved by defining the property

path pattern that represents the two previously mentioned abstraction
level of property paths: intensional property path and extensional property

path.
Transversal classification is illustrated in Figure 6.4 using the example

of the use case described in Section 5.9.2. We separate the base OPIS

entities from the extended set that was used to represent information
resulted from Algorithm 1. As defined originally in OPIS, behavior

has participants, among them behavioral agents and geographic location.
Behavior is specialized to represent activities of the type eating, work-
ing, or atHome. Geographic location is extended to represent points
of interest of the type work, home, and restaurants. In addition, we
increment the example by extending the class behavioral agent as engi-

neers and adding an object property dul:isLocationOf to represent the
intensional relation between some activities and points of interest.

The direct classification associates the family context (dul:concept) to
the activity of type atHome. By using SPARQL queries, it is possible to
retrieve all involved behavioral entities at the same level of abstrac-
tion that may have transitively the same classification. For example,
by querying all classes that are related to atHome activity based on
the isLocationOf object property, it is possible to retrieve the point of
interest home, and consequently, classifying it transversally.

Besides that, Figure 6.4 illustrates different abstraction levels, de-
picting how classification can be hierarchically transitive by extension.
Classifications are denoted by colors: yellow for private concept, and
gray for non-private concept. The transitive classification is denoted
by dash-dotted arrows, representing an extensional property path (en-
gineer subClassOf behavioralAgent) and an intensional property path
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Figure 6.4 – An example of horizontal and vertical classification. Yellow
ellipses represent the semantic entities classified according to
private classification. Gray ellipses represent entities classified
according to non-private classification. isf is abbreviation for
isSettingFor.

(atHome happensInSpecificPointOfInterest home). In addition, Figure
6.4 depicts the mapping of descriptive and realist perspectives that
may be used during the personal information classification.

The extensional property paths correspond to property paths that con-
tain only RDFS constructors that define specialization/generalization,
such as rdfs:subClassOf and rdfs:subPropertyOf (see Section 3.1.2). The
intensional property paths consist of property paths that refer to any other
IRIs that do not comprise the specialization/generalization RDFS con-
structors, enclosing property paths to the same level of abstraction. We
do so by restricting property path expressions to be formed only with
a subset of IRIs (I). We also assume that cyclic paths can happen but
enclosed in these two dimensions, i. e. according to the following
definitions, cyclic paths will be based only in RDFS constructors or
completely without them.

We formally define intensional property path expression and exten-

sional property path expression as follows:

Definition 7 (Intensional and extensional property path expressions)

Denote Iv = {owl:subClassOf, owl:subPropertyOf}, and Ih = I - Iv.

— The intensional property path expression is defined by the gram-

mar

h = i|h−|h1·h2|h1 + h2|h
+|h⇤|h?|!{i1 . . . in}|!{i−1 . . . i−n},

where i, i1, . . . in 2 Ih;
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— The extensional property path expression is defined by the gram-

mar

s = iv|s1· s2|s1 + s2|s
+|s⇤|s?|!s,

where iv 2 Iv.

Regarding the extensional property path pattern, it is evident that clas-

sification transitivity is only valid from superclasses toward subclasses.
In the example of Figure 6.4, it does not make sense, for instance,
to assume that activity is classified as non-private because of its re-
lation of super-class with atHome entity. Therefore, we define exten-

sional property path expressions formally by restricting its grammar to
be based only on owl:subClassOf and owl:subPropertyOf, avoiding neg-
ative forms that could change the intended direction of the property
path.

When dealing with transversal classification, it is necessary to restrict
the expression of property path in order to guarantee the transversal
order of path concatenation as described above. Transversal classifi-

cation can be transitive only towards the class extension direction or
at the same level of intension abstraction through object properties.
The transversal classification property path, therefore, can be expressed
using a regular expression based on intensional and extensional prop-
erty path expressions, being formally defined as follows:

Definition 8 (Transversal classification path expression) Let v be an

extensional property path expression, and h is an intensional property path

expression. A transversal classification path expression is defined as

c = h | v | c1· c2 | c1 + c2,

where c1 · c2 represents the sequence operator (/) and c1 + c2 refers to

alternative paths (|).

Based on this definition, we define transversal classification path

pattern to be used in SPARQL queries and to express transversal classi-

fication, and are formally defined as follows:

Definition 9 (Transversal classification path pattern) Denote Ec as a

set of all transversal classification path expressions c. A transversal classifi-

cation path pattern cp is a triple in V⇥Ec⇥V;

There are infinite possibilities to define a transversal classification

path pattern. The transversal classification path expression allows recur-
sively many different patterns that satisfy our definition of classifica-

tion transitivity.
As RDF graphs that concretely represent the correspondence be-

tween classifier and classified entity, direct classifications can be queried
to verifies if a given entity is classified using simple triple pattern,
such as:

?c dul:classifies ?o,
⇧
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where ?c and ?o 2 V and represent, respectively, classifier and classi-
fied entity. A select SPARQL query that considers all variables based
on this triple pattern returns a set of IRI records associated to eval-

uation mappings for this triple pattern, representing pairs of classifier

(dul:concept) and classified entity (opis:behavioralEntity).
Conversely, transversal classifications are not RDF graphs, but a set of

IRI records associated to evaluation mappings for a specific transversal

classification path patterns over an RDF graph G. We then formally
define transversal classification as follow:

Definition 10 (Transversal classification) Let C an RDF graph that rep-

resents classifiers (class axioms and class assertions of a classification tax-

onomy); D a graph that with one or more direct classifications; O an

RDF graph that represents classified class axioms and assertions (which re-

fer to personal information class axiom or object property axiom and their

instances, such as those defined in OPIS ontology), and tc a transversal clas-

sification path pattern. A transversal classification is a set of IRI pair

of classifier individual and classified individual <ic,il>, associated to one or

more tc, such that J tc KC[D[O is satisfied.

Figure 6.5 – Transversal classification path pattern. Dash-dotted ellipses
represent individuals. Dash-dotted arrows represent instance
of (i/o).

Figure 6.5 illustrates the union set intersections among the RDF
graphs C, D, and O; and the transversal classification path pattern that
connects non-direct classifiers (tc1) to non-direct classified entities
(tbe1,tbe2) through a direct classification

Idc1 rdf:type dc1. Idc1 s Idbe1. Idbe1 rdf:type dbe1.
⇧

A RDF graph form of an evaluation mapping for a transversal classifica-

tion path pattern is composed of classification taxonomy property path
(cpp1) defined in C, a direct classification, and a personal information
property path (cpp2) defined in O. In the example, two transversal

classifications are illustrated:

1.idbe1 rdf:type/cpp1/inverseOf(rdf:type)/s/rdf:type/cpp2/rdf:type itbe1,

2.idbe1 rdf:type/cpp1/inverseOf(rdf:type)/s/rdf:type/cpp2/rdf:type itbe2.
⇧

For the following examples and use cases in this manuscript, we
associate the concept of transversal classification to the transversal clas-
sification path pattern described in Figure 6.5. The conditional part
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(where clause) of an instance of SPARQL-DL query is presented in Ta-
ble 6.1 using SPARQL-DL language extension separated in TBox, ABox,
RBox for clarity matters. The TBox/ABox type part of the where
clause specifies individual assertions. IRIs are specified using the
namespace followed by the class axiom, i. e. opis:behavioralEntity,
blank nodes are expressed starting by _:, i. e. _:dBE, and variables
are represented starting by a question mark ?, such as ?itBE.

clause type #id query

where

RBox R1 ObjectProperty(AND(_:cpp1,_:cpp2))

TBox

T1 SubClassOf(_:dBE,OR(opis:behavioralEntity,owl:objectProperty))

T2 SubClassOf(_:tBE,OR(opis:behavioralEntity,owl:objectProperty))

T3 PropertyValue(_:dBE,_:ccp1,_:tBE)

T4 SubClassOf(_:dConcept,dul:concept)

T5 SubClassOf(_:tConcept,dul:concept)

T6 PropertyValue(_:tConcept,_:ccp2,_:dConcept)

TBox/
ABox

TA1 Type(?itConcept, _:tConcept)

TA2 Type(?itBE,_:tBE)

TA3 Type(_:idConcept,_:dConcept)

TA4 Type(_:idBE, _:dBE)

ABox
A1 PropertyValue(_:idConcept,dul:classifies,_:iAxiom)

A2 Annotation(_:iAxiom, opis:hasIRI, _:idBE)

Table 6.1 – An instance of transversal classification path pattern

�.�.� Privacy-Preserving Virtual Sensor

Our privacy-by-policy strategy assesses the following five risk of pri-
vacy harm, as described in Section 2.2: 1) data processing techniques;
2) privacy versus public release; 3) data quality; 4) motive; and 5)
trust; using the concept of virtual sensors. The first assessment is
based on the data processing techniques relies on the semantic signa-

ture of virtual sensors that allows representing KDDM techniques. The
second and third assessments are achieved by the very nature of vir-
tual sensors that shifts the privacy paradigm to a joint sphere using the
Cloud-IoT infrastructure. The identification of personal information
along with the identification of virtual sensors permit to assess the
motive of the KDDM technique. Lastly, the trust assessment is based
on the concept of certified (trusting) and non-certified (untrusting)
virtual sensors.

We extend the concept of virtual sensor to represent the data prop-
erty of certification. The virtual sensor certification is guaranteed by
an independent trusted party that provides services to assure and cer-
tify that a specific virtual sensor behaves according to its semantic
signature. In the remainder of this manuscript, we refer to trust party

as an organization that provides services to certify and verify certifi-
cation of virtual sensors.

Besides that, the plurality of our privacy-by-policy strategy is based
on the possibility to employ different Privacy-Preserving Data Mining
Techniques (PPDMTs) or Access Control Models (ACMs) according to
specific conditions. These PPDMTs, as defined in Section 4, depends
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axiom expression

privacyPreservingObjective v iao:objectiveSpecification

privacyPreserving-
Technique

v opis:semanticPerceptionProcess

v 9 ro:hasPart privacyPreservingObjective

v 9 ro:hasPart (iao:algorithm u 9 ro:hasPart
(iao:objectiveSpecification u 9 hro:hasPart
(odm:dataSpecification u9 iao:isAbout odm:datatype u
9 ro:hasPart opis:propertyMappingSpecification)))

privacyPreserving-
VirtualSensor

vopis:virtualSensor

v 9obi:isConcretizationOf privacyPreservingTechnique

accessControlObjective v privacyPreservingObjective

accessControl
v privacyPreservingTechnique

v 9 ro:hasPart accessControlObjective

v 9 ro:hasPart (iao:algorithm u 9 ro:hasPart
(iao:objectiveSpecification u 9 hro:hasPart
(odm:dataSpecification u
9 iao:isAbout opis:semanticPerceptionDatatype u
9 ro:hasPart opis:semanticEntityMappingSpecification)))

accessControl-
VirtualSensor

v privacyPreservingVirtualSensor

v 9 obi:isConcretizationOf accessControl

Table 6.2 – Privacy-preserving virtual sensor definition

on parameters and specific input datatypes that can be represented
using the concept of virtual sensor. Access Control Models (ACMs)
are particular cases of privacy-preserving that performs a verification
and which results is the unchanged data stream or nothing (if access
is denied). In other words, by defining PPDMTs and ACMs as KDDM

Figure 6.6 – Virtual sensor specialization for privacy-by-policy strategy

processes, which can be represented as virtual sensors, it is possible
to specify input and output in order to match data streams to PPDMTs

and ACMs in specific conditions. This match is achieved by reasoning
over semantic signature of virtual sensor based on classes defined in the
SPL of OPIS. Figure 6.6 presents the specialization of virtual sensors
based on the concepts of trust and plurality.

In order to represent PPDMT using the concept of virtual sensor,
we define privacy-preserving processes and objective specifications,
defining Privacy-Preserving Virtual Sensor (PPVS) and Access Con-
trol Virtual Sensor (ACVS), as formally described in Table 6.2. The
privacyPreservingTechnique is defined as a semantic perception pro-
cess based on the privacyPreservingObjective and algorithms which
have objective specifications constituted by data specifications that
are about some datatype and linked to feature of interests and prop-
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erty through property mapping specifications. For accessControl, a
subclass of privacyPreservingTechnique, access control objective is
defined along with algorithms that have objective specifications con-
stituted by data specifications that are about semantic perception
datatype and linked to one or more axioms, such as behavioral en-
tity classes, OPIS object properties or data properties.

Figure 6.7 – Virtual sensor signature.

�������� ��������� OPIS ontology can represent three levels of
workflow and algorithm: specification, implementation, and execu-
tion. Based on these three representation levels, we define the seman-

tic signature of virtual sensors based on specification and implementa-
tion information. The semantic signature is an RDF graph that con-
tains RDF triples of individuals that can instantiate a specific set of
Semantic Perception Layer (SPL) axioms. Figure 6.7 illustrates this set
of SPL that should be instantiate as a semantic signature for virtual
sensors.

By defining semantic signatures for virtual sensors, it is possible to
perform reasoning over signatures using SPARQL-DL queries, retriev-
ing promptly information about virtual sensors needed to implement
our Privacy-aware Virtual Sensor Model (PA-VSM). In addition, since
these semantic signatures are RDF graphs, similarity calculations be-
tween distinct signatures can be used to compare virtual sensors and
their inference intentions. Table 6.3 defines each attribute of the se-
mantic signature based on SPARQL-DL queries that should be satisfied
in the signature RDF graph. The signature is composed of a virtual
sensor identification CID (class and instance IRIs), a certification VSC,
similarity measurements VSS, process specification VSP, algorithms
VSA, objective specification VSG, input specification VSI, output spec-
ification VSO, and operators VSE.

Similarly, the semantic signature of a Privacy-Preserving Virtual
Sensor (PPVS) is specialized to reflect the structure of PPVS. Differ-
ently, from virtual sensors, PPVS have the same input and output
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attr. description SPARQL-DL query

CID
virtual sensor class
\ instance id

SubClassOf(class,opis:virtualSensor)

Type(id,class)

VSC certification
Annotation(id,opis:hasCertification,cert)*

Type(cert,rdfs:literal)*

VSS
similarity
measurement

Annotation(id, ro:hasPart, _:sim)*

Type(_:sim, xsd:real)*

PropertyValue(_:sim,obi:isSpecifiedOutputOf, _:simCalc)*

Type(_:simCalc,obi:similarityCalculation)*

VSP
process
specification

PropertyValue(id,obi:isConcretizationOf,_:spp)

Type(_:spp,opis:semanticPerceptionProcess)

VSA algorithms

PropertyValue(_:spp,ro:hasPart,_:algo)

Type(_:algo, obi:algorithm)

PropertyValue(_:algo,ro:hasPart,_:aos)

Type(_:aos,odm:objectSpecification)

Annotation(_:aos,_:osa,_:osav)

Type(_:osa,owl:AnnotationProperty)

Type(_:osav,rdf:Literal)

VSG
objective
specification

PropertyValue(_spp, ro:hasPart, _:spos)

Type(_:spos,opis:semanticPerceptionObjectiveSpecification)

Annotation(_:spos, _:osa, _:osav)

VSI
input
specification

PropertyValue(_:aos,ro:hasPart,_:ddspec)

Type(_:ddspec,odm:DescriptiveDataSpecification)

PropertyValue(_:ddspec,ro:hasPart,_:mappro)

Type(_:mappro,opis:PropertyMappingSpecification)

PropertyValue(_:ddspec,iao:isAbout,_:dt)

Type(_:dt,odm:datatype)

PropertyValue(_:mappro,iao:isAbout,_:prop)

Type(_:prop,ssn:Property)

PropertyValue(_:be,ssn:hasProperty,_:pro)

Type(_:be,opis:behavioralEntity)

VSO
output
specification

PropertyValue(_:aos,ro:hasPart,_:odspec)

Type(_:odspec,odm:OutputDataSpecification)

PropertyValue(_:odspec,ro:hasPart,_:mapping)

Type(_:be,mapping:semanticEntityMappingSpecification)

PropertyValue(_:odspec,iao:isAbout,_:spdt)

Type(_:spdt,opis:semanticPerceptionDatatype)

PropertyValue(_:mapping,iao:isAbout, OR(_:be,_:sp,_:prop))

Type(_:so,opis:semanticProperty)

PropertyValue(_:be,ssn:hasProperty,_:sp)

VSE operators

PropertyValue(id, ro:hasPart, _:ope)

Type(_:ope,odm:operator)

PropertyValue(_:ope,ro:roleOf,_:aim)

Type(_:aim,odm:algorithmImplementation)

PropertyValue(_:aim, obi:isConcretizationOf, _:algo)

PropertyValue(_:ope, exact:hasInformation, _:pas)*

Type(_:pas,odm:parameterSetting)*

PropertyValue(_:aim, ro:hasQuality, _:par)*

Type(_:par,odm:parameter)*

PropertyValue(_:pas,iao:isQualitySpecificationOf,_:par)*

PropertyValue(_:psp, iao:isAbout, _:par)*

Type(_:psp,odm:parameterSpecification)*

Table 6.3 – Virtual sensor signature. Optional patterns are marked with *.
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specification based on property mapping specifications, as defined
in Table 6.2. Therefore, the semantic signature of PPVS is formally
defined similarly to the virtual sensor signature without the VSO at-
tribute. Lastly, Access Control Virtual Sensor (ACVS) are restricted
to authorize personal information release. Thus, its signature can be
formally defined similarly to virtual sensor signature without the VSI

attribute, i. e. based solely on OPIS axioms (class, property object, and
data property axioms).

��������� ������� ������ Virtual sensors can be considered
trusted based on its verified certification. The virtual sensor cer-

tification acts as a certified stamp that assures the virtual sensor
performs according to its semantic signature. The work involved to
certify a virtual sensor can be based in several approaches, such as
manual code verification, machine code verification, code identity
verification, behavior heuristics, and so forth. In this manuscript, we
refrain from defining these approaches, considering only their results.
Trust parties should implement an independent certification process,
providing two service interfaces: 1) virtual sensor certification
request; and 2) virtual sensor certification verification.

This verification occurs during the virtual sensor installation,
which queries the trust party about the certification verification using
the provided public key for the virtual sensor. If valid, the system an-
notates persistently the virtual sensor using the opis:hasCertification
annotation property in its semantic signature. For the matter of sim-
plicity, we define an only-during-installation certification verification
process. However, it is important to remark that more sophisticated
mechanisms to update virtual sensor certification status or verify ex-
pired certifications can be implemented. The concept of certification
is used in the PA-VSM to detect malicious inference intention in order
to reinforce privacy.

�.�.� Privacy Policy Condition

We propose to represent privacy policies based on ontology and
perform decision evaluations based on results of SPARQL queries.
In our approach, the PPC is based on three elements: informa-
tion classification, privacy-preserving virtual sensor, and time
interval. This condition is verified during the verification in the
Privacy-aware Virtual Sensor Model (PA-VSM). We refer to the
concerned individual who wants to enforce his/her privacy as data

provi-der. PPC are individually defined by a data provider. A set of PPC

forms a privacy policy.
The PPC is defined by extending the DUL concept of classification

(dul:classification), which is related through the object property
dul:isSettingFor to three classes: owl:Thing, dul:timeInterval, and
dul:concept. Figure 6.8 depicts the semantic structure of PPC based
on dul:classification structure. Since DUL does not define value
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Figure 6.8 – Privacy policy condition structure

axiom expression

includesInformationObject v dul:isSettingForvdul:includesObject

includesVirtualSensor v includesInformationObject

includesPrivacy-
PreservingVirtualSensor

v includesVirtualSensor

includesAccessControl-
VirtualSensor

v includesPrivacyPreservingVirtualSensor

privacyPolicyCondition

v dul:classification

v 9 dul:includesTimes dul:timeInterval

v 9 dul:isSettingFor (dul:concept u 9 dul:classifies owl:Thing)

v 9 includesVirtualSensor dul:concept

dul:timeInterval ⌘ time:instant u time:properInterval

Table 6.4 – Privacy policy condition definition

regions or unit of measurement, we import the OWLTime 2. This
allows defining privacy policy conditions based on instant (of any
temporal kind, such as datetime), or interval (such as day, night,
week). Each dul:classification is setting for a concept, and since
we employ concepts to classify OPIS axioms, the PPC is linked to
one or several OPIS axioms. Lastly, dul:classification is setting for
(dul:isSettingFor) owl:Thing. In particular, we extend the object
property dul:isSettingFor to specify the relation includesVirtualSensor

between a PPC and a virtual sensor. The specialization of virtual
sensor as defined in the previous Section is reflected in the structure
of the PPC. Therefore, the Privacy-Preserving Policy Condition (PPPC)
is a condition related only to PPVS and Access Control Policy Con-
dition (ACPC) is related only to ACVS. Table 6.4 presents the formal
definition of PPC classes and object properties.

2. https://www.w3.org/TR/owl-time/ (accessed on 26/04/2017)

https://www.w3.org/TR/owl-time/
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�.�.� The Ontological Framework for Personal Information Classi-

fication

The concept described in this previous subsections constitute an
ontological framework for personal information classification. That
is possible because OPIS provides a foundation for classifying per-
sonal information, allowing extension of these entities to describe
sub-domain and application dependent concepts. As explain previ-
ously, in our privacy-by-policy strategy, we provide a classification tax-
onomy based in the DOLCE-DnS UltraLite (DUL) that allows the data

provider to classifies efficiently any kind of personal information de-
fined in Personal Information Layer (PIL). Next, we extended the OPIS

concept of virtual sensors to describe privacy-preserving technologies
and access control mechanisms.

As PIL provides a structure for personal information classification,
its classes are designed to be extended in sub-domain classes accord-
ing to the application-dependent specificities. Similarly, virtual sen-
sors are designed to be extended representing specific semantic per-
ception processes, algorithm specifications, input specifications, out-
put specifications, algorithm implementation, operators, and param-
eters. Despite the fact that Semantic Perception Layer (SPL) provides
an initial set of algorithm specifications, each virtual sensor may have
their own KDDM process and implementation that should be specified
using SPL classes. Still, a common part of virtual sensor definition
can emerge among installed virtual sensors, such as human activity
perception objective, or algorithms for calculation of point of inter-
est. PPVS and ACVS are specific cases of virtual sensors, as defined
in Section 6.2.2. We define the set of extended PIL and PIL axioms as
eXtended-OPIS (xOPIS).

Figure 6.9 depicts how these classes from OPIS are extended in xOPIS

and how the PPC are related to the privacy-preserving virtual sensors,
classification taxonomy, and consequently, to personal information.
It is important to remark that ABox assertions, represented by dash-
dotted boxes, play a role of instantiation of PPC classes. The data

provider defines its privacy policy by instantiating individuals that con-
cretely relates an instance of PPVS, depicted by the PPPC (concept_1,
N, condition_1, M, ppvs_1), or an instance of ACVS, identified in the
figure by the ACPC (concept_1, N, condition_1, P , acvs_1).

While the OPIS ontology and privacy policy ontology should
be static, i. e. stay unchanged as a personal information classifi-
cation and virtual sensor structure, the xOPIS ontology should be
incremented each time a new virtual sensor signature is registered,
defining its application specific OPIS axioms and virtual sensor
definition. In addition, classification taxonomies can be registered
along with new virtual sensors, or commonly shared among several
virtual sensors.
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Figure 6.9 – Ontological framework for personal information classification.
Dotted arrows represent property paths. Dash-dotted arrows
labeled with i/o represent ’instance of’ relations.

Figure 6.10 – Privacy-aware virtual sensor model

�.� �������-����� ������� ������ �����

The Privacy-aware Virtual Sensor Model (PA-VSM) is a modular
privacy-by-design model based on virtual sensors composed of a PEP

of three verification steps which are performed before and after the
KDDM process (data processing) step, as depicted in Figure 6.10. The
pre-execution verifications aim to anticipate the KDDM inference in-
tention based on virtual sensor signature in order to apply PPDMTs

and ACMs over the input semantic data stream. Since our approach
attempts to avoid privacy harm, i. e. an unintended inference of
sensitive classified personal information, we provide an extra infer-
ence intention verification to detect malicious virtual sensor activities
based on signature similarity. The post-execution verification aims
to capture inferred classified information based on the KDDM output,
making sure that only semantic perception is generated by virtual
sensors.
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�.�.� Personal Semantic Data Stream

The concept of privacy is related to the data ownership. Therefore,
the basic unit of collected data is tagged using a data provider identifier.
The personal semantic data stream is, therefore, an observation value
annotated with semantics that describes semantic observation type
and data provider identification that allows reasoning about privacy
policy conditions.

As OPIS is based on the Semantic Sensor Network Ontology (SSN-O),
which provides a set of observation information, such as feature of
interest, observed property, stimulus, quality of observation, sensing
method, sampling time, and result time; we consider a subset of SSN-O

annotations, defined as semantic observation type, that is used to char-
acterize a semantic data stream. We define semantic observation type

formally as follows:

Definition 11 (semantic observation type) Let X be an ontology for per-

sonal information and virtual sensors, such as OPIS. A semantic observation

type is a tuple sot = <foi, prop, obs, dtt> iff:

— J Type(foi, ssn:featureOfInterest) KX is satisfied;

— J Type(prop, ssn:property) KX is satisfied;

— J Type(obs, dul:region) KX is satisfied;

— J Type(dtt, odm:datatype) KX is satisfied;

SSN-O does not define regions and unit of measurement, suggest-
ing that that semantics should be defined or imported from another
ontology in order to provide format and value space for sensor out-

put (ssn:sensorOutput). It defines observation value (v dul:region v

ssn:observationValue) as regions for sensor outputs. Thus, we com-
plement this semantics by employing the OntoDM class of datatype

(odm:datatype) to define the format of ssn:observationValue, as de-
fined in 5.8.3. This allows compatibility to the format dataset are
defined to algorithms in OntoDM and, consequently, virtual sensors.
The odm:datatype is related to ssn:observationValue through the IAO

object property of is about (iao:isAbout) to ssn:ObservationValue.
These values are aggregated as time-series observations of a spe-

cific semantic observation type. Virtual sensors are notified about data
streams of a specific semantic observation type, which are consistent
RDF graphs that represent a set of observation annotated. We for-
mally defined the semantic sensor observation as follows:

Definition 12 (semantic sensor observation) Let X be an ontology for

personal information and virtual sensors, such as OPIS. A semantic sensor

observation is a consistent RDF graph RSS = <OBSV:[sot][t]> iff: OBSV

is an RDF graph where 9 (v, rdf:type, obs) 2 OBSV iff OBSV is consistent

over X, and indexed by a semantic observation type sot and a timestamp t.

The unit of observation is, therefore, an RDF graph containing RDF
triples with assertions about the set of semantic observation type and
observation value. The concept of consistency of RDF graph over a
specific ontology is important in this context because it is not possible
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to reason over inconsistent RDF graphs. In addition, this guarantees
that the format and semantics defined in the ontology for personal
information and virtual sensors X are verified and valid.

The IoT sensing is a continuous stream of data that notifies vir-
tual sensors when input stream conditions are reached, such as win-
dow type, window size or interval, and semantic observation type. This
set of semantic sensor observation is called Personal RDF Stream Sam-
ple (PRSS) and it is annotated, among the up-mentioned information,
with the data provider’s identifier (pid). For the matter of simplicity,
we won’t incorporate technical details about the input stream condi-
tions, refraining ourselves in this chapter to the concept of a finite
set of semantic sensor observation. The technical details about this are
explained in the next chapter. We formally define PRSS as follows:

Definition 13 (personal RDF stream sample) A personal data stream

sample is a set of semantic sensor observation OBSVpid = {<OBSV>},

where pid denotes an individual’s semantic sensor observation stream.

This PRSS is the data stream that will be verified and processed by
virtual sensors. PPDMTs transform PRSSs in order to minimize data
utility, such as through l-diversity or other obfuscation techniques.
It should be noticed that OPIS specifies virtual sensor inputs consider-
ing both physical sensor observations and virtual sensor observations.
In the former, semantic observation types refer to real World entities,
which can be observed using physical sensors, observation value re-
gions, and sensor output datatypes. In the latter, semantic observation

types correspond to semantic perception of class and object property
axioms, object property assertions, and data property assertions. Our
approach allows considering semantic perceptions as observations.
As a consequence, PPDMTs can be applied over semantic perceptions.
Therefore, higher-level privacy preservation can be achieved, such as
l-diversity applied to types of point of interest (instead of raw geo-
graphic location points).

�.�.� Privacy Enforcement Process

The privacy enforcement process of PA-VSM is presented in Fig-
ure 6.11 using BPMN 2.0 notation. The pre-execution verification
has three main objectives: i) prevent virtual sensors to execute data
processing which results are not authorized according to the ACMs

defined in individual’s PPC; ii) decrease data utility selectively by ap-
plying PPDMTs that minimize the chances of extracting results that are
not authorized according to individual’s PPC; iii) identify and prevent
malicious non-certified virtual sensors to perform data processing in
PRSS. The post-execution verification has two main objectives: i) ver-
ify the semantic observation value consistency based on the semantic
perception datatype; and ii) prevent unauthorized output release ac-
cording to the ACMs defined in individual’s PPC.



150 ��-��� : �������-����� ������� ������ �����

F
ig

u
re

6
.1

1
–

P
rivacy

enforcem
ent

p
rocess



6.3 �������-����� ������� ������ ����� 151

�.�.�.� Inference Intention Verification

The advantage of having a semantic signature for virtual sensor,
besides the KDDM provenance, is the possibility to perform SPARQL

queries over a set of signatures that share the same ontological frame-
work and, consequently, compared each other. The Personal Infor-
mation Layer (PIL) provides the cognitive base for individuals to un-
derstand and classify their own data and information, defining PPC

that selectively apply Privacy-Preserving Data Mining Techniques
(PPDMTs) and Access Control Models (ACMs). On the other hand, the
Semantic Perception Layer (SPL) offers the underlying structure to
classify and compare Knowledge Discovery and Data Mining (KDDM)
that are implemented using virtual sensors.

In our approach, Privacy Policy Conditions (PPCs) are represented
by assertions that relate personal information (OPIS class or object
property axioms); time interval (or instant); and Privacy-Preserving
Virtual Sensor (PPVS) or Access Control Virtual Sensor (ACVS). This
structure relates the behavioral context where the personal informa-
tion is used or controlled, and the informational context on which this
information is inferred. The temporal unit can be adapted to express
starting instant, data interval, or period of PPC validity.

In Access Control Policy Condition (ACPC), ACVS may prevent PRSS

to be released, while in Privacy-Preserving Policy Condition (PPPC),
PPVS decreases data quality aiming to minimize the chances or accu-
racy of sensitive information to be inferred from PRSS. Therefore,
virtual sensor KDDM step should only be executed if there is any
chance of authorized output. Several ACMs are proposed and can
be implemented as ACVS, such as Role-Based Access Control [160]
and Attribute-Based Access Control, which has been broadly adopted
along with the XACML [212].

In Privacy-Preserving Policy Condition (PPPC), PPVS should be exe-
cuted before the virtual sensor KDDM step in order to transform the
PRSS and minimize the chances or the accuracy of sensitive informa-
tion, for example, ✏-differential privacy or k-anonymization.

Algorithm 2 presents the implementation of the inference intention

verification step. The input is formed by the ontology for personal
information X, semantic signature for virtual sensor in execution SX,
classification taxonomy C, direct classification D, privacy policy con-
ditions P, personal identifier pid, and PRSS OBSVpid.

The function ExecuteVS has as input the virtual sensor id, the PRSS,
and an optional signature referring the virtual sensor from which the
access control was called. In line 7, if the ExecuteVS function returns
something, there is at least one possibility that the virtual sensor will
result in authorized content, and, therefore, should proceed with the
virtual sensor execution. While in line 19, it returns the result of
PPDMTs over PRSS for each semantic observation type (sot).

Additionally, the functions RetrieveACVSForVS (line 3) and
RetrievePPVSForVS (line 16) returns SPARQL-DL queries. As up-
mentioned, our approach relies on the SPARQL queries to evaluate
PPCs and retrieve PPDMTs. The function Sparql(O,q) returns a set of
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Input :X, SX, C, D, P, IDS

X: ontology for representation of personal information and virtual sensors
SX: virtual sensor signature
C: classification taxonomy
D: direct classification
P: privacy policy conditions
pid: personal identifier
OBSVpid: personal RDF stream sample

Output : personal RDF stream sample
1 begin

2 FA = X[C[D[P

// Output access control based on classified output specification

3 AC Sparql(FA,RetrieveACVSForVS(SX.CID.id, pid))
4 all_unauthorized true
5 foreach <ac,axiom> in AC do

6 sot <opis:behavioralEntity, opis:semanticProperty, opis:ontologyAxiom,
opis:semanticPerceptionDatatype>

7 obs[sot,timestamp] axiom

8 if ExecuteVS(ac,obs,SX)!=nil then

9 all_unauthorized false
10 break
11 end

12 end

13 if all_unauthorized then

14 return nil // interrupt data stream if all output is unauthorized

15 end

// Privacy-preserving for input based on output specification and direct

classification

16 PPT Sparql(FA,RetrievePPVSForVS(SX.CID.id, pid))
// PPT={<foi,prop,obs,dtt,ppt>}

17 foreach <foi,prop,obs,dtt,PX> in PPT do

18 sot <foi,prop,obs,dtt>
19 OBSVpid[sot] ExecuteVS(PX.CID.id,OBSVpid[sot],SX)
20 end

21 return OBSVpid

22 end

Algorithmus 2 : Inference Intention Verification
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variable binding for the evaluation mappings of query q over the
ontology O, which is traditionally implemented in OWL reasoners,
such as in the Apache Jena framework 3.

We present SPARQL-DL queries using tables describing clauses types
(select, where, sub-query), ontological abstraction levels (Tbox, RBox,
ABox), SPARQL-DL query atoms and ids. More complex queries are
based on subqueries that extract information about virtual sensors
from their signatures, such as output specification and input specifi-
cation. In order to simplify and reuse SPARQL-DL queries, we define
those queries as functions which variables can be replaced and used
as input and output parameters.

clause type #id query

where

TBox/
ABox

TA1 Type(?IVirtualSensor,opis:virtualSensor)

TA2 DirectType(_:spp,opis:SemanticPerceptionProcess)

TA3 Type(_:alg,obi:algorithm)

TA4 Type(_:ods,odm:outputDataSpecification)

TA5 Type(?IDatatype,opis:semanticPerceptionDatatype)

TA6 Type(_:semap,opis:semanticEntityMappingSpecification)

TA7 Type(?IAxiom,opis:ontologyAxiom)

TA8 Type(_:FoI,ssn:FeatureOfInterest)

TA9 Type(_:Property,ssn:Property)

ABox

A2 PropertyValue(?IVirtualSensor,obi:isConcretizationOf,_:spp)

A3 PropertyValue(_:spp,ro:hasPart,_:alg)

A4 PropertyValue(_:alg,ro:hasPart,_:ods)

A5 PropertyValue(_:ods,ro:hasPart,_:semap)

A6 PropertyValue(_:semap,iao:isAbout,?IAxiom)

A7 PropertyValue(?IAxiom,opis:hasIRI,OR(_:IFoI,_:IProperty))

Table 6.5 – OutputSpecVS: Query definition to retrieve virtual sensor out-
put specification

For example, the sub-query OutputSpecVS presented in Table 6.5
retrieves the virtual sensor output specification based on the virtual
sensor id (?IVirtualSensor), personal information (?IAxiom) and data-
type (?IDatatype). As any SPARQL query, these variables can have
fixed values or evaluation mappings. If a value is defined for ?IVirtu-
alSensor, for instance, only evaluation mappings related to this virtual
sensor is retrieved, if they exist in the RDF graph. Ontological abstrac-
tion levels are grouped to facilitate the visualization of class assertions
(TBox/ABox) and object property assertions (ABox) in where clause.
Conversely, the sub-query InputSpecVS presented in Table 6.6 re-
trieves the virtual sensor input specification based on the virtual sen-
sor id(?IVirtualSensor), feature of interest (?IFoI), property (?IProp),
and datatype (?IDatatype). These queries are designed based on the
virtual sensor signature, which is defined in 6.3.

Based on OutputSpecVS, the SPARQL-DL query to retrieve ACVSs for
classified personal information RetrieveACForVS is defined in Table
6.7. Given a virtual sensor (?IVirtualSensor), the sub-query SQ1 re-
turns output specification (?IAxiomOut, _:IDatatypeOut), linking the
semantic perception (?IAxiomOut) to classification concept (_:ICon-

3. https://jena.apache.org/ (accessed on 26/04/2017)

https://jena.apache.org/
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clause type #id query

where

TBox/
ABox

TA1 Type(?IvirtualSensor,opis:virtualSensor)

TA2 DirectType(_:spp,opis:SemanticPerceptionProcess)

TA3 Type(_:algo,obi:algorithm)

TA4 Type(_:dds,odm:descriptiveDataSpecification)

TA5 Type(?IDatatype,odm:datatype)

TA6 Type(_:map,odm:mappingSpecification)

TA7 Type(?IProperty,ssn:Property)

TA8 Type(?IFoI,ssn:FeatureOfInterest)

ABox

A1 PropertyValue(_:vs,obi:isConcretizationOf,_:spp)

A2 PropertyValue(_:spp,ro:hasPart,_:algo)

A3 PropertyValue(_:alg,ro:hasPart,_:dds)

A4 PropertyValue(_:dds,iao:isAbout,?IDatatype)

A5 PropertyValue(_:dds,ro:hasPart,_:map)

A6 PropertyValue(_:map,iao:isAbout,?IProperty)

A7 PropertyValue(?prop,ssn:isPropertyOf,?IFoI)

Table 6.6 – InputSpecVS: Query definition to retrieve virtual sensor input
specification

Figure 6.12 – Privacy policy conditions

cept) through a transversal classification (sub-query SQ2). Thus, the
ontological framework described in Section 6.2.4 can be taken into
account to retrieve ACVS. The ACPC is expressed relating the classifi-
cation concept (_:IConcept) to the classification condition (_:ICondi-
tion), and, consequently, to a ACVS (?IACVS). Figure 6.12 depicts this
property path between the semantic perception (itbe1) and the ACVS

(iacvs1).
The semantic perception (itbe1) represents the personal informa-

tion, which can be an axiom assertion (class, object property, or data
property assertion). In the case depicted in figure 6.12, the ACVS as-
sertion lacvs1 encodes the ACVS id.

The sub-query SQ1 retrieves all output specification (?IAxiomOut,
_:IDatatypeOut) from a given virtual sensor (?IVirtualSensor), bind-
ing these output axioms (?IAxiomOut) to some classification concept
through the TransversalClassification sub-query (SQ2), as defined in
Table 6.1. The classification concept is, then, related to conditions
and, consequently, to the ACVS (A2,A3), according to the PPC defini-
tion (Table 6.4).

Similarly, the SPARQL-DL query to retrieve PPVS RetrievePPVS-

ForVS is also based on property path that relates a personal
information and a PPVS, as defined in Table 6.8. PPVSs transform the
input (PRSS) aiming to prevent the inference of a classified personal
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clause type #id query

sub-
query

-
SQ1 OutputSpecVS(?IVirtualSensor,?IAxiomOut,_:IDatatypeOut)

SQ2 TransversalClassification(_:IConcept,?IAxiomOut)

where

TBox/
ABox

TA1 Type(?IACVS, x-opis:AccessControlVirtualSensor)

TA2 Type(_:IDatatypeOut, opis:SemanticPerceptionDatatype)

ABox
A2 PropertyValue(_:IConcept,dul:hasSetting,_:ICondition)

A3 PropertyValue(_:ICondition,opis:includesACVS,?IACVS)

Table 6.7 – RetrieveACVSForVS: Query definition to retrieve access con-
trol virtual sensor

information by a virtual sensor (?IVirtualSensor). Therefore, in order
to retrieve those PPVSs (?IPPVS) that should be executed, an extra
property path pattern to retrieve all PPVSs related to the virtual sensor
(?IVirtualSensor) is realized by associating their inputs (SQ2, SQ3).
In Figure 6.12, a classified personal information (itbe1) is related
through a PPC to a PPVS (ippvs1).

clause type #id query

select ABox A1 ?IFoIIn, ?IPropertyIn, ?IDatatypeIn, ?IPPVS

sub-
query -

SQ1 OutputSpecVS(?IVirtualSensor):_:IAxiomOut,_:IDatatypeOut

SQ2 InputSpecVS(?IVirtualSensor):?IFoIIn,?IPropertyIn,?IDatatypeIn

SQ3 InputSpecVS(?IPPVS):?IFoIIn,?IPropertyIn,?IDatatypeIn

SQ4 TransversalClassification(_:IConcept):_:IAxiomOut

where
TBox/
ABox

TA1 Type(?IPPVS, x-opis:PrivacyPreservingVirtualSensor)

ABox
A2 PropertyValue(_:IConcept,dul:hasSetting,_:ICondition)

A3 PropertyValue(_:ICondition,opis:includesPPVS,?IPPVS)

Table 6.8 – RetrievePPVSForVS: Query definition to retrieve privacy-
preserving virtual sensor

�.�.� Malicious Inference Intention Verification

In the case of the non-certified virtual sensor, its semantic signa-
ture is not verified and, therefore, may not represent its real infer-
ence intention. The possibility of a malicious activity, when infer-
ence specification is intentionally different from the data processing
implementation, is a weak chain in our privacy verification. Some
alternatives to address this issue are possible. The simplest solution
corresponds to prevent completely the execution of non-certified vir-
tual sensors. This extreme solution does not represent the reality in
deployed systems where virtual sensors are deployed in the Cloud in
a time-to-market fashion. Thus, an automatic verification to minimize
the chances of malicious inference intention is needed. Techniques to
identify execution traces [213], which consists in analyze transactional
data from algorithm executions to detect and identify application im-
plementation; or techniques to detect malicious activities based on
crowdsourcing reputation systems [214].

In our approach, our semantic signature for virtual sensor model
provides a formalization how to represent the result of these tech-
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Figure 6.13 – Malicious Inference Intention Logic

niques in order to compare algorithms using the same semantics. We
propose to compare the similarity between pairs of concurrent virtual

sensors which share a classified output subset. The logic behind the
malicious inference intention step relies on the similarity to certified
virtual sensors that may use the same input (or a subset of it) and
infer a classified information. Figure 6.13 depicts this logic, repre-
senting how a non-certified virtual sensor A can be related to a clas-
sified information U when compared to a similar concurrent virtual
sensor B. However, this verification goes beyond the previous static
inference intention verification. In this case, given a PRSS, the similar
concurrent virtual sensor is executed in order to verify if the input
X(t) indeed results in classified information U.

Concurrent virtual sensors share an input specification subset and it
is defined formally as follows:

Definition 14 (Concurrent virtual sensor) Be X an ontology for repre-

sentation of personal information and virtual sensor, OBSV
SX

pid a personal

RDF stream sample input of virtual sensor SX. A concurrent virtual

sensor NX is a virtual sensor which input OBSV
NX

pid ✓ OBSV
SX

pid

The SPARQL-DL query to retrieve concurrent virtual sensors is defined
in Table 6.9. In this query, two graphs G1 and G2 are constructed
based on the input specification of the virtual sensor in execution
(?IVirtualSensor) and of concurrent virtual sensors (?IConVS), respec-
tively. The graph construction defines 4 RDF triples (A1-A4, A5-A9)
to be compared. The input specification is retrieved using the Input-

SpecVS sub-query (SQ1, SQ2). Finally, G1 are compared to G2, such
that G1 minus G2 results in nothing (A8).

graph clause type #id query

G1

construct ABox

A1 ?IConVS a opis:virtualSensor

A2 _:ICFoI a ssn:FeatureOfInterest

A3 _:ICProp a ssn:Property

A4 _:ICDttype a odm:Datatype

sub-
query

- SQ1 InputSpecVS(?IConVS,_:ICFoI,_:ICProp,_:ICDttype)

G2

construct ABox

A5 ?IVirtualSensor a opis:virtualSensor

A6 _:IFoI a ssn:FeatureOfInterest

A7 _:IProp a ssn:Property

A9 _:IDttype a odm:Datatype

sub-
query

- SQ2 InputSpecVS(?IVirtualSensor):?IFoI,?IProp,?IDttype

- filter ABox A8 G1 not exists G2

Table 6.9 – ConcurrentVS: Query definition to concurrent virtual sensors
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If we consider a large semantic signature knowledge base, the com-
parison algorithm complexity can be unfeasible for data stream pro-
cessing. Therefore, we restrict the search space for only concurrent

virtual sensors that are certified and which output specification con-
tains classified personal information. In addition, aiming to limit the
number of possible virtual sensors to compare, we employ the con-
cept of similarity between virtual sensor signatures. An extensive sort
of semantic measures is proposed [215].

Traditionally, this is an NP-complete problem which demands a
considerable processing power. In the next chapter, we describe the
architectural design to address this issue. For now, we simply use
the similarity result as a constraint for the SPARQL-DL query Simi-

larConcurrentCertifiedVS defined in Table 6.10 which retrieves all
concurrent virtual sensors (?IConVS) with a minimum similarity to the
virtual sensor in execution (?IVirtualSensor).

clause type #id query

sub-
query

- SQ1 ConcurrentVS(?IVirtualSensor,?IConVS)

where

TBox/
ABox

TA1 Type(_: VSSim, iao:dataItem)

TA2 Type(_:simCalc, obi:similarityCalculation)

TA3 Type(_:realDataType, odm:realDatype)

ABox

A1 PropertyValue(?IConVS, x-opis:hasCertification, _:Cert)

A2 PropertyValue(?IConVirtualSensor, ro:hasPart, _:VSSim)

A3 PropertyValue(?IVirtualSensor, ro:hasPart, _:VSSim)

A4 PropertyValue(_:VSSim, obi:isSpecifiedOutputOf, _:simCalc)

A5 PropertyValue(_:realDataType, iao:isAbout, _: VSSim)

A6 PropertyValue(_:VSSim, _:dataProperty, ?similarity)

A7 Filter(?similarity >= ?similarityThreshold)

RBox R1 DataProperty(_:dataProperty)

Table 6.10 – SimilarConcurrentCertifiedVS: Query definition to retrieve
similar concurrent virtual sensors

Concurrent virtual sensors are retrieved using the ConcurrentVS

sub-query (SQ1) and need to have a certification (A1). Since several
semantic similarity and relatedness measures are possible, the simi-
larity measure is a data item (TA1) defined using OBI class of simi-
larity calculation (TA2,A3) which result is defined using OntoDM class
of real datatype (TA3,A4). The virtual sensor in execution and the
concurrent virtual sensor have commonly the similarity measure (A1,
A2). A data property related to the semantic measure is then limited
to the similarity threshold (A5,R1,A6).

Therefore, based on these definitions, the detection of malicious in-
ference intention is defined using the SimilarConcurrentCertifiedVS

and the algorithms InferenceIntentionVerification and InferenceVer-

ification, as presented in Algorithm 3.
A set of similar concurrent certified virtual sensors is retrieved us-

ing the SimilarConcurrentCertifiedVS and a similarity threshold s

(line 2). For each similar concurrent certified virtual sensor, its infer-
ence intention is verified using the first step function InferenceIn-

tentionVerification (line 5). The input PRSS is replicated (line 3),
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Input :X, NX,s, C, D, P, IDS

X: ontology for representation of personal information and virtual sensors
NX: virtual sensor signature
C: classification taxonomy
D: direct classification
P: privacy policy conditions
IDS: input semantic data stream sample IDS={<IDS>T1 ,. . .,<IDS>Tn },
where <IDS>Ti={(obsValue,timeSampling)} and Ti=<FoI,Prop,Datatype>

Output : output semantic data stream sample
1 begin

2 CCVSs
NX

= Sparql(X, SimilarConcurrentCertifiedVS(NX,s)) // CCVSs
NX

={<SX>}

3 IDS⇤ = IDS

4 foreach SX in CCVSs
NX

do

5 IDS⇤ = InferenceIntentionVerification(X,SX.CID.id,C,D,P,IDS⇤)
6 if IDS⇤=nil then

// if stream is not authorized, return nil

7 return nil
8 end

9 ODS ExecuteVS(SX.CID.id,IDS⇤,NX)
10 ODS InferenceVerification(X,SX.CID.id,C,D,P,ODS)
11 if ODS<Axioms>=nil then

// if output is not authorized, return nil

12 return nil
13 end

14 end

15 return IDS⇤

16 end

Algorithmus 3 : Malicious Inference Intention Verification

and transformed through this verification, which may apply ACMs or
PPDMTs according to the retrieved concurrent virtual sensors. if some
ACPC in InferenceIntentionVerification do not authorize the PRSS, the
malicious inference intention verification returns nothing (line 7). If
IDS is still authorized, the similar concurrent certified virtual sensor
is executed (line 9) and its output is verified using the InferenceVer-

ification to guarantee that no classified information can be extracted
from the input PRSS.

�.�.� Inference Verification

Ultimately, the pre-execution steps aim to prevent a malicious algo-
rithm to extract unintended personal information, trying to anticipate
its KDDM process. We propose an approach preventive to detect mali-
cious inference intention. Therefore, after the KDDM execution, there
is still the need to verify its output because of the possibility on which
a virtual sensor can proceed its KDDM step if it exists authorized out-
put – there is no ACPC related to it – or private preserved output –
there is one or more PPPCs related to it.

The result of a virtual sensor must be a semantic perception as
defined in our approach in chapter 5. As previously mentioned, this
mechanism assures the output data type and semantics, which al-
lows implementing a verification based on PPC. The semantic percep-

tion datatype is defined in OPIS and has three attributes: axioms, object

property assertions, and data property assertions. The axioms attribute
refers to a set of IRI, while the object property assertions attribute and
data property assertions attribute to refer to set of RDF triples.
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Input :X, SX,s, C, D, P, IDS

X: ontology for representation of personal information and virtual sensors
SX: virtual sensor signature
C: classification taxonomy
D: direct classification
P: privacy policy conditions
ODS: output semantic data stream sample ODS = {{<axiom>}Axioms,
{<classAxiom,objectPropertyAxiom,classAxiom>}ObjectPropertyAssertions,
{<classAxiom,dataPropertyAxiom,obsValue,Datatype>}DataPropertyAssertions,
timeSampling}

Output : output semantic data stream sample
1 begin

2 FA = X[C[D[P

3 A ODS<Axioms> // Verify axiom declarations

4 A⇤  nil
5 foreach axiom in A do

6 ac = Sparql(X, RetrieveACVSForAxiom(FA,axiom))
7 if (ac and AccessControl(ac,axiom,SX)) then

8 A⇤ <axiom>
9 end

10 end

11 OP ODS<ObjectPropertyAssertions> // Verify object property assertions

12 OP⇤  nil
13 foreach <subject,predicate,object> in OP do

14 if {<subject>,<predicate>,<object>} in A⇤ then

15 OP⇤  <subject,predicate,object>
16 end

17 end

18 DP ODS<DataPropertyAssertions> // Verify data property assertions

19 DP⇤  nil
20 foreach <subject,predicate,data,datatype> in DP do

21 if {<subject>,<predicate>} in A⇤ then

22 if ConsistentDatatype(data,datatype) then

23 DP⇤  <subject,predicate,data>
24 end

25 end

26 end

27 return {A⇤Axioms,OP⇤ObjectPropertyAssertions,DP⇤DataPropertyAssertions}
28 end

Algorithmus 4 : Inference verification
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It is important to remark that the OPIS class of semantic perception

datatype inherents from OntoDT a flexibility to restrict and redefine
aggregate datatypes. Thus, it is possible to restrict the IRI value space
to allow only a subset of IRI. In this manuscript, we do not restrict
the IRI value space in the ontology. We do it by defining semantic

perception observation type:

Definition 15 (semantic perception observation type) Let X be an on-

tology for personal information and virtual sensors, such as OPIS. A seman-

tic perception observation type is a tuple spot = <BE, OBA, DPA> iff:

— J Type(be, opis:behavioralEntity) KBE is satisfied;

— J PropertyValue(be1, prop, be2) KOBA is satisfied, where be1, prop,

be2 2 BE;

— J PropertyValue(be, aprop, l) KDPA is satisfied, where be, aprop 2 BE,

and l 2 L;

In other words, the inference output of virtual sensors is a list of IRI

that are used in the semantic assertions (object property assertions and
data property assertions). Based on this definition, the Algorithm 4 is
defined to verify these three output attributes. The set of axiom dec-
larations A (line 3) is verified against the ACPCs, adding authorized
axioms to a new set A*. Next, the set of RDF triple of object property
assertions (line 11) is verified to guarantee that only declared axioms
are asserted. At last, the set of RDF triple of data property assertions
(line 18) is verified to guarantee that only declared axioms are as-
serted and that the datatype is consistent with the declared output
datatype.

In the end, the authorized inference output is returned, and, con-
sequently released to access from other virtual sensors or upper-level
layers, such as service layer or application layer.

�.� ����������

We presented in this chapter a privacy mechanism for the IoT sens-
ing based on a privacy-by-policy and privacy-by-design strategy.

The privacy-by-policy part of the strategy is achieved through an
ontological framework that allows specifying personal information,
classification taxonomies, and privacy policy conditions from a cog-
nitive perspective, using the DOLCE-DnS UltraLite (DUL) conceptual
framework. This aspect of our approach addresses the understand-
ing obstacle that IoT sensing poses for non-technical data providers,
supporting personal information classification and privacy policy def-
inition. Part of this issue is caused by the lack of common semantics
to compare personal information, which is supplied by OPIS. Addi-
tionally, the capacity to extend OPIS provides a flexible semantics for
virtual sensor developers to represent specific personal information
used or produced by their virtual sensors. Due to OPIS structure, this
extension provides means to reason about classification conditions
and to apply the concept of transversal classification to reach concepts
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that are not directly classified but are somehow related to a classified
information.

On another hand, our privacy-by-design is based on the capacity to
encapsulate KDDM processes into virtual sensors and represent their
inputs, outputs, objectives, specifications, algorithms, implementa-
tions, and parameters using semantic concepts which allow compar-
ing virtual sensors and creating mechanisms to anticipate malicious
inference intentions in non-certified virtual sensors based on similari-
ties to certified virtual sensors. We proposed a design based on three
verification steps: two of them aim to anticipate inference intention
and prevent malicious behaviors, and the other to prevent classified
information release and inconsistent semantic perception. In order to
provide privacy preservation and access authorization, we extend the
concept of virtual sensors to express Access Control Models (ACMs)
and Privacy-Preserving Data Mining Techniques (PPDMTs) that are
techniques to verify release and usage authorization of personal in-
formation and to degrade data utility aiming to minimize classified
information detection or detection accuracy.
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In the previous chapter, we presented the Privacy-aware Virtual
Sensor Model (PA-VSM), our privacy model for the IoT sensing defined
through OWL representation and algorithms. This model is conceptu-
alized based on privacy-by-design guidelines, providing a privacy-by-

policy mechanism based on ontologies and semantic inference to eval-
uate policy conditions. The approach relies on the capacity to inter-
pret the result that is produced on sensor data streams, anticipating
privacy actions based on the semantic signature of KDDM processes
that are provided along with the Sensing as a Service (S2aaS).

The traditional S2aaS paradigm (see Section 2.4.1) encompasses a
variety of services that may include (raw, prepared, or processed) sen-
sor data streams. However, the semantic representation of the data or
information provided by these services is crucial to igniting the rea-
soning and inference employed in our privacy model. In this chapter,
a privacy-aware S2aaS is defined using the PA-VSM along with concepts
of virtual sensor and Semantic Perception (SP). Additionally, in order
to provide a testbed platform for evaluating the functional viability
of this approach, an extension of a sensing platform architecture is
presented for the proposed sensing service. Lastly, a use case is de-
scribed to demonstrate how the sensor data stream, KDDM processes,
PETs, and privacy policies are represented using the ontological frame-
work defined in Section 6.2.

In the remain of this chapter, the privacy-aware S2aaS for the IoT

is formalized in Section 7.2, followed by its architecture in Section
7.3. Next, the use case is presented in Section 7.4. Lastly, in Section
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7.5 results and conclusions are presented based on the preliminary
results of the use case.

�.� �������-����� ������� �� � �������

As discussed in Section 2.1.3, the Cloud service model provides
a simpler interface for service customers and service providers.
Through virtualization, Cloud service providers are able to bill only
consumed services, while providing elasticity as demanded by Cloud
customers. In the context of S2aaS, Cloud native applications that
collect, broadcast, process, and keep sensor data should incorporate
this elasticity aspect to scale up their services according to some SLAs.
The in-network processing paradigm of the S2aaS, on which we ground
our privacy strategy, benefits from the same elasticity and billing
model. This service paradigm can be analogously extended to the
concept of privacy-aware S2aaS billing for in-network privacy safe data

processing.
However, the conventional implementation of S2aaS includes sens-

ing of any types, which is not compatible with our proposed privacy
model. The suitable service paradigm needs to incorporate data pro-
cessing capacity for the sensor data streaming, enabling in-network
KDDM and PET executions. Similar to the concept of Cloud of Things
for S2aaS, where edge computing platforms provide meaningful in-
formation from the in-network processing of sensing data [26], we
envision a Cloud-IoT platform that intermediate data consumers and
data providers outputting only meaningful personal information which is

not classified as private. Thus, the virtualization of sensor in Cloud-IoT
platform provides a network gateway where data collection, process-
ing, and privacy preservation can be implemented together. This
design guarantees that sensor data streams from private sensors are
processed and then verified on-the-fly, creating a privacy preservation
layer between data providers (connected objects) and data consumers (ap-
plication and business layers). By shifting the conventional KDDM pro-
cess execution toward the joint-sphere, several risks of privacy harm
– as highlighted in Section 2.2 – can be addressed, such as anticipa-
tion of data processing, private data exchange, and minimization of
released data quality.

Another requirement of the proposed privacy model is the seman-

tic representation of the sensor data stream which can be achieved by
semantic annotation of sensor data or by semantic perception as the
output of KDDM processes. The former corresponds to the expressive-
ness of current ontologies used in S2aaSs, while the latter is related
to the type of KDDM processes that can be implemented. The se-
mantic annotation of sensor data conventionally found in S2aaSs [216,
60, 217, 218] is appropriate to provide sensor discovery and sensor in-

teroperability techniques, but not to express personal information or
KDDM processes used in the PA-VSM. This is due to the amount of
accumulated processing, abstraction, information accuracy, and back-
ground knowledge that is incorporated during the KDDM execution



7.2 �������-����� ������� �� � ������� 165

and which can not be expressed in device-centric ontologies. The use
of OPIS makes it possible to semantically represent aspects of these
data processing scenarios and produced information, addressing the
limitation of the SSN-O expressiveness. On top of that, the model de-
fined in the semantic perception computing allows targeting KDDM

processes that produce semantic representation from data streams, as
required by the PA-VSM, such as DSM, SSR, and CEP approaches (Sec-
tion 2.4.1).

The privacy enforcement is then achieved through incorporation
of the PA-VSM into the sensing stream workflow of the virtual sen-
sor, evaluating which Privacy-Enhancing Technology (PET) to apply
preventively based on: (1) inference intention using the semantic
perception output specification, (2) malicious inference intention us-
ing similarity measurement between certified and non-certified vir-
tual sensors, and (3) inference results. Figure 7.1 depicts the Cloud-
IoT platform incorporating our PA-VSM and the involved actors (data
producer, data consumer, independent certifier, virtual sensor devel-
oper).

Figure 7.1 – Overview of our novel privacy-aware IoT sensing

The data producer registers her/his connected device, along with
a privacy policy, that will be used by the sensing platform to deploy
one or more privacy-aware virtual sensors. These virtual sensors must
have the same input signature of the sensor data stream generated
by his/her device and enforce privacy according to the provided pol-
icy. They intermediate data consumers and devices, receiving sen-
sor data and streaming personal information. On the other side,
data consumers must subscribe to the information streams that are
available. In order to have the desired information available, privacy-
aware virtual sensors must be developed. In Figure 7.1, virtual sensor
developers and data consumers are depicted separately, since they
can work independently. Still, similarly to complementary interest
between end-users and application developers, they may influence
each other in terms of need to produce and consume certain types
of information. Another reason why virtual sensor developers are
illustrated aside is the need of an optional certification process that
envisions to shift the trust model toward independent parties that
are not presumably interested in the value of information, focusing
their business model in the certification or development processes in-
stead of the personal information consume. While the virtual sensor
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developer plays an important role in the provision and consumption
of information, the independent certifier meets the requirement of a
third party that guarantees that virtual sensors behave according to
their provided semantic signatures, improving the reliability and vi-

ability of the PA-VSM. This is achieved by minimizing the possibility
of a malicious or erroneous virtual sensor identity (semantic signa-
ture) and increasing the number of possible virtual sensors that can
be executed since PA-VSM accept the execution of non-certified vir-
tual sensor by verifying its malicious intention using certified virtual
sensors. In addition, virtual sensor developers can act as privacy pro-
tection agents, developing virtual sensors that implement PPDMTs and
ACMs, which are not of interest of the data consumer. These virtual
sensors that implement PETs need to be certified, because the privacy
enforcement process relies heavily on them.

The personal information stream consists of a sequence of semantic

representation based on OPIS The semantic perception data type class sets
out a data structure specification, which can be used to express ontol-
ogy axioms and the relationships between them (object properties) or
data properties. This allows, for instance, associating generalizations

and values, produced by data mining or machine learning techniques,
to the semantic representations. As a consequence, virtual sensors can
produce an output of complex type that may contain any type of data
attach to its semantic representation. Since OPIS extends SSN-O and the
evaluation engine of PA-VSM is modeled using Semantic Web technol-
ogy, our proposed privacy-aware S2aaS is compatible with available
sensing platform that adopts SSN-O to annotate sensor data stream.

�.� ������� ������� ������������

Currently, many commercial and open-source IoT platforms are
available, as surveyed in [219]. For the functional viability evaluation
of our proposed privacy-aware S2aaS, we selected the OpenIoT project
to be extended as a testbed platform. OpenIoT is an open-source cen-
tralized IoT platform composed of open-source projects, including the
eXtended Global Sensor Network (xGSN) middleware [27], which im-
plements the concept of virtual sensors.

xGSN relies on semantic representations of sensor and observation
metadata to implement the process of annotation and publishing
sensor data on the Sensor Web. The system is constituted by the
Global Sensor Network (GSN) middleware, the Linked Stream Mid-
dleware (LSM) and a quad-store database. GSN is a Virtual Sensor
Network (VSN) that supports the rapid and simple deployment of a
wide range of sensor network technologies [220]. It provides sensor
virtualization that can be connected to several IoT networks proto-
cols, such as CoAP, XMPP, MQTT etc. An initial set of protocols are
bundled in the middleware, but new protocols can be implemented
extending the wrapper class.

GSN provides data processing capabilities for virtual sensors
through the concept of processing class, a self-containing Java class
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Figure 7.2 – Privacy-aware xGSN architecture. Normal arrows represents the
workflow between xGSN layers. Diamond-end arrows represent
part-hood relationship. Dotted arrows correspond association
relationship. Orange boxes refer to the proposed extension.

that can be used to deliver data cleaning, preparation, and KDDM pro-
cessing on-the-fly. LSM complements the GSN limitation to annotate
sensor data using SSN-O to represent sensors and observations.

Virtuoso is the quad-store database in the OpenIoT project used to
register semantic annotations for virtual sensors and observations. It
provides a hybrid architecture for data access and integration, com-
bining a Relational Database Management System (RDBMS) and Prop-
erty Graph Data Management with SPARQL endpoint to deal with
storage and retrieval of RDF-based quads (graph, subject, predicate,
object). Therefore, SPARQL queries from our model can be executed
directly over Virtuoso that contains sensor data, semantic signatures
of virtual sensors – including PPDMTs and ACMs – and PPCs.

As depicted in Figure 7.2, we propose to implement our privacy
model extending the xGSN architecture to : (1) represent virtual sen-
sor meta-data (semantic signature) and privacy policies using OPIS; (2)
specialize virtual sensor into a privacy-aware virtual sensor that imple-
ments our PA-VSM. The first goal is achieved by changing the template
for virtual sensor signatures and internal java classes in the xGSN mid-
dleware to load the extended semantic signature. An XML file (Virtu-
alSensorDescription.xml) containing the JAXB 1 binding schema de-
fines a new format for the virtual sensor signature, so called privacy-

aware virtual sensor. It is important to remark that original version of
virtual sensor is compatible and can coexist with privacy-aware vir-
tual sensors. The main different relies on the virtual sensor deploy-
ment. The privacy-aware virtual sensor must have the new semantic
signature in order to be loaded correctly, otherwise, they will be de-

0. https://virtuoso.openlinksw.com/ (accessed on 26/04/2017)
1. http://www.oracle.com/technetwork/articles/javase/index-140168.

html (accessed on 26/04/2017)

https://virtuoso.openlinksw.com/
http://www.oracle.com/technetwork/articles/javase/index-140168.html
http://www.oracle.com/technetwork/articles/javase/index-140168.html
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ployed without privacy protection. The JAXB binding schema defines
the format expected of the virtual sensor signature. An example of
a semantic signature for the virtual sensor that implements a "step
predictor" algorithm is depicted in Listing 7.1.

Listing 7.1 – Virtual sensor signature file example

<semantic−perception−v i r t u a l−sensor name=" sensor 1" p r i o r i t y ="10" >
< c e r t i f i c a t i o n > . . . </ c e r t i f i c a t i o n >
< o b j e c t i v e−s p e c i f i c a t i o n c l a s s = " . . . " / >
<processing−c l a s s >
< c l a s s−name>org . openiot . gsn . vsensor . S tepPredic tor </ c l a s s−name>
<workflow>
<algorithm c l a s s ="odm:OntoDM_368779" >
algorithm 1

</algorithm >
<streams >
<stream name=" input 1" >
<source a l i a s =" source 1" sampling−r a t e ="1" storage−s i z e ="1" >
<address wrapper=" cvs " > . . . < / address >
<query>
SELECT * FROM WRAPPER
</query>
</source >
<query>
SELECT * FROM source 1

</query>
</stream >
</streams >
<output−s t r u c t u r e >
<output−data−s p e c i f i c a t i o n name=" output 1" >
<semantic−perception−axioms>
<ontology−axiom i r i =" opis : behavioralAgent "
type =" c l a s s "> behaviora l agent </ontology−axiom>
</semantic−perception−axioms>
</output−data−s p e c i f i c a t i o n >
</output−s t r u c t u r e >
<implementation id ="weka . c l a s s i f i e r s . t r e e s . J 48" > J 48 t r e e from Weka

t o o l k i t vers ion . . .
</implementation >
<operators >
<operator−parameter name=" prunning conf idence " type =" r e a l "

observat ion−value−region =" dul : Amount">
10

</operator−parameter >
</operators >
</workflow>
</processing−c l a s s >
<addressing > <predicate >
<key> l a t i t u t e </key><value > 9 2 . 2 </value >
<key>longitude </key><value > −22.2 </value >
</predicate > </addressing >
</semantic−perception−v i r t u a l−sensor >

⇧

The second goal is achieved by extending original Java classes of
virtual sensors, which are aware of the new semantic signature and
implement the algorithms defined in the PA-VSM. The main modifica-
tion consists in extending the AbstractVirtualSensor Java class in two
methods: dataAvailable and dataProduced. The dataAvailable method
allows anticipating data delivery to the privacy-aware virtual sen-
sor, where algorithms 2 and 3 are implemented. The dataProduced

method is executed before outputting the privacy-aware virtual sen-
sor result, where algorithm 4 is implemented. OPIS is made avail-
able along with the OpenIoT and loaded into Virtuoso quad-store,
along with all its dependencies (imported ontologies). The code is
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Figure 7.3 – xGSN instance and its dependencies

available in https://github.com/thiagomoreirac/openiot.git (ac-
cessed on 26/04/2017). In order to allow Virtuoso to correctly infer
and retrieve information based on SPARQL queries, the OpenIoT vir-
tual machine instance should be bundled with a base ontology, which,
in our case it is formed by OPIS, SSN-O and an xOPIS that represents
the ontological framework needed to represent sensor data, personal
information and virtual sensors – as well as Privacy-Preserving Vir-
tual Sensors (PPVSs) and Access Control Virtual Sensors (ACVSs) (see
Section 6.2.4).

For each virtual sensor to be deployed, some files need to be in-
jected in the OpenIoT virtual machine instance: (1) a virtual sensor
signature file; (2) a processing class jar file, containing the Java class to
be executed by the virtual sensor instance; (3) a wrapper jar file, con-
taining the specialized wrapper class that implements some IoT net-
work protocol (optional); and (4) a bulk loading RDF source file, con-
taining any specific sub-domain ontology used by the virtual sensor
(optional). Figure 7.3 illustrates these elements, their relationships,
and processes.

After loading the ontological framework and injecting virtual sen-
sor signatures, the certification verification is performed during the
deployment of each virtual sensor, followed by its registration in the
LSM (and consequently in the Virtuoso quad-store). As previously
mentioned, the certification verification is optionally placed during
the virtual sensor deployment, but other options can be implemented,
such as including a periodic verification to guarantee that the certifi-
cation is still valid and has not expired yet. The process to calculate
similarity measurements, which are used during the verification of
malicious inference intention, between the virtual sensor and the cur-
rent deployed ones can also be executed during its deployment for
performance matters. Since the semantic signature of a virtual sen-
sor only changes during the installation, the similarity measurement
is also a static value and can be safely stored. The similarity mea-
surement is calculated using the SemMF library 2 [221]. We present

2. http://semmf.ag-nbi.de (accessed on 26/04/2017)

https://github.com/thiagomoreirac/openiot.git
http://semmf.ag-nbi.de
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Figure 7.4 – Virtual sensor deployment sequence

the sequence diagram of OpenIoT instantiation in Figure 7.4. After
the deployment of virtual sensors, the OpenIoT virtual machine in-
stance is ready to be notified by connected devices about available
sensor data, storing observations and related semantic annotations
using the LSM.

The automatic deployment of the IoT sensing platform is an impor-
tant part related to this work that would permit to evaluate perfor-
mance and viability of the privacy-aware S2aaS on-demand. A repos-
itory for virtual sensors and information about private devices (and
their attached privacy policies) have to be made available so the de-
ployment service could decide which virtual sensors need to be de-
ployed and which devices could be connected in order to respond to
an information subscription demand. Even though we understand its
relevance and impact on the proposed privacy-aware S2aaS, we refrain
on focusing our contribution on the design of the sensing service ar-
chitecture, which demonstrates the functional viability to implement
this solution in a real IoT platform. A preliminarily study on the au-
tomation of the deployment service for privacy-aware sensor-clouds
has been investigated in [222].
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The objective of this use case is to demonstrate the viability of our
ontology-based PA-VSM. In particular, the use case allows testing the
instantiation of OPIS and SPARQL queries that are respectively the main
semantic representation and the evaluation engine of our proposed
privacy model. The first objective of this use case is to determine
if the proposed ontology can be consistently instantiated, therefore,
ready to be queried. By describing each step for representing per-
sonal information, PETs, classification taxonomies, and privacy poli-
cies, the usability of OPIS is evidenced by the verification of OWL De-
scription Logic (OWLDL) language consistency and OPIS’s competence
to express all the elements proposed in our ontological framework.

Secondly, by describing and executing SPARQL queries used in the
algorithms that constitute the PA-VSM, its viability is demonstrated,
since their evaluation engine are basically queries executed against
OWL inference engines. Apart from SPARQL queries, the complexity
of these algorithms depends on the number of input and output data
specifications, and the number of axioms and assertions outputted
by the execution of virtual sensors. These numbers are empirically
low, since a high number of inputs and outputs could be related to
a not well-design KDDM process – in particular when considering IoT

sensing service scenarios. On the other hand, the OWLDL language
provides decidable computational properties for ontology consistency
checking, class expression satisfiability, class expression subsumption
checking, and instance checking. However, this can be classified as
NP-Hard with a decidability up to a nondeterministic algorithm in
time that is at most double exponential in the size of the input (22

n
,

for n is the size of the input) [111]. In other words, it can be unprac-
tical to use it as an evaluation engine in the S2aaS. For this reason,
the second objective of this use case is evidencing the viability of the
privacy model through the average response time of these SPARQL

queries.
In order to illustrate, the example presented in Section 5.9.2 is ex-

tended, showing how the ontological framework based on OPIS can
express personal information, PETs, classification taxonomies, and pri-
vacy policies. The portability from the conventional scenario of data
processing described in algorithm 1 towards a data stream processing
is based on the micro-batch execution model that transform a data
stream into short batches, similarly to the model implemented by dis-
tributed computing approaches, such as Apache Spark. It is impor-
tant to remark that the conversion from conventional to micro-batch
execution models should be investigated for each case since stream-
ing processing encompasses distinct parameters, configurations, and
results from those achieved by batches and traditional execution mod-
els. However, in this use case, we focus on the investigation of the
viability of our privacy model by reasoning about KDDM process, in-
puts, and output, instead of the accuracy of the KDDM process. Based

2. http://spark.apache.org/faq.html (accessed on 26/04/2017)

http://spark.apache.org/faq.html
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Figure 7.5 – Representation of Personal Information using OPIS. Yellow
boxes represent OPIS classes. Orange boxes refers to imported
classes.

on a predefined privacy policy that defines PPC in the form of per-

sonal information classification ! privacy enhancing technology, PPDMTs

and ACMs are executed preventively if a private personal informa-
tion will/might be produced. This is possible because the seman-
tic signature of the virtual sensor in execution contains the output
specification using OPIS to describe the antecedent part of the condi-
tion (personal information) and the consequent part (a virtual sensor
that implements a privacy enhancing technology that can be executed
anticipatively). Since its result is a semantic representation, inference
using OWL class subsumption and our proposed transversal classifi-
cation (see Section 6.2.1) offer a powerful and formal verification to
evaluate if an output is private.

In the next subsections, we describe the personal information that
is used in this use case and how to represent it using the Personal
Information Layer (PIL). Next, we introduce the virtual sensor that
implements the KDDM process described in algorithm 1 as an SP in a
data stream scenario, three virtual sensors that implement PETs and
their semantic signatures using the Semantic Perception Layer (SPL).
Next, the classification taxonomy used to support PPC definition is
presented using the ontological framework provided in Section 6.2.3.
Lastly, we present the SPARQL queries that constitute the core of our
proposed PA-VSM, followed by the preliminary results. The definitions
presented in this section are detailed in Annex 10 and available in
https://github.com/thiagomoreirac/opis/ (accessed on 26/04/2017).

�.�.� Personal Information

OPIS provides the foundational structure to express personal infor-
mation using the context of behavior. As explained in Section 5.7,
two set of behavioral entities (vectors 5.1 and 5.2) cover the features

https://github.com/thiagomoreirac/opis/
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involved during the creation or management of personal information.
Analogously to the SSN-O, classes of OPIS should be extended by sub-
sumption or by intention in order to be instantiated. This aspect of
OPIS allows its adoption in different application domains, offering
a base conceptual framework to classify information. Besides that,
any of these classes can be extended to represent sub-domain con-
cepts using existing domain ontologies. The alignment of OPIS with
upper-level and middle-level ontologies makes it possible to import
sub-domain ontologies that are available, such as those provided by
the OBO Foundry, Ontology Design Patterns initiative 3 etc.

For this use case, we imported the DBPedia 4 and OSMonto 5.
The former provides a large-scale knowledge base extracted from
Wikipedia that it is useful for being accessible worldwide and
updated from the Wikipedia database. The latter provides geo-
graphic tags from the open-source project OpenStreetMaps [223] that
associate spatiotemporal data to several types of information, such as
point of interest, amenities, demographic data, and so forth. Figure
7.5 depicts a fragment of these concepts and their equivalence classes.
For example, the behavioral entity ’geographic feature’ is extended
to describe a point of interests (PoI), and subsequently, specializations,
such as PoIBank, PoICafe, PoIHome etc. These specializations
are associated as equivalent (owl:equivalentClass) to categories of
OSMOnto tags. As a consequence, a virtual sensor that intends to
use the OpenStreetMaps APIs to access spatiotemporal information
can concretely classify this data as personal through the ’geographic
feature’.

In addition, the representation of persons using the DBPedia
knowledge base is concretely expressed by associating the ’behav-
ioral agent’ concept to the class ’person’ from DBPedia. Aiming to
represent the scenario of human activities of [207] and to demonstrate
some reasoning involving the transversal classification, the concept of
’behavior’ is extended to be associated to point of interests through
the object property dul:hasLocation (See Section 10.1 of Annex 10

for details). As a consequence, the behavior ’Practicing Sport’ is
associated with an object property ’is Location Of’ several ’point
of interests with sport tags, such as v_gymnastics, v_soccer, v_golf,
v_equestrian etc.

�������� ���������� �������� The result expected from a
privacy-aware virtual sensor is a semantic representation that may
contain data values, which are traditionally outputted by KDDM

processes. This semantic representation has a data type that needs to
be interpreted by the privacy model in order to allow reasoning over
semantic observation values that are produced by SPs. OPIS provides a
data type specification for SP called semantic perception data type that
restricts the KDDM result to be expressed in terms of ontology axioms,

3. http://ontologydesignpatterns.org/wiki/Ontology:Main (ac-
cessed on 26/04/2017)

4. http://wiki.dbpedia.org/Ontology (accessed on 26/04/2017)
5. http://wiki.openstreetmap.org/wiki/OSMonto (accessed on 26/04/2017)

http://ontologydesignpatterns.org/wiki/Ontology:Main
http://wiki.dbpedia.org/Ontology
http://wiki.openstreetmap.org/wiki/OSMonto
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object property assertions or data property assertions. Ontology axioms

attribute corresponds to a set of axiom declarations that are used for
the assertion in the other two sets.

It is important to notice that semantic representations can be
concretely expressed both in TBox and ABox. As a consequence,
a KDDM process can output an ontology axiom "Person" or an
individual "Person A". The former is specified only using the
class axiom, the latter is specified both using the class axiom and
class assertion (known as individuals). Therefore, two conformity
evaluations need to be performed before the PPC evaluation. Firstly,
a declaration evaluation must be executed to verify if axioms are prop-
erly defined in the loaded ontology, checking if the declared classes

are subclasses of ssn:featureOfInterest, object properties are subclasses
of opis:semanticProperties, and data properties have subsumption of
ssn:property. Secondly, an assertion evaluation verifies if class, object
property, and data property assertions refer to these declared axioms.
The loaded ontology is the conceptual framework built using PIL, as
defined in this section, and available for the reasoning engine (in
the moment of the privacy model execution). Table 7.1 presents the
axiom declarations and assertion set that constitute a semantic observation

value, along with their sets, and the evaluation for each set.

Attribute Set Set Evaluation

axiom
declarations

C: <classAxiom(C1), ...,
classAxiom(Cn)>

(Ci,IRIi):hasIRI
JIRIiKO vssn:FeatureOfInterest

P: <objectPropertyAxiom(OP1), ... ,
objectPropertyAxiom(OPn)>

(OPi,IRIi):hasIRI
JIRIiKO v opis:semanticProperty

D: <dataPropertyAxiom(DP1), ...,
dataPropertyAxiom(DPn)>

(DPi,IRIi):hasIRI
JIRIiKO vssn:property

assertion
set

<classAssertion(CA1), ...,
classAssertion(CAn)>

(Cj,CAi):hasPart
Cj 2 C

<objectPropertyAssertion(OPA1), ...,
objectPropertyAssertion(OPAn)>

(OPAi,Ci):hasPart
(OPAi,OPi):hasPart
(OPAi,Cj):hasPart
Ci,Cj 2 C

OPi 2 P

DataPropertyAssertion(
<DPA1>,...,<DPAn>)

(DPAi,Ci):hasPart
(DPAi,DPi):hasPart
(DPAi,vk):hasPart
Ci 2 C

DPi 2D

ObservationValue(vk)

Table 7.1 – Semantic Observation Value Instance Checking

According to the SSN-O paradigm for sensor observation, the ab-
straction region on which values are defined must be specified using
the observation value class. This design permits to specify sensor data



7.4 ��� ���� 175

using any measurement systems or abstract region, such as the unit
of measurement ontology 6, QUDT 7, QUOMOS 8, MUO 9 etc.

In the case of SP, the result is a semantic representation. However,
neither RDF nor OWL is capable of expressing this relationship be-
tween an assertion of observation value class and a semantic representa-

tion. Technically, it is not possible to assert an object property between
an individual (ABox) and an ontology axiom (TBox). OPIS addresses
this issue by providing a region called ontology axioms – specialized
in class axioms, object property axioms, and data property axiom –
and a data property hasIRI that can be used to assert a data property
between an individual of ontology axiom (observation value) and an
IRI of an ontology axiom (semantic representation). For instance, in or-
der to represent the class "Person" in the semantic observation value, a
class axiom is asserted with a data property assertion hasIRI having a
xsd:anyURI value as the IRI of class "Person". The assertion evaluation

is possible because the ontology axiom has axiom assertions, which are
used to assert object properties and data properties.

In order to provide the SSN-O compatibility, semantic observation val-

ues can refer to original sensor observation values using data prop-
erty assertions. Since these values can be defined according to any
region, OPIS provides the data type specification based on the OntoDT

expressiveness (see Section 3.3.2.1) that allows application defining
data format, as defined in the XML Schema for RDF 10. In addition,
OPIS design for axiom declaration and assertion permit to refer to
data property and object property used in the semantic observation

value, mapping them respectively to ssn:property and its extension
opis:semanticProperty.

�.�.� Semantic Signature

In this use case, one virtual sensor that implement the perception of
human activity is described, along with three virtual sensors that im-
plements the following PETs: Attribute-based Access Control (ABAC),
Role-based Access Control (RBAC), and k-anonymity. Therefore, five
semantic signatures are represented using SPL, presented in the next
subsections. These signatures are available in Section 10.2 of Annex
10 and are loaded during the virtual sensor deployment (see Figure
7.4).

������� ������ ��� ����� �������� ���������� The semantic
signature of the virtual sensor that implements human activity per-
ception is composed of three main sections: (1) semantic perception
process; (2) data types; and (3) algorithm implementations and pa-

6. https://bioportal.bioontology.org/ontologies/UO (ac-
cessed on 26/04/2017)

7. http://www.qudt.org/ (accessed on 26/04/2017)
8. https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=

quomos (accessed on 26/04/2017)
9. http://idi.fundacionctic.org/muo/muo-vocab.html (ac-

cessed on 26/04/2017)
10. https://www.w3.org/TR/swbp-xsch-datatypes/ (accessed on 26/04/2017)

https://bioportal.bioontology.org/ontologies/UO
http://www.qudt.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=quomos
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=quomos
http://idi.fundacionctic.org/muo/muo-vocab.html
https://www.w3.org/TR/swbp-xsch-datatypes/
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rameters. The semantic perception process contains key information
about the sequence of algorithms, objectives for each step, and in-
formation about data type, observed property (and feature of inter-
est), and the expected result in terms of Semantic Perception (SP).
The virtual sensor has geographic location property specified as in-
put in its first algorithm specification (stopDetectionAlgorithm) of the
type real. In the output specification of the third algorithm specifica-
tion (calculateProbabilityPointOfInterestIAlgorithm), the use of ontology

axiom region is requested to represent the link between an individual
of ontology axiom to a class definition. As explained previously, the
limitation of OWL to express these types of relationship requires that
we employ the hasIRI annotation property from an individual (ABox)
to a class (TBox) by asserting the class axiom. For this virtual sensor
output, three ontology axioms are defined: point of interest class axiom,
human activity class axiom, and ’is location of’ object property axiom. The
WGS84 data type represents the format of the geographic location co-
ordinates that should be provided by the sensor, but also to compare
between virtual sensors and PETs that have the same type of input
and thus, compatible.

������� ������� ��� ������ ������� ���������� One of the
main benefit of expressing PETs as virtual sensors using the concept
of semantic signature is the direct implication of comparison and rea-
soning using OWL reasoners and SPARQL queries for all virtual sen-
sors, including those that discovery personal information and those
that preserve privacy. Queries used to identify concurrent virtual sen-

sors (definition 14) can retrieve from the quad-store (Virtuoso) a list
of virtual sensors that have in common a subset of input specification.
In the case of virtual sensors that implement ACMs, they control per-
sonal information publishing, and, therefore, accept only behavioral

entity as input/output in its data specification.
An Access Control Virtual Sensors (ACVSs) do not transform data

stream, limiting their functionality to suppress data (attribute) if it
is not allowed to be published. They have a specific semantic signa-
ture since they do not differ input and output data specification, as
defined in Section 6.2.2. Figure 7.6 depicts the semantic signature
of a ACVS that implements an ABAC technique. The most important
information in this signature is the data specification that permits
retrieve this virtual sensor to execute in the stream of any personal
information since it refers to the behavioral entity class. Listing 7.2
provides the OWL Functional Syntax of this semantic signature. An-
other important issue in ACVS and PPVS is their certifications. Since
they should be trusted virtual sensors, it is expected they are not pro-
vided by non-verified parties. The certification information is illus-
trated in the "..."ˆxsd:String data elements. Another ACVS is included
in this use case to exemplify the diversity in PETs that can coexist,
highlighting the plurality aspect of our approach. The Role-based
Access Control (RBAC) technique is similarly represented with almost
the same semantic signature. The decision of which technique will be
executed depends on the PPC that is evaluated on-the-fly. The SPARQL



7.4 ��� ���� 177

Figure 7.6 – TBox/Abox representation of an attribute-based access con-
trol virtual sensor. Dash-dotted lines represent instance-of
(rdf:type). Dotted lines represent subsumption relationship.
Red box, yellow boxes, blue boxes, and cyan box represent
respectively PIL class, specification classes from SPL, imple-
mentation classes from SPL, and owl:Thing.

query should retrieve only the specified ACVS in the individual’s pol-
icy.

Listing 7.2 – Fragment of semantic signature for an Attribute-Based Access
Control (ABAC) tecnique using OPIS. Notation: OWL Func-
tional Syntax.

Class Asser t ion ( < xopis : accessContro lVir tua lSensor > <ABACVirtualSensor
_01 >)

Class Asser t ion ( < obi : operator > <operatorABAC_01 >)
Class Asser t ion ( <odm: algorithmImplementation > <ABACAlgorithmImpl_01 >)
Class Asser t ion ( < xopis : accessControlMechanism > <ABACMechanism_01 >)
Class Asser t ion ( < xopis : accessContro lOb jec t ive > <ABACObjective _01 >)
Class Asser t ion ( < iao : algorithm > <algorithmABAC_01 >)
Class Asser t ion ( < iao : o b j e c t i v e S p e c i f i c a t i o n > <objSpec 001 >)
Class Asser t ion ( < iao : d a t a S p e c i f i c a t i o n > <dataSpec 001 >)
Class Asser t ion ( < xopis : semanticPercept ionMappingSpeci f icat ion > <

behavioralEntityMappingSpec 001 >)
Class Asser t ion ( < opis : Behaviora lEnt i ty > < b e h a v i o r a l E n t i t y l 001 >)

Objec tProper tyAsser t ion ( < ro : has_ part > <ABACVirtualSensor_01> <
operatorABAC_01 >)

Objec tProper tyAsser t ion ( < ro : hasRole > <operatorABAC_01> <
ABACAlgorithmImpl_01 >)

Objec tProper tyAsser t ion ( < obi : i sConcre t iza t ionOf > <ABACVirtualSensor
_01> <ABACMechanism_01 >)

Objec tProper tyAsser t ion ( < ro : has_ part > <ABACMechanism_01> <
ABACObjective _01 >)

Objec tProper tyAsser t ion ( < ro : has_ part > <ABAClMechanism_01> <
algorithmABAC_01 >)

Objec tProper tyAsser t ion ( < obi : i sConcre t iza t ionOf > <ABACAlgorithmImpl
_01> <algorithmABAC_01 >)

Objec tProper tyAsser t ion ( < ro : has_ part > <algorithmABAC_01> <objSpec
001 >)

Objec tProper tyAsser t ion ( < ro : has_ part > <objSpec 001> <dataSpec 001 >)
Objec tProper tyAsser t ion ( < ro : has_ part > <dataSpec 001> <

behavioralEntityMappingSpec 001 >)
Objec tProper tyAsser t ion ( < iao : isAbout > <behavioralEntityMappingSpec

001> < b e h a v i o r a l E n t i t y 001 >)
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Figure 7.7 – TBox/Abox representation of a k-anonymity virtual sensor.
Dash-dotted lines represent instance-of (rdf:type). Dotted lines
represent subsumption relationship. Yellow boxes, blue boxes,
and cyan box represent respectively specification classes from
SPL, implementation classes from SPL, and SSN-O classes.

Objec tProper tyAsser t ion ( < iao : isAbout > <dataSpec 001> <
semanticPerceptionDatatype 001 >)

Annotat ionAssert ion ( < opis : h a s C e r t i f i c a t i o n > <ABACVirtualSensor_01>
" . . . " ^ xsd : S t r i n g )

⇧

������� ������� ��� ���� ������ ������� ���������� ����-

������ The representation of PPVS is slightly different from ACVS’s,
while keeping the similarity to data specification (same for input
and output). The difference is specifically in the data transformation
process, which happens in the case of PPVS. The data stream sample
is transformed into an anonymized data stream sample, using the
processing class jar that bundles PPDMTs and parameters. Technically,
PPVSs can have predefined configurations, but it also can retrieve
preferences from a persistent file or table. In this use case, these
preferences are considered static, but some possibilities to parame-
terized these PPDMT includes (but are not restricted to): parameters
in PPC definitions (instead of simple pair of personal information !

privacy enhancing technology), administrative interface for configuring
persistent files, crowd-sourcing preferences based on web services,
and so forth.

Since PPDMT are meant to decrease data utility without changing
the format of the dataset, the semantic signature of PPVS should con-
tain the observed property and data type aimed to have its data qual-
ity degraded. Figure 7.7 depicts a semantic signature of a PPVS that
implements a k-anonymity technique. The geographic location property

– extension of a ssn:property – is instantiated in order to be referred by
the property mapping specification. Instead of just semantic entity map-

ping specifications and semantic perception datatypes, PPVS can have data
specification of any data type and property mapping specifications. In
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the example of the k-anonymity virtual sensor, a WGS84 data type is
used to define the sensor data observation from a geographic location
sensor. Listing 7.3 presents a fragment of the semantic signature for
a k-anonymity technique in OWL Functional syntax.

Listing 7.3 – Fragment of semantic signature for an k-anonymization tech-
nique using OPIS. Notation: OWL Functional.

Class Asser t ion ( < xopis : accessContro lVir tua lSensor > <
kAnonymityVirtualSensor _01 >)

Class Asser t ion ( < obi : operator > <operatorKAnonymity _01 >)
Class Asser t ion ( <odm: algorithmImplementation > <KAnonymityAlgorithmImpl

_01 >)
Class Asser t ion ( < xopis : privacyPreservingTechnique > <

KAnonymityPrivacyPreservingTechnique _01 >)
Class Asser t ion ( < xopis : pr ivacyPreserv ingObjec t ive > <

KAnonymityObjective _01 >)
Class Asser t ion ( iao : algorithm <algorithmKAnonymity _001 >)
Class Asser t ion ( iao : o b j e c t i v e S p e c i f i c a t i o n <objSpec 003 >)
Class Asser t ion ( <odm:odm: d a t a S p e c i f i c a t i o n > <dataSpec 003 >)
Class Asser t ion ( <wgs 8 4 :WGS84 Datatype > <WGS84 Datatype _01 >)
Class Asser t ion ( < opis : propertyMappingSpecif icat ion > <

geographicLocat ionMappingSpeci f icat ion _01 >)
Class Asser t ion ( < xopis : geographicLocationProperty > <

geographicLocat ionProperty 01 >)

Objec tProper tyAsser t ion ( obi : i s C o n c r e t i z a t i o n O f <
kAnonymityVirtualSensor _01> <KAnonymityPrivacyPreservingTechnique
_01 >)

Objec tProper tyAsser t ion ( ro : has_ part <kAnonymityVirtualSensor _01> <
operatorKAnonymity _01 >)

Objec tProper tyAsser t ion ( ro : hasRole <operatorKAnonymity_01> <
KAnonymityAlgorithmImpl _01 >)

Objec tProper tyAsser t ion ( ro : has_ part <
KAnonymityPrivacyPreservingTechnique _01> <KAnonymityObjective
_01 >)

Objec tProper tyAsser t ion ( ro : has_ part <
KAnonymityPrivacyPreservingTechnique _01> <algorithmKAnonymity
_001 >)

Objec tProper tyAsser t ion ( obi : i s C o n c r e t i z a t i o n O f <
KAnonymityAlgorithmImpl_01> <algorithmKAnonymity _001 >)

Objec tProper tyAsser t ion ( ro : has_ part <algorithmKAnonymity_001> <
objSpec 003 >)

Objec tProper tyAsser t ion ( ro : has_ part <objSpec 003> <dataSpec 003 >)
Objec tProper tyAsser t ion ( iao : isAbout <dataSpec 003> <wgs 8 4 :WGS84

Datatype _01 >)
Objec tProper tyAsser t ion ( ro : has_ part <dataSpec 003> <

geographicLocat ionMappingSpeci f icat ion _01 >)
Objec tProper tyAsser t ion ( < iao : isAbout > <

geographicLocat ionMappingSpeci f icat ion _01> <
geographicLocat ionProperty _01 >)

Annotat ionAssert ion ( opis : h a s C e r t i f i c a t i o n <kAnonymityVirtualSensor
_01> " . . . " \ ~ { } xsd : S t r i n g )

⇧

�.�.� Classification Taxonomy

The use of a classification taxonomy is part of our privacy model
to facilitate the reference of personal information in concepts related
to an application domain or easier for end-users to classify their own
information. The information classification structure proposed in Sec-
tion 6.2.1 is based on DUL ontology, using the classes concept that can
be used to define a classification taxonomy. As depicted in Figure
7.8, we classify the behavioral entities according to eight life contexts:
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Figure 7.8 – Classification taxonomy example

leisure context, social context, sport context, health caring context,
shopping context, professional context, family context, and public
life context.

The classification taxonomy should be defined along with the ob-
ject property assertions of classifies between the instance of a spe-
cific concept and an individual of a classified personal information
(defined in PIL) ObjectPropertyAssertion(ssn:classifies <healthRelatedCon-

text_01> <v_hospital_01>). Instead of defining rules for every user,
the classification taxonomy allows reusing a set of classifications by
multiple individuals. In addition, the transversal classification en-
ables an efficient classification that goes beyond the traditional direct
classification, using the inference power of OWL reasoning engines.
For instance, let health caring context be used to define a PPC of
the type health caring context ! k-anonymity. The data stream can be
anonymized even if the result – human activity – is not directly clas-
sified. This is possible because another trusted virtual sensor can use
the same sensor data sample and discovery points of interest tagged
with v_hospital, which are related to a health-related context, and there-
fore, capable of being retrieved using the PPC about health-related
contexts.

It is important to remark that the PPC and classification taxonomies
use individuals (class instances) to assert object properties that allows
reasoning over the set of instances and facts. However, the SPARQL

queries defined in the PA-VSM are defined in a way to consider the
classes of those instances, instead of specific individuals, to perform
its transversal classification inference. In this use case, we associate
each life context to its respective human activities (behaviors) as pre-
sented in Table 7.2.
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life context behavioral entity

leisure context PracticingSport / Partying / having Dinner
/ havingLunch

social context havingDinner / Partying / ReligiousPractic-
ing / havingLunch

sport context PracticingSport

health caring context HealthCaring

shopping context Shopping

professional context Working

family context AtHome

Table 7.2 – Mapping between life contexts and behavioral entities

�.�.� Privacy Policy

Privacy Policy Conditions (PPCs) are the concrete representation of
individual’s preference for her privacy. It is also expressed in OWL as-
sertions that associate classification, PET, and optional a time interval.
In our use case, as depicted in Listing 7.4, we define one PPC that asso-
ciates ’sport context’ to k-anonymity virtual sensor (kAnonymiyVitu-
alSensor_01), and ’social context’ to the attribute-based access control
virtual sensor (ABACVirtualSensor_01).

Listing 7.4 – Examples of privacy policy conditions. Notation: OWL Func-
tional.

Class Asser t ion ( < privacyPreservingCondit ion > <
privacyPreservingCondit ion _01 >)

Objec tProper tyAsser t ion ( < dul : i s S e t t i n g F o r > <
privacyPreservingCondit ion _01> <copis : sportContext 001 >)

Objec tProper tyAsser t ion ( < inc ludesPr ivacyPreserv ingVir tua lSensor > <
privacyPreservingCondit ion _01> <kAnonymityVirtualSensor _01>

Class Asser t ion ( < AccessControlCondition > <accessControlCondit ion _02 >)
Objec tProper tyAsser t ion ( < dul : i s S e t t i n g F o r > <accessControlCondit ion

_02> <copis : s o c i a l C o n t e x t 001 >) )
Objec tProper tyAsser t ion ( < inc ludesPr ivacyPreserv ingVir tua lSensor > <

accessControlCondit ion _02> <ABACVirtualSensor_01>
⇧

�.�.� SPARQL Queries

PA-VSM has three main PEPs implemented in three algorithms: the
inference intention verification, the malicious inference intention ver-
ification, and the inference verification. In the Algorithm 2, two
SPARQL queries are executed: RetrieveACVSForVS and RetrieveP-

PVSForVS. As defined in the previous chapter, RetrieveACVSForVS

sets for every specified output in a given virtual sensor, the transver-
sal classification verifies if there is any classification defined in the
privacy policy of the user to an ACVS. We assembled these concepts
described in Tables 6.1 , 6.5, and 6.7 into one query presented in
Listing 7.5.

The query is divided into sections and has translated OBO codes,
such as IAO_000136, into correspondent label references, for read-
ability matters. The current virtual sensor’s ID (:ID) is identified in
the FILTER clause, and an ontology axiom (class, object property, or



182 �� ���������� �� �������-����� ������� �� � �������

data property) should be returned, along with the ACVS, if a PPC links
one of the virtual sensor output to a classified ontology axiom. The
transversal and direct classification translate the path between a di-
rect classified behavioral entity to a classification concept (defined in
the classification taxonomy). Then, the virtual sensor output specifi-
cation is extracted using its semantic signature. At last, if the virtual
sensor ontology axiom output is a subclass of the classified behavioral
entity, one ACVS is returned.

Listing 7.5 – RetrieveACVSForVS SPARQL query.

PREFIX dul : <http ://www. loa−cnr . i t / o n t o l o g i e s/DUL. owl#>
PREFIX opis : <ht tps : / / . . . / thiagomoreirac/opis/master/opis . owl#>
PREFIX ppol : <ht tps : / / . . . gomoreirac/opis/master/pr ivacy_pol i cy . owl#>
PREFIX obi : <ht tp :// purl . o b o l i b r ar y . org/obo/>
PREFIX ro : <http ://www. obofoundry . org/ro/ro . owl#>
PREFIX iao : <http :// purl . o b o l i b r ar y . org/obo/>
PREFIX odm: <http :// kt . i j s . s i /panovp/OntoDM#>

PREFIX odt : <http :// kt . i j s . s i /panovp/OntoDT#>
PREFIX ssn : <http :// purl . o c l c . org/NET/ssnx/ssn#>

SELECT ? i V i r t u a l S e n s o r ? cOntologyAxiom ?iACVS WHERE { {
#=== Privacy Policy Condition =======

? pr ivacyPol icyCondit ion ppol : inc ludesAccessContro lVir tua lSensor ?
iACVS .

? pr ivacyPol icyCondit ion dul : i s S e t t i n g F o r ? i D i r e c t C l a s s i f i c a t i o n .
? pr ivacyPol icyCondit ion a ?PPC . ?PPC r d f s : subClassOf+ ppol :

Pr ivacyPol icyCondit ion .
#=== Transversal Classification ====

? i D i r e c t C l a s s i f i c a t i o n a/r d f s : subClassOf * ? c T r a n s v e r s a l C l a s s i f i c a t i o n
.

? c T r a n s v e r s a l C l a s s i f i c a t i o n r d f s : subClassOf * dul : Concept ; ^a ?
i T r a n s v e r s a l C l a s s i f i c a t i o n .

#=== Direct Classification =======

? i T r a n s v e r s a l C l a s s i f i c a t i o n dul : c l a s s i f i e s ?cTCOntologyAxiom .
?cTCOntologyAxiom a/r d f s : subClassOf+ opis : OntologyAxiom ; opis : hasIRI

? cTransversa lClass i f iedAxiom .
? cTransversa lClass i f iedAxiom ( r d f s : subClassOf|owl : equiva lentClass|^

owl : equiva lentClass ) + opis : B e h a v i o r a l E n t i t y .
? cTransversa lClass i f iedAxiom ( ( r d f s : subClassOf /(owl : someValuesFrom|

owl : allValuesFrom|owl : onClass ) ) | ( ( owl : unionOf/rdf : r e s t */ rdf : f i r s t
) * ) ) * ? cClassi f iedAxiom .

? iClass i f iedAxiom a /( r d f s : subClassOf|^owl : equiva lentClass|owl :
equiva lentClass ) * ? cClassi f iedAxiom .

#=== Output VS ===============

? i V i r t u a l S e n s o r a/r d f s : subClassOf * opis : V i r tua lSensor .
? i V i r t u a l S e n s o r obi : obi : i s C o n c r e t i z a t i o n O f ? iSPP . ? iSPP a/r d f s :

subClassOf * opis : Semant icPercept ionProcess .
? iSPP ro : has_part|dul : hasPart ? iAlgorithm . ? iAlgorithm a/r d f s :

subClassOf iao : iao : algorithm .
? iAlgorithm ro : has_part|dul : hasPart ? i O b j e c t i v e S p e c . ? i O b j e c t i v e S p e c

a/r d f s : subClassOf * iao : : o b j e c t i v e S p e c i f i c a t i o n .
? i O b j e c t i v e S p e c ro : has_part|dul : hasPart ? iOutputDataSpec . ?

iOutputDataSpec a/r d f s : subClassOf * odm:odm: d a t a S p e c i f i c a t i o n .
? iOutputDataSpec ro : has_part|dul : hasPart ? iMapSpec . ? iMapSpec a/r d f s :

subClassOf * odm:odm: mappingSpeci f icat ion .
? iOutputDataSpec iao : iao : isAbout ? iDatatype . ? iDatatype a/r d f s :

subClassOf * odt : datatype .
? iMapSpec iao : iao : isAbout ? iOntologyAxiom . ? cOntologyAxiom r d f s :

subClassOf * ? IRIType .
#=== RetrieveACVSForVS ===============

? cOntologyAxiom r d f s : subClassOf */^a ? iClass i f iedAxiom .
} FILTER ( ? IRIType IN ( ssn : F e a t u r e O f I n t e r e s t , ssn : Property ) )
FILTER ( ? i V i r t u a l S e n s o r = : ID ) } LIMIT 1

⇧

Similarly, RetrievePPVSForVS is defined based on PPC which in-
cludes PPVS as part of the policy condition. We present its SPARQL

query in Listing 7.6, highlighting the differences in comparison to Re-
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trieveACVSForVS. The complete version of this query can be found
in Listing 10.3 in Appendix 10 The query retrieves PPVSs that are set
in the user’s PPCs that has a path to an ontology axiom transversally
classified of the given virtual sensor (:ID). Based on these PPVSs, we
select those whose input specification is a subset of the given virtual
sensor input specification.

Listing 7.6 – RetrievePPVSForVS SPARQL query.

PREFIX . . .
SELECT ?iPPVS ? cOntologyAxiom ? cProperty ? c F e a t u r e O f I n t e r e s t ?

iDatatype WHERE { {
#=== Privacy Policy Condition =======

? pr ivacyPol icyCondit ion ppol : i nc l u desPr i vac y Pr ese r v i n g V i r tu a l Se nso r ?
iPPVS .

. . .
#=== Transversal Classification ====

. . .
#=== Concrete Classification =======

. . .
#=== Output VS ===============

? i V i r t u a l S e n s o r . . . opis : OntologyAxiom . ? cOntologyAxiom r d f s :
subClassOf * ? IRIType .

#=== Input VS ===============

? i V i r t u a l S e n s o r a/r d f s : subClassOf * opis : V i r tua lSensor .
? i V i r t u a l S e n s o r obi : i s C o n c r e t i z a t i o n O f ? iSPP . ? iSPP a/r d f s : subClassOf

* opis : Semant icPercept ionProcess .
? iSPP ro : has_part|dul : hasPart ? iAlgorithm . ? iAlgorithm a/r d f s :

subClassOf iao : algorithm .
? iAlgorithm ro : has_part|dul : hasPart ? i O b j e c t i v e S p e c . ? i O b j e c t i v e S p e c

a/r d f s : subClassOf * iao : o b j e c t i v e S p e c i f i c a t i o n .
? i O b j e c t i v e S p e c ro : has_part|dul : hasPart ? i InputSpec . ? i InputSpec a/

r d f s : subClassOf * odm: d e s c r i p t i v e D a t a S p e c i f i c a t i o n .
? i InputSpec ro : has_part|dul : hasPart ? iMapSpec . ? iMapSpec a/r d f s :

subClassOf * odm: mappingSpeci f icat ion .
? i InputSpec iao : iao : isAbout ? iDatatype . ? iDatatype a/r d f s : subClassOf *

odt : datatype .
? iMapSpec iao : iao : isAbout |( iao : iao : isAbout/opis : hasIRI ) ? cProperty . ?

cProperty r d f s : subClassOf * ssn : Property .
OPTIONAL { ? cProperty ssn : isPropertyOf ? c F e a t u r e O f I n t e r e s t . ?

c F e a t u r e O f I n t e r e s t r d f s : subClassOf * ssn : F e a t u r e O f I n t e r e s t . }
#=== Input PPPVS ===============

? iPPVS a/r d f s : subClassOf * opis : V i r tua lSensor .
? iPPVS obi : i s C o n c r e t i z a t i o n O f ? iSPP2 . ? iSPP2 a/r d f s : subClassOf * opis :

Semant icPercept ionProcess .
? iSPP2 ro : has_part|dul : hasPart ? iAlgorithm2 . ? iAlgorithm2 a/r d f s :

subClassOf iao : algorithm .
? iAlgorithm2 ro : has_part|dul : hasPart ? i O b j e c t i ve Spe c2 . ?

iOb jec t iv eSpec 2 a/r d f s : subClassOf * iao : o b j e c t i v e S p e c i f i c a t i o n .
? i O b j e c t i ve Sp e c2 ro : has_part|dul : hasPart ? i InputSpec2 . ? i InputSpec2 a

/r d f s : subClassOf * odm: d e s c r i p t i v e D a t a S p e c i f i c a t i o n .
? i InputSpec2 ro : has_part|dul : hasPart ? iMapSpec2 . ? iMapSpec2 a/r d f s :

subClassOf * odm: mappingSpeci f icat ion .
? i InputSpec2 iao : iao : isAbout ? iDatatype . ? iDatatype a/r d f s : subClassOf

* odt : datatype .
? iMapSpec2 iao : iao : isAbout ? cProperty . ? cProperty r d f s : subClassOf *

ssn : Property .
OPTIONAL { ? cProperty ssn : isPropertyOf ? c F e a t u r e O f I n t e r e s t . ?

c F e a t u r e O f I n t e r e s t r d f s : subClassOf * ssn : F e a t u r e O f I n t e r e s t . }
#=== RetrievePPVSForVS ===============

? cOntologyAxiom ( r d f s : subClassOf *|^ r d f s : subClassOf * ) /^a ?
iClass i f iedAxiom .

}
FILTER ( ? IRIType IN ( ssn : F e a t u r e O f I n t e r e s t , ssn : Property ) )
FILTER ( ? i V i r t u a l S e n s o r != ? iPPVS )
FILTER ( ? i V i r t u a l S e n s o r = : ID )
} LIMIT : LIMIT

⇧
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In Algorithm 3, the SPARQL query SimilarConcurrentCertifiedVS

is built using the concept of virtual sensors that share an input specifi-
cation subset but diverge in the result. The rationale behind this relies
on the premise of malicious inference intention for non-certified vir-
tual sensors. The SPARQL query defined to express that is presented
in Listing 7.7, and encompasses the formal model defined in Tables
6.9 and 6.10.

Listing 7.7 – RetrievePPVSForVS SPARQL query.

PREFIX opis : <ht tps :// . . . /thiagomoreirac/opis/master/opis . owl#>
PREFIX ppol : <ht tps :// . . . gomoreirac/opis/master/pr ivacy_pol i cy . owl#>
PREFIX obi : <ht tp :// purl . o b o l i b r ar y . org/obo/>
PREFIX ro : <http ://www. obofoundry . org/ro/ro . owl#>
PREFIX iao : <http :// purl . o b o l i b r ar y . org/obo/>
PREFIX odm: <http :// kt . i j s . s i /panovp/OntoDM#>

PREFIX odt : <http :// kt . i j s . s i /panovp/OntoDT#>
PREFIX ssn : <http :// purl . o c l c . org/NET/ssnx/ssn#>

SELECT ? i V i r t u a l S e n s o r ?iConVS WHERE { {

#=== ConVS ===============

SELECT ? cProperty2 ? c F e a t u r e O f I n t e r e s t 2 ? iDatatype2 WHERE {
?iConVS a/r d f s : subClassOf * opis : V i r tua lSensor .
? iConVS opis : h a s C e r t i f i c a t i o n ? c e r t i f i c a t i o n .
? iConVS ro : has_part|dul : hasPart ? iVSSim2 . ? iVSSim2 obi :

i sSpeci f iedOutputOf/a obi : s i m i l a r i t y C a l c u l a t i o n .
? iConVS obi : i s C o n c r e t i z a t i o n O f ? iSPP2 . ? iSPP2 a/r d f s : subClassOf * opis

: Semant icPercept ionProcess .
? iSPP2 ro : has_part|dul : hasPart ? iAlgorithm2 . ? iAlgorithm2 a/r d f s :

subClassOf iao : algorithm .
? iAlgorithm2 ro : has_part|dul : hasPart ? i O b j e c t i ve Spe c2 . ?

iOb jec t i veSpec 2 a/r d f s : subClassOf * iao : o b j e c t i v e S p e c i f i c a t i o n .
? i O b j e c t i ve Sp e c2 ro : has_part|dul : hasPart ? i InputSpec2 . ? i InputSpec2 a

/r d f s : subClassOf * odm: d e s c r i p t i v e D a t a S p e c i f i c a t i o n .
? i InputSpec2 ro : has_part|dul : hasPart ? iMapSpec2 . ? iMapSpec2 a/r d f s :

subClassOf * odm: mappingSpeci f icat ion .
? i InputSpec2 iao : isAbout ? iDatatype2 . ? iDatatype2 a/r d f s : subClassOf *

odt : datatype .
? iMapSpec2 iao : isAbout ? cProperty2 . ? cProperty2 r d f s : subClassOf * ssn

: Property .
OPTIONAL { ? cProperty2 ssn : isPropertyOf ? c F e a t u r e O f I n t e r e s t 2 . ?

c F e a t u r e O f I n t e r e s t 2 r d f s : subClassOf * ssn : F e a t u r e O f I n t e r e s t . } .
FILTER NOT EXISTS {
SELECT ? cProperty ? c F e a t u r e O f I n t e r e s t ? iDatatype WHERE {
#=== VS ===============

? i V i r t u a l S e n s o r a/r d f s : subClassOf * opis : V i r tua lSensor .
? i V i r t u a l S e n s o r ro : has_part|dul : hasPart ? iVSSim . ? iVSSim obi :

i sSpeci f iedOutputOf/a obi : s i m i l a r i t y C a l c u l a t i o n .
? i V i r t u a l S e n s o r obi : i s C o n c r e t i z a t i o n O f ? iSPP . ? iSPP a/r d f s : subClassOf

* opis : Semant icPercept ionProcess .
? iSPP ro : has_part|dul : hasPart ? iAlgorithm . ? iAlgorithm a/r d f s :

subClassOf iao : algorithm .
? iAlgorithm ro : has_part|dul : hasPart ? i O b j e c t i v e S p e c . ? i O b j e c t i v e S p e c

a/r d f s : subClassOf * iao : o b j e c t i v e S p e c i f i c a t i o n .
? i O b j e c t i v e S p e c ro : has_part|dul : hasPart ? i InputSpec . ? i InputSpec a/

r d f s : subClassOf * odm: d e s c r i p t i v e D a t a S p e c i f i c a t i o n .
? i InputSpec ro : has_part|dul : hasPart ? iMapSpec . ? iMapSpec a/r d f s :

subClassOf * odm: mappingSpeci f icat ion .
? i InputSpec iao : isAbout ? iDatatype . ? iDatatype a/r d f s : subClassOf * odt

: datatype .
? iMapSpec iao : isAbout ? cProperty . ? cProperty r d f s : subClassOf * ssn :

Property .
OPTIONAL { ? cProperty ssn : isPropertyOf ? c F e a t u r e O f I n t e r e s t . ?

c F e a t u r e O f I n t e r e s t r d f s : subClassOf * ssn : F e a t u r e O f I n t e r e s t . } .
FILTER ( ? cProperty =? cProperty2 && ? c F e a t u r e O f I n t e r e s t =?

c F e a t u r e O f I n t e r e s t 2 && ? iDatatype =? iDatatype2 && ? iVSSim=?iVSSim2

)
FILTER ( ? i V i r t u a l S e n s o r != ?iConVS ) } }
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#=== SimilarConcurrentCertifiedVS ===============

? iVSSim2 ? pDataProperty ? d S i m i l a r i t y . ? pDataProperty r d f s :
subPropertyOf owl : dataProperty .

FILTER ( ? d S i m i l a r i t y >= : threshold )
} } }

⇧

At last, in Algorithm 4 the inference of virtual sensors is verified
in terms of format (data type) and content. For each result produced
by a given virtual sensor, the SPARQL query RetrieveACVSForAxiom

is executed to retrieve an ACVS for each classified ontology axiom.
The rationale is similar to the RetrieveACVSForVs, except that we
retrieve ACVS directly from axiom definition (:ID) instead of virtual
sensor output specification. Listing 7.8 presents the RetrieveACVS-

ForAxiom query.

Listing 7.8 – RetrievePPVSForAxiom SPARQL query.

PREFIX dul : <http ://www. loa−cnr . i t / o n t o l o g i e s/DUL. owl#>
PREFIX opis : <ht tps :// . . . /thiagomoreirac/opis/master/opis . owl#>
PREFIX ppol : <ht tps :// . . . gomoreirac/opis/master/pr ivacy_pol i cy . owl#>
PREFIX obi : <ht tp :// purl . o b o l i b r ar y . org/obo/>
PREFIX ro : <http ://www. obofoundry . org/ro/ro . owl#>
PREFIX iao : <http :// purl . o b o l i b r ar y . org/obo/>
PREFIX odm: <http :// kt . i j s . s i /panovp/OntoDM#>

PREFIX odt : <http :// kt . i j s . s i /panovp/OntoDT#>
PREFIX ssn : <http :// purl . o c l c . org/NET/ssnx/ssn#>

SELECT ? cOntologyAxiom ?iACVS WHERE { {
#=== Privacy Policy Condition =======

? pr ivacyPol icyCondit ion ppol : inc ludesAccessContro lVir tua lSensor ?
iACVS .

? pr ivacyPol icyCondit ion dul : i s S e t t i n g F o r ? i D i r e c t C l a s s i f i c a t i o n .
? pr ivacyPol icyCondit ion a ?PPC . ?PPC r d f s : subClassOf+ ppol :

Pr ivacyPol icyCondit ion .
#=== Transversal Classification ====

? i D i r e c t C l a s s i f i c a t i o n a/r d f s : subClassOf * ? c T r a n s v e r s a l C l a s s i f i c a t i o n
.

? c T r a n s v e r s a l C l a s s i f i c a t i o n r d f s : subClassOf * dul : Concept ; ^a ?
i T r a n s v e r s a l C l a s s i f i c a t i o n .

#=== Direct Classification =======

? i T r a n s v e r s a l C l a s s i f i c a t i o n dul : c l a s s i f i e s ?cTCOntologyAxiom .
?cTCOntologyAxiom a/r d f s : subClassOf+ ? cTransversa lClass i f iedAxiom . ;

r d f s : subClassOf opis : B e h a v i o r a l E n t i t y .
? cTransversa lClass i f iedAxiom ( ( r d f s : subClassOf /(owl : someValuesFrom|

owl : allValuesFrom|owl : onClass ) ) | ( ( owl : unionOf/rdf : r e s t */ rdf : f i r s t
) * ) ) * ? cClassi f iedAxiom .

? iClass i f iedAxiom a /( r d f s : subClassOf|^owl : equiva lentClass|owl :
equiva lentClass ) * ? cClassi f iedAxiom .

} FILTER ( ? cOntologyAxiom = : ID ) } LIMIT 1
⇧

�.�.� Results

The queries presented in the previous subsection were executed us-
ing a virtual machine in Oracle VirtualBox 5 11, Lubuntu 14.04 64bit,
5GB of RAM, duo-core, with hardware virtualization (VT-x), in a
hosting machine with 16GB of RAM, Intel® Core™ i7-5500 (Broad-
well GT2), Ubuntu 16.04 64bit. The image provided by the OpenIoT
project were used to deploy the environment, which contains the Vir-
tuoso 6 as a back-end for SPARQL endpoint.

11. https://www.virtualbox.org/ (accessed on 26/04/2017)

https://www.virtualbox.org/
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SPARQL Query average response time

RetrieveACVSForVS 6 seconds

RetrievePPVSForVS 33 seconds

SimilarConcurrentCertifiedVS 21 seconds

RetrieveACVSForAxiom 2 seconds

Table 7.3 – Preliminar results in executing PA-VSM SPARQL queries

The first result is related to the consistency checking of the set of on-
tology axioms and assertions used in the use case. As demonstrated
in this section, the semantic representation of the entities of the onto-
logical framework for this use case could be instantiated, while keep-
ing the consistency of the ontology axioms and facts. The second
result is related to the response time of the SPARQL queries that were
observed to measure their impact on the privacy model. The pre-
liminary results evidence that all queries returned some result (no
time-out), and consequently have a complexity that can be handled
by current SPARQL endpoint solutions. In general, this result can be ex-
tended from Virtuoso to other solutions, since Virtuoso performance
is well ranked [224]. The maturity of SPARQL endpoints is vital for
our strategy based mostly on ontology representation and semantic
technology. Table 7.3 presents the approximately average response
time of this preliminary experiment.

The response time is directly related to the size of the RDF pattern
graphs used to request the result set, as reported in some investiga-
tions [225, 226, 227]. In our use case, the smallest and fastest SPARQL

query RetrieveACVSForAxiom contains 7 RDF triple patterns, 6 RDF
path patterns, and has an average response time of 2 seconds. While
the biggest and slowest contains 14 RDF triple patterns, 49 RDF path
patterns, and has an average response time of 33 seconds.

A supplementary analysis comes in need to investigate how to im-
prove these average response time. Approaches for query cache, for
instance, can address part of the SPARQL response time by caching re-
sults for identical queries in static RDF graphs [228, 229]. This meets
our privacy model requirements, once the results of those queries
achieve a constant if no new virtual sensor, classification taxonomy,
PET, and PPC is installed in the system. In a real S2aaS use case, the first
requests for query execution by privacy-aware virtual sensors will
perform with an initial footprint that will be minimized once most of
the situations of sensing are known by the query caching system. Still
using the cache system solution, an improvement of the average time
can be reached by triggering an automatic caching during the instal-
lation of new PETs and virtual sensors, or after an update operation
in the user’s privacy policy conditions and classification taxonomy.

We remark that, despite the fact that SPARQL-DL [210] were em-
ployed to facilitate the explanation of our model in chapter 6, in prac-
tice, this technology is not mature enough to support this level of
complexity and requests, returning time-out results and instability.
In fact, few implementations of this SPARQL endpoint is available and
most are out-dated.
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In terms of result set regarding this use case, the algorithms re-
turned the following outputs for the virtual sensor <:HumanActivi-
tyPerceptionVS001> and the virtual sensor <:practicingSport>:

— RetrieveACVSForVS: No result, because the virtual sensor out-
put is defined as pointOfInterest and behavioralAgent class ax-
ioms and the ’has location of’ object property axiom. Since the
two PPCs classify ’sport context’ and ’social context’, no ACVS

should be applied. It is important to remark that, in these case,
it is possible that this virtual sensor produces either classified
or non-classified point of interest, that’s why no access control
should be executed before the next PEPs.

— RetrievePPVSForVS: results a set of (<KAnonymityVirtualSen-
sor_01>, <geographicLocationProperty>, - (no feature defined),
<odt:realDatatype> ). There is a transversal classification
between ’sport context’ to pointOfInterest ( (sport context,

classifies, practicing sport), (practicing sport,

has location in, PoISportCenter), (PoISportCenter,

equivalent, k_sport), (k_sport, sub class of, point of

interest) ). Since there is the possibility that a classified
behavioral entity is extracted from the input data stream, the
PPVS k-anonymity should be executed.

— RetrieveACVSForAxiom: in the case of virtual sensor ex-
ecution with a k-anonymized sensor data stream sample
results in ’practicing sport’, the result of this SPARQL query
is (<:roleBasedAccessControlVirtualSensor_01>). There is
a direct classification between ’sport context’ and ’practicing
sport’. Therefore, in this case, the roleBasedAccessControlVirtu-
alSensor_01 will be executed and according to the mechanism,
this information will be released or not.

Another investigation with more set of virtual sensors, using the
concept of certification must be executed in order to evaluate how
the concept of similarity signature will impact the efficiency of the pri-
vacy preservation strategy and the overall performance. For this rea-
son, the execution of the query SimilarConcurrentCertifiedVS could
not be evaluated in the scope of this use case.

�.� ����������

In this chapter, we have defined a novel privacy-aware Sensing as
a Service (S2aaS) based on our novel Privacy-aware Virtual Sensor
Model (PA-VSM) and our Ontology for Personal Information on the
Sensor Web (OPIS) extending the architecture of a real IoT platform.
The rationale used to design the sensing services using enabling tech-
nologies that are available in the Cloud-IoT were described. The ar-
chitecture of the service, based on the xGSN architecture, is presented,
along with its novel components and the new sequence of virtual
sensor installation and deployment.

The usability of the OPIS was also demonstrated by the instantia-
tion of personal information, PETs, classification taxonomy, and PPC
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described in the use case. The viability of our proposed PA-VSM was
evidenced by executing SPARQL queries that constitute the evaluation
engine of our privacy model during the execution of virtual sensors
in the xGSN. For this matter, Virtuoso was used as the main OWL

reasoner and SPARQL endpoint to analyze queries and their response
time. The solution employed OPIS as the ontological framework to de-
scribe virtual sensors, personal information, and PPCs, which demon-
strate the viability of our model. Preliminary results were achieved
evidencing usability and viability of our approach.

The efficiency of our approach relies on the flexibility and perfor-
mance of Semantic Web technology in S2aaS of available platforms.
We also remark that OWL represents the most adopted format to rep-
resent knowledge and semantics currently. Therefore, our solution
benefits from future improvement in its performance and, as the in-
formation systems gradually adopted the OWL representation and the
Linked Data model, more information will be available to be mapped
into our ontological framework that models and classifies personal
information.

The innovative way of considering an observed feature of interest
as personal information differs from traditional Personal Information

Management systems. However, as the IoT connects not just physical
sensor and actuators, but also information systems, we believe that
the exchange of this information will converge, so provenance could
be provided in the interconnected world.



8
C O N C L U S I O N S A N D

P E R S P E C T I V E S

The aim of this chapter is to reiterate the main purpose and contri-
butions, as well as, layout directions that emerge as extensions to the
work hereby presented.

�.� ������� ��� ��� �������������

In this work, we investigated the idea that personal information
defined in behavioral contexts on the Sensor Web could leverage
mechanisms of personal privacy preservation in the IoT. We derived
our vision for personal privacy on the IoT-based on modern privacy
engineering principles and the assessment of privacy harm factors
(see Section 2.2). Our privacy paradigm was inspired by the idea
of reusing enabling technologies and available privacy preservation
solutions to deliver a user-friendly, plural and efficient privacy mech-
anism. For this, we reviewed the IoT technology, architectures, and
middlewares to identify the best way to interfere with the IoT sensing
to enforce privacy by design. Moreover, we aimed to deliver a privacy

by policy mechanism developed on top of the IoT enabling technolo-
gies that would offer a more cognitive and contextual interface to the
IoT user.

From this vision, we identified three main challenges. Firstly, the
limitation of current ontologies to represent personal information and
contextual information on the Sensor Web that would guarantee com-
patibility to the existing IoT sensing services. Secondly, the trust
model based on the consumer side that kept the execution of KDDM

processes on the recipient sphere, requiring sensor data to be sent to an
environment where privacy adversaries could exploit breaches and
extract private information from sensor data stream. Thirdly, the in-
compatibility of Privacy-Enhancing Technologies (PETs) to a plurality
privacy paradigm that would allow performing the adequate privacy-
preserving technique according to the individual’s privacy policy, in-
formational and personal contexts.

For the first challenge, we investigate how the informational con-
text and situations in the real world could be used to represented
personal information. The current de facto standard for sensor obser-
vation in the majority of IoT platforms, the SSN-O, is too technical to
support the classification of personal information for the final user.
For this matter, in Chapter 5, we proposed OPIS, an ontology for per-
sonal information on the Sensor Web that extends the concepts of
SSN-O. OPIS has two layers that could be used individually: Personal
Information Layer (PIL) and Semantic Perception Layer (SPL). Each
of these layers corresponds to contributions in the state of the art of

189
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Semantic Sensor Network (SSN). The PIL was developed using the
concepts of Behavior Computing (BC) (see Section 3.4), extending the
concepts of features of interest that participate during the IoT sensing
in a behavioral context. By defining a set of interrelated classes, called
behavioral entity classes (see Section 5.7), we proposed a base structure
to classify any type of personal information that could be captured by
the IoT sensing. Behavioral entity classes should be specialized in a real
use cases, but its structure provides a web of features that are related
to the observed individual. Additionally, the mapping of these behav-

ioral entity classes to BFO-based ontologies and DUL contributes to the
integration of sensor data to applications of different domains, such
as environmental science, general medical science, neurobehaviors,
mental functioning and so forth.

In the SPL, our contributions rely on the conceptualization of vir-

tual sensors (see Section 5.8). We addressed the limitation of SSN-O

by incorporating the KDDM representation from the OntoDM to repre-
sent virtual sensors. Similarly to the SSO paradigm of SSN-O that pro-
vides the semantic representation of sensor and its output, we defined
the Semantic Perception (SP) paradigm to virtual sensors. In the SP

paradigm, virtual sensors produce features of interest from observed
properties of other features of interest. This contribution leverages
the representation of sensor output on the Sensor Web, guarantee-
ing semantic representation for each output. Since virtual sensors are
defined as data processing units, its semantic representation was pro-
posed using OntoDM entities to specify its KDDM process and imple-
mentation. The virtual sensors output was represented using classes of
OntoDM execution layer, such as dataset and data type. The direct con-
tribution of this semantic representation of virtual sensor is the data
provenance that covers aspects that SSN-O does not.

For the second challenge, we propose to shift the data process-
ing of sensor data towards the Cloud-IoT infrastructure where PEP

could prevent the execution of unwanted or malicious KDDM pro-
cesses. Based on the data analytics approaches for data processing
(see Section 2.3), such as CEP and DSM, and the capacity of the IoT-
Cloud elasticity, we propose a privacy by design model in Chapter 6,
called Privacy-aware Virtual Sensor Model (PA-VSM). Our model en-
capsulates the data processing using a two-fold PEP that executes ver-
ification before and after the data processing step. The PEP is con-
stituted by three verification steps and uses Semantic Web technol-
ogy to define and evaluate privacy policies (see Section 6.3.2). Our
ontology OPIS is then used as the foundation to define an expres-
sive ontological framework to specify privacy policy conditions. This
ontological framework is formally defined to provide a transversal
classification for interrelated personal information, employing the
concept of transitive from the OWL expressiveness. This novel on-
tological framework innovates by proposing in one single structure
the association of personal information, classification structure, and
Privacy-Enhancing Technology (PET), which permit multiple classifi-
cations dynamically associated to multiple PEPs. The evaluation of
privacy policy conditions in our model is practically implemented us-
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ing SPARQL queries. The main advantage of expressing sensor data,
personal information, privacy policy conditions, virtual sensors, and
privacy-preserving techniques using the same ontological foundation
is the possibility to query and produce personal information in the
same semantic platform and to associate virtual sensors and privacy
mechanisms dynamically. The PA-VSM is designed to evaluate if the
information generated by virtual sensors is authorized according to the
individual’s privacy policy. In addition, our model uses the semantic
representation of the KDDM process, so-called semantic signature, to
anticipate inference intention and prevent the unnecessary execution
of virtual sensors that would produce information that is not autho-
rized to be released. Moreover, a supplementary step is conceived
in PA-VSM to detect malicious inference intention based on the con-
cept of virtual sensor certification and semantic signature similarity.
This inference anticipation and detection of malicious activities also
configures an innovation for ACM systems.

For the last challenge, we propose to extend the concept of virtual

sensor, which has processing capabilities, to implement PETs. Simi-
lar to virtual sensors, Privacy-Preserving Virtual Sensors (PPVSs) and
Access Control Virtual Sensors (ACVSs) can be represented in terms
of its inputs, outputs, and KDDM process. As a consequence, PPVS

can be executed by demand according to the individual’s privacy pol-
icy and the sensor data stream. Additionally, PPVS and ACVS can be
developed and deployed in the same way virtual sensors are. By imple-
menting and representing PETs at the same level of KDDM, we were
able to innovate in the way privacy is provided as service. Besides
that, the preventive step for malicious inference detection, that uses
the power of trusted KDDM techniques, leverages the performance of
privacy by policy mechanism that can use the same type of technology,
employed by privacy adversaries, to enforce privacy.

Our privacy by design model and privacy by policy mechanism meet
the three privacy engineering principles of plurality, contextuality, and
contestability. Besides that, they address the privacy harm factors ob-
served by Ohm [25], specifically the detection and prevention of un-
intended and malicious data processing techniques, the trust model,
the minimization of data release, and the accountability provided by
the data provenance related to virtual sensors. Still marginally, our ap-
proach allows that motives are declared using the certification mech-
anism and semantic signature metadata.

As a further contribution, in chapter 7, we proposed to implement
our privacy by design model and privacy by policy mechanism using a
real IoT platform: the xGSN. In order to test the viability and perfor-
mance of our approach, the implementation of a privacy-aware Sens-
ing as a Service (S2aaS) based on the PA-VSM demonstrated satisfiable
results and performance. The second result of this implementation is
the suitability of OPIS to represent personal information and support
sensing services in a real IoT platform. The privacy mechanism imple-
mented in an S2aaS corresponds to a contribution in real IoT sensing
scenarios.
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Our contributions comprehensively address the research questions
presented in Section 1.4. The PA-VSM efficiently provides a privacy

by design model that prevents malicious data processing to gain ac-
cess to personal information or private sensor data, while controlling
access to personal information classified as private. The ontological
framework that was developed to support the privacy by policy mech-
anism is grounded on OPIS, and therefore, on the behavioral context
of the IoT user. At last, our implementation of a privacy-aware S2aaS

addresses the last research question.

�.� ������ ����

The in-depth analysis of the implementation of our approach in
the privacy-aware S2aaS served to explicit concerns we had about the
performance of our solution. Since our privacy by policy mechanism
depends mostly on SPARQL queries and semantic reasoning, we ob-
served a number of challenges and future research that we classify in
terms of each chapter of our contribution.

���� In order to develop our ontology for personal information,
we employ the OWLDL expressiveness for representing classes and
relationship between them. In our experiment, we noticed the impact
of this expressiveness in terms of reasoning processing time. Further
investigation on how to express these classes and properties using
OWL profiles could be handy in making semantic reasoning faster.
Concerning its complete compatibility with OBO Foundry guidelines,
OPIS does not follow best practices for class and property naming; and
even though it is available in a public repository, it is not available in
the central directory of OBO for ontologies.

The SSN-O is an on-going project. Recently, a working group to im-
prove and evolve SSN-O has been updating its structure to be more
modular and to incorporate recent versions of the DUL ontology. This
is an important step for semantic sensor network and should be in-
corporated by OPIS in the future.

The concept of sensor provenance is leveraged with the OPIS seman-
tics. However, a study to investigate the compatibility with PROV-
O [230] would contribute to integrate the virtual sensor provenance
of OPIS into systems that adopt PROV-O. Still related to the concept of
provenance, the automatic discovery of semantic perception process
should be investigated. Currently, tools for extracting sequence dia-
grams of compiled Java programs are available, which makes possible
to map theses sequences diagrams to semantic perception process us-
ing OPIS. This would automatize part of the process of certification.
Similarly to what happens in the research domain of Meta-Mining
(MM), higher-level reasoning and even data mining techniques could
help to discover patterns in the mapped semantic perception process
related to malicious inference.
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��-��� Our privacy by design model is an initial step toward the def-
inition of holistic privacy mechanisms for IoT sensing that takes into
consideration an ontological framework to defines its functionalities.
Even though we formally define this ontological framework indepen-
dently of our OPIS, both were created interchangeably influenced by
each other. Further investigation on how our PA-VSM behaves with
other ontologies, such as pure OntoDM and domain specific ontolo-
gies for information classification (other than personal information),
should be investigated.

Works to minimize the footprint performance generated by the
PA-VSM privacy enforcement can be pursued, such as SPARQL query
caching by using RDBMS established features, neural systems to im-
prove the efficiency of querying about virtual sensors and recurrent
results produced by similar SPPs.

The data flow proposed in the PEPs of PA-VSM could be leverage to
the current standards for access control systems, such as delegations
and permission expiration described in the XACML.

Lastly, we believe that a graphical user interface would also be of
great support to guide the process of definition classification struc-
tures, define semantic signatures of virtual sensors, PPVSs, and ACVSs.
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O N TO D M : A N O N TO LO GY F O R

DATA M I N I N G
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In this Appendix, we describe the ontological framework of OntoDM

that is composed by several ontology imports. The design of our
ontology OPIS reflects OntoDM structure since both follow ontology
engineering best practices and because many concepts in OPIS are
extended from the OntoDM.

�.� ����������� ���������

In the upper level, as presented in Figure 9.1, BFO provides an onto-

logical framework that classifies entities into two basic classes: continu-

ants (or substantial entities) and occurents (or processual entities). Contin-

uants refer to entities that exist fully at any time (or at least, during a
wide temporal interval perspective, for example, the human lifespan)
in which it exists completely and its existence is not dependable on
time, such as KDDM techniques, spatial region or a person. Continuants

can be classified in independent continuants and dependent continuants.
The former refers to bearer of quality or a realizable entities, such as
a physical object (material entity), object boundary, or a site. The latter
consists of entities that depend on one or multiple independent contin-

uants. Dependent continuants can be specialized in generically dependent

continuant or specifically dependent continuant. The former represents
an entity that depends on another entity to exists. For instance, a
file, software or an implementation of a KDDM that needs (any) a
computer to exist. The latter represents classes that require some
specific instances of independent continuant, such as the role of a re-
searcher or the function of a data aggregation algorithm. Conversely

Figure 9.1 – Fragment of the BFO. Arrows represent subclass axiom

197
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Figure 9.2 – Fragment of BFO, OBI and SWO. Gray boxes represent BFO en-
tities. Yellow boxes represent OBI entities. Red box represents
SWO entity. Arrows represent subclass axiom.

to continuants, occurents are temporal constrained, happening or be-
ing unfolded through a specific interval, such as the execution of a
KDDM process. Temporal regions, spatiotemporal regions and processual

entities are specializations of occurents. The processual entity exists in
time while being executed or happening and depends on some en-
tity. Microorganism lifespan, KDDM process, behavior, task are some
example of processual entities.

All three middle-level ontologies incorporated in OntoDM (OBI, IAO,
and SWO) are based on BFO. OBI was originally defined to represent
scientific investigations, specialized in specifying the biological ob-
ject of research and phases of the scientific experimentation. A frag-
ment of OBI and SWO classes, extending BFO entities, are presented in
Figure 9.2. Plans are specified based on BFO realizable entity, which
is realized in a planned process. OBI specializes BFO material entity as
physical entities, such as organism, organizations (research organizations),
processed material, computers, object, and so on. OBI also described a set
of processual entities that realize plans, such as planning, acquisition, val-

idation, investigation, data transformation, data visualization, interpreting

data, and information processing.
Originally in OntoDM, SWO information processing extends the BFO

concept of processual entity (BFO_0000007) because of its alignment
with the BFO version 1.1, that represents process and processual entity

separately. In its current version, the process class BFO_0000007 was
discarded and replaced by the BFO_0000015 which now is called pro-

cess. In the remainder of this thesis, we assume information processing

as a subclass of planned process, and we correct the import of SWO that
pointed to the obsolete class processual entity (BFO_0000007), instead
of the new BFO process class (BFO_0000015). This issue is evidenced
in Figure 9.2 through dotted arrows and it is addressed in order to
minimize confusion and reasoning problems in our approach.

A processual entity realizes a plan according to a plan specification

pursuing one or more objective specifications. OntoDM ability to de-
scribe informational entities, processes that specifically produce and
consume information, and realizations of those information entities
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Figure 9.3 – Fragment of IAO. Orange boxes represent IAO classes. Yellow
box represents OBI classes. Arrows represent subclass axiom.

are represented using IAO and OBI. Figure 9.3 illustrates a fragment of
the IAO and OBI extension. ICE denote any information entity that de-
scribes another entity, such as data item, label, textual entity, document,
document part, figures, etc. A data item and a label, for instance, intend
to represent, respectively, a datum about some entity and a descrip-
tion that explains some data item. The DIE is an important information
content entity that refers to BFO realizable entities. Data format specifica-

tion, action specification, objective specification, and plan specification are
specialized from this class. The data format specification is defined as
an information content entity that describes how another information

content entity should be encoded. The action specification is defined as
some action that is realizable by some agent. The objective specifica-

tion is defined as a process goal. A plan specification includes one or
several objective specifications and action specifications. When realized
(executed), a plan specification intends to achieve objectives following
specified actions. Algorithms, software, programming languages, and pro-

tocols are specializations of plan specification. Textual entities, documents,
and document parts are classes that describe concretizations of KDDMs

or structured inputs and documentation related to them. IAO allows
breaking down these textual entities, enabling information acquisition
from documents (and texts), as well as information presentation.

The set of OntoDM relations is based on the BFO version 2.0, OBO RO,
IAO, OBI, Experiment ACTions Ontology (EXACT) 1, and LAboratory
Ontology for Robot Scientists (LABORS). EXACT ontology contains rep-
resentation for experiment actions and it can be used for the full for-
malization of protocols of bio-medical investigations [231]. LABORS

extends Exposé and imports OBO RO as a set of relations to represent
scientific experiments in a form that allows computational agents to
reason autonomously about hypothesis formation, experiment plan-
ning, and analysis of results. Table 9.1 presents OntoDM relations, their
origins, and inverse relations.

1. http://www.aber.ac.uk/en/cs/research/cb/dss/exact/ (ac-
cessed on 26/04/2017)

http://www.aber.ac.uk/en/cs/research/cb/dss/exact/


200 ������: �� �������� ��� ���� ������

Origin Relation Inverse Relation

BFO 2.0 & OBO RO

hasPart partOf

hasParticipant participatesIn

hasActiveParticipant isActiveParticipantOf

preceedes preceededBy

inheresIn bearerOf

hasQuality isQualityOf

hasRole isRoleOf

isConcretizedAs isConcretizationOf

realizes isRealizedBy

IAO

isAbout

denotes

qualityIsSpecified-as isQualitySpecificationOf

OBI

achievesPlannedObjective objectiveAchievedBy

hasSpecifiedInput isSpecifiedInputOf

hasSpecifiedOutput isSpecifiedOutputOf

isManufacturedBy

EXACT hasInformation

LABORS hasRepresentation isRepresentationOf

Table 9.1 – OntoDM relations
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Equivalent Class es ( < dbpedia : Person > <opis : BehavioralAgent >)
Equivalent Class es ( <envo : geographicFeature > <opis : GeographicFeature >)
Equivalent Class es ( <osmonto : can_have_k_atm> <xopis : PoIBank >)
Equivalent Class es ( <osmonto : can_have_k_ cuis ine > <xopis : PoIRestaurant >)
Equivalent Class es ( <osmonto : k_ r e l i g i o n > <xopis : PoIReligiousTemple >)
Equivalent Class es ( <osmonto : k_shop> <xopis : PoIMall >)
Equivalent Class es ( <osmonto : k_ sport > <xopis : PoISportCenter >)
Equivalent Class es ( <osmonto : v_ cafe > <xopis : PoICafe >)
Equivalent Class es ( <osmonto : v_ gymnastics > <xopis : PoIGym>)
Equivalent Class es ( <osmonto : v_ hospi ta l > <xopis : PoIHospital >)
Equivalent Class es ( <osmonto : v_ nightclub > <xopis : PoIClub >)
Equivalent Class es ( <osmonto : v_pharmacy> <xopis : PoIPharmacy >)
Equivalent Class es ( <osmonto : v_ r e s i d e n t i a l > <xopis : PoIHome>)
Sub Class Of( < xopis : P o i n t O f I n t e r e s t > <opis : GeographicFeature >)
Sub Class Of( < xopis : AtHome> <opis : Behavior >)
Sub Class Of( < xopis : AtHome> ObjectSomeValuesFrom ( < dul : hasLocation > <

xopis : PoIHome>) )
Sub Class Of( < xopis : HealthCaring > <opis : Behavior >)
Sub Class Of( < xopis : HealthCaring > ObjectSomeValuesFrom ( < dul : hasLocation

> <xopis : PoIHospital >) )
Sub Class Of( < xopis : HealthCaring > ObjectSomeValuesFrom ( < dul : hasLocation

> <xopis : PoIPharmacy >) )
Sub Class Of( < xopis : Partying > <opis : Behavior >)
Sub Class Of( < xopis : Partying > ObjectSomeValuesFrom ( < dul : hasLocation > <

xopis : PoIClub >) )
Sub Class Of( < xopis : PoIBank> <xopis : P o i n t O f I n t e r e s t >)
Sub Class Of( < xopis : PoICafe > <xopis : P o i n t O f I n t e r e s t >)
Sub Class Of( < xopis : PoIClub> <xopis : P o i n t O f I n t e r e s t >)
Sub Class Of( < xopis : PoIGym> <xopis : P o i n t O f I n t e r e s t >)
Sub Class Of( < xopis : PoIHome> <xopis : P o i n t O f I n t e r e s t >)
Sub Class Of( < xopis : PoIHospital > <xopis : P o i n t O f I n t e r e s t >)
Sub Class Of( < xopis : PoIMall > <xopis : P o i n t O f I n t e r e s t >)
Sub Class Of( < xopis : PoIOff ice > <xopis : P o i n t O f I n t e r e s t >)
Sub Class Of( < xopis : PoIPharmacy> <xopis : P o i n t O f I n t e r e s t >)
Sub Class Of( < xopis : PoIReligiousTemple > <xopis : P o i n t O f I n t e r e s t >)
Sub Class Of( < xopis : PoIRestaurant > <xopis : P o i n t O f I n t e r e s t >)
Sub Class Of( < xopis : PoISportCenter > <xopis : P o i n t O f I n t e r e s t >)
Sub Class Of( < xopis : P r a c t i c i n g S p o r t > <opis : Behavior >)
Sub Class Of( < xopis : P r a c t i c i n g S p o r t > ObjectSomeValuesFrom ( < dul :

hasLocation > <xopis : PoISportCenter >) )
Sub Class Of( < xopis : R e l i g i o u s P r a c t i c i n g > <opis : Behavior >)
Sub Class Of( < xopis : R e l i g i o u s P r a c t i c i n g > ObjectSomeValuesFrom ( < dul :

hasLocation > <xopis : PoIReligiousTemple >) )
Sub Class Of( < xopis : Shopping> <opis : Behavior >)
Sub Class Of( < xopis : Shopping> ObjectSomeValuesFrom ( < dul : hasLocation > <

xopis : PoIMall >) )
Sub Class Of( < xopis : S o c i a l i z i n g > <opis : Behavior >)
Sub Class Of( < xopis : S o c i a l i z i n g > ObjectSomeValuesFrom ( < dul : hasLocation >

<xopis : PoICafe >) )
Sub Class Of( < xopis : Working> <opis : Behavior >)
Sub Class Of( < xopis : Working> ObjectSomeValuesFrom ( < dul : hasLocation > <

xopis : PoIOff ice >) )
Sub Class Of( < xopis : havingDinner > <opis : Behavior >)
Sub Class Of( < xopis : havingDinner > ObjectSomeValuesFrom ( < dul : hasLocation

> <xopis : PoIRestaurant >) )
Sub Class Of( < xopis : havingLunch> <opis : Behavior >)

201
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Sub Class Of( < xopis : havingLunch> ObjectSomeValuesFrom ( < dul : hasLocation >
<xopis : PoIRestaurant >) )

⇧
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Class Asser t ion ( < opis : IRIDatatype > <opis : IRIDatatype 001 >)
Objec tProper tyAsser t ion ( < iao : isAbout > <opis : IRIDatatype 001> <ssvs :

behavioralAgent _classAxiom >)
Objec tProper tyAsser t ion ( < iao : isAbout > <opis : IRIDatatype 001> <ssvs :

humanActivity _ classAxiom >)
Objec tProper tyAsser t ion ( < iao : isAbout > <opis : IRIDatatype 001> <ssvs :

i sLocat ionOf _ objectPropertyAxiom >)
Objec tProper tyAsser t ion ( < iao : isAbout > <opis : IRIDatatype 001> <ssvs :

p o i n t O f I n t e r e s t _ classAxiom >)
Class Asser t ion ( owl : DataProperty <opis : hasIRI >)
Class Asser t ion ( < dul : Agent> <ssvs : Agent 007 >)
Objec tProper tyAsser t ion ( < ssn : hasProperty > <ssvs : Agent007> <ssvs : Agent

007 Geolocation >)
Class Asser t ion ( <x−opis : geographicLocationProperty > <ssvs : Agent007

Geolocation >)
Class Asser t ion ( <odm: outputDataSpec i f i ca t ion > <ssvs :

HumanActivityOutputSpecif ication 001 >)
Objec tProper tyAsser t ion ( < iao : isAbout > <ssvs :

HumanActivityOutputSpecif ication 001> <opis :
semanticPerceptionDatatype 001 >)

Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs :
HumanActivityOutputSpecif ication 001> <odm: o u t p u t S p e c i f i c a t i o n >)

Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs :
HumanActivityOutputSpecif ication 001> <ssvs :
humanActivityMappingSpecif ication 001 >)

Class Asser t ion ( < opis : Vir tualSensor > <ssvs : HumanActivityPerceptionVS
001 >)

Objec tProper tyAsser t ion ( < obi : i sConcre t iza t ionOf > <ssvs :
HumanActivityPerceptionVS 001> <ssvs :
humanActivityPerceptionProcess 001 >)

Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs : HumanActivityPerceptionVS
001> <ssvs : c a l c u l a t e P r o b a b i l i t y P o i n t O f I n t e r e s t O p e r a t o r 001 >)

Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs : HumanActivityPerceptionVS
001> <ssvs : s e l e c t P o i n t O f I n t e r e s t O p e r a t o r 001 >)

Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs : HumanActivityPerceptionVS
001> <ssvs : s topDetect ionOperator 001 >)

Class Asser t ion ( <odm: parameter > <ssvs : Spat ia lAccuracy 001 >)
Class Asser t ion ( <odm: parameterSett ing > <ssvs :

Spat ia lAccuracyPoICalcula t ion 001 >)
Objec tProper tyAsser t ion ( < iao : i s Q u a l i t y S p e c i f i c a t i o n O f > <ssvs :

Spat ia lAccuracyPoICalcula t ion 001> <ssvs : Spat ia lAccuracy 001 >)
Class Asser t ion ( <odm: parameterSett ing > <ssvs :

S p a t i a l A c c u r a c y P o I S e l e c t i o n 001 >)
Objec tProper tyAsser t ion ( < iao : i s Q u a l i t y S p e c i f i c a t i o n O f > <ssvs :

S p a t i a l A c c u r a c y P o I S e l e c t i o n 001> <ssvs : Spat ia lAccuracy 001 >)
Class Asser t ion ( < odt : realFieldComponent > <ssvs :WGPS84

LatitudeFieldComponent >)
Objec tProper tyAsser t ion ( < iao : denotes > <ssvs :WGPS84

LatitudeFieldComponent > <odt : realDatatype >)
Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs :WGPS84

LatitudeFieldComponent > <ssvs : l a t i t u d e >)
Class Asser t ion ( < odt : r e a l F i e l d L i s t S p e c i f i c a t i o n > <ssvs :WGPS84

L i s t F i e l d S p e c i f i c a t i o n >)
Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs :WGPS84

L i s t F i e l d S p e c i f i c a t i o n > <ssvs :WGPS84 LatitudeFieldComponent >)
Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs :WGPS84

L i s t F i e l d S p e c i f i c a t i o n > <ssvs :WGPS84LongitudeComponent >)
Class Asser t ion ( < odt : realFieldComponent > <ssvs :WGPS84

LongitudeComponent >)
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Objec tProper tyAsser t ion ( < iao : denotes > <ssvs :WGPS84LongitudeComponent>
<odt : realDatatype >)

Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs :WGPS84LongitudeComponent>
<ssvs : longitude >)

Class Asser t ion ( < odt : recordOfReal > <ssvs :WGS84 >)
Annotat ionAssert ion ( < opis : hasIRI > <ssvs : behavioralAgent _classAxiom > <

opis : BehavioralAgent >)
Class Asser t ion ( < opis : classAxiom > <ssvs : behavioralAgent _classAxiom >)
Class Asser t ion ( <odm: dataProcessingAlgorithm > <ssvs :

c a l c u l a t e P r o b a b i l i t y P o i n t O f I n t e r e s t A l g o r i t h m 001 >)
Objec tProper tyAsser t ion ( < dul : hasPart > <ssvs :

c a l c u l a t e P r o b a b i l i t y P o i n t O f I n t e r e s t A l g o r i t h m 001> <ssvs :
c a l c u l a t e P r o b a b i l i t y P o i n t O f I n t e r e s t A l g o r i t h m O b j e c t i v e 001 >)

Class Asser t ion ( < obi : dataTransformationObject ive > <ssvs :
c a l c u l a t e P r o b a b i l i t y P o i n t O f I n t e r e s t A l g o r i t h m O b j e c t i v e 001 >)

Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs :
c a l c u l a t e P r o b a b i l i t y P o i n t O f I n t e r e s t A l g o r i t h m O b j e c t i v e 001> <ssvs :
HumanActivityOutputSpecif ication 001 >)

Class Asser t ion ( <odm: operator > <ssvs :
c a l c u l a t e P r o b a b i l i t y P o i n t O f I n t e r e s t O p e r a t o r 001 >)

Objec tProper tyAsser t ion ( <obo : r o l e _ of > <ssvs :
c a l c u l a t e P r o b a b i l i t y P o i n t O f I n t e r e s t O p e r a t o r 001> <ssvs :
c a l c u l a t e P r o b a b i l i t y P o i n t O f i n t e r e s t A l g o r i t h m I m p l e m e n t a t i o n 001 >)

Class Asser t ion ( <odm: algorithmImplementation > <ssvs :
c a l c u l a t e P r o b a b i l i t y P o i n t O f i n t e r e s t A l g o r i t h m I m p l e m e n t a t i o n 001 >)

Objec tProper tyAsser t ion ( < obi : i sConcre t iza t ionOf > <ssvs :
c a l c u l a t e P r o b a b i l i t y P o i n t O f i n t e r e s t A l g o r i t h m I m p l e m e n t a t i o n 001> <
ssvs : c a l c u l a t e P r o b a b i l i t y P o i n t O f I n t e r e s t A l g o r i t h m 001 >)

Class Asser t ion ( <odm: d e s c r i p t i v e D a t a S p e c i f i c a t i o n > <ssvs :
d e s c r i p t i v e G e o g r a p h i c l o c a t i o n D a t a S p e c i f i c a t i o n _01 >)

Objec tProper tyAsser t ion ( < iao : isAbout > <ssvs :
d e s c r i p t i v e G e o g r a p h i c l o c a t i o n D a t a S p e c i f i c a t i o n _01> <ssvs :WGS84 >)

Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs :
d e s c r i p t i v e G e o g r a p h i c l o c a t i o n D a t a S p e c i f i c a t i o n _01> <odm:
d e s c r i p t i v e S p e c i f i c a t i o n >)

Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs :
d e s c r i p t i v e G e o g r a p h i c l o c a t i o n D a t a S p e c i f i c a t i o n _01> <ssvs :
geographicLocat ionMappingSpeci f icat ion _01 >)

Class Asser t ion ( < opis : propertyMappingSpecif icat ion > <ssvs :
geographicLocat ionMappingSpeci f icat ion _01 >)

Objec tProper tyAsser t ion ( < iao : isAbout > <ssvs :
geographicLocat ionMappingSpeci f icat ion _01> <ssvs :
geographicLocat ionProperty _dataPropertyAxiom >)

Annotat ionAssert ion ( < opis : hasIRI > <ssvs : geographicLocat ionProperty _
dataPropertyAxiom > <x−opis : geographicLocationProperty >)

Class Asser t ion ( < opis : dataPropertyAxiom > <ssvs :
geographicLocat ionProperty _dataPropertyAxiom >)

Class Asser t ion ( < opis : semant icEnt i tyMappingSpeci f icat ion > <ssvs :
humanActivityMappingSpecif ication 001 >)

Objec tProper tyAsser t ion ( < iao : isAbout > <ssvs :
humanActivityMappingSpecif ication 001> <ssvs : behavioralAgent _
classAxiom >)

Objec tProper tyAsser t ion ( < iao : isAbout > <ssvs :
humanActivityMappingSpecif ication 001> <ssvs : humanActivity _
classAxiom >)

Objec tProper tyAsser t ion ( < iao : isAbout > <ssvs :
humanActivityMappingSpecif ication 001> <ssvs : i sLocat ionOf _
objectPropertyAxiom >)

Objec tProper tyAsser t ion ( < iao : isAbout > <ssvs :
humanActivityMappingSpecif ication 001> <ssvs : p o i n t O f I n t e r e s t _
classAxiom >)

Class Asser t ion ( < opis : semant icPercept ionDatatypeAttr ibuteLis t > <ssvs :
humanAct ivi tyPercept ionDatatypeAttr ibuteList >)

Class Asser t ion ( < opis : AxiomsAtt r ibuteSpec i f i ca t ion > <ssvs :
humanActivityPerceptionDatatypeAxiomsAttribute 001 >)

Class Asser t ion ( < opis : Semant icPercept ionObject ive > <ssvs :
humanActivi tyPercept ionObject ive _01 >)

Class Asser t ion ( < opis : SemanticPerceptionProcess > <ssvs :
humanActivityPerceptionProcess 001 >)
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Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs :
humanActivityPerceptionProcess 001> <ssvs :
c a l c u l a t e P r o b a b i l i t y P o i n t O f I n t e r e s t A l g o r i t h m 001 >)

Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs :
humanActivityPerceptionProcess 001> <ssvs :
humanActivi tyPerceptionObject ive _01 >)

Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs :
humanActivityPerceptionProcess 001> <ssvs :
s e l e c t P o i n t O f I n t e r e s t A l g o r i t h m 001 >)

Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs :
humanActivityPerceptionProcess 001> <ssvs : stopDetect ionAlgorithm
001 >)

Annotat ionAssert ion ( < opis : hasIRI > <ssvs : humanActivity _classAxiom > <x−
opis : P r a c t i c i n g S p o r t >)

Annotat ionAssert ion ( < opis : hasIRI > <ssvs : humanActivity _classAxiom > <
opis : Behavior >)

Class Asser t ion ( < opis : classAxiom > <ssvs : humanActivity _classAxiom >)
Annotat ionAssert ion ( <oboInOwl : hasURI> <ssvs : i sLocat ionOf _

objectPropertyAxiom > <dul : isLocat ionOf >)
Class Asser t ion ( < opis : objectPropertyAxiom > <ssvs : i sLocat ionOf _

objectPropertyAxiom >)
Class Asser t ion ( < odt : f i e l d I d e n t i f i e r > <ssvs : l a t i t u d e >)
Class Asser t ion ( < odt : f i e l d I d e n t i f i e r > <ssvs : longitude >)
Annotat ionAssert ion ( < opis : hasIRI > <ssvs : p o i n t O f I n t e r e s t _classAxiom > <

x−opis : P o i n t O f I n t e r e s t >)
Class Asser t ion ( < opis : classAxiom > <ssvs : p o i n t O f I n t e r e s t _classAxiom >)
Class Asser t ion ( <odm: algorithmImplementation > <ssvs :

se lec tPointOfInteres tAlgoi thmImplementat ion 001 >)
Objec tProper tyAsser t ion ( < obi : i sConcre t iza t ionOf > <ssvs :

se lec tPointOfInteres tAlgoi thmImplementat ion 001> <ssvs :
s e l e c t P o i n t O f I n t e r e s t A l g o r i t h m 001 >)

Objec tProper tyAsser t ion ( < obi : hasQuality > <ssvs :
se lec tPointOfInteres tAlgoi thmImplementat ion 001> <ssvs :
Spat ia lAccuracy 001 >)

Class Asser t ion ( <odm: dataProcessingAlgorithm > <ssvs :
s e l e c t P o i n t O f I n t e r e s t A l g o r i t h m 001 >)

Objec tProper tyAsser t ion ( < dul : hasPart > <ssvs :
s e l e c t P o i n t O f I n t e r e s t A l g o r i t h m 001> <ssvs :
s e l e c t P o i n t O f I n t e r e s t A l g o r i t h m O b j e c t i v e 001 >)

Objec tProper tyAsser t ion ( < ro : precedes > <ssvs :
s e l e c t P o i n t O f I n t e r e s t A l g o r i t h m 001> <ssvs :
c a l c u l a t e P r o b a b i l i t y P o i n t O f I n t e r e s t A l g o r i t h m 001 >)

Class Asser t ion ( < obi : dataTransformationObject ive > <ssvs :
s e l e c t P o i n t O f I n t e r e s t A l g o r i t h m O b j e c t i v e 001 >)

Class Asser t ion ( <odm: operator > <ssvs : s e l e c t P o i n t O f I n t e r e s t O p e r a t o r
001 >)

Objec tProper tyAsser t ion ( <obo : r o l e _ of > <ssvs :
s e l e c t P o i n t O f I n t e r e s t O p e r a t o r 001> <ssvs :
se lec tPointOfInteres tAlgoi thmImplementat ion 001 >)

Objec tProper tyAsser t ion ( < exac t : hasInformation > <ssvs :
s e l e c t P o i n t O f I n t e r e s t O p e r a t o r 001> <ssvs :
S p a t i a l A c c u r a c y P o I S e l e c t i o n 001 >)

Class Asser t ion ( <odm: dataProcessingAlgorithm > <ssvs :
stopDetect ionAlgorithm 001 >)

Objec tProper tyAsser t ion ( < dul : hasPart > <ssvs : stopDetect ionAlgorithm
001> <ssvs : s topDetect ionAlgor i thmObject ive 001 >)

Objec tProper tyAsser t ion ( < ro : precedes > <ssvs : stopDetect ionAlgorithm
001> <ssvs : s e l e c t P o i n t O f I n t e r e s t A l g o r i t h m 001 >)

Class Asser t ion ( <odm: algorithmImplementation > <ssvs :
stopDetectionAlgorithmImplementation 001 >)

Objec tProper tyAsser t ion ( < obi : i sConcre t iza t ionOf > <ssvs :
stopDetectionAlgorithmImplementation 001> <ssvs :
stopDetect ionAlgorithm 001 >)

Objec tProper tyAsser t ion ( < obi : hasQuality > <ssvs :
stopDetectionAlgorithmImplementation 001> <ssvs : Spat ia lAccuracy
001 >)

Class Asser t ion ( < obi : dataTransformationObject ive > <ssvs :
s topDetect ionAlgor i thmObject ive 001 >)

Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs :
s topDetect ionAlgor i thmObject ive 001> <ssvs :
d e s c r i p t i v e G e o g r a p h i c l o c a t i o n D a t a S p e c i f i c a t i o n _01 >)
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Class Asser t ion ( <odm: operator > <ssvs : s topDetect ionOperator 001 >)
Objec tProper tyAsser t ion ( <obo : r o l e _ of > <ssvs : s topDetect ionOperator 001>

<ssvs : stopDetectionAlgorithmImplementation 001 >)
Objec tProper tyAsser t ion ( < exac t : hasInformation > <ssvs :

s topDetect ionOperator 001> <ssvs : Spat ia lAccuracyPoICalcula t ion
001 >)

Class Asser t ion ( < opis : semant icEnt i tyMappingSpeci f icat ion > <ssvs :
behavioralEntityMappingSpec 001 >)

Objec tProper tyAsser t ion ( < iao : isAbout > <ssvs :
behavioralEntityMappingSpec 001> <ssvs :
behaviora lEnt i tyForAccessContro l 001 >)

Class Asser t ion ( < opis : semant icEnt i tyMappingSpeci f icat ion > <ssvs :
behavioralEntityMappingSpec 002 >)

Objec tProper tyAsser t ion ( < iao : isAbout > <ssvs :
behavioralEntityMappingSpec 002> <ssvs : geographicLocat ionProperty _
dataPropertyAxiom >)

Class Asser t ion ( <odm: d a t a S p e c i f i c a t i o n > <ssvs : dataSpec 001 >)
Objec tProper tyAsser t ion ( < iao : isAbout > <ssvs : dataSpec 001> <opis :

semanticPerceptionDatatype 001 >)
Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs : dataSpec 001> <ssvs :

behaviora lEnt i tyForAccessContro l 001 >)
Class Asser t ion ( <odm: d a t a S p e c i f i c a t i o n > <ssvs : dataSpec 002 >)
Objec tProper tyAsser t ion ( < iao : isAbout > <ssvs : dataSpec 002> <opis :

semanticPerceptionDatatype 001 >)
Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs : dataSpec 002> <ssvs :

behaviora lEnt i tyForAccessContro l 001 >)
Class Asser t ion ( <odm: d a t a S p e c i f i c a t i o n > <ssvs : dataSpec 003 >)
Objec tProper tyAsser t ion ( < iao : isAbout > <ssvs : dataSpec 003> <odt :

realDatatype >)
Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs : dataSpec 003> <ssvs :

geographicLocat ionMappingSpeci f icat ion _01 >)
Class Asser t ion ( <odm: d a t a S p e c i f i c a t i o n > <ssvs : dataSpec 004 >)
Objec tProper tyAsser t ion ( < iao : isAbout > <ssvs : dataSpec 004> <odt :

realDatatype >)
Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs : dataSpec 004> <ssvs :

geographicLocat ionMappingSpeci f icat ion _01 >)
Class Asser t ion ( < iao : o b j e c t i v e S p e c i f i c a t i o n > <ssvs : objSpec 001 >)
Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs : objSpec 001> <ssvs :

dataSpec 001 >)
Class Asser t ion ( < iao : o b j e c t i v e S p e c i f i c a t i o n > <ssvs : objSpec 002 >)
Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs : objSpec 002> <ssvs :

dataSpec 002 >)
Class Asser t ion ( < iao : o b j e c t i v e S p e c i f i c a t i o n > <ssvs : objSpec 003 >)
Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs : objSpec 003> <ssvs :

dataSpec 003 >)
Class Asser t ion ( < iao : o b j e c t i v e S p e c i f i c a t i o n > <ssvs : objSpec 004 >)
Objec tProper tyAsser t ion ( < ro : has_ part > <ssvs : objSpec 004> <ssvs :

dataSpec 004 >)
⇧

��.� ����������������

PREFIX opis : <ht tps : / / . . / thiagomoreirac/opis/master/opis . owl#>
PREFIX ppol : <ht tps : / / . . iagomoreirac/opis/master/pr ivacy_pol i cy . owl#>
PREFIX obi : <ht tp :// purl . o b o l i b r ar y . org/obo/>
PREFIX ro : <http ://www. obofoundry . org/ro/ro . owl#>
PREFIX iao : <http :// purl . o b o l i b r ar y . org/obo/>
PREFIX odm: <http :// kt . i j s . s i /panovp/OntoDM#>

PREFIX odt : <http :// kt . i j s . s i /panovp/OntoDT#>
PREFIX ssn : <http :// purl . o c l c . org/NET/ssnx/ssn#>

SELECT ?iPPVS ? iOntologyAxiom ? cProperty ? c F e a t u r e O f I n t e r e s t ?
iDatatype WHERE { {

#=== Privacy Policy Condition =======

? pr ivacyPol icyCondit ion ppol : i nc l u desPr i vac y Pr ese r v i n g V i r tu a l Se nso r ?
iPPVS .

? pr ivacyPol icyCondit ion dul : i s S e t t i n g F o r ? i D i r e c t C l a s s i f i c a t i o n .
? pr ivacyPol icyCondit ion a ?PPC . ?PPC r d f s : subClassOf+ ppol :

Pr ivacyPol icyCondit ion .
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#=== Transversal Classification ====

? i D i r e c t C l a s s i f i c a t i o n a/r d f s : subClassOf * ? c T r a n s v e r s a l C l a s s i f i c a t i o n
.

? c T r a n s v e r s a l C l a s s i f i c a t i o n r d f s : subClassOf * dul : Concept ; ^a ?
i T r a n s v e r s a l C l a s s i f i c a t i o n .

#=== Concrete Classification =======

? i T r a n s v e r s a l C l a s s i f i c a t i o n dul : c l a s s i f i e s ?cTCOntologyAxiom .
?cTCOntologyAxiom a/r d f s : subClassOf+ opis : OntologyAxiom ; obo : hasURI ?

cTransversa lClass i f iedAxiom .
? cTransversa lClass i f iedAxiom ( r d f s : subClassOf|owl : equiva lentClass|^

owl : equiva lentClass ) + opis : B e h a v i o r a l E n t i t y .
? cTransversa lClass i f iedAxiom ( ( r d f s : subClassOf /(owl : someValuesFrom|

owl : allValuesFrom|owl : onClass ) ) | ( ( owl : unionOf/rdf : r e s t */ rdf : f i r s t
) * ) ) * ? cClassi f iedAxiom .

? iClass i f iedAxiom a /( r d f s : subClassOf|^owl : equiva lentClass|owl :
equiva lentClass ) * ? cClassi f iedAxiom .

#=== Output VS ===============

? i V i r t u a l S e n s o r a/r d f s : subClassOf * opis : V i r tua lSensor .
? i V i r t u a l S e n s o r obi : i s C o n c r e t i z a t i o n O f ? iSPP . ? iSPP a/r d f s : subClassOf

* opis : Semant icPercept ionProcess .
? iSPP ro : has_part|dul : hasPart ? iAlgorithm . ? iAlgorithm a/r d f s :

subClassOf iao : iao : algorithm .
? iAlgorithm ro : has_part|dul : hasPart ? i O b j e c t i v e S p e c . ? i O b j e c t i v e S p e c

a/r d f s : subClassOf * iao : o b j e c t S p e c i f i c a t i o n .
? i O b j e c t i v e S p e c ro : has_part|dul : hasPart ? iOutputDataSpec . ?

iOutputDataSpec a/r d f s : subClassOf * odm: OntoDM_000168 .
? iOutputDataSpec ro : has_part|dul : hasPart ? iMapSpec . ? iMapSpec a/r d f s :

subClassOf * odm: mappingSpeci f icat ion .
? iOutputDataSpec iao : iao : isAbout ? iDatatype . ? iDatatype a/r d f s :

subClassOf * odt : datatype .
? iMapSpec iao : iao : isAbout ? iOntologyAxiom . ? iOntologyAxiom a/r d f s :

subClassOf * opis : OntologyAxiom .
? iOntologyAxiom opis : hasIRI ? cOntologyAxiom . ? cOntologyAxiom r d f s :

subClassOf * ? IRIType .
#=== Input VS ===============

? i V i r t u a l S e n s o r a/r d f s : subClassOf * opis : V i r tua lSensor .
? i V i r t u a l S e n s o r obi : i s C o n c r e t i z a t i o n O f ? iSPP . ? iSPP a/r d f s : subClassOf

* opis : Semant icPercept ionProcess .
? iSPP ro : has_part|dul : hasPart ? iAlgorithm . ? iAlgorithm a/r d f s :

subClassOf iao : iao : algorithm .
? iAlgorithm ro : has_part|dul : hasPart ? i O b j e c t i v e S p e c . ? i O b j e c t i v e S p e c

a/r d f s : subClassOf * iao : o b j e c t S p e c i f i c a t i o n .
? i O b j e c t i v e S p e c ro : has_part|dul : hasPart ? i InputSpec . ? i InputSpec a/

r d f s : subClassOf * odm: d e s c r i p t i v e D a t a S p e c i f i c a t i o n .
? i InputSpec ro : has_part|dul : hasPart ? iMapSpec . ? iMapSpec a/r d f s :

subClassOf * odm: mappingSpeci f icat ion .
? i InputSpec iao : iao : isAbout ? iDatatype . ? iDatatype a/r d f s : subClassOf *

odt : datatype .
? iMapSpec iao : iao : isAbout |( iao : iao : isAbout/opis : hasIRI ) ? cProperty . ?

cProperty r d f s : subClassOf * ssn : Property .
OPTIONAL { ? cProperty ssn : isPropertyOf ? c F e a t u r e O f I n t e r e s t . ?

c F e a t u r e O f I n t e r e s t r d f s : subClassOf * ssn : F e a t u r e O f I n t e r e s t . }
#=== Input PPPVS ===============

? iPPVS a/r d f s : subClassOf * opis : V i r tua lSensor .
? iPPVS obi : i s C o n c r e t i z a t i o n O f ? iSPP2 . ? iSPP2 a/r d f s : subClassOf * opis :

Semant icPercept ionProcess .
? iSPP2 ro : has_part|dul : hasPart ? iAlgorithm2 . ? iAlgorithm2 a/r d f s :

subClassOf iao : iao : algorithm .
? iAlgorithm2 ro : has_part|dul : hasPart ? i O b j e c t i ve Spe c2 . ?

iOb jec t i veSpec 2 a/r d f s : subClassOf * iao : o b j e c t i v e S p e c i f i c a t i o n .
? i O b j e c t i ve Sp e c2 ro : has_part|dul : hasPart ? i InputSpec2 . ? i InputSpec2 a

/r d f s : subClassOf * odm: d e s c r i p t i v e D a t a S p e c i f i c a t i o n .
? i InputSpec2 ro : has_part|dul : hasPart ? iMapSpec2 . ? iMapSpec2 a/r d f s :

subClassOf * odm: mappingSpeci f icat ion .
? i InputSpec2 iao : iao : isAbout ? iDatatype . ? iDatatype a/r d f s : subClassOf

* odt : datatype .
? iMapSpec2 iao : iao : isAbout |( iao : iao : isAbout/opis : hasIRI ) ? cProperty .

? cProperty r d f s : subClassOf * ssn : Property .
OPTIONAL { ? cProperty ssn : isPropertyOf ? c F e a t u r e O f I n t e r e s t . ?

c F e a t u r e O f I n t e r e s t r d f s : subClassOf * ssn : F e a t u r e O f I n t e r e s t . }
#=== RetrievePPVSForVS ===============
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? cOntologyAxiom r d f s : subClassOf */^a ? iClass i f iedAxiom .
}
FILTER ( ? IRIType IN ( ssn : F e a t u r e O f I n t e r e s t , ssn : Property ) )
FILTER ( ? i V i r t u a l S e n s o r != ? iPPVS )
FILTER ( ? i V i r t u a l S e n s o r = : ID )
} LIMIT : LIMIT

⇧
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