Méthode d'interface immergée pour la simulation directe de l'atomisation primaire

par Isabelle Marter-Lagrange

Thèse de doctorat en Energétique et transferts

Sous la direction de Jean-Luc Estivalèzes et de Davide Zuzio.

Le président du jury était Alain Berlemont.

Le jury était composé de Lisl Weynans.

Les rapporteurs étaient David Le Touzé, Stéphane Vincent.


  • Résumé

    La réduction des émissions polluantes et l'amélioration des performances des turboréacteurs nécessitent une connaissance détaillée des phénomènes physiques mis en jeu dans une chambre de combustion. L'atomisation du carburant résulte du cisaillement engendré par un fort écoulement d'air généré dans l'injecteur. La simulation numérique directe d'écoulements avec interface permet de simuler l'ensemble du processus d'atomisation. L'utilisation de maillages Cartésiens permet la réalisation de calculs HPC efficaces et précis. Mais, une des complexités de l'atomisation vient d'une interaction forte entre le comportement de la nappe liquide et l'écoulement gazeux dans les conduites de l'injecteur, rendant impératif la simulation de l'injecteur complet. Ceci étant impossible avec des maillages Cartésiens structurés, l'objectif de cette thèse est de développer une méthode d'interface immergée permettant l'inclusion d'objets solides dans un domaine de calcul, indépendamment du maillage, afin de réaliser des DNS du système d'injection complet. Les équations de Navier-Stokes incompressibles diphasiques sont résolues à l'aide d'un algorithme de projection, l'interface liquide-gaz étant transportée avec une méthode CLSVOF conservative en masse et quantité de mouvement. La présence du solide est prise en compte grâce à la méthode d'interface immergée. Cette méthode a été appliquée à la simulation numérique de nappes liquides cisaillées pour une configuration d'injecteur utilisée en essais à l'ONERA et a permis une meilleure prédiction de la fréquence de battement de la nappe.

  • Titre traduit

    Immersed interface method for the direct numerical simulation of the primary atomization


  • Résumé

    The reduction of polluting emissions and improvement of aeronautical engines efficiency depends on the detailed knowledge of the physical phenomena encountered in a combustion chamber. Fuel atomization results from the shearing effect induced by the high velocity airflow generated inside the injector. The Direct Numerical Simulation of interfacial flows allows the simulation of the whole atomization process, while Cartesian structured meshes allows efficient and accurate HPC computations. However, the complexity of atomization comes from a strong interaction between the jet behavior and the injector internal flow, which makes essential to simulate the whole injector system. As that is impossible on Cartesian structured grids, the main objective of this thesis is to develop an Immersed Interface Method (IIM) allowing the inclusion of solid objects in the computational domain, independently of the mesh. The incompressible two-phases Navier-Stokes equations are solved using a projection algorithm with the CLSVOF method, conservative in mass and momentum. The solid presence is taken into account using the IIM. The proposed IIM has been applied to the numerical simulation of sheared liquid sheets corresponding to an ONERA experimental configuration and allows a better prediction of the flapping frequencies of the liquid sheet.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : ISAE-SUPAERO Institut Supérieur de l'Aéronautique et de l'Espace. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.