Modèle de transport d'électrons à basse énergie (~10 eV- 2 keV) pour applications spatiales (OSMOSEE, GEANT4)

par Juliette Pierron

Thèse de doctorat en Electromagnétisme et systèmes de haute fréquence

Sous la direction de Jean-Pierre David et de Christophe Inguimbert.

Le président du jury était Omar Jbara.

Le jury était composé de Sébastien Incerti, Mélanie Raine.

Les rapporteurs étaient Omar Jbara, Mauro Taborelli.


  • Résumé

    L’espace est un milieu hostile pour les équipements embarqués à bord des satellites. Les importants flux d’électrons qui les bombardent continuellement peuvent pénétrer à l’intérieur de leurs composants électroniques et engendrer des dysfonctionnements. Leur prise en compte nécessite des outils numériques 3D très performants, tels que des codes de transport d’électrons utilisant la méthode statistique de Monte-Carlo, valides jusqu’à quelques eV. Dans ce contexte, l’ONERA a développé, en partenariat avec le CNES, le code OSMOSEE pour l’aluminium. De son côté, le CEA a développé, pour le silicium, le module basse énergie MicroElec dans le code GEANT4. L’objectif de cette thèse, dans un effort commun entre l’ONERA, le CNES et le CEA, est d’étendre ces codes à différents matériaux. Pour ce faire, nous avons choisi d’utiliser le modèle des fonctions diélectriques, qui permet de modéliser le transport des électrons à basse énergie dans les métaux, les semi-conducteurs et les isolants. La validation des codes par des mesures du dispositif DEESSE de l’ONERA, pour l’aluminium, l’argent et le silicium, nous a permis d’obtenir une meilleure compréhension du transport des électrons à basse énergie, et par la suite, d’étudier l’effet de la rugosité de la surface. La rugosité, qui peut avoir un impact important sur le nombre d’électrons émis par les matériaux, n’est habituellement pas prise en compte dans les codes de transport, qui ne simulent que des matériaux idéalement plats. En ce sens, les résultats de ces travaux de thèse offrent des perspectives intéressantes pour les applications spatiales.

  • Titre traduit

    Model of low-energy electrons (~10 eV-2000 eV) for space applications (OSMOSEE, GEANT4)


  • Résumé

    Space is a hostile environment for embedded electronic devices on board satellites. The high fluxes of energetic electrons that impact these satellites may continuously penetrate inside their electronic components and cause malfunctions. Taking into account the effects of these particles requires high-performant 3D numerical tools, such as codes dedicated to electrons transport using the Monte Carlo statistical method, valid down to a few eV. In this context, ONERA has developed, in collaboration with CNES, the code OSMOSEE for aluminum. For its part, CEA has developed for silicon the low-energy electron module MicroElec for the code GEANT4. The aim of this thesis, in a collaborative effort between ONERA, CNES and CEA, is to extend those two codes to different materials. To describe the interactions between electrons, we chose to use the dielectric function formalism that enables to overcome of the disparity of electronic band structures in solids, which play a preponderant role at low energy. From the validation of the codes, for aluminum, silver and silicon, by comparison with measurements from the experimental set-up DEESSE at ONERA, we obtained a better understanding of the transport of low energy electrons in solids. This result enables us to study the effect of the surface roughness. This parameter, which may have a significant impact on the electron emission yield, is not usually taken into account in Monte Carlo transport codes, which only simulate ideally flat materials. In this sense, the results of this thesis offer interesting perspectives for space applications.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : ISAE-SUPAERO Institut Supérieur de l'Aéronautique et de l'Espace. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.