Amélioration d'attaques par canaux auxiliaires sur la cryptographie asymétrique

par Margaux Dugardin

Thèse de doctorat en Electronique et communications

Sous la direction de Jean-Luc Danger et de Sylvain Guilley.

Le président du jury était Lejla Batina.

Le jury était composé de Marc Joye, Emmanuel Prouff, Werner Schindler.

Les rapporteurs étaient Pierre-Alain Fouque, David Naccache.


  • Résumé

    Depuis les années 90, les attaques par canaux auxiliaires ont remis en cause le niveau de sécurité des algorithmes cryptographiques sur des composants embarqués. En effet, tout composant électronique produit des émanations physiques, telles que le rayonnement électromagnétique, la consommation de courant ou encore le temps d’exécution du calcul. Or il se trouve que ces émanations portent de l’information sur l’évolution de l’état interne. On parle donc de canal auxiliaire, car celui-ci permet à un attaquant avisé de retrouver des secrets cachés dans le composant par l’analyse de la « fuite » involontaire. Cette thèse présente d’une part deux nouvelles attaques ciblant la multiplication modulaire permettant d’attaquer des algorithmes cryptographiques protégés et d’autre part une démonstration formelle du niveau de sécurité d’une contre-mesure. La première attaque vise la multiplication scalaire sur les courbes elliptiques implémentée de façon régulière avec un masquage du scalaire. Cette attaque utilise une unique acquisition sur le composant visé et quelques acquisitions sur un composant similaire pour retrouver le scalaire entier. Une fuite horizontale durant la multiplication de grands nombres a été découverte et permet la détection et la correction d’erreurs afin de retrouver tous les bits du scalaire. La seconde attaque exploite une fuite due à la soustraction conditionnelle finale dans la multiplication modulaire de Montgomery. Une étude statistique de ces soustractions permet de remonter à l’enchaînement des multiplications ce qui met en échec un algorithme régulier dont les données d’entrée sont inconnues et masquées. Pour finir, nous avons prouvé formellement le niveau de sécurité de la contre-mesure contre les attaques par fautes du premier ordre nommée extension modulaire appliquée aux courbes elliptiques.

  • Titre traduit

    Improvement of side-channel attack on asymmetric cryptography


  • Résumé

    : Since the 1990s, side channel attacks have challenged the security level of cryptographic algorithms on embedded devices. Indeed, each electronic component produces physical emanations, such as the electromagnetic radiation, the power consumption or the execution time. Besides, these emanations reveal some information on the internal state of the computation. A wise attacker can retrieve secret data in the embedded device using the analyzes of the involuntary “leakage”, that is side channel attacks. This thesis focuses on the security evaluation of asymmetric cryptographic algorithm such as RSA and ECC. In these algorithms, the main leakages are observed on the modular multiplication. This thesis presents two attacks targeting the modular multiplication in protected algorithms, and a formal demonstration of security level of a countermeasure named modular extension. A first attack is against scalar multiplication on elliptic curve implemented with a regular algorithm and scalar blinding. This attack uses a unique acquisition on the targeted device and few acquisitionson another similar device to retrieve the whole scalar. A horizontal leakage during the modular multiplication over large numbers allows to detect and correct easily an error bit in the scalar. A second attack exploits the final subtraction at the end of Montgomery modular multiplication. By studying the dependency of consecutive multiplications, we can exploit the information of presence or absence of final subtraction in order to defeat two protections : regular algorithm and blinding input values. Finally, we prove formally the security level of modular extension against first order fault attacks applied on elliptic curves cryptography.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Télécom ParisTech. Bibliothèque scientifique et technique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.